

遜
 MICRO-TECH PUBLICATIONS

MICROPROCESSOR

 DAD| TTL - CMOS |
| :---: |
| LINEAR I.C.'s |
| MEMORY CHIPs |
| ANALOG DEVICES |
| $\mathbf{8 / 1 6 / 3 2}$ BIT CPUs |
| VOLTAGE REGULATOR I.C.'s |

CLOCK/CALCULATOR I.C.'s
P.O. Box 50688, Dubai (U.A.E.)

FIRST EDITION 1992
© TECH PUBLICATIONS PTE LTD, SINGAPORE

Copyright © 1992 Tech Publications Pte Ltd, \#B1-39 Sim Lim Tower, Singapore 0820. World rights reserved. No part of this publication may be stored in a retrieval system, reproduced in any way, including but not limited to photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

Every effort has been made to supply complete and accurate information. However, TECH Publications Pte Ltd assumes no responsibility for its use, nor for any infringement of the intellectual property rights of third parties which would result from such use.

Printed in Singapore
by TECH PUBLICATIONS PTE LTD, SINGAPORE for DE MUIDERKRING BV, WEESP, HOLLAND

PREFACE

This microprocessor data hand book is the third revised edition of our earlier book. Since the first edition was published quite a bit of change has occurred in the industry. Many new chips and devices have also been added.

This new edition has been compiled after looking carefully in to various applications including personal computers, sophisticated instruments and communication systems.

It will also serve as a good reference book for computer hardware Hobbyists, Engineers and Educationists. It will help them identify all support chips applicable to specific microprocessor circuitry.

The publishers are thankful to various manufacturers of these devices whose datas have been used in this work.

The publishers are also grateful to Mr. A.K. Jain who have been very helpful in the compilation of this book.

Publishers
-

CONTENTS

DEVICE NO. DEVICE FUNCTION PAGE NO.
TTL DATA
7400 Quad 2-NAND Gate 1
7401 Quad 2-NAND Gate 27402
7403Quad 2-NOR Gate37404Quad 2-NAND Gate47405Hex Inverter5
7406, 7 Hex Inverter, Hex Buffer 7Hex Inverter6
7408 Quad 2-NAND Gate 8
7409 Quad 2-AND Gate 9
7410, 11 Triple 3-NAND Gate, AND Gate 1074127413741474157416, 177420, 2174257426
Triple 3-NAND Gates 11
Dual 4-NAND Schmitt Triggers 12
Hex Schmitt Trigger Inverters 13
Triple 3-AND Gate 14
Hex Inverter, Buffer 15
Dual 4-NAND Gate 16
Dual 4-NOR Gate 17
Quad 2-NAND Buffer 18
7427 Triple 3-NOR Gate 19
7428 Quad 2-NOR Buffer 20
8-input NAND Gate 21
Quad 2-OR Gate 22
Quad 2-NOR Buffer 23
Quad 2-NAND Buffer 24
Quad 2-NAND Buffer 25
Quad 2-NAND Buffer 26
Dual 4-NAND Buffer 27
BCD to Decimal Decoder 28
BCD-to-Decimal Decoder/Driver 29
BCD-to-seven Segment Decoder/Driver 30
Dual 2-Wide 2-AOI Gate 33
Expandable 4-wide 2-AOI Gate 34
4-Wide 2-AOI Gate 35
4-Wide AOI Gate 36
Dual JK Flip Flop 37
Dual D Flip Flop 39
Quad Bistable latch 41
Dual JK Flip Flop 42
4-Bit Full Adder 44
Comparators 45
Quad 2-Exclusive or Gate 47
Decade Counter 48
8-Bit Shift Register 50
Divide by Twelve Counter 52
4-Bit Binary Ripple Counter 54
4-Bit Shift Register 56

DEVICE NO.

DEVICE FUNCTION

TTL DATA

7495 4-Bit Shift Register 58
7496
5-Bit Shift Register 60
74107
Dual JK Flip Flop62

74109 Dual JK Flip Flop 64
74112 Dual JK Edge Triggered Flip Flop 66
74113
Dual JK Edge Triggered Flip Flop 68
74116
Dual 4-Bit Transparent latches 70
74121
Monostable Multivibrator 71
74123
Dual Monostable Multiviberator 73
74125
Quad 3 state Buffer 76
74128
Quad 2-NOR Buffer 78
74132
Quad 2-NAND Schmitt Trigger 79
74133
13-NAND Gate 80
74134
12-NAND Gate 81
74135
Quad Exclusive OR/NOR Gate 82
74136
Quad 2-Exclusive or Gate 83
74137
74138
1:8 Demultiplexer
84
$1: 8$ Demultiplexer 87
74139
Dual 1:4 Demultiplexer
89
74145
BCD-to-Decimal Decoder/Driver
91
74147 Priority Encoder (Decimal to Binary) 93
74148
Priority Encoder (Octal to Binary) 95
74150
16:1 Multiplexer 97
74151 8:1 Multiplexer 99
74153
Dual 4:1 Multiplexer 101
1:16 Demultiplexer 103
Dual 1:4 Demultiplexer 105
Dual 1:4 Demultiplexer 107
Quad 2:1 Multiplexer 109
Counters 111
8 Bit Shift Register 118
8 Bit Shift Register 120
8 Bit Shift Register 122
4 Bit Up/Down Synchronous Counter 124
4x4 Register Files 128
Quad D-type Flip Flop 129
Hex D Flip Flop 131
Quad D Flip Flop 133
8 Bit Parity Generator 135
Arithmetic Logic Unit 137
Carry Generator 140
Counters 142
Counters 147
Shift Register 151
Shift Register 154

DEVICE NO.

dEVICE FUNCTION
PAGE NO.
TTL DATA
74197 Pre settable 4-Bit Binary Counter 156
74199
74245
74251
8-Bit Parallel-Access Shift Register
158
Ocal Tansceiver 161

74253
8-Input Multiplexer 162

74256
74258
Dual 4-Input Multiplexer 164

74259
74266
74273
74283
74290
74293
74364
74365, 66, 67, 68
74373, 74
74390
74393
Dual 4-Bit Addressable latch 165
Data Selector/Multiplexer 166
8 -Bit Addressable latch 168
Quad 2-Exclusive NOR Gate 170
Octal D Flip Flop 171
4-Bit Full Adder 172
Decade Counter 174
4-Bit Binary Ripple Counter 176
Octal D Flip Flop 178
Buffer Drivers 179
Latches/Flip Flop 181
Dual Decade Ripple Counter 183
Dual 4-Bit Binary Ripple Counter 185

CMOS

CD4000 Series Pinconfiguration 187
4510 BCD Up/Down Counter 201
$4511 \quad$ BCD to Seven Segment Decoder 203
4514 4-16 Line Decoder 205
$4516 \quad$ Binary Up/Down Counter 206
4518 Dual Up Counter 208
4528 Mono Stable Multivibrator 209
$4543 \quad$ BCD to 7 Segment Decoder 210
4581 4-Bit Arithmetic logic unit 211
8 BIT CPUs
80808 Bit Microprocessor 213
80858 Bit Microprocessor 218
$8155 \quad 2$ K RAM with I/O Ports and Timer 231
8185 I K Ram 239
8202 Dynamic RAM Controller 241
8203 Dynamic RAM Controller 242
8205 1:8 Decoder 249
8206 Error Detection \& Correction Unit 251
8207 Dual Port Dynamic RAM Controller 253
8208 Dynamic RAM Controller 254
82128 Bit I/O Port 255
82164 Bit Bus Driver 257
8218 Bus Controller 258
8224 Clock generator 259

DEVICE NO. DEVICE FUNCTION PAGE NO.

8 BIT CPUs

8228 System Controller 260

8231 Arithmetic Processing Unit 261
$8232 \quad$ Floating Point Processing Unit 262
8237 Programmable DMA Controller 263
8250 Asynchronous Communication Element 270
8251 Programmable Communication Interface 273
8253 Programmable Interval Timer 284
8254 Programmable Interval Timer 285
8255 Programmable Peripheral Interface 286
8256 Support Controller 304
8257 Programmable DMA Controller 305
8259 Programmable Interrupt Controller 315
8271 Floppy Disk Controller 316
$8272 \quad$ Floppy Disk Controller 317
8273 Protocol Controller 318
8275 CRT Controiler 319
8276 CRT Controller 320
8279 Keyboard/Display Interface 321
8355 2K RAM with I/O 329
8755 2K EPROM with I/O 331
8282 Octal latch 332
8284 Clock generator 333
8286, 87 Octal Bus Transceiver 334
8288 Bus Controller 335
8289 Bus Aribter 336
8291
8292
8293
8294
8295
8041
8048
8051
8052
8094
6800
6801
6802
6809
6810
6821
6843
6845
6847
6850
6875
GPIB Talker/Listener 337
GPIB Controller 338
GPIB Transceiver 339
DATA Encryption unit 340
Dot Matrix Printer Controller 341
8 Bit Microcomputer 342
8 Bit Microcomputer 343
8 Bit Microcomputer 347
BASIC Interpreter 351
16 Bit Micro Controller 355
8 Bit Microprocessing Unit 357
Microcomputer Unit 365
Microprocessor with CLK \& RAM 366
High Performance Microprocessor 367
128x8 Bit RAM 371
Peripheral Interface Adaptor 372
Floppy Disk Controller 373
CRT Controller 374
Video Display Generator 376
ACIA 378
Clock Generator 379
DEVICE NO. DEVICE FUNCTION PAGE NO.
8 BIT CPUs
6880 Bus Transceiver 381
6882 Tri state Buffer/latch 382
6883 Address Multiplexer 384
6885 Address Bus Extender 385
6889 Bus Transceiver 387
$6890 \quad 8$ Bit D/A Convertor 388
8400 Z 80 CPU 389
8410 Z 80 DMA 393
8420 Z 80 PIO 394
8430 Z 80 CTC 395
8440 Z 80 SIO 396
8470 Z 80 DART 397
6502 Rocwell 8 Bit CPU 398
6522 VIA 401
6545 CRT Controller 403
6551 ACIA 405
CDPI1802 RCA 8 Bit Microprocessor 407
F8 Mostek Central Processing Unit 414
16/32 Bit Microprocessor
$8086 \quad 16$ Bit Microprocessor 415
8088 8/16 Bit Microprocessor 433
80186 16 Bit Microprocessor 448
80286 16 Bit Microprocessor 454
80386 32 Bit Microprocessor 458
80387 80 Bit Numeric Processor 486
82380 32 Bit DMA Controller 488
82385 32 Bit Cache Controller 491
82062 Winchester Disk Controller 496
82064 Winchester Disk Controller 498
82716 Video Storage \& Display Device 500
82720 Graphic Display Controller 502
82786 Graphic Coprocessor 503
80486 32 Bit Microprocessor 504
68000 16 Bit Microprocessor 514
68020 32 Bit Virtual Memory Microprocessor 554
68120 Peripheral Controller 555
68701 Microcomputer Unit 557
68881 Floating Point Co-processor 559
68851 Memory Management Unit 563
Z 8000 16 Bit CPU 566
Z 8000032 Bit CPU576

DEVICE NO. DEVICE FUNCTION

PAGE NO.

MEMORY CHIPs

2114 IK x 4 Bit RAM 583
6116
$2 \mathrm{~K} \times 8$ Bit RAM
584
65116
6264
63256
$2 \mathrm{~K} \times 8$ Bit RAM
585

84256
8K x 8 Bit RAM
586

55257
32K $\times 8$ Bit RAM
587
32K $\times 8$ Bit RAM 588

4164
$32 \mathrm{~K} \times 8$ Bit RAM
589

41256
6256
64K $\times 1$ Bit Dynamic RAM
590
256K x 1 Bit Dynamic RAM
592
511000
256K x 1 Bit Dynamic RAM
593

2316
IMB Dynamic RAM
594

2332
$2 \mathrm{~K} \times 8$ Bit ROM
595

2334
$4 \mathrm{~K} \times 8$ Bit ROM
596
65256
$8 \mathrm{~K} \times 8$ Bit ROM
597
23512
32K x 8 Bit ROM
598
531000
2708
2716
64K x 8 Bit ROM 599
128K x 8 Bit ROM $\quad 600$
$1 \mathrm{~K} \times 8$ Bit EPROM 601
2732
2764
2816
$2 \mathrm{~K} \times 8$ Bit EPROM
602

27128
27256
27512
27F64
28F256
$4 \mathrm{~K} \times 8$ Bit EPROM
604

571000

$8 \mathrm{~K} \times 8$ Bit EPROM
605
$2 K \times 8$ Bit EPROM 606
$16 \mathrm{~K} \times 8$ Bit EPROM 607
$32 \mathrm{~K} \times 8$ Bit EPROM 608
$64 \mathrm{~K} \times 8$ Bit EPROM 610
$8 \mathrm{~K} \times 8$ Bit Flash Memory 612
32K x 8 Bit Flash Memory 614
128K x 8 Bit EPROM 616
ANALOG DEVICES
ADC0800 8 Bit AD Convertor 617
ADC0808 8 Bit AD Convertor 618
AD1210 12 Bit AD Convertor 619
DAC0800 8 Bit D/A Convertor 620
DAC0808 8Bit DIA Convertor 621
DAC1210 12 Bit D/A Convertor 622
AD568 12 Bit D/A Convertor 623
AD664 12 Bit Quad DAC 624
AD674 12 Bit AD Convertor 625
AD1376 16 Bit AD Convertor 626
AD9048 8 Bit Video AND Convertor 627
DEVICE NO. DEVICE FUNCTION PAGE NO.
LINEAR I.C.s 7 op Amps
LM311 Voltage Comparator 628
LM353 Operational Amplifier 629
LM363 Precision Instrumentation Amplifier 630
LM565 Phase Locked Loop 631
LM710 Voltage Comparator 632
LM711 Dual Comparator 633
uA741 General Purpose op Amp. 634
uA747 Dual op Amp. 635
CA 3130 Operational Amplifier 636
CA31340 Operational Amplifier 637
CLOCK CALCULATOR CHIPs
MM5387 Digital Alarm Clock 638
MM5734 8 -function Calculator 643
ADC3501 Digital Volt Meter 646
MC34010 Complete Electronic Telephone ckt. 648
MC34012 Tone Ringer 649
PCF8200 Male/Female Speech Synthesizer 650
555 Timer 651
556 Dual Timer 652
VOLTAGE REGULATOR CHIPs
7800 series 5, 8, 12, 24 Voltage Regulators 653
SG123 3 Amp, 5V Positive Reguiator 655
SG723 General Purpose Positive Regulator 656
LM317 3-Terminal Adjustable Regulator 657
SG3524 SMPS Control Circuit 658
Standard Digital Bus Interface 659
IEE488 Parallel Transmission 660
EIA RS 232C Serial Transmission 662
ASCII Code Chart 666
Number Conversion Table 667

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level

 L = LOW voltage level
7400, LSOO, SOO Gates

Quad Two-Input NAND Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7400	9 ns	8 mA
74 LS 00	9.5 ns	1.6 mA
74 S 00	3 ns	15 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7400N, N74LSOON, N74SOON
Plastic SO	N74LSO0D, N74S00D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
A, B	Inputs	1 ul	1Sul	1LSul
Y	Output	$10 u l$	10 Sul	10LSul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu A I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathbb{L}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

L5000008

LOGIC SYMBOL (IEEE/IEC)

74LSO1
 Gate

Quad Two-Input NAND Gate (Open Collector) Product Specification

Logic Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 01	16 ns	1.6 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C H}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T A}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Plastic DIP	N74LS01N
Plastic SO	N74LS01D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
A, B	Inputs	1LSul
Y	Output	10LSul

NOTE:
Where a 74LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and -0.4 mA IL.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7402, LSO2, SO2 Gates

Quad Two-Input NOR Gate Product Specification

Logic Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7402	10 ns	11 mA
$74 \mathrm{LSO2}$	10 ns	2.2 mA
74 SO 02	3.5 ns	22 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathbf{T A}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7402N, N74LS02N, N74S02N
Plastic SO	N74LS02D, N74S02D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
A, B	Inputs	1 ul	1 Sul	1 LSul
Y	Output	10 ul	10 Sul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=H I G H$ voltage level $L=$ LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7403	$35 \mathrm{~ns}\left(\mathrm{t}_{\text {PLH }}\right)$ $8 \mathrm{~ns}\left(\mathrm{t}_{\text {PHL }}\right)$	8 mA
74 S 03	$5 \mathrm{~ns}(\mathrm{tPLH}$ 4.5 ns ($\mathrm{t}_{\text {PHL }}$	13 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7403N, N74S03N
Plastic SO	N74S03D

NOTE

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S
A, B	Inputs	$1 u \mathrm{l}$	1 Sul
Y	Output	10 ul	10 Sul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and -2.0 mA ILL

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
L	H
H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
L	H
H	L

H = HIGH voltage level $L=$ L.OW voltage level

7405, LS05, S05
 Inverters

Hex Inverter (Open Collector) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7405	40ns (tpLH) 8ns (tphu)	12 mA
74LS05	$\begin{aligned} & 17 \mathrm{~ns} \text { (tpLH) } \\ & 15 \mathrm{~ns} \text { (tPHL) } \end{aligned}$	2.4 mA
74S05	$\begin{gathered} \left.5 \mathrm{~ns} \text { (} \mathrm{t}_{\mathrm{PLH}}\right) \\ \text { 4.5ns (tPHL) } \end{gathered}$	20 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C c}_{\mathbf{C S}} \mathbf{5 V} \pm 5 \% ; \mathbf{T A}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
Plastic DIP	N7405N, N74LS05N, N74S05N
Plastic SO	N74LSO5D, N74S05D
Ceramic DIP	

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
A	Input	1 ul	1Sul	1LSul
Y	Output	10 ul	10 Sul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I_{H}}$ and -1.6mA I_{IL}, a 74 S unit load (Sul) is $50 \mu A I_{I_{H}}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

'06		'07	
INPUT	OUTPUT	INPUT	OUTPUT
A	Y	A	Y
H	L	H	H
L	H	L	L

$H=$ HIGH voltage level
$L=$ LOW voltage level

7406, 07 Inverter/Buffer/Drivers

'06 Hex Inverter Buffer/Driver (Open Collector) '07 Hex Buffer/Driver (Open Collector) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7406	$\begin{aligned} & 10 \mathrm{~ns}\left(\mathrm{t}_{\text {PLH }}\right) \\ & 15 \mathrm{~ns} \text { (} \mathrm{t}_{\mathrm{PH}} \end{aligned}$	31 mA
7407	6ns (tpLH) 20 ns (tphL)	25 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
Plastic DIP	N7406N, N7407N
Plastic SO	N7406D, N7407D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$
\mathbf{A}	Input	1 ul
\mathbf{Y}	Output	10 ul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $\mathbf{- 1 . 6 \mathrm { mA }} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL
(06

LOGIC SYMBOL (IEEE/IEC)

7408, LS08, S08 Gates

Quad Two-Input AND Gate Product Specification

Logic Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7408	15 ns	16 mA
74 LS 08	9 ns	3.4 mA
74508	5 ns	25 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\text {CC }}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7408N, N74LS08N, N74S08N
Plastic SO	N74LSO8N, N74S08N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
A, B	Inputs	1 ul	1Sul	1LSul
Y	Output	10 ul	10 Sul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and - $1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $\left.50 \mu \mathrm{~A}\right|_{\mathbb{I H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{I}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

7410, 7411, LS10, LS11, S10, S11
 Gates

Triple Three-Input NAND ('10), AND ('11) Gates Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7410	9 ns	6 mA
74 LS 10	10 ns	1.2 mA
74 S 10	3 ns	12 mA
7411	10 ns	11 mA
74 LS 11	9 ns	2.6 mA
74 S 11	5 ns	19 mA

ordering code

PACKAGES	COMMERCIAL RANGE VCC $^{\mathbf{~} 5 \mathrm{5V} \pm 5 \% ; \mathrm{TA}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}}$
Plastic DIP '10	N7410N, N74LS10N, N74S10N
'11	N7411N, N74LS11N, N74S11N
Plastic SO '10	N74LS10D, N74S10D
Plastic SO '11	N74LS11D, N74S11D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	$74 S$	74 LS
A-C	Inputs	$1 u l$	1 Sul	1LSul
Y	Output	10 ul	10 Sul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $\mathbf{- 0 . 4 \mathrm { mA }} \mathrm{I}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

DC AND AC Characteristics: See Section 3*

8YMBOL	PARAMETER	54/74	UNITS	CONDITIONS	
		Min Max			
Icch	Power Supply Current	6.0	mA	VIN $=$ Gnd	$\mathrm{Vcc}=$ Max
ICCL		16.5		$\mathrm{V}_{\mathbf{I N}}=$ Open	
tPLH tPHL	Propagation Delay	45 15	ns	Figs. 3-2, 3-4	

${ }^{-}$DC limite apply over operating temperature range: AC limite apply at $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{VcC}=+5.0 \mathrm{~V}$.

- OC - Open Collector

7413, LS13
 Gates

Dual 4-Input NAND Schmitt Trigger Product Specification

Logic Products

DESCRIPTION

The '13 contains two 4-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates.

Each circuit contains a 4-input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the posi-tive-going and negative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as three inputs remain at a more positive voltage than $\mathrm{V}_{\mathrm{t}+\mathrm{MAX}}$, the gate will respond in the transitions of the other input as shown in Waveform 1.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7413	17 ns	17 mA
74 LS 13	17 ns	3.5 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$\mathrm{N} 7413 \mathrm{~N}, \mathrm{~N} 74 \mathrm{LS} 13 \mathrm{~N}$

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
All	Inputs	1 ul	1LSul
Y	Output	10 ul	10LSul

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

DESCRIPTION

The '14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional inverters.
Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and ne-gative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

7414, LS14
 Schmitt Triggers

Hex Inverter Schmitt Trigger Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7414	15 ns	31 mA
$74 L \mathrm{SS14}$	15 ns	10 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$\mathrm{N} 7414 \mathrm{~N}, \mathrm{~N} 74 \mathrm{LS} 14 \mathrm{~N}$
Plastic SO	N74LS14D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
A	Inputs	$1 u \mathrm{l}$	1LSul
Y	Output	10 ul	10LSui

NOTE:
Where a 74 unit load (u) is understood to be $40 \mu A I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{L}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

'16		'17	
INPUT	OUTPUT	INPUT	OUTPUT
A	Y	A	Y
L	H	L	L
H	L	H	H

$\mathrm{H}=$ HIGH voltage level
$\mathrm{L}=$ LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7416	10ns (tPLL) 15ns (tPH)	31 mA
7417	6ns (tPLH) 20ns (tPHL)	25 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7416N, N7417N
Plastic SO	N7417D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
input and output loading and fan-out table

PINS	DESCRIPTION	$\mathbf{7 4}$
A	Input	1ul
Y	Output	10ul

NOTE:
A 74 unit load $(u l)$ is understood to be $\left.40 \mu \mathrm{~A}\right|_{I H}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL
(16

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUTS				OUTPUTS		
A	B	C	D	Y('20)	Y('21)	
L	X	X	X	H	L	
X	L	X	X	H	L	
X	X	L	X	H	L	
X	X	X	L	H	L	
H	H	H	H	L	H	

$H=H I G H$ voltage level
$L=$ LOW voltage level
$X=$ Don't care

PIN CONFIGURATION
'20, '21

7420, 7421, LS20, LS21, S20 Gates

Dual Four-Input NAND ('20) AND ('21) Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7420	10 ns	8 mA
74 LS 20	10 ns	0.8 mA
74 S 20	3 ns	8 mA
7421	12 ns	8 mA
74 LS 21	9 ns	1.7 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7420N, N74LS20N, N74S20N
20	N7421N, N74LS21N
'21	N74LS20D, N74S20D, N74LS21D
Plastic SO	

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
$A-D$	inputs	1 ul	1Sul	1LSul
Y	Output	10 ul	10 Sul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{IL}_{\mathrm{L}}$.

LOGIC SYMBOL
LOGIC SYMBOL (IEEE/IEC)

7425 Gate

Dual Four-Input NOR Gate With Strobe Product Specification

Logic Products

FUNCTION TABLE

INPUTS					OUTPUT
A	B	C	D	G	Y
X	X	X	X	L	H
H	X	X	X	H	L
X	H	X	X	H	L
X	X	H	X	H	L
X	X	X	H	H	L
L	L	L	L	H	H

$H=$ HIGH voltage level
$L=L O W$ voltage level
$X=$ Don't care

LOGIC DIAGRAM

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7425	9 ns	9 mA

ORDERING CODE

PACKAGES	$V_{C C}=5 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7425N

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
$\mathrm{~A}-\mathrm{D}$	Inputs	1 ul
G	Input	4 ul
Y	Output	10 ul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=H I G H$ voltage level

 $\mathrm{L}=\mathrm{LOW}$ voltage level
7426, LS26 Gates

Quad Two-Input NAND Gate (Open Collector) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7426	14 ns	8 mA
74 LS 26	16 ns	1.6 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$\mathrm{N} 7426 \mathrm{~N}, \mathrm{~N} 74 \mathrm{LS} 26 \mathrm{~N}$
Plastic SO	N74LS26D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
A, B	Inputs	1 ul	1 LSul
Y	Output	10 ul	10 LSul

NOTE

Where a 74 unit load (ul) is understood to be $40 \mu I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$ and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL

Logic Products

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	Y
L	L	L	H
X	X	H	L
X	H	X	L
H	X	X	L

$H=$ HIGH voltage level
$L=$ LOW voltage level
X = Don't care

7427, LS27 Gates

Triple Three-Input NOR Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7427	9 ns	13 mA
74 LS 27	10 ns	2.7 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE VCC $=5 \mathrm{~V} \pm 5 \% ; \mathbf{T A}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7427N, N74LS27N
Plastic SO	N74LS27D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
A-C	Inputs	$1 u \mathrm{l}$	1LSul
Y	Output	10 ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7428
 Buffer

Quad Two-Input NOR Buffer Product Specification

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

[^0]$L=$ LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7428	7 ns	23 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
Plastic DIP	$\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
A, B	Inputs	1 ul
Y	Output	30 ul

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7430, LS30

Gates

Eight-Input NAND Gate

 Product Specification
Logic Products

FUNCTION TABLE

							OUTPUT	
A	B	C	D	E	F	G	H	Y
L	X	X	X	X	X	X	X	H
X	L	X	X	X	X	X	X	H
X	X	L	X	X	X	X	X	H
X	X	X	L	X	X	X	X	H
X	X	X	X	L	X	X	X	H
X	X	X	X	X	L	X	X	H
X	X	X	X	X	X	L	X	H
X	X	X	X	X	X	X	L	H
H	H	H	H	H	H	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$\mathrm{L}=$ LOW voltage level
X $=$ Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7430	11 ns	2 mA
74 LS 30	11 ns	0.5 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7430N, N74LS30N
Plastic SO	N74LS30D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
A-H	Inputs	1 ul	1LSul
Y	Output	10 ul	10LSul

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$

PIN CONFIGURATION

LOGIC SYMBOL

7432, LS32, S32 Gates

Quad Two-Input OR Gate Product Specification

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	H

$H=$ HIGH voltage level
L = LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7432	12 ns	19 mA
74 LS 32	14 ns	4.0 mA
74 S 32	4 ns	28 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7432N, N74LS32N, N74S32N
Plastic SO-14	N74LS32D, N74S32D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
A, B	Inputs	1 ul	1Sul	1LSul
Y	Output	10 ul	10Sul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{L}}$, and a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7433, LS33

Buffers

Quad Two-Input NOR Buffer (Open Collector) Product Specification

Logic Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7433	11 ns	23 mA
74 LS 33	19 ns	4 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7433N, N74LS33N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

$H=H I G H$ voltage level
$L=$ LOW voltage level

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
A, B	Inputs	1 ul	1 LSUL
Y	Output	30 ul	10LSul

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{I L}$, a 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} I_{\mathbb{I H}}$ and -0.4 mA IIL .

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7437, LS37, S37 Buffers

Quad Two-Input NAND Buffer

 Product Specification
Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ HIGH voltage level
$L=$ LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7437	11 ns	22 mA
74 LS 37	12 ns	3.5 mA
74 S 37	4 ns	33 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
Plastic DIP	N7437N, N74LS37N, N74S37N
Plastic SO	N74S37D

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74S	74LS
A, B	Inputs	1 ul	2 Sul	1LSul
Y	Output	30 ul	30 Sul	30 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $\left.40 \mu \mathrm{~A}\right|_{\mathbb{H}}$ and $-\left.1.6 \mathrm{~mA}\right|_{I}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{IL}_{\mathrm{L}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{IL}_{\mathrm{L}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

[^1]$=$ LOW voltage level

7438, LS38, S38

Buffers

Quad Two-Input NAND Buffers (Open Collectors) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7438	13 ns	28 mA
74 LS 38	19 ns	3.5 mA
74 S 38	6.5 ns	33 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
	$\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Plastic DIP	N7438N, N74LS38N, N74S38N
Plastic SO	N74S38D, N74LS38D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	$\mathbf{7 4 S}$	74LS
A, B	Inputs	1 ul	2Sul	1LSul
Y	Output	30 ul	30 Sul	30LSul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

[^2]| TYPE | TYPICAL PROPAGATION
 DELAY | TYPICAL SUPPLY CURRENT
 (TOTAL) |
| :---: | :---: | :---: |
| 7439 | 11 ns | $4.5 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{CCH}}\right)$
 $30 \mathrm{~mA}\left(\mathrm{ICCL}^{\prime}\right)$ |

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
	$V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7439N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
A, B	Inputs	1 ul
Y	Output	30 ul

NOTE:

A 74 unit load (ul) is understood to be $\left.40 \mu \mathrm{~A}\right|_{\mathbb{I}_{\mathrm{H}}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7440, LS40, S40 Buffers

Dual Four-Input NAND Buffer Product Specification

Logic Products

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	\mathbf{D}	\mathbf{Y}
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
X = Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7440	11 ns	11 mA
74 LS 40	12 ns	1.8 mA
74 S 40	6 ns	18 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7440N,N74LS40N, N74S40N

NOTE

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
$\mathrm{A}-\mathrm{D}$	Inputs	$1 u \mathrm{l}$	2 Sul	1 LSul
Y	Output	$30 u l$	30 Sul	30 LSul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $\left.50 \mu \mathrm{~A}\right|_{I_{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathfrak{I L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{I}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FEATURES

- Mutually exclusive outputs
- 1-of-8 demultiplexing ability
- Outputs disabled for input codes above nine

DESCRIPTION

The ' 42 decoder accepts four active HIGH BCD inputs and provides 10 mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with active LOW input enables.
The logic design of the ' 42 ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs.
The most significant input, A_{3}, produces a useful inhibit function when the ' 42 is used as a 1-of-8 decoder. The A_{3} input can also be used as the Data input in an 8 -output demultiplexer application.

7442, LS42
 Decoders

BCD-To-Decimal Decoder (1-of-10) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7442	15 ns	28 mA
74 LS 42	18 ns	7 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
$V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Plastic DIP	N7442N, N74LS42N
Plastic SO	N74LS54D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
$A_{0}-A_{3}$	Inputs	$1 u l$	1 LSul
$\overline{0}-\overline{9}$	Outputs	10 ul	10 LSUl

NOTE:
Where a 74 unit load (Ll) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$ and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7445
 Decoder/Driver

BCD-To-Decimal Decoder/Driver (Open Collector) Product Specification

Logic Products

FEATURES

- 80mA output sink capability
- 30V output breakdown voltage
- Ideally suited as lamp or solenoid driver
- See '42 for standard TTL output version
- See '145 for 'LS' version

DESCRIPTION

The ' 45 decoder accepts BCD inputs on the A_{0} to A_{3} address lines and generates 10 mutually exclusive active LOW outputs. When an input code greater than " 9 " is applied, all outputs are off. This device can therefore be used as a $1-\mathrm{of}-8$ decoder with A_{3} used as an active LOW enable.
The ' 45 can sink 20 mA while maintaining the standardized guaranteed output LOW voltage (V_{OL}) of 0.4 V , but it can sink up to 80 mA with a guaranteed V_{OL} of less than 0.9 V .
The ' 45 features an output breakdown voltage of 30 V and is ideally suited as a lamp or solenoid driver.

TYPE	MAX IOL	TYPICAL SUPPLY CURRENT (TOTAL)
7445	80 mA	43 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $v_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7445N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
$A_{0}-A_{3}$	Inputs	1 ul
$\overline{0}-\overline{9}$	Outputs	12.5 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DESCRIPTION - The '46A, '47A and 'LS47 decode the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the $\overline{R B I}$ blanks the display and causes a multidigit display. For example, by grounding the $\overline{\mathrm{RBI}}$ of the highest order decoder and connecting its $\overline{\mathrm{BI} / \text { RBO }}$ to $\overline{\mathrm{RBI}}$ of the next lowest order decoder, etc.; leading zeros will be suppressed. Similarly, by grounding $\overline{\mathrm{RBI}}$ of the lowest order decoder and connecting its $\overline{\mathrm{BI} / \mathrm{RBO}}$ to $\overline{\mathrm{RBI}}$ of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, ie: by driving $\overline{\mathrm{RBI}}$ of an intermediate decoder from an OR gate whose inputs are $\overline{\mathrm{BI} / \mathrm{RBO}}$ of the next highest and lowest order decoders. $\overline{\mathrm{BI} / \mathrm{RBO}}$ also serves as an unconditional blanking input. The internal NAND gate that generates the $\overline{\mathrm{RBO}}$ signal has a resistive pull-up, as opposed to a totem pole, and thus $\overline{\mathrm{BI} / \mathrm{RBO}}$ can be forced LOW by enternal means, using wired-collector logic. A LOW signal thus applied to $\overline{\mathrm{BI} / \mathrm{RBO}}$ turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to $\overline{L T}$ turns on all segment outputs, provided that $\overline{\mathrm{BI} / \mathrm{RBO}}$ is not forced LOW.

LOGIC DIAGRAM

NUMERICAL DESIGNATIONS - RESULTANT DISPLAYS

TRUTH TABLE

NOTES:

(1) $\overline{B 1 / R B C}$ is wire-AND logic serving as blanking input (\bar{B}) and/or ripple-blanking output ($\overline{\operatorname{RBC}}$). The blanking out ($\overline{B 1}$) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking or a decimal 0 is not desired. $X=$ input may be HIGH or LOW.
(2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.
(3) When ripple-blanking input $(\overline{R B I})$ and inputa A_{0}, A_{1}, A_{2} and A_{3} are LOW level, with the lamp test input at $H I G H$ level. all segment outputs go to a HIGH level and the ripple-blanking output (ABO) goes to a LOW level (response condition).
(4) When the blanking inputripple-blanking output ($\overline{B I / R B C})$ is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

Logic Products

FUNCTION TABLE
'51, 'S51, $1 / 2$ 'LS51

INPUTS				OUTPUT
A	B	C	D	Y
H	H	X	X	L
X	X	H	H	L
All other combinations				H

'LS51

INPUTS					OUTPUT	
A	B	C	D	E	F	Y
H	H	H	X	X	X	L
X	X	X	H	H	H	L
All other combinations						H

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$L=$ LOW voltage level
$\mathrm{X}=$ Don't care

7451, LS51, S51 Gates

'51, 'S51 Dual 2-Wide 2-Input AND-OR-Invert Gate 'LS51 Dual 2-Wide 3-Input, 2-Wide 2-Input AND-OR-Invert Gate
 Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7451	11 ns	5.7 mA
74 LS 51	12 ns	1.1 mA
74 S 51	3.5 ns	11 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathbf{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7451N, N74LS51N, N74S51N
Plastic SO	N74LS51D, N74S51D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74S	74LS
All	Inputs	1 ul	1Sul	1LSul
Y	Output	10 ul	10Sul	10LSul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-\left.1.6 \mathrm{~mA}\right|_{I L}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
$A-K$	Inputs	1LSul
Y	Output	10LSul

NOTE:

Where a 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{l}_{\mathrm{IH}}$ and -0.4 mA IL .

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 54	12 ns	0.9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
Plastic DIP	N74LS54N
Plastic SO	N74LS54D

NOTE:
For informatıon regarding devices processed to Military Specifications, see the Sıgnetıcs Military Products Data Manual.

FUNCTION TABLE

INPUTS										OUTPUT
A	B	C	D	E	F	G	H	J	K	Y
H	H	X	X	X	X	X	X	X	X	L
X	X	H	H	H	X	X	X	X	X	L
X	X	X	X	X	H	H	X	X	X	L
X	X	X	X	X	X	X	H	H	H	L
All other combinations										H

$H=H I G H$ voltage level
L = LOW voltage level
X = Don't care

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74S64
 Gate

Four-Two-Three-Two-Input AND-OR-Invert Gate Product Specification

Logic Products

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S
$A-L$	Inputs	1Sul
Y	Output	10Sul

NOTE:

A 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{5 V}} \mathbf{5 V 5 \% ; ~} \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
Plastic DIP	N74S64N
Plastic SO	N74S64D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

FUNCTION TABLE

InPUTS											$\begin{gathered} \text { OUTPUT } \\ \hline \mathbf{Y} \end{gathered}$
A	B	c	D	E	F	G	H	J	K	L	
H	H	x	x	x	X	x	X	x	x	x	L
X	X	H	H	H	H	x	x	x	X	X	L
x	x	x	x	x	x	H	H	H	x	x	L
x	-	x	x	x	x	x	X	x	H	H	L
All other combinations											H

$H=H I G H$ voltage level
$L=$ LOW voltage level
X = Don't care

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

DESCRIPTION

The '73 is a dual flip-flop with individual J, K, Clock and direct Reset inputs. The 7473 is positive puise-triggered. JK information is loaded into the master while the Clock is HIGH and transferred to the slave on the HIGH-to-LOW transition. For the 7473 , the J and K inputs should be stable while the Clock is HIGH for conventional operation.

The 74LS73 is a negative edge-triggered flip-flop. The J and K inputs must be stable one set-up time prior to the HIGH-to-LOW Clock transition for predictable operation.
The Reset (\bar{R}_{D}) is an asynchronous active LOW input. When LOW, it overrides the Clock and Data inputs, forcing the Q output LOW and the \bar{Q} output HIGH.

PIN CONFIGURATION

7473, LS73
 Flip-Flops

Dual J-K Flip-Flop Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
7473	20 MHz	10 mA
74 LS 73	45 MHz	4 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V}+5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$\mathrm{N} 7473 \mathrm{~N}, \mathrm{~N} 74 \mathrm{LS} 73 \mathrm{~N}$

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74 LS
$\overline{\mathrm{CP}}$	Clock input	2 ul	4 LSul
$\overline{\mathrm{A}}_{\mathrm{D}}$	Reset input	2 ul	3 LSul
J, K	Data inputs	1 ul	1 LSul
Q, \bar{Q}	Outputs	10 ul	10 LSUl

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathrm{H}}$ and - $1.6 \mathrm{~mA} I_{\mathrm{L}}$, and a 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} I_{I H}$ and -0.4 mA hL.

LOGIC SYMBOL

LOGIC SYMBOL (IEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS		
	$\overline{\mathbf{R}}_{\mathbf{D}}$	$\overline{\mathbf{C P}^{(2)}}$	\mathbf{J}	\mathbf{K}	\mathbf{Q}	\mathbf{Q}	
Asynchronous reset	L	X	X	X	L	H	
(Clear)	H	Ω	h	h	$\overline{\mathrm{q}}$	q	
Toggle	H	Ω	1	h	L	H	
Load "0" (Reset)	H	Ω	h	I	H	L	
Load "1" (Set)	H	Ω	l	I	q	$\overline{\mathrm{q}}$	
Hold "no change"							

$H=$ HIGH voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW Clock transition. ${ }^{(1)}$
$L=$ LOW voltage level steady state
I = LOW voltage level one set-up time prior to the HIGH-to-LOW Clock transition. ${ }^{(1)}$
q = Lower case letters indicate the state of the referenced output prior to the HIGH-to-LOW Clock transition.
$\mathrm{x}=$ Don't care
$\Omega=$ Positive Clock pulse.

NOTES:

1. The J and K inputs of the 7473 must be stable while the Clock is HIGH for conventional operation.
2. The 74LS73 is edge triggered. Data must be stable one set-up time prior to the negative edge of the Clock for predictable operation.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	74	74 LS		
V_{CC}	Supply voltage	7.0	7.0	VNIT
$\mathrm{V}_{\mathbb{N}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	
T_{A}	Operating free-air temperature range	V to 70	V	

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			V
$V_{\text {IL }}$	LOW-level input voltage			+0.8			+0.8	V
IIK	Input clamp current			-12			-18	mA
IOH	HIGH-level output current			-400			-400	$\mu \mathrm{A}$
lOL	LOW-level output current			16			8	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

7474, LS74A, S74
 Flip-Flops

Dual D-Type Flip-Flop Product Specification

Logic Products

DESCRIPTION

The ' 74 is a dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs; also complementary Q and $\overline{\mathrm{Q}}$ outputs.

Set (\bar{S}_{D}) and Reset (\bar{R}_{D}) are asynchronous active-LOW inputs and operate independently of the Clock input. Information on the Data (D) input is transferred to the Q output on the LOW-toHIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation. Although the Clock input is level-sensitive, the positive transition of the clock pulse between the 0.8 V and 2.0 V levels should be equal to or less than the clock-tooutput delay time for reliable operation.

TYPE	TYPICAL $f_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
7474	25 MHz	17 mA
74 LS 74 A	33 MHz	4 mA
$74 \mathrm{S74}$	100 MHz	30 mA

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7474N, N74LS74AN, N74S74N
Plastic SC	N741S74A, N74S74D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	$74 S$	74 LS
D	Input	1 ul	1 Sul	1 LSUu
$\overline{\mathrm{R}}_{\mathrm{D}}$	Input	2 ul	3 Sul	2 LSul
\bar{S}_{D}	Input	1 ul	2 Sul	2 LSul
CP	Input	2 ul	2 Sul	1 LSul
$\mathrm{Q}, \overline{\mathrm{Q}}$	Outputs	10 ul	10 Sul	10 LSul

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, a 74 S unit load (Sul) is $\left.50 \mu \mathrm{~A}\right|_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, and 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{iL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\mathbf{S}_{\mathbf{D}}$	$\mathbf{R}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{D}	\mathbf{Q}	\mathbf{Q}
Asynchronous Set	L	H	X	X	H	L
Asynchronous Reset	H	L	X	X	L	H
(Clear) Undetermined						
Load "1" (Set)						
Load "0" (Reset)	H	L	X	X	H	H
	H	H	\uparrow	I	L	H

$H=H I G H$ voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{L}=\mathrm{LOW}$ voltage level steady state
, = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$X=$ Don't care .
$\uparrow=$ LOW-to-HIGH clock transition.

NOTE:

(1) Both outputs will be HIGH while both \bar{S}_{D} and \bar{R}_{D} are LOW, but the output states are unpredictable if \bar{S}_{D} and $\overline{\mathrm{R}}_{\mathrm{D}}$ go HIGH simultaneously.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	$\mathbf{7 4}$	$\mathbf{7 4 L S}$	$\mathbf{7 4 S}$	UNIT	
V_{CC}	Supply voltage	7.0	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +5.5	V
$\mathrm{I}_{\mathbb{N}}$	input current	-30 to +5	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voitage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature range	0 to 70				

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8			+0.8			+0.8	V
1 IK	Input clamp current			-12			-18			-18	mA
IOH	HIGH-level output current			-400			-400			-1000	$\mu \mathrm{A}$
lOL	LOW-level output current			16			8			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- 4-bit bistable latch
- Refer to 74LS375 for \mathbf{V}_{CC} and GND on corner pins

DESCRIPTION

The ' 75 has four bistable latches. Each 2-bit latch is controlled by an active HIGH Enable input (E). When E is HIGH, the data enters the latch and appears at the Q output. The Q outputs follow the Data inputs as long as E is HIGH. The data on the D inputs one set-up time before the HIGH-to-LOW transition of the enable will be stored in the latch. The latched outputs remain stable as long as the enable is LOW.

PIN CONFIGURATION

7475, LS75
Latches

Quad Bistable Latch Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7475	$18 \mathrm{~ns}\left(\mathrm{t}_{\text {PLH }}\right)$ $9 \mathrm{~ns}\left(\mathrm{t}_{\text {PHL }}\right)$	32 mA
74 LS 75	$15 \mathrm{~ns}\left(\mathrm{t}_{\text {PLH }}\right)$ $9 \mathrm{~ns}\left(\mathrm{t}_{\mathrm{PHL}}\right)$	6.3 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7475N,N74LS75N
Plastic SO	N74LS25D

NOTE:
For information regarding devices processed to Mirtary Specifications, see the Signetıcs Military Producis Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	$\mathbf{7 4 L S}$
D	Input	2 ul	1 LSUI
E	Input	4 ul	4 LSUI
All	Outputs	10 ul	10 LSUL

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} I_{I H}$ and $=0.4 \mathrm{~mA}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7476, LS76
 Flip-Flops

Dual J-K Flip-Flop
Product Specification

Logic Products

DESCRIPTION

The '76 is a dual J-K flip-flop with individual J, K, Clock, Set and Reset inputs. The 7476 is positive pulse-triggered. JK information is loaded into the master while the Clock is HIGH and transferred to the slave on the HIGH-toLOW Clock transition. The J and K inputs must be stable while the Clock is HIGH for conventional operation.
The 74LS76 is a negative edge-triggered flip-flop. The J and K inputs must be stable only one set-up time prior to the HIGH-to-LOW Clock transition.

The Set (\bar{S}_{D}) and Reset (\bar{R}_{D}) are asynchronous active LOW inputs. When LOW, they override the Clock and Data inputs, forcing the outputs to the steady state levels as shown in the Function Table.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
7476	20 MHz	10 mA
74 LS 76	45 MHz	4 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Plastic DIP

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74L.S
$\overline{C P}$	Clock input	2 ul	2LSul
$\bar{R}_{\mathrm{D}}, \bar{S}_{\text {d }}$	Reset and Set inputs	2 ul	2LSul
J, K	Data inputs	1 ul	1LSul
Q, $\overline{\mathbf{Q}}$	Outputs	10ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{H H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $\left.20 \mu \mathrm{~A}\right|_{I H}$ and -0.4 mA IL.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	InPUTS					OUTPUTS	
	$\bar{s}_{\text {d }}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	$\overline{C P}^{(2)}$	J	K	a	व
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset (Clear)	H	L	X	X	X	L	H
Undetermined ${ }^{(1)}$	L	L	\times	X	X	H	H
Toggie	H	H	Ω	h	h	\bar{q}	q
Load "00" (Reset)	H	H	Ω	1	h	L	H
Load "1" (Set)	H	H	Ω	h	1	H	1
Hold "no change"	H	H	Ω	1	1	q	$\overline{\mathrm{q}}$

[^3]
Logic Products

FEATURES

- High speed 4-bit binary addition
- Cascadeable in 4 -bit increments
- LS83A has fast internal carry lookahead
- See '283 for corner power pin version

DESCRIPTION

The ' 83 adds two 4 -bit binary words (A_{n} plus B_{n}) plus the incoming carry. The binary sum appears on the Sum outputs ($\Sigma_{1}-\Sigma_{4}$) and the outgoing carry (COUT) according to the equation:
$\mathrm{C}_{1 \mathrm{~N}}+\left(\mathrm{A}_{1}+\mathrm{B}_{1}\right)+2\left(\mathrm{~A}_{2}+\mathrm{B}_{2}\right)+4\left(\mathrm{~A}_{3}+\mathrm{B}_{3}\right)$
$+8\left(A_{4}+B_{4}\right)=\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}$
$+16 C_{\text {CUT }}$
Where $(+)=$ pius.
Due to the symmetry of the binary add function, the ' 83 can be used with either all active-HIGH operands (positive logic) or with all active-LOW operands (negative logic). See Function Table. With activeHIGH inputs, $\mathrm{C}_{\text {IN }}$ cannot be left open; it must be held LoW when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus $\mathrm{C}_{\mathrm{IN}}, \mathrm{A}_{1}, \mathrm{~B}_{1}$, can arbitrarily be assigned to pins 10, 11, 13, etc.

PIN CONFIGURATION

TYPE	TYPICAL ADD TIMES (TWO 8-BIT WORDS)	TYPICAL SUPPLY CURRENT (TOTAL)
7483	23 ns	66 mA
$74 \mathrm{LS83A}$	25 ns	19 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7483N,N74LS83AN
Plastic SO	N74LS83AD

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74 LS
$\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{~A}_{3}, \mathrm{~B}_{3}, \mathrm{C}_{I N}$	Inputs	2 ul	
$\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{~A}_{4}, \mathrm{~B}_{4}$	Inputs	1 ul	
$\mathrm{A}_{1} \mathrm{~B}$	Inputs		2 lSul
$\mathrm{C}_{I N}$	Input		1 LSul
Sum	Outputs	10 ul	10 LSul
Carry	Output	5 l	1 1OLSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{I L}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{II}_{\mathrm{I}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7485, LS85, S85 Comparators

4-Bit Magnitude Comparator Product Specification

Logic Products

FEATURES

- Magnitude comparison of any binary words
- Serial or parallel expansion without extra gating
- Use 74S85 for very high speed comparisons

DESCRIPTION

The ' 85 is a 4 -bit magnitude comparator that can be expanded to almost any length. It compares two 4-bit binary, $B C D$, or other monotonic codes and presents the three possible magnitude results at the outputs. The 4-bit inputs are weighted $\left(A_{0}-A_{3}\right)$ and ($\left.B_{0}-B_{3}\right)$, where A_{3} and B_{3} are the most significant bits.

The operation of the ' 85 is described in the Function Table, showing all possible logic conditions. The upper part of the table describes the normal operation under all conditions that will occur in a single device or in a series expansion scheme.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7485	23 ns	55 mA
74 LS 85	23 ns	10 mA
74 S 85	12 ns	73 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7485N, N74LS85N, N74S85N
Plastic SO	N74LS85D,N74S85D

NOTE:
For information regarcing devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	$74 S$	74LS
$A_{0}-A_{3}, B_{0}-B_{3}, I_{A}=B$	Inputs	$3 u l$	3 Sul	3 LSul
$I_{A}<B, I_{A}>B$	Inputs	$1 u l$	1 Sul	1 LSul
$A=B, A<B, A>B$	Outputs	$10 u l$	10 Sul	$10 L S u l$

NOTE:
Where a 74 unit load (ul) is understood to be $\left.40 \mu \mathrm{~A}\right|_{\mathbb{H}}$ and $-\left.1.6 \mathrm{~mA}\right|_{\mathrm{IL}}$ a 74 S unit load (Sul) is $\left.50 \mu \mathrm{~A}\right|_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

In the upper part of the table the three outputs are mutually exclusive. In the lower part of the table, the outputs reflect the feedforward conditions that exist in the parallel expansion scheme.
The expansion inputs $I_{A}>B, I_{A=B}$, and $I_{A}<B$ are the least significant bit positions. When used for series expansion, the $A>B, A=B$ and $A<B$ outputs of the least significant word are connected to the corresponding $I_{A>B}, I_{A=B}$, and $I_{A<B}$ inputs of the next higher stage. Stages can be added in this manner to any length, but a propagation delay penalty of about 15 ns is added with each additional stage. For proper operation the expansion inputs of the least significant word should be tied as follows: $I_{A>B}=L O W$, $I_{A=B}=H I G H$, and $I_{A<B}=L O W$.
The parallel expansion scheme shown in Figure 1 demonstrates the most efficient general use of these comparators. In the parallel expansion scheme, the expansion inputs can be used as a fifth input bit position except on the least significant device which must be connected as in the serial scheme. The expansion inputs are used by labeling $I_{A>B}$ as an " A " input, $I_{A<B}$ as a " B " input and setting $I_{A=B}$ LOW. The ' 85 can be used as a 5 -bit comparator only when the outputs are used to drive the $\left(A_{0}-A_{3}\right)$ and ($B_{0}-B_{3}$) inputs of another ' 85 device. The parallel technique can be expanded to any number of bits as shown in Table 1.

FUNCTION TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
$\mathrm{A}_{3}, \mathrm{~B}_{3}$	A_{2}, B_{2}	$\mathrm{A}_{1}, \mathrm{~B}_{1}$	A_{0}, B_{0}	$\mathrm{I}_{\mathbf{A}>\mathrm{B}}$	$\mathrm{I}_{\mathbf{A}}<\mathbf{B}$	$I_{A}=B$	A $>$ B	A < B	A $=\mathbf{B}$
$\begin{aligned} & A_{3}>B_{3} \\ & A_{3}<B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{gathered} X \\ X \\ A_{2}>B_{2} \\ A_{2}<B_{2} \\ A_{2}=B_{2} \end{gathered}$	$\begin{gathered} x \\ x \\ X \\ X \\ A_{1}>B_{1} \\ A_{1}<B_{1} \\ A_{1}=B_{1} \\ A_{1}=B_{1} \\ A_{1}=B_{1} \\ A_{1}=B_{1} \\ A_{1}=B_{1} \end{gathered}$	X X X X X X $A_{0}>B_{0}$ $A_{0}<B_{0}$ $A_{0}=B_{0}$ $A_{0}=B_{0}$ $A_{0}=B_{0}$	$\begin{aligned} & \hline X \\ & H \\ & \text { L } \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & L \\ & L \\ & H \end{aligned}$	H L H L H L H L H L L	L H L H L H L H L H L	L
$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \end{aligned}$	$\begin{aligned} & A_{0}=B_{0} \\ & A_{0}=B_{0} \\ & A_{0}=B_{0} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & H \\ & L \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$

[^4]
7486, LS86, S86 Gates

Quad Two-Input Exclusive-OR Gate Product Specification

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	L

$H=$ HIGH voltage level
$L=$ LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7486	14 ns	30 mA
$74 \mathrm{LS86}$	10 ns	6.1 mA
74 S 86	7 ns	50 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE VCC $=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7486N, N74LS86N, N74S86N
Plastic SO	N74LS86D, N74S86D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	$74 S$	74LS
A, B	Inputs	1 ul	1 Sul	1 LSul
Y	Output	10 ul	10 Sul	10 LSUl

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} I_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

7490, LS90
 Counters

Decade Counter Product Specification

Logic Products

DESCRIPTION

The '90 is a 4 -bit, ripple-type Decade Counter. The device consists of four master-slave flip-flops internally connected to provide a divide-by-two section and a divide-by-five section. Each section has a separate Clock input to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and shouid not be used for clocks or strobes.
A gated AND asynchronous Master Reset ($\mathrm{MR}_{1} \cdot \mathrm{MR}_{2}$) is provided which overrides both clocks and resets (clears) all the flip-flops. Also provided is a gated AND asynchronous Master Set $\left(\mathrm{MS}_{1} \cdot \mathrm{MS}_{2}\right)$ which overrides the clocks and the MR inputs, setting the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a BCD (8421) counter the $\overline{C P}_{1}$ input must be externally connected to the Q_{0} output. The $\overline{C P}_{0}$ input receives the incoming count producing a BCD count sequence. In a symmetrical Bi-quinary divide-by-ten

TYPE	TYPICAL $\boldsymbol{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT
7490	30 MHz	30 mA
74 LS 90	42 MHz	9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$\mathrm{N} 7490 \mathrm{~N}, \mathrm{~N} 74 \mathrm{LSS90N}$

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74LS
$\overline{\mathrm{CP}}_{0}$	Input	2 ul	6 LSul
$\overline{\mathrm{CP}}_{1}$	Input	4 ul	8 LSul
MR, MS	Inputs		1 ul
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Outputs	10 ul	10 LSul

NOTE:

Where a 74 unit load (u li) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
counter the Q_{3} output must be connected externally to the CP_{0} input. The input count is then applied to the CP_{1} input and a divide-by-ten square wave is obtained at output Q_{0}. To operate as a divide-by-two and a divide-by-five count-
er no external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function ($\overline{C P}_{0}$ as the input and Q_{0} as the output). The CP_{1} input is used to obtain a divide-by-five operation at the Q_{3} output.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$c=\operatorname{Pin} 5$
GND - Pin 10

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	$\mathbf{7 4}$	$\mathbf{7 4 L S}$	UNIT	
$V_{\text {CC }}$	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in HIGH output state	.	-0.5 to $+V_{\mathrm{CC}}$	-0.5 to $+V_{\mathrm{CC}}$
T_{A}	Operating free-air temperature range	V		

NOTE:
V_{IN} is limited to +5.5 V on CP_{0} and CP_{1} inputs on the 74LS90 only.
RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voitage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			V
V_{IL}	LOW-level input voltage			+ 0.8			+ 0.8	\checkmark
IK	Input clamp current			-12			-18	mA
IOH^{\prime}	HIGH-level output current			-800			-400	$\mu \mathrm{A}$
la	LOW-level output current			16			8	mA
TA	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

7491A Register

8-Bit Shift Register

 Product Specification
Logic Products

FEATURES

- 8-bit serial-in-serial-out shift register
- Common buffered clock
- 2-input gate for serial data entry
- True and Complement outputs

DESCRIPTION

The '91A is an 8 -bit serial-in-serial-out shift register. The serial data is entered through a 2 -input AND gate (D_{Sa} and D_{sb}). HIGH data is entered when both D_{Sa} and D_{Sb} are HIGH. LOW data is entered when either Serial Data input is LOW. The Data inputs are edge-triggered and must be stable just one set-up time prior to the LOW-to-HIGH transition of the Clock input (CP) for predictable operation. The data is shifted one bit to the right ($\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{2}{ }^{\prime \prime} \rightarrow \mathrm{Q}_{7}$) synchronous with each LOW-to-HIGH clock transition. The '91A has no reset capacity, so initialization requires the shifting in of at least 8 bits of known data.

Once the register is fully loaded, the Q output follows the Serial inputs delayed by eight clock pulses. The Complement (Q) output from the last stage is also available for simpler decoding applications.

ORDERING CODE

NOTE:

 Data Manual.NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{K}}$.

TYPE	TYPICAL $f_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
7491 A	18 MHz	3.5 mA

PACKAGES	COMMERCIAL RANGE Plastic DIP$\quad 5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	N7491AN

For information regarding devices processed to Military Specifications, see the Signetics Military Products

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
All	Inputs	1 ul
All	Outputs	10 ul

LOGIC SYMBOL
LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS			FIRST STAGE		OUTPUTS	
	CP	$\mathrm{D}_{\text {sa }}$	$\mathrm{D}_{\text {Sb }}$	Q_{0}	\mathbf{O}_{0}	Q_{7}	\mathbf{O}_{7}
Shift, reset first stage	\uparrow	l	X 1	L	H	q_{6} q_{6}	\bar{q}_{6} \bar{q}_{6}
Shift, set first stage	\uparrow	h	h	H	L	96	\bar{q}_{6}

$H=$ HIGH voltage level
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition. L $=$ LOW voltage level.
$1=$ LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition. $\mathbf{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced register output one set-up time prior to the LOW-to-HIGH clock transition.
$x=$ Don't care.
$=$ LOW-to-HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range uniess otherwise noted.)

PARAMETER	74	UNIT	
$V_{\mathrm{CC}} \quad$ Supply voltage	7.0	V	
$\mathrm{~V}_{\mathbf{I N}} \quad$ Input voltage	-0.5 to +5.5	V	
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage			2.0	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8	V
I_{IK}	Input clamp current			-12	mA
IOH	HIGH-level output current			-400	$\mu \mathrm{A}$
IOL	LOW-level output current			16	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

7492, LS92
 Counters

Divide-By-Twelve Counter

 Product Specification
Logic Products

DESCRIPTION

The '92 is a 4-bit, ripple-type Divide-by12 Counter. The device consists of four master-slave flip-flops internally connected to provide a divide-by-two section and a divide-by-six section. Each section has a separate Clock input to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.
A gated AND asynchronous Master Reset $\left(M R_{1} \cdot M R_{2}\right)$ is provided which overrides both clocks and resets (clears) ail the flip-flops.

PIN CONFIGURATION

TYPE	TYPICAL $\mathbf{f}_{\text {Max }}$	TYPICAL SUPPLY CURRENT
7492	28 MHz	28 mA
74 LS 92	42 MHz	9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C c}}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7492N, N74LS92N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74LS
MR	Master reset inputs	1 ul	1 LSul
CP_{0}	Input	2 ul	6 LSul
CP_{1}	Input	4 ul	8 LSul
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Outputs	10 ul	10 LSul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -0.4 mA IL.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a Modulo-12, Divide-by-12 Counter the $\overline{C P}_{1}$ input must be externally connected to the Q_{0} output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count and Q_{3} produces a symmetrical divide-by-12 square wave output. in a divide-by-six counter no external connections are required. The first flip-flop is used as a binary element for the divide-by-two function. The $\overline{\mathrm{CP}}_{1}$ input is used to obtain divide-by-three operation at the Q_{1} and Q_{2} outputs and divide-by-six operation at the Q_{3} output.

FUNCTION TABLE

COUNT	OUTPUTS			
	Q_{0}	a_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
0	L	L	L	L
1	H	L	L	L
2	1	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L.	H	L
6	L	L	L	H
7	H	L	L	H
8	L	H	L	H
9	H	H	L	H
10	L	L	H	H
11	H	L	H	H

MODE SELECTION

RESET INPUTS		OUTPUTS			
$\mathbf{M R}_{1}$	$\mathbf{M R}_{2}$	\mathbf{Q}_{0}	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	
\mathbf{H}	\mathbf{Q}_{3}				
H	L	L	L	L	
H	H		Count		
L	L		Count		

$H=$ HIGH voltage level
$\mathrm{L}=$ LOW vottage level
X = Don't care

NOTE:

Output Q_{0} connected to input $\overline{C P}_{1}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74 LS	UNIT
V_{CC} Supply voltage	7.0	7.0	V	
$\mathrm{~V}_{\mathrm{IN}}$ input voltage	-0.5 to +5.5	-0.5 to +7.0	V	
I_{N} Input current	-30 to +5	-30 to +1	mA	
$\mathrm{~V}_{\mathrm{OUT}}$ Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V	
T_{A} Operating free-air temperature range		0 to 70	${ }^{\circ} \mathrm{C}$	

NOTE:
V_{IN} is limited to 5.5 V on $\overline{\mathrm{CP}}_{0}$ and $\overline{\mathrm{CP}}_{1}$ inputs only on the 74 LS 92 .

RECOMMENDED OPERATING CONDITIONS

PARAMETER	74			74LS			UNIT
	Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$ Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH} HIGH-level input voltage	2.0			2.0			V
V_{IL} LOW-level input voltage			+0.8			+0.8	V
I_{IK} Input clamp current			-12			-18	mA
IOH HIGH-level output current			-800			-400	$\mu \mathrm{A}$
loL LOW-level output current			16			8	mA
$T_{A} \quad$ Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

DESCRIPTION

The ' 93 is a 4 -bit, ripple-type Binary Counter. The device consists of four master-slave flip-flops internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate Clock input to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.
A gated AND asynchronous Master Reset $\left(\mathrm{MR}_{1}-\mathrm{MR}_{2}\right)$ is provided which overrides both clocks and resets (clears) all the flip-flops.
Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_{0} must be connected externally to input $\overline{\mathrm{CP}}_{1}$.

7493, LS93 Counters

4-Bit Binary Ripple Counter Product Specification

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
7493	40 MHz	28 mA
74 LS 93	42 MHz	9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N7493N, N74LS93N
Plastic SO	N74LS93D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
MR	Master reset inputs	1 ul	1 LSUul
$\overline{\mathrm{CP}}_{0}$	Input	2 ul	6 LSul
$\overline{\mathrm{CP}}_{1}$	Input	2 ul	4LSul
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Outputs	10 ul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

count	OUTPUTS			
	\mathbf{Q}_{0}	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	\mathbf{Q}_{3}
0	L	L	L.	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

NOTE:
Output Q_{0} connected to input $\overline{C P}_{1}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74 LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
$\mathrm{IN}_{\mathrm{IN}}$	Input current	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70		

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	2.0			2.0			V
V_{IL}	LOW-level input voltage			+0.8			+0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-12			-18	mA
I_{OH}	HIGH-level output current			-800			-400	$\mu \mathrm{A}$
la	LOW-level output current			16			8	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

4-Bit Shift Register Product Specification

FEATURES

- 4-bit parallel-to-serial converter
- Two asynchronous ones transfer parallel data ports
- Buffered active HIGH Master Reset
- Buffered positive edge-triggered clock

DESCRIPTION

The ' 94 is a 4 -bit shift register with serial and parallel (ones transfer) data entry. To facilitate parallel ones transfer from two sources, two Parallel Load inputs (PL_{0} and $P \mathrm{~L}_{1}$) with associated Parallel Data inputs ($D_{0 a}-D_{0 d}$ and $D_{1 a}-D_{1 d}$) are provided. To accommodate these extra inputs only the output of the last stage is available. The asynchronous Master Reset (MR) is active HIGH. When MR is HIGH, it overrides the clock and clears the register, forcing Q_{d} LOW.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT
7494	25 ns	35 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 7494 N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Marual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$
PLo $_{0}, \mathrm{PL}_{1}$	Parallel load inputs	4 ul
$\mathrm{D}_{\mathrm{S}}, \mathrm{D}_{\mathrm{n}}, \mathrm{CP}, \mathrm{MR}$	All other inputs	1 ul
Q_{d}	Serial Data output	10 ul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

Four flip-flops are connected so that shifting is synchronous; they change state when the clock goes from LOW-to-HIGH. Data is accepted at the serial D_{S} input prior to this clock transition. Two Parallel Load inputs and Parallel Data inputs allow an asynchronous ones transfer from two sources. The flip-flops can be set independently to the HIGH state when the appropriate Parallel input is activated. Parallel inputs $D_{0 a}$ through $D_{0 d}$ are activated during the time the PLo is HIGH and Parallel inputs $D_{1 a}$ through $D_{1 d}$ are activated when PL_{1} is HIGH. If both sets of inputs are activated, a HIGH on either input will set the flip-flops to a HIGH. The register should not be clocked while the Parallel Load inputs are activated. The Parallel Load and Parallel Data inputs will override the MR if both are activated simultaneously. However, for predictable operation, both signals should not be deactivated simultaneously.

FUNCTION TABLE

OPERATING MODE	INPUTS							OUTPUTS			
	PLo	PL_{1}	$\mathrm{D}_{0} \mathrm{n}$	$\mathrm{D}_{1 \mathrm{n}}$	MR	CP	D_{s}	$\mathbf{a}_{\mathbf{a}}$	$\mathbf{a b}_{\text {b }}$	$\mathbf{a}_{\mathbf{c}}$	$\mathbf{a}_{\text {d }}$
Parallel load	$\begin{aligned} & H \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{a}} \\ & \mathrm{H} \\ & \mathrm{Q}_{\mathrm{a}} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{b}} \\ & \mathrm{H} \\ & \mathrm{Q}_{\mathrm{b}} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{C}} \\ & \mathrm{H} \\ & \mathrm{Q}_{\mathrm{c}} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & Q_{d} \\ & H \\ & Q_{d} \\ & H \end{aligned}$
Reset (clear)	L	L	X	X	H	X	X	L	L	L	L
Shift right	$\begin{aligned} & L \\ & L \end{aligned}$	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathbf{q}_{\mathbf{a}} \\ & \mathbf{q}_{\mathbf{a}} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{\mathrm{b}} \\ & \mathrm{q}_{\mathrm{b}} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{\mathrm{c}} \\ & \mathrm{q}_{\mathrm{c}} \end{aligned}$

$$
H=H I G H \text { voltage level. }
$$

h $=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
= LOW voltage level.
= LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{a}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition.
$x=$ Don't care.
\uparrow-LOW-to-HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	$\mathbf{7 4}$	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Separate negative-edge-triggered shift and parallel load clocks
- Common mode control input
- Shift right serial input
- Synchronous shift or load capabilities

DESCRIPTION

The '95 is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has serial Data (D_{S}) and four paralle! Data ($D_{0}-D_{3}$) inputs and four Parallel outputs $\left(Q_{0}-Q_{3}\right)$. The serial or parallel mode of operation is controlled by a Mode Select input (S) and two Clock inputs ($\overline{\mathrm{CP}}_{1}$ and $\overline{\mathrm{CP}}_{2}$). The serial (shift right) or parallel data transfers occur synchronously with the HIGH-to-LOW transition of the selected Clock input.
When the Mode Select input (S) is HIGH, $\overline{C P}_{2}$ is enabled. A HIGH-to-LOW transition on enabled $\overline{C P}_{2}$ loads parallel data from the $D_{0}-D_{3}$ inputs into the register. When S is LOW, CP_{1} is enabled. A HIGH-to-LOW transition on enabled $\overline{\mathrm{CP}}_{1}$ shifts the data from Serial input D_{S} to Q_{0} and transfers the data in Q_{0} to Q_{1}, Q_{1} to Q_{2}, and Q_{2} to Q_{3}

7495, LS95B Shift Registers

4-Bit Shift Register Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
7495	36 MHz	39 mA
74 LS 95 B	36 MHz	13 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE Plastic DIP
$\mathbf{N V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74 LS
S	Input	2 ul	1 LS ul
Other	Inputs	1 ul	1LSUl
Q	Output	10 ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{L}}$, and a 74 LS unit load (LSUI) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
respectively (shift right). Shift left is accomplished by externally connecting Q_{3} to D_{2}, Q_{2} to D_{1}, Q_{1} to D_{0}, and operating the ' 95 in the parallei mode ($\mathrm{S}=\mathrm{HIGH}$).
In normal operations the Mode Select (S) should change states only when both

Clock inputs are LOW. However, changing S from HIGH-to-LOW while CP_{2} is LOW, or changing S from LOW-to-HIGH while $\overline{\mathrm{CP}}_{1}$ is LOW will not cause any changes on the register outputs.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Shift Registers

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS			
	S	CP_{1}	CP_{2}	$\mathrm{D}_{\mathbf{s}}$	D_{N}	\mathbf{Q}_{0}	a_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
Parallel load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	\downarrow	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$			
Shift right	L	\downarrow	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & q_{1} \\ & q_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Mode change	\uparrow \uparrow \downarrow \downarrow	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	no change undetermined no change undetermined			

$H=$ HIGH voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW clock transition.
$\mathrm{L}=\mathrm{LOW}$ voltage level steady state.
I = LOW voltage level one set-up time prior to the HIGH-to-LOW clock transition.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW clock transition.
$X=$ Don't care.
$\downarrow=$ HIGH-to-LOW transition of clock or mode select.
$\uparrow=$ LOW-to-HIGH transition of mode select.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	$\mathbf{7 4}$	74LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	+0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70		

7496, LS96 Shift Registers

5-Bit Shift Register Product Specification

Logic Products

FEATURES

- 5-bit parallel-to-serial or serial-toparallel converter
- Asynchronous ones transfer preset entry
- Buffered positive-triggered clock
- Buffered active LOW Clear (Master Reset)

DESCRIPTION

The ' 96 is a 5 -bit shift register with both serial and parallel (ones transfer) data entry. Since the ' 96 has the output of each stage available as well as a D-type serial input and ones transfer inputs on each stage, it can be used in 5 -bit serial-to-parallel, serial-to-serial and some par-allel-to-serial data operations.
The '96 is five master/slave flip-flops connected to perform right shift. The flipflops change state on the LOW-to-HIGH transition of the clock. The Serial (S) input is edge-triggered and must be stable only one set-up time before the LOW-to-HIGH clock transition.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
7496	25 ns	48 mA
74 LS 96	25 ns	12 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	N7496N, N74LS96N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Mamual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74LS
Preset enable	Inputs	5 ul	5 LSul
All other	Inputs	1 ul	1 LSul
Q	Outputs	10 ul	10LSul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -0.4 mA ILL.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

Each flip-flop has asynchronous set inputs allowing them to be independently set HIGH. The set inputs are controlled by a common active HIGH Preset Enable (PE) input. The PE input is not buffered, and care must be taken not to overioad the driving element. When the PE is HIGH, a HIGH on the Preset (A-E) inputs will set the associated flip-flops HIGH. A LOW on the A-E inputs will cause 'no change" in the appropriate flip-flops.
The asynchronous active LOW Clear ($\overline{\mathrm{MR}}$) is buffered. When LOW, the MR overrides the clock and clears the register if the PE is not active. The Preset inputs override the MR forcing the flip-flops HIGH if both are activated simultaneously. However, for predictable operation, both signals should not be deactivated simultaneously.

FUNCTION TABLE

INPUTS									OUTPUTS				
Master Reset	Preset Enable	Preset					Clock	Serial	$\mathbf{a}_{\mathbf{A}}$	0_{B}	Q_{c}	Q_{D}	Q_{E}
		A	B	C	D	E							
L	L	X	X	X	X	X	X	X	L	L	L	L	L
L	X	L	L	L	L	L	X	X	L	L	L	L	L
H	H	H	H	H	H	H	X	x	H	H	H	H	H
H	H	L	L	L	L	L	L	x	Q_{AO}	Q_{BO}	$\mathrm{Q}_{\text {co }}$	$Q_{\text {DO }}$	$Q_{\text {EO }}$
H	H	H	L	H	L	H	L	X	${ }^{\text {H }}$	$\mathrm{Q}_{\text {B0 }}$	H	$Q_{\text {Do }}$	H
H	L	X	X	x	X	X	L	X	Q_{AO}	$Q_{\text {B0 }}$	Q_{Co}	$Q_{\text {D }}$	$\mathrm{Q}_{\text {EO }}$
H	L	X	X	X	X	X	\uparrow	H	${ }_{\text {H }}$	$Q_{\text {An }}$	Q_{Bn}	$Q_{\text {Cn }}$	Q Dn
H	L	X	X	X	X	X	\uparrow	L	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$	$Q_{D n}$

$\mathrm{H}=\mathrm{HIGH}$ voltage level, (steady state)
L $=$ LOW voltage level (steady state)
$\begin{aligned} X & =\text { Irrelevant (any input, including transitions) } \\ & =\text { Transition from LOW-to-HIGH level }\end{aligned}$
$=$ Transition from LOW-to-HIGH lovel
$Q_{A O} . Q_{B 0}$. etc $=$ The level of Q_{A}. Q_{B}, etc, respectively before the indicated steady-state input conditions were established
$Q_{A n}, Q_{B n}$, etc $=$ The level of Q_{A}. Q_{B}, etc, respectively before the most recent f transition of the clock.

Figure 1. Typical Master Reset, Shift, Preset, And Shift Sequences

Logic Products

DESCRIPTION

The '107 is a dual flip-flop with individual J, K, Clock and direct Reset inputs. The 74107 is a positive pulse-triggered flipflop. JK information is loaded into the master while the Clock is HIGH and transterred to the slave on the HIGH-toLOW Clock transition. For these devices the J and K inputs should be stable while the Clock is HIGH for conventional operation.
The 74LS107 is a negative edge-triggered flip-flop. The J and K inputs must be stabie one set-up time prior to the HIGH-to-LOW Clock transition for predictable operation.
The Reset (\bar{R}_{D}) is an asynchronous active LOW input. When LOW, it overrides the Clock and Data inputs, forcing the Q output LOW and the \bar{Q} output HIGH.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\overline{\mathbf{R}}_{\mathbf{D}}$	$\mathbf{C P}^{(2)}$	\mathbf{J}	\mathbf{K}	\mathbf{Q}	$\overline{\mathbf{Q}}$
Asynchronous Reset (Clear)	L	X	X	X	L	H
Toggle	H	Ω	h	h	$\overline{\mathrm{q}}$	q
Load '0'" (Reset)	H	Ω	l	h	L	H
Load "1" (Set)	H	Ω	h	l	H	L
Hold 'no change"	H	Ω	l	I	q	$\overline{\mathrm{q}}$

$\mathrm{H}=\mathrm{HIGH}$ voltage level steady state.
$\mathrm{h}=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW Clock transition. ${ }^{(2)}$
L = LOW voltage level steady state.
I = LOW voltage level one setup time prior to the HIGH-to-LOW clock transition. ${ }^{(2)}$
q. = Lower case letters indicate the state of the referenced output prior to the HIGH-to-LOW Clock transition.
= Don't care.
$\Omega=$ Positive Clock pulse.
NOTES:

1. The J and K inputs of the $\mathbf{7 4 1 0 7}$ must be stable while the Clock is HIGH for conventional operation.
2. The 74L.S107 is edge-triggered. Data must be stable one set-up time prior to the negative edge of the Clock for predictable operation.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	$\mathbf{7 4}$	74LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	
T_{A}	Operating free-air temperature range	0 to 70		V

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voitage	2.0			2.0			V
V_{IL}	LOW-level input voltage			$+0.8$			+0.8	\checkmark
1 IK	Input clamp current			-12			-18	mA
IOH	HIGH-level output current			-400			-400	$\mu \mathrm{A}$
lOL	LOW-level output current			16			8	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

74109, LS109A Flip-Flops

Dual J-K̄ Positive Edge-Triggered Flip-Flop Product Specification

Logic Products

DESCRIPTION

The '109 is dual positive edge-triggered J $\overline{\mathrm{K}}$-type flip-flop featuring individual $\mathrm{J}, \overline{\mathrm{K}}$, Clock, Set and Reset inputs; also complementary Q and $\overline{\mathrm{Q}}$ outputs.
Set ($\overline{\mathrm{S}}_{\mathrm{D}}$) and Reset ($\overline{\mathrm{R}}_{\mathrm{D}}$) are asynchronous active LOW inputs and operate independently of the Clock input.
The J and $\overline{\mathrm{K}}$ are edge-triggered inputs which control the state changes of the flip-flops as described in the Mode Se-lect-Truth Table.
The J and $\overline{\mathrm{K}}$ inputs must be stable just one set-up time prior to the LOW-toHIGH transition of the Clock for predictable operation. The $\sqrt{\bar{K}}$ design allows operation as a D flip-flop by tying the J and $\overline{\mathrm{K}}$ inputs together.
Although the Clock input is level sensitive, the positive transition of the Clock pulse between the 0.8 V and 2.0 V levels should be equal to or less than the Clock to output delay time for reliable operation.

TYPE	TYPICAL $\mathbf{I M A X}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74109	33 MHz	9 mA
74 LS 109 A	33 MHz	4 mA

ORdering code

PACKAGES	COMMERCIAL RANGE
$V_{C C}=5 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Plastic DIP	N74109N, N74LS109AN
Plastic SO	N74LS109D

NOTE:
For information regarding devices processed to Military Specitications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
CP	Clock input	2 ul	1LSul
$\overline{\mathrm{R}}_{\mathrm{D}}$	Reset input	4ul	2LSul
\bar{S}_{D}	Set input	2 ul	2LSul
J, $\overline{\mathrm{K}}$	Data inputs	1 ul	1LSul
Q, 区	Outputs	10ul	10LSul

NOTE:
Where a 74 unit load $(u t)$ is understood to be $40 \mu A I_{H}$ and $-1.6 \mathrm{~mA} \mathrm{~L}_{\mathrm{L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and -0.4 mA in

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\bar{S}_{\text {d }}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	CP	J	$\overline{\mathbf{K}}$	Q	$\bar{\square}$
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset (clear)	H	1.	X	x	X	L	H
Undetermined (note)	L	L	x	X	X	H	H
Toggle	H	H	\uparrow	h	1	$\overline{\mathrm{q}}$	q
Load ' 0 ' (reset)	H	H	\uparrow	1	1	L	H
Load'1" (set)	H	H	\uparrow	h	h	H	\underline{L}
Hold "no change"	H	H	\uparrow	1	h	q	9

$H=H I G H$ voltage level steady state
L $=$ LOW voltage level steady state
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH Clock transition.
I = LOW voltage level one setup time prior to the LOW-to-HIGH Clock transition.
$x=$ Don't care
q = Lower case letters indicate the state of the referenced output prior to the LOW-to-HIGH Clock transition.
$\uparrow=$ LOW-to-HIGH Clock transition.
NOTE:
Both outputs will be HIGH while both \bar{S}_{D} and \bar{R}_{D} are LOW, but the output states are unpredictable if \bar{S}_{D} and $\overline{\mathrm{P}}_{D}$ go HIGH simultaneously.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	iv. V
V_{IN}	Input voltage	-0.5 to +5.5	-0.5 to +7.0	v
IN	Input current	-30 to +5	-30 to +1	mA
$V_{\text {OUT }}$	Voltage applied to output in HIGH output state	-0.5 to $+V_{C C}$	-0.5 to $+\mathrm{V}_{\mathrm{cc}}$	V
T_{A}	Operating free-air temperature range	0 to 70		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8			+0.8	V
1 IK	Input clamp current			-12			-18	mA
IOH	HIGH-level output current			-800			-400	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {l }}$	LOW-level output current			16			8	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

DESCRIPTION

The '112 is a dual J-K negative edgetriggered flip-flop featuring individual J , K, Clock, Set and Reset inputs. The Set $\left(\bar{S}_{\mathrm{D}}\right)$ and Reset ($\overline{\mathrm{R}}_{\mathrm{D}}$) inputs, when LOW, set or reset the outputs as shown in the Function Table regardless of the levels at the other inputs.
A HIGH level on the Clock ($\overline{\mathrm{CP}}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CP is HIGH and the flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output state changes are initiated by the HIGH-to-LOW transition of CP.

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 112	45 MHz	4 mA
74 S 112	125 MHz	15 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S112N,N74LS112N
Plastic SO	N74LS112D, N74S112D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
$\overline{C P}$	Clock input	2 Sul	4LSul
\bar{R}_{D}, \bar{S}_{D}	Reset and set inputs	3.5 Sul	3LSul
J, K	Data inputs	1 Sul	1LSul
$\mathrm{Q}, \overline{\mathrm{Q}}$	Outputs	10Sul	10LSul

NOTE:
A 74 unit load (ul) is $50 \mu \mathrm{~A} I_{I H}$ and -2.0 mA hu. and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\bar{S}_{\mathbf{D}}$	$\overline{\mathbf{R}}_{\text {D }}$	CP	J	K	Q	$\overline{\mathbf{Q}}$
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset (clear)	H	L	X	X	X	L	H
Undetermined	L	L	\times	x	X	H	H
Toggle	H	H	\downarrow	h	h	$\overline{\mathrm{q}}$	q
Load "0' (reset)	H	H	\downarrow	1	h	L	H
Load "1" (set)	H	H	\downarrow	h	1	H	\underline{L}
Hold "no change"	H	H	\downarrow	1	1	q	\bar{q}

$\mathrm{H}=\mathrm{HIGH}$ voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW Clock transition.
= LOW voltage level steady state.
$1=$ LOW voltage level one set-up time prior to the HIGH-to-LOW Clock transition.
q = Lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW Clock transition.
$=$ Don't care.
$=$ HIGH-to-LOW Clock transition.
NOTE:
Both outputs will be HIGH while both \bar{S}_{D} and \bar{R}_{D} are LOW, but the output states are unpredictable if \bar{S}_{D} and $\overline{\mathrm{F}}_{\mathrm{D}} \mathrm{go} \mathrm{HIGH}$ simultaneously.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	74LS	74S	UNIT	
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to -7.0	-0.5 to +5.5	V
I_{N}	Input current	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			$+0.8$			+0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18			-18	mA
IOH	HIGH-level output current			-400			-1000	$\mu \mathrm{A}$
loL	LOW-level output current			8			20	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

DESCRIPTION

The '113 is a dual J-K negative edgetriggered flip-flop featuring individual J , K, Set and Clock inputs. The asynchronous Set (S_{D}) input, when LOW, forces the outputs to the steady state levels as shown in the Function Table regardless of the levels at the other inputs.
A HIGH level on the Clock ($\overline{C P}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CP is HIGH and the flip-flop will perform according to the Function Table as long as minimum set-up and hold times are observed. Output state changes are initiated by the HIGH-to-LOW transition of CP.

PIN CONFIGURATION

74LS113, S113
 Flip-Flops

Dual J-K Edge-Triggered Flip-Flop Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 113	45 MHz	4 mA
74 S 113	125 MHz	15 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE VCc $5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S113N, N74LS 113 N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
$\overline{\mathbf{C P}}$	Clock input	2 Sul	4LSul
\bar{S}_{D}	Set inputs	3.5 Sul	3LSul
J, K	Data inputs	1 Sul	1LSul
$\mathbf{Q}, \overline{\mathbf{Q}}$	Outputs	10Sul	10LSul

NOTE:
A 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\bar{S}_{\text {D }}$	$\overline{\mathbf{C P}}$	J	K	0	$\overline{\mathbf{a}}$
Asynchronous set	L	X	x	x	H	L
Toggle	H	\downarrow	h	h	$\overline{\mathrm{q}}$	q
Load '0' (reset)	H	\downarrow	1	h	L	H
Load "1" (set)	H	\downarrow	h	1	H	L
Hold 'no change"	H	\downarrow	1	1	q	$\overline{\mathrm{q}}$

$H=$ HIGH voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW Clock transition.
= LOW voltage level steady state.
= LOW voltage level one set-up time prior to the HIGH-to-LOW Clock transition.
$q=$ Lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW Clock transition.
$x=$ Don't care.
$\downarrow=$ HIGH-to-LOW Clock transition.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	$\mathbf{7 4 L S}$	$74 S$		
$V_{C C}$	Supply voltage	7.0	7.0	VNIT
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to -7.0	-0.5 to +5.5	V
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8			+0.8	V
$\mathrm{IIK}^{\text {I }}$	Input clamp current			-18			-18	mA
$\mathrm{IOH}^{\text {O }}$	HIGH-level output current			-400			-1000	$\mu \mathrm{A}$
loL	LOW-level output current			8			20	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

DESCRIPTION

The '116 has two independent 4-bit transparent latches. Each 4-bit latch is controlled by a two-input active LOW Enable gate (\bar{E}_{0} and \bar{E}_{1}). When both \bar{E}_{0} and \bar{E}_{1} are LOW, the data enters the latch and appears at the output. The outputs follow the Data inputs as long as \bar{E}_{0} and \bar{E}_{1} are LOW. The data on the D inputs one set-up time before the LOW-to-HIGH transition of \bar{E}_{0} or \bar{E}_{1} will be stored in the latch. The Latched outputs remain stable as long as either \bar{E}_{0} or \bar{E}_{1} is HIGH.
Each 4-bit latch has an active LOW asynchronous Master Reset (MR) input. When LOW, the $\overline{M R}$ input overrides the Data and Enable inputs and sets the four Latch outputs LOW.

74116 Latch

Dual 4-Bit Transparent Latch Product Specification

TYPE	TYPICAL PROPAGATION DELAY-DATA TO OUTPUT	TYPICAL SUPPLY CURRENT (TOTAL)
74116	11 ns	50 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE CC $=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74116N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
\bar{E}_{0}, \vec{E}_{1}	Enable inputs	1 ul
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	1.5 ul
$\overline{M R}$	Master reset input	1 ul
$\mathrm{Q}_{0}-\mathrm{Q}_{3} \cdot$	Latch outputs	10 ul

NOTE:
Where a 74 unit load $\left(u^{\prime}\right)$ is understood to be $40 \mu \mathrm{~A} l_{I H}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

	24 VCC
	${ }_{23} a_{3 b}$
	${ }^{22} \mathrm{D}_{36}$
	21] $0_{2 b}$
	${ }^{20} \mathrm{D}_{2 \mathrm{~b}}$
	(19) $a_{1 b}$
	${ }^{18} \mathrm{D}_{16}$
	(17) a_{00}
	$116{ }^{0} 0$
	${ }^{15} \bar{E}_{1 b}$
	${ }^{14} \mathrm{E}_{06}$
	${ }^{13} \overline{\mathrm{ma}}_{\mathrm{b}}$
	cooss 105

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Abstract

\section*{FEATURES} - Very good puise width stability - Virtually immune to temperature and voltage variations - Schmitt trigger input for slow

\section*{Logic Products}

 input transitions- Internal timing resistor provided

DESCRIPTION

These multivibrators feature dual active LOW going edge inputs and a single active HIGH going edge input which can be used as an active HIGH enable input. Complementary output pulses are provided.
Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for the B input allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second, providing the circuit with an exceilent noise immunity of typically 1.2 volts. A high immunity to $V_{C C}$ noise of typically 1.5 volts is also provided by internal latching circuitry. Once fired, the outputs are independent of further transitions of the inputs and are a function only of the

74121
 Multivibrator

Monostable Multivibrator

 Product Specification| TYPE | TYPICAL PROPAGATION
 DELAY | TYPICAL
 SUPPLY CURRENT
 (TOTAL) |
| :---: | :---: | :---: |
| 74121 | 43 ns | 18 mA |

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74121 N
Plastic SO	N74121 D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
timing components. Input puises may be of any duration relative to the output pulse. Output pulse length may be varied from 20 nanoseconds to 28 seconds by choosing appropriate timing components. With no external timing components (i.e., $R_{\text {int }}$ connected to $V_{C C}, C_{e x t}$ and $R_{\text {ext }} / C_{\text {ext }}$ open), an output pulse of typically 30 or 35 nanoseconds is achieved which may be used as a dc triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.
Pulse width stability is achieved through internal compensation and is virtually
independent of $V_{C C}$ and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.
Jitter-free operation is maintained over the full temperature and $V_{C C}$ ranges for more than six decades of timing capacitance (10 pF to $10 \mu \mathrm{~F}$) and more than one decade of timing resistance $(2 \mathrm{k} \Omega$ to $30 \mathrm{k} \Omega$ for the 54121 and $2 \mathrm{~K} \Omega$ to $40 \mathrm{k} \Omega$ for the 74121). Throughout these ranges, pulse width is defined by the relationship: (see Figure 1)

$$
\frac{t_{W}(\text { out })=C_{e x t} R_{e x t} \ln 2}{t_{W}(\text { out }) \cong 0.7 C_{e x t} R_{e x t}}
$$

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS			OUTPUTS	
\bar{A}_{1}	$\overline{\boldsymbol{A}}_{\mathbf{2}}$	\mathbf{B}	\mathbf{Q}	\bar{Q}
L	X	H	L	H
X	L	H	L	H
X	X	L	L	H
H	H	X	L	H
H	\downarrow	H	Ω	U
\downarrow	H	H	Ω	U
\downarrow	\downarrow	H	Ω	$工$
L	X	\uparrow	Ω	U
X	L	\uparrow	Ω	$工$

$H=$ HIGH voltage level
$L=$ LOW voltage ievel
$\mathrm{X}=$ Don't care
$\uparrow=$ LOW-to-HIGH transition

- HIGH-10-LOW transition

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
\bar{A}_{1}, \bar{A}_{2}	Inputs	1 ul
B	Input	2 ul
$\mathbf{Q}, \overline{\mathbf{Q}}$	Outputs	10 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{H H}$ and
$-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
$V_{\mathrm{CC}} \quad$ Supply voltage	7.0	V	
$\mathrm{~V}_{\mathrm{N}} \quad$ Input voltage	-0.5 to +5.5	V	
I_{N} Input current	-30 to +5	mA	
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

PARAMETER			74			UNIT
			Min	Nom	Max	
VCC	Supply voltage		4.75	5.0	5.25	V
lik	Input clamp current				-12	mA
IOH	HIGH-level output current				-400	$\mu \mathrm{A}$
la	LOW-level output current				16	mA
$d v / d t$	Rate of rise or fall of input pulse	B input	1			V/s
		\bar{A}_{1}, \bar{A}_{2} inputs	1			$\mathrm{V} / \mathrm{\mu s}$
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses - up to 100% duty cycle
- Direct reset terminates output puise
- Compensated for V_{CC} and temperature variations

DESCRIPTION

The ' 123 is a dual retriggerable monostable multivibrator with output pulse width control by three methods. The basic pulse time is programmed by selection of external resistance ($\mathrm{R}_{\text {ext }}$) and capacitance ($\mathrm{C}_{\text {ext }}$) values. Once triggered, the basic pulse width may be extended by retriggering the gated active LOW going edge input ($\overline{\mathrm{A}}$) or the active HIGH going edge input (B), or be reduced by use of the overriding active LOW reset.

The basic output pulse width is essentially determined by the values of external capacitance and timing resistance.

74123

Multivibrator

Dual Retriggerable Monostable Multivibrator Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74123	24 ns	46 mA

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 74123 N
Plastic SO	N 74123 D

For pulse widths when $\mathrm{C}_{\text {ext }} \leqslant 1000 \mathrm{pF}$, see Figure A.
When $C_{\text {ext }}>1000 \mathrm{pF}$, the output pulse width is defined as:

$$
t_{w}=0.28 R_{e x t} \cdot C_{e x t}\left(1+\frac{0.7}{h_{\text {exx }}}\right)
$$

The external resistance and capacitance are normally connected as shown in Figure B. If an electrolytic capacitor is to be used with an inverse voltage rating of
less than 1 V then Figure C should be used. (Inverse voltage rating of an electrolytic is normally specified at 5% of the forward voltage rating.) If the inverse voltage rating is 1 V or more (this includes a 100% safety margin) then Figure B can be used. Note that if Figure C is used the timing equations change as follows:

$$
t_{W} \cong 0.25 R_{\text {ext }} \cdot C_{\text {ext }}\left(1+\frac{0.7}{H_{\text {exx }}}\right)
$$

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Multivibrator

FUNCTION TABLE

INPUTS			OUTPUTS	
R ${ }_{\text {d }}$	\bar{A}	B	a	$\bar{\square}$
L	x	x	L	H
x	H	x	L	H
x	x	1	L	H
H	L	\uparrow	Ω	U
H	\downarrow	H	Ω	ป
\uparrow	L	H	Ω	Ј

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$\mathrm{L}=$ LOW voltage level
$\mathrm{x}=$ Don't care

- LOW-to-HIGH transition
= HIGH-to-LOW transition
$\Omega=$ One HIGH-level puise
「 $=$ One LOW-level pulse

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
\bar{A}, B	Inputs	1 ul
A_{D}	Input	2 ul
$\mathrm{Q}, \overline{\mathrm{Q}}$	Outputs	10 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -1.6 mA IL.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	V
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			UNIT
		Min	Nom	Max	
V_{CC}	Supply voitage	4.75	5.0	5.25	V
H_{1}	Input clamp current			-12	mA
IOH	HIGH-level output current			-800	$\mu \mathrm{A}$
OL	LOW-level output current			16	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$
V_{IH}	HIGH-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voitage			+0.8	V

TYPICAL PERFORMANCE CHARACTERISTICS

74125, 74126, LS125A, LS126A Buffers

Quad 3-State Buffer Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74125	10 ns	32 mA
74 LS 125 A	8 ns	11 mA
74126	10 ns	36 mA
74 LS 126 A	9 ns	12 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE Vlastic DIP
N74125N, N74LS125N	
N74126N, N74LS126N	

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74LS
All	Inputs	1 ul	1LSul
All	Outputs	10 ul	30 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathbb{H}}$ and -0.4 mA lis.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74125, 74126, LS125A, LS126A

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

| | PARAMETER | 74 | 74 LS | |
| :---: | :--- | :---: | :---: | :---: | :---: |
| V_{CC} | Supply voltage | 7.0 | 7.0 | |
| $\mathrm{~V}_{\mathrm{IN}}$ | Input voltage | -0.5 to +5.5 | -0.5 to +7.0 | V |
| I_{IN} | Input current | -30 to +5 | -30 to +1 | V |
| $\mathrm{~V}_{\mathrm{OUT}}$ | Voltage applied to output in HIGH output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | mA |
| $\mathrm{T}_{\mathrm{A}} \times$ | Operating free-air temperature range | 0 to 70 | V | |

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			V
V_{IL}	LOW-level input voltage			+0.8			+ 0.8	V
$\mathrm{I}_{\text {ik }}$	Input clamp current			-12			-18	mA
IOH^{\prime}	HIGH-level output current			-5.2			-2.6	mA
lOL	LOW-level output current			16			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

74128 Buffer

Quad Two-Input NOR Buffer Product Specification

Logic Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74128	7 ns	23 mA

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	L
H	L	L
H	H	L

$H=H I G H$ voltage level
L = LOW voltage level

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74128N

NOTES:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$
A, B	Inputs	1 ul
Y	Output	30 ul

NOTE:
Where a 74 unit load is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1,6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74132, LS132 Schmitt Triggers

Quad 2-Input NAND Schmitt Trigger

 Product Specification
Logic Products

The '132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates.

Each circuit contains a 2 -input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the posi-tive-going and negative-going input threshold (typically 800 mW) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as one input remains at a more positive voltage than $V_{T+M A X}$ the gate will respond to the transitions of the other input as shown in Waveform 1.

PIN CONFIGURATION

ORDERING CODE

NOTE: Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{I}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ HIGH voltage level
$L=$ LOW voltage level
LOGIC SYMBOL

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74132	15 ns	21 mA
74 LS 132	15 ns	7 mA

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74132N, N74LS132N

For information regarding devices processed to Military Specifications, see the Signetics Military Products

PINS	DESCRIPTION	74	74LS
A, B	Inputs	$1 u l$	1LSul
Y	Output	10 ul	10LSul

LOGIC SYMBOL (IEEE/IEC

Logic Products

74S133
 Gate

13-Input NAND Gate
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 S 133	4 ns	4 mA

FUNCTION TABLE

INPUTS	OUTPUT
$\mathbf{A} \ldots \mathrm{M}$	$\overline{\mathbf{Y}}$
$\mathrm{H} \ldots \mathrm{H}$	L
one input $=\mathrm{L}$	

$H=$ HIGH voltage level
$\mathrm{L}=$ LOW voltage level

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{~}} \mathbf{5 V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S133N
Plastic SO	N74S133D

NOTE:
For information regarding devices processed to Miitary Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S
All	Inputs	1 Sul
\bar{Y}	Output	10 Sul

NOTE:
A 74 S unit load (Sul) is understood to be $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74S134

Gate

12-Input NAND Gate (3-State) Product Specification

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
$D_{0} \ldots D_{11}$	$\overline{O E}$	\bar{Y}
$H \ldots H$	L	L
one input $=L$	L	H
$X \ldots X$	H	(Z)

$H=H I G H$ voltage level
$L=$ LOW voltage level
$X=$ Don't care
$(Z)=$ HIGH impedance "off" state

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT
74 S 134	5 ns	10 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S 134 N
Plastic SO	N74S 134 D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
input and output loading and fan-out table

PINS	DESCRIPTION	74S
All	Inputs	1Sul
\bar{Y}	Output	10 Sul

NOTE:
Where a 74 S unit load (Sul) is understood to be $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 S 135	9 ns	65 mA

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	Y
L	L	L	L
L	H	L	H
H	L	L	H
H	H	L	L
L	L	H	H
L	H	H	L
H	L	H	L
H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$\mathrm{L}=$ LOW voltage level

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 74 S 135 N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	745
All	Inputs	1 Sul
All	Outputs	10 Sul

NOTE:
A 74S unit load (Sul) is understood to be $50 \mu \mathrm{~A} I_{I H}$ and -2.0 mA ILL

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74LS136 Gate

Quad Two-Input Exclusive-OR Gate (Open Collector) Product Specification

Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level
= LOW voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS136	18 ns	6.1 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74LS136N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
A, B	Inputs	2LSul
Y	Output	10LSul

NOTE:
Where a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and- $0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

54S/74S137 1-OF-8 DECODER/DEMULTIPLEXER (With Input Latches) DESCRIPTION - The 'S137 is a very high speed 1-of-8 decoder/demultiplexer with latches on the three address inputs. This device essentially combines the function and speed of the 'S138 1-of-8 decoder with a 3-bit storage latch. When the latch is enabled ($\overline{L E}=L O W$), the 'S137 acts as a $1-0 f-8$ active LOW decoder. When the Latch Enable (LE goes from LOW to HIGH, the last data present at the inputs before this transition is stored in the latches. Further address changes are ignored as long as $\overline{L E}$ remains HIGH. The output enable gate ($\bar{E}_{1} \bullet E_{2}$) controls the state of the outputs independent of the Address inputs or latch operation. All outputs are HIGH unless \bar{E}_{1} is LOW and E_{2} is HIGH. The ' S 137 is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems. The 'S137 is fabricated with the Schottky barrier diode process for high speed. - SCHOTTKY PROCESS FOR HIGH SPEED - COMBINES 1-OF-8 DECODER WITH 3-BIT LATCH - MULTIPLE INPUT ENABLE FOR EASY EXPANSION OR INDEPENDENT CONTROLS - ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS					CONNECTION DIAGRAM PINOUT A
					LOGIC SYMBOL
PKGS	PIN OUT	COMMERCIAL GRADE VcC $=+5.0 \mathrm{~V} \pm 5 \%$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MILITARY GRADE $\begin{gathered} V_{c C}=+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	PKG TYPE	$\begin{array}{ccccccc}0_{0} & o_{1} & O_{2} & O_{3} & O_{4} & o_{5} & 0_{6} \\ 0\end{array}$
Plastic DIP (P)	A	74S137PC		9B	
Ceramic DIP (D)	A	74S137DC	54S137DM	6B	$=\mathrm{Pin}$
Flatpak (F)	A	74S137FC	54S137FM	4L	

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74S (U.L.) HIGH/LOW
$A_{0}-A_{2}$	Address Inputs	1.25/1.25
LE	Latch Enable Input (Active LOW)	1.25/1.25
E_{1}	Enable Input (Active LOW)	1.25/1.25
E_{2}	Enable Input (Active HIGH)	1.25/1.25
$\mathrm{C}_{0}-\mathrm{O}_{7}$	Outputs (Active LOW)	25/12.5

TRUTH TABLE

INPUTS						OUTPUTS							
$\overline{\text { LE }}$	\bar{E}_{1}	E_{2}	A0	A_{1}	A_{2}	\bar{O}_{0}	$\overline{\mathrm{O}}_{1}$	$\overline{\mathrm{O}}_{2}$	\bar{O}_{3}	$\overline{\mathrm{O}}_{4}$	\bar{O}_{5}	$\overline{\mathrm{O}} \overline{6}$	$\overline{\mathrm{O}}_{7}$
H	L	H	X	X	X					ABL			
X	H	X	X	X	x	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L.	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION - The 'S137 is a very high speed 1-of-8 decoder/demultiplexer fabricated with the Schottky barrier diode process. The decoder accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and when enabled provides eight mutually exclusive active LOW outputs ($\bar{O}_{0}-\bar{O}_{7}$). The 'S137 also features a 3 -bit latch on the Address inputs. The device functions as a $1-0 f-8$ decoder (same as 'S138) when the Latch Enable ($\overline{\mathrm{LE}}$) is LOW. When $\overline{L E}$ is HIGH, the address present one setup time prior to the LOW-to-HIGH transition of $\overline{L E}$ will be stored in the address latches and the outputs will not be affected by further address changes. The output enable control is an AND gate comprised of one active LOW input (\bar{E}_{1}) and one active HIGH input (E_{2}). All outputs are HIGH unless the enable inputs ($\bar{E}_{1} \bullet E_{2}$) are in their true (active) state.

A non-overlapping decoder with edge-triggered address inputs can be easily implemented by tying the Latch Enable input $\overline{L E}$ to the active HIGH Enable input (E_{2}). When this input ($\overline{L E} \cdot E_{2}$) is LOW, all outputs are forced HIGH and a new address enters the latches. When the $\overline{L E} \bullet E_{2}$ input goes HIGH , the address is stored in the latches and the corresponding output gate is enabled (goes LOW). In this configuration, the address must be stable only one setup time prior to the LOW-to-HIGH transition of the $\overline{L E} \cdot E_{2}$ input. The addressed output remains active LOW as long as the ($\overline{L E} \cdot E_{2}$) input remains HIGH , even if the address changes. Data or control information can thus be strobed into the ' S 137 from very noisy or bus oriented systems using a LOW pulse width equal to the minimum latch enable pulse width $t_{w}(L)$.

The multiple enable inputs along with the address latches allows easy expansion to a 1-of-64 decoder with nonoverlapping outputs (see Figure a).

Fig. a High Speed 1-of-64 Decoder with Input Data Storage

Logic Products

FEATURES

- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Direct replacement for Intel 3205

DESCRIPTION

The ' 138 decoder accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and when enabled, provides eight mutually exclusive, active LOW outputs ($\overline{0}-\overline{7}$). The device features three Enable Inputs: two active LOW ($\mathrm{E}_{1}, \mathrm{E}_{2}$) and one active HIGH (E_{3}). Every output will be HIGH unless E_{1} and E_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1 -of- 32 (5 lines to 32 lines) decoder with just four '138s and one inverter.

The device can be used as an eight output demultiplexer by using one of the active LOW Enable inputs as the Data input and the remaining Enable inputs as strobes. Enable inputs not used must be permanently tied to their appropriate active HIGH or active LOW state.

74LS138, S138
 Decoders/Demultiplexers

1-Of-8 Decoder/Demultiplexer
 Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 138	20 ns	6.3 mA
74 S 138	7 ns	49 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S138N, N74LS138N
Plastic SO	N74LS138D, N74S138D

NOTE:
For information regarding devices processed to Military Specifications see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
All	Inputs	1Sul	1LSul
All	Outputs	10Sul	10LSul

NOTE:
Where a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and -0.4 mA IIL.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS												

$H=$ HIGH voltage level
$L=$ LOW voltage level
X = Don't care

74LS139, S139 Decoders/Demultiplexers

Dual 1-of-4 Decoder/Demultiplexer Product Specification

Logic Products

FEATURES

- Demultiplexing capability
- Two independent 1-of-4 decoders
- Multifunction capability
- Replaces 9321 and 93L21 for higher performance

DESCRIPTION

The '139 is a high-speed, dual 1-of-4 decoder/demultiplexer. This device has two independent decoders, each accepting two binary weighted inputs (A_{0}, A_{1}) and providing four mutually exclusive active LOW outputs $(\overline{0}-\overline{3})$. Each decoder has an active LOW Enable ($\overline{\mathrm{E}}$). When \bar{E} is HIGH, every output is forced HIGH. The Enable can be used as the Data input for a 1-of-4 demultiplexer application.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY (ENABLE AT 2 LOGIC LEVELS)	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 139	19 ns	6.8 mA
74 S 139	6 ns	60 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S139N, N74LS139N
Plastic SO	N74LS139D, N74S139D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
All	Inputs	1Sul	1LSul
All	Outputs	10 Sul	10LSul

NOTE:

A 74S unit load (Sul) is $50 \mu \mathrm{~A} I_{\mathbb{H}}$ and $\mathbf{- 2 . 0 m A} I_{11}$, and a 74 LS unit load (LSul) is $20 \mu A I_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (EEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUTS			
\mathbf{E}	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\overline{\mathbf{O}}$	$\overline{\mathbf{1}}$	$\overline{\mathbf{2}}$	$\overline{\mathbf{3}}$
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L

$H=H I G H$ voltage level
L = LOW voltage level
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	$\mathbf{7 4 L S}$	74S	UNIT				
V_{CC}	Supply voltage	7.0	7.0	V				
$\mathrm{~V}_{\mathbb{N}}$	Input voltage	-0.5 to +7.0	-0.5 to +5.5	V				
I_{N}	Input current	-30 to +1	-30 to +5	mA				
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$					
T_{A}	Operating free-air temperature range	0 to 70						V

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74LS			745			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{cc}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HiGH-level input voitage	2.0			2.0			V
V_{IL}	LOW-level input voltage			+0.8			+0.8	V
1 IK	Input clamp current			-18			-18	mA
IOH	HIGH-level output current			-400			-1000	$\mu \mathrm{A}$
lOL	LOW-level output current			8			20	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

74145
 Decoder/Driver

BCD-To-Decimal Decoder/Driver (Open Collector) Product Specification

Logic Products

FEATURES

- 80 mA output drive capability
- 15V output breakdown voltage
- See '45 for 30V output voltage
- See '42 for standard TTL outputs

DESCRIPTION

The '145 is a $1-$ of -10 decoder with Open Collector outputs. This decoder accepts $B C D$ inputs on the A_{0} to A_{3} address lines and generates 10 mutually exclusive active LOW outputs. When an input code greater than ' 9 '" is applied, all outputs are HIGH. This device can therefore be used as a 1 -of- 8 decoder with A_{3} used as an active LOW enable.

The ' 145 features an output breakdown voltage of 15 V . This device is ideal as a lamp or solenoid driver.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74145	24 ns	43 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{v}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
Plastic DIP	N74145N
Plastic SO	N74145D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
All	Inputs	1 ul
All	Outputs	12.5 ul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{O}}$	$\overline{\mathbf{1}}$	$\overline{\mathbf{2}}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{4}}$	$\overline{\mathbf{5}}$	$\overline{\mathbf{6}}$	$\overline{\mathbf{7}}$	$\overline{\mathbf{8}}$	$\overline{\mathbf{9}}$
L	L	L	L	L	H								
L	L	L	H	H	L	H							
L	L	H	L	H	H	L	H						
L	L	H	H	H	H	H	L	H	H	H	H	H	H
L	H	L	L	H	H	H	H	L	H	H	H	H	H
L	H	L	H	H	H	H	H	H	L	H	H	H	H
L	H	H	L	H	H	H	H	H	H	L	H	H	H
H	L	L	L	H	L	H							
H	H	H	H	H	H	L	H						
H	L	L	H	L									
H	L	H	L	H									
H	L	H											
H	H	L	L	H									
H	H	H	H										
H													
H													

$H=$ HIGH voltage levels
$L=$ LOW voltage
$L=$ LOW voltage levels

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	-0.5 to +5.5	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in HIGH output state	-0.5 to +15	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	2.0			V
V_{IL}	LOW-level input voltage			$+0.8$	V
IIK	Input clamp current			-12	mA
V_{OH}	HIGH-level output voltage			15	V
loL	LOW-level output current			80	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Encodes 10 -line decimal to 4-line BCD
- Useful for 10-position switch encoding
- Used in code converters and generators

DESCRIPTION

The '147 9-input priority encoder accepts data from nine active-LOW inputs ($\bar{I}_{1}-\bar{I}_{g}$) and provides a binary representation on the four active-LOW outputs ($A_{0}-A_{3}$). A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line i_{g} having the highest priority.

The device provides the 10 -line-to-4-line priority encoding function by use of the implied decimal "zero." The 'zero' is encoded when all nine data inputs are HIGH, forcing all four outputs HIGH.

74147
Encoder
10-Line-To-4-Line Priority Encoder Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74147	10ns	46 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V$ $5 \%$$; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 74147 N

NOTE:
For information regarding devices processed to Military Specifications see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
All	Inputs	1 ul
All	Outputs	10 ul

NOTE:

A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{IIL}^{2}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Encoder	74147

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS									OUTPUTS			
I_{1}	\bar{I}_{2}	\bar{I}_{3}	I_{4}	I_{5}	I_{6}	$\overline{1}_{7}$	I_{8}	I_{9}	\bar{A}_{3}	\bar{A}_{2}	\bar{A}_{1}	\bar{A}_{0}
H	H	H	H	H	H	H	H	H	H	H	H	H
X	X	X	X	X	X	X	X	L	L	H	H	L
X	X	X	X	X	X	X	L	H	L	H	H	H
X	X	X	x	X	X	L	H	H	H	L	L	L
X	X	X	X	X	L	H	H	H	H	L	L	H
X	X	X	X	L	H	H	H	H	H	L	H	L
X	X	X	L	H	H	H	H	H	H	L	H	H
X	X	L	H	H	H	H	H	H	H	H	L	L
X	L	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	L
$\overline{\mathrm{IGH}}$ OW on't	$\begin{aligned} & \text { lev } \\ & \text { leve } \end{aligned}$											

74148

Encoder

8-Input Priority Encoder

 Product Specification
Logic Products

FEATURES

- Code conversions
- Multi-channel D/A converter
- Decimal-to-BCD converter
- Cascading for priority encoding of 'N' bits
- Input Enable capability
- Priority encoding - automatic selection of highest priority input line
- Output Enable - active LOW when all inputs HIGH
- Group Signal output - active when any input is LOW

DESCRIPTION

The '148 8-input priority encoder accepts data from eight active-LOW inputs and provides a binary representation on the three active-LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line \bar{I}_{7} having the highest priority.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74148	10ns	38 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 74148 N
Plastic SO	

NOTES:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$
\bar{I}_{0}	Input	1 ul
$\bar{I}_{1}-\bar{I}_{7}$	Inputs	2 ul
$\overline{\mathrm{El}}$	Input	2 ul
All	Outputs	10 ul

NOTE:

A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

A HIGH on the Enable Input (EI) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs.

A Group Signal (GS) output and an Enable Output (EO) are provided with the three data outputs. The $\overline{\mathrm{GS}}$ is active-LOW when any input is LOW; this indicates when any input is active. The EO is active-LOW when all inputs
are HIGH. Using the Enable Output along with the Enable Input allows priority encoding of N input signals. Both EO and GS are activeHIGH when the Enable input is HIGH.

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 16$
$G N D=\operatorname{Pin} 8$
GND $=$ Pin 8

FUNCTION TABLE

INPUTS									OUTPUTS				
EI	I_{0}	I_{1}	I_{2}	\bar{I}_{3}	\bar{I}_{4}	I_{5}	\bar{I}_{6}	I_{7}	GS	\bar{A}_{0}	\bar{A}_{1}	$\overline{\mathbf{A}}_{2}$	EO
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	X	X	X	X	X	X	L	L	L	L	L	H
L	X	X	X	x	X	X	L	H	L	H	L	L	H
L	X	X	X	X	X	L	H	H	L	L	H	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	L	L	L	H	H
L.	X	X	L	H	H	H	H	H	L	H	L	H	H
L	X	L	H	H	H	H	H	H	L	L	H	H	H
L	L	H	H	H	H	H	H	H	L.	H	H	H	H

[^5]
74150 Multiplexer

16-Input Multiplexer Product Specification

Logic Products

FEATURES

- Select data from 16 sources
- Demultiplexing capability
- Active-LOW enable or strobe
- Inverting data output

DESCRIPTION

The '150 is a logical implementation of a single-pole, 16 -position switch with the switch position controlled by the state of four Select inputs. $S_{0}, S_{1}, S_{2}, S_{3}$. The Multiplexer output (\bar{Y}) inverts the selected data. The Enable input ($\overline{\mathrm{E}}$) is activeLOW. When \bar{E} is HIGH the \bar{Y} output is HIGH regardless of all other inputs. In one package the '150 provides the ability to select from 16 sources of data or control information.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74150	17 ns	40 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{c C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
Plastic DIP	N74150N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$
All	Inputs	1 ul
$\overline{\mathbf{Y}}$	Output	10 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\text {IL }}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

74151, LS151, S151
 Multiplexers

8-Input Multiplexer

Product Specification

Logic Products

FEATURES

- Multifunction capability
- Complementary outputs
- See '251 for 3-state version

DESCRIPTION

The ' 151 is a logical implementation of a single-pole, 8 -position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. True (Y) and Complement ($\overline{\mathrm{Y}}$) outputs are both provided. The Enable input (\bar{E}) is active LOW. When \bar{E} is HIGH, the \bar{Y} output is HIGH and the Y output is LOW, regardless of all other inputs. The logic function provided at the output is:

$$
\begin{aligned}
& Y=E_{\bullet} \cdot\left(l_{0} \bullet \bar{S}_{0} \cdot \bar{S}_{1} \bullet \mathbf{S}_{2}+I_{1} \bullet S_{0} \cdot \bar{S}_{1} \cdot \bar{S}_{2}+\right. \\
& I_{2} \cdot \bar{S}_{0} \cdot \mathrm{~S}_{1} \cdot \bar{S}_{2}+\mathrm{I}_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+ \\
& \mathrm{I}_{4} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+ \\
& \mathrm{I}_{6} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}
\end{aligned}
$$

In one package the ' 151 provides the ability to select from eight sources of data or control information. The device can provide any logic function of four variables and its negation with correct manipulation.

TYPE	TYPICAL PROPAGATION DELAY (ENABLE TO $\overline{\mathbf{Y}})$	TYPICAL SUPPLY CURRENT (TOTAL)
74151	18 ns	29 mA
74 LS 151	12 ns	6 mA
74 S 151	9 ns	45 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
Plastic DIP	N74151N, N74LS151N, N74S151N
Plastic SO	N74LS151D, N74S151D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	745	74 LS
All	Inputs	1 ul	1 Sul	1 LSul
All	Outputs	10 ul	10 Sul	10 LSul

NOTE:

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and - $1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS												OUTPUTS	
E	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	${ }_{3}$	14	15	I_{6}	17	$\overline{\mathbf{Y}}$	Y
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	x	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	x	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	x	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

Logic Products

FEATURES

- Non-inverting outputs
- Separate enable for each section
- Common select inputs
- See '253 for 3 -state version

DESCRIPTION

The ' 153 is a dual 4 -input multiplexer that can select 2 bits of data from up to eight (8) sources under control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4-input multiplexer circuits have individual active LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. Outputs (Y_{a}, Y_{b}) are forced LOW when the corresponding Enables (\bar{E}_{a}, \bar{E}_{b}) are HIGH.

$$
\begin{aligned}
& Y_{a}=\bar{E}_{a} \cdot I_{0 \mathrm{o}} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{12} \cdot \bar{S}_{1} \cdot S_{0}+I_{2 a} \\
& \left.\cdot S_{1} \cdot \bar{S}_{0}+l_{3 a} \cdot S_{1} \cdot S_{2}\right) \\
& Y_{b}=\bar{E}_{b} \cdot\left(l_{0 b} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+l_{1 b} \cdot \bar{S}_{1} \cdot S_{0}+l_{2 b}\right. \\
& \left.\cdot \mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{l}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)
\end{aligned}
$$

74153, LS153, S153
 Multiplexers

Dual 4-Line To 1-Line Multiplexer Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74153	18 ns	36 mA
74 LS 153	18 ns	6.2 mA
74 S 153	9 ns	45 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\boldsymbol{4} ;$
Plastic DIP	N74153N, N74LS153N, N74S153N
Plastic SO	N74LS153D, N74S153D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	$74 S$	74 LS
All	Inputs	1 ul	1 Sul	1 LSul
All	Outputs	10 ul	10 Sul	10LSul

NOTE:
Where a 74 unit load $(u l)$ is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{L}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Multiplexers

The '153 can be used to move data to a common output bus from a group of registers. The state of the Select inputs would determine the particular register from which the data came. An alternative application is as a function generator. The device can generate two functions or three variables. This is useful for implementing highly irregular random logic.

LOGIC DIAGRAM

FUNCTION TABLE

SELECT INPUTS		INPUTS (a or b)					OUTPUT
S_{0}	S_{1}	$\overline{\mathbf{E}}$	I_{0}	I_{1}	I_{2}	I_{3}	Y
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	x	H
H	L	L	X	L	X	x	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
$\mathrm{X}=$ Don't care

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	74	74 LS	$\mathbf{7 4 S}$	UNIT	
V_{CC}	Supply voltage	7.0	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +5.5	V
I_{N}	Input current	-30 to +5	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range		0 to 70		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			2.0			2.0			V
V_{IL}	LOW-level input voltage			+ 0.8			+0.8			+0.8	V
IIK	Input clamp current			-12			-18			-18	mA
IOH	HIGH-level output current			-800			-400			-1000	$\mu \mathrm{A}$
lOL	LOW-level output current			16			8			20	mA
T_{A}	Operating free-air temperature	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

74154, LS154
 Decoder/Demultiplexers

1-of-16 Decoder/Demultiplexer Product Specification

Logic Products

FEATURES

- 16-line demultiplexing capability
- Mutually exclusive outputs
- 2-input enable gate for strobing or expansion

DESCRIPTION

The '154 decoder accepts four active HIGH binary address inputs and provides 16 mutually exclusive active LOW outputs. The 2 -input enable gate can be used to strobe the decoder to eliminate the normal decoding "glitches" on the outputs, or it can be used for expansion of the decoder. The enable gate has two AND'ed inputs which must be LOW to enable the outputs.

The ' 154 can be used as a 1-of-16 demultiplexer by using one of the enable inputs as the multiplexed data input. When the other enable is LOW, the addressed output will follow the state of the applied data.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74154	21 ns	34 mA
74 LS 154	15 ns	9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
Plastic DIP	N74154N, N74LS154N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
All	Inputs	1 ul	1 LSul
All	Outputs	10 ul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -0.4 mA IL .

PIN CONFIGURATION

i 2	$23 A_{0}$
23	${ }^{22} A_{1}$
3	21) A_{2}
- 5	$20 A_{3}$
56	1981
${ }^{1}$	10 \mathbf{E}_{0}
8	(17) 18
5	1817
- 10	$13{ }^{13}$
16	$1{ }^{16} 17$
ano 12	0^{11}

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						OUTPUT															
E_{0}	E_{1}	A_{3}	A_{2}	A_{1}	A_{0}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	H	x	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	x	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L.	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

$H=$ HIGH voltage level
$\mathrm{L}=$ LOW voltage level
$X=$ Don't care
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74 LS	
V_{CC}	Supply voltage	7.0	7.0	
$\mathrm{~V}_{\mathbf{I N}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
$\mathrm{I}_{\mathbf{N}}$	Input current	-30 to +5	-30 to +1	V
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	mA
T_{A}	Operating free-air temperature range	0 to 70		V

Logic Products

FEATURES

- Common Address Inputs
- True or complement data demultiplexing
- Dual 1-of-4 or 1-of-8 decoding
- Function generator applications

DESCRIPTION

The '155 is a Dual 1-of-4 Decoder/ Demultiplexer with common Address inputs and separate gated Enable inputs. Each decoder section, when enabled, will accept the binary weighted Address input (A_{0}, A_{1}) and provide four mutually exclusive active-LOW outputs ($\overline{0}-\overline{3}$). When the enable requirements of each decoder are not met, all outputs of that decoder are HIGH.

74155, LS155
 Decoders/Demultiplexers

Dual 2-Line To 4-Line Decoder/Demultiplexer Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74155	18 ns	25 mA
74 LS 155	17 ns	6.1 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74155N, N74LS155N
Plastic SO	N74LS155D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74LS
All	Inputs	1 ul	1 LSul
All	Outputs	10 ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and -0.4 mA ill .

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

Both decoder sections have a 2 -input enable gate. For decoder " a " the enable gate requires one active-HIGH input and one activeLOW input ($\mathrm{E}_{\mathrm{a}} \cdot \bar{E}_{\mathrm{a}}$). Decoder ' a " can accept either true or complemented data in demultiplexing applications, by using the E_{a} or E_{a} inputs respectively. The decoder ' b '" enable gate requires two active-LOW inputs ($\mathrm{E}_{\mathrm{b}} \cdot \mathrm{E}_{\mathrm{b}}$) The device can be used as a 1-of-8 decoder/ demultiplexer by tying E_{a} to \bar{E}_{b} and relabeling the common connection address as $\left(\mathrm{A}_{2}\right)$; forming the common enable by connecting the remaining \bar{E}_{b} and \bar{E}_{a}.

FUNCTION TABLE

ADDRESS		ENABLE 'a'		OUTPUT "'a'"				$\begin{gathered} \text { ENABLE } \\ \text { ''b" } \end{gathered}$		$\begin{aligned} & \text { OUTPUT } \\ & \text { "'b"' } \end{aligned}$			
A_{0}	A_{1}	$E_{\text {a }}$	$\bar{E}_{\text {a }}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	E_{b}	$\bar{E}_{\text {b }}$	$\overline{0}$	1	$\overline{2}$	$\overline{3}$
X	x	L	X	H	H	H	H	H	X	H	H	H	H
X	X	X	H	H	H	H	H	X	H	H	H	H	H
L	L	H	L	L	H	H	H	L	L	L	H	H	H
H	L	H	L	H	L	H	H	L	L	H	L	H	H
L	H	H	L	H	H	L	H	L.	L	H	H	L	H
H	H	H	L	H	H	H	L	L	L	H	H	H	L

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$L=$ LOW voltage level
$\mathrm{X}=$ Don't care
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	-30 to +1	mA
Vout	Voltage applied to output in HIGH output state	-0.5 to $+V_{C C}$	-0.5 to $+\mathrm{V}_{C C}$	\checkmark
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	0 to 70		${ }^{\circ} \mathrm{C}$

74156, LS156
 Decoders/Demultiplexers

Dual 2-Line To 4-Line Decoder/Demultiplexer (Open Collector) Product Specification

Logic Products

FEATURES

- Common Address inputs
- True or complement data demultiplexing
- Dual 1-of-4 or 1-of-8 decoding
- Function generator applications
- Outputs can be tied together

DESCRIPTION

The '156 is a Dual 1-of-4 Decoder/ Demultiplexer with common Address inputs and gated Enable inputs. Each decoder section, when enabled, will accept the binary weighted Address inputs (A_{0}, A_{1}) and provide four mutually exclusive active-LOW outputs $(\overline{0}-\overline{3})$. When the enable requirements of each decoder are not met, all outputs of that decoder are HIGH.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74156	20 ns	25 mA
74 LS 156	31 ns	6.1 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74156N, N74LS156N
Plastic SO	N74LS156D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
All	Inputs	1 ul	1LSul
All	Outputs	10 ul	10 LSUl

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

Both decoder sections have a 2 -input enable gate. For decoder " a " the enable gate requires one active-HIGH input and one activeLOW input ($\mathrm{E}_{\mathrm{a}} \cdot \mathrm{E}_{\mathrm{a}}$). Decoder "a' can accept either true or complemented data in demultiplexing applications, by using the \bar{E}_{a} or E_{a} inputs respectively. The decoder ' b ' enable gate requires two active-LOW inputs ($\bar{E}_{b} \cdot \bar{E}_{b}$). The device can be used as a 1-0t-8 decoder/ demultiplexer by tying E_{a} to \bar{E}_{b} and relabeling the common connection address as $\left(\mathrm{A}_{2}\right)$; forming the common enable by connecting the remaining \bar{E}_{b} and \bar{E}_{a}.
The ' 156 can be used to generate all four minterms of two variables. The four minterms are useful to replace multiple gate functions in some applications. A further advantage of the ' 156 is being able to AND the minterm functions by tying outputs together. Any number of terms can be wired-AND as shown in the formula below:

$$
\begin{aligned}
& f=\left(E+A_{0}+A_{1}\right) \cdot\left(E+\bar{A}_{0}+A_{1}\right) \\
& \cdot\left(E+A_{0}+\bar{A}_{1}\right) \cdot\left(E+A_{0}+A_{1}\right)
\end{aligned}
$$

where $E=E_{a}+E_{a} ; E=E_{b}+E_{b}$.

FUNCTION TABLE

ADDRESS		$\begin{gathered} \text { ENABLE } \\ \text { " } \mathrm{a} \text { " } \end{gathered}$		OUTPUT "a'				$\begin{gathered} \text { ENABLE } \\ \text { "b"' } \end{gathered}$		$\begin{aligned} & \text { QUTPUT } \\ & \text { 'b'" } \end{aligned}$			
A_{0}	A_{1}	$\mathrm{Ea}_{\mathbf{a}}$	\bar{E}_{3}	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\bar{E}_{\text {b }}$	$\bar{E}_{\text {b }}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
X	X	L	X	H	H	H	H	H	X	H	H	H	H
X	X	X	H	H	H	H	H	X	H	H	H	H	H
L	L	H	L	L	H	H	H	L	L	L	H	H	H
H	L	H	L	H	L	H	H	L	L	H	L	H	H
L	H	H	L	H	H	L	H	L	L	H	H	L	H
H	H	H	L	H	H	H	L	L	L	H	H	H	L

$H=$ HIGH voltage level
L = LOW voltage level
X = Don't care

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

| | PARAMETER | 74 | 74 LS | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| V_{CC} | Supply voltage | 7.0 | 7.0 | |
| $\mathrm{~V}_{\mathrm{IN}}$ | Input voltage | -0.5 to +5.5 | -0.5 to +7.0 | V |
| I_{IN} | Input current | -30 to +5 | -30 to +1 | V |
| $\mathrm{~V}_{\mathrm{OUT}}$ | Voltage applied to output in HIGH output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | mA |
| T_{A} | Operating free-air temperature range | 0 to 70 | V | |

Logic Products

DESCRIPTION

The ' 157 is a quad 2 -input multiplexer which selects four bits of data from two sources under the control of a common Select input (S). The Enable input $(\overline{\mathrm{E}})$ is active LOW. When \bar{E} is HIGH, all of the outputs (Y) are forced LOW regardless of all other input conditions.
Moving data from two groups of registers to four common output busses is a common use of the '157. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator. The device is useful for implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common.

74157, 74158, LS157, LS158, S157, S158 Data Selectors/Multiplexers

'157 Quad 2-Input Data Selector/Multiplexer (Non-Inverted) '158 Quad 2-Input Data Selector/Multiplexer (Inverted) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74157	13 ns	30 mA
74 LS 157	13 ns	9.7 mA
74 S 157	7.4 ns	50 mA
74158	13 ns	30 mA
74 LS 158	13 ns	4.8 mA
74 S 158	6 ns	40 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGES
VCC $^{2} 5 \mathrm{5V} \pm 5 \% ; \mathrm{TA}_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Plastic DIP	N74157N, N74LS158N, N74S157N
Plastic SO	N74LS157N, N74S158N, N74LS158N
N74LS157D, N74S158D	

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
S, \mathbb{E}	Inputs	$1 u \mathrm{l}$	2Sul	2LSul
Data	Inputs	1 ul	1Sul	1LSul
All	Outputs	10 ul	10Sul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $\left.40 \mu \mathrm{~A}\right|_{I H}$ and $-\left.1.6 \mathrm{~mA}\right|_{\mathrm{L}}$, a 74 S unit load (Sul) is $\left.50 \mu \mathrm{~A}\right|_{\mathbb{I}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, and a74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Data Selectors/Multiplexers
74157, 74158, LS157, LS158, S157, S158

LOGIC DIAGRAM, '157

LOGIC DIAGRAM, '158

L003010s
$V_{C C}=P_{\text {In }} 16$
$G N D=\operatorname{Pin} 8$
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	$\mathbf{7 4}$	$\mathbf{7 4 L S}$	74S	UNIT		
V_{CC}	Supply voltage	7.0	7.0	7.0	V	
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +5.5	V	
I_{N}	Input current	-30 to +5	-30 to +1	-30 to +5	mA	
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V	
T_{A}	Operating free-air temperature range	0 to 70				

Logic Products

FEATURES

- Synchronous counting and loading
- Two Count Enable inputs for nbit cascading
- Positive edge-triggered clock
- Asynchronous reset ('160, '161)
- Synchronous reset ('162, '163)
- Hysteresis on Clock input (LS only)

DESCRIPTION

Synchronous presettable decade (74160, 74LS160A, 74LS162A) and 4-bit (74161, 74LS161A, 74163, 74LS163A) counters feature an internal carry lookahead and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock. The Clock input is buffered.
The outputs of the counters may be preset to HIGH or LOW level. A LOW level at the Parallel Enable ($\overline{\mathrm{PE}}$) input disables the counting action and causes the data at the $D_{0}-D_{3}$ inputs to be loaded into the counter on the positivegoing edge of the clock (providing that the set-up and hold requirements for $\overline{\mathrm{PE}}$ are met). Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.

PIN CONFIGURATION

LOGIC SYMBOL

Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

Counters

A LOW level at the Master Reset ($\overline{\mathrm{MR}}$) input sets all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ in '160, 'LS160A, '161, and 'LS161A to LOW levels regardless of the levels at $\mathrm{CP}, \overline{\mathrm{PE}}, \mathrm{CET}$ and CEP inputs (thus providing an asynchronous clear function).

For the 'LS162A, '163, and LS163A, the clear function is synchronous. A LOW level at the Master Reset ($\overline{\mathrm{MR}}$) input sets all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ to LOW ievels after the next positive-going transition on the Clock (CP) input (providing that the set-up and hold requirements for $\overline{M R}$ are met). This action occurs regardless of the levels at $\overline{P E}, C E T$, and CEP inputs. This synchronous reset fea-
ture enables the designer to modify the maximum count with only one external NAND gate (see Figure A).
The carry look-ahead simplifies serial cascading of the counters. Both Count Enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to the HIGH level output of Q_{0}. This pulse can be used to enable the next cascaded stage (see Figure B).

For conventional operation of 74160,74161 and 74163 , the foilowing transitions should be avoided.

1 HIGH-to-LOW transition on the CEP or CET input if clock is LOW.
2. LOW-to-HIGH transitions on the Parallel Enable input when CP is LOW, if the count enables and $\overline{M R}$ are HIGH at or before the transition.

For 74163 there is an additional transition to be avoided.
3 LOW-to-HIGH transition on the $\overline{M R}$ input when clock is LOW, if the Enable and $\overline{\mathrm{PE}}$ inputs are HIGH at or before the transition.

These restrictions are not applicable to 74LS160A. 74LS161A, 74LS162A and 74LS163A

LOGIC SYMBOL (IEEE/IEC)
(

TERMINAL COUNT $=6$
AFO2301S

Figure 1

Figure 2. Synchronous Multistage Counting Scheme
LOGIC DIAGRAM, 74160

Counters
74160, 74161, 74163, LS160A, LS161A, LS162A, LS163A

LOGIC DIAGRAMS

Counters 74160, 74161, 74163, LS160A, S161A, LS162A, LS163A

LOGIC DIAGRAMS

Counters

LOGIC DIAGRAMS

MODE SELECT - FUNCTION TABLE, '160, '161

OPERATING MODE	INPUTS						OUTPUTS	
	$\overline{\text { MR }}$	CP	CEP	CET	$\overline{\text { PE }}$	D_{n}	$\mathrm{Q}_{\mathbf{n}}$	TC
Reset (clear)	L	X	X	X	X	X	L.	L
Parallel load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	1	$\begin{aligned} & 1 \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	L (a)
Count	H	\uparrow	h	h	$\mathrm{h}^{(c)}$	X	count	(a)
Hold (do nothing)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	X	$\begin{gathered} \mathrm{f}^{(\mathrm{b})} \\ \mathrm{x} \end{gathered}$	${ }_{\text {(b) }}$	$h^{(c)}$ $h^{(c)}$	X X ¢	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	(a)

MODE SELECT - FUNCTION TABLE, '162, '163

OPERATING MODE	INPUTS						OUTPUTS	
	$\overline{\text { MR }}$	CP	CEP	CET	$\overline{\text { PE }}$	D_{n}	Q_{n}	TC
Reset (clear)	1	\uparrow	X	X	X	\times	L	L
Parallel load	$h^{(f)}$ $h^{(f)}$	\uparrow	x x	$\begin{aligned} & x \\ & x \end{aligned}$	I	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	L (d)
Count	$h^{(1)}$	\uparrow	h	h	$h^{(1)}$	x	count	(d)
Hold (do nothing)	$\begin{aligned} & h^{(1)} \\ & h^{(1)} \end{aligned}$	X \times	$\begin{gathered} 1^{(\mathrm{e})} \\ X \end{gathered}$	${ }_{\text {(e) }} \times$	h(f) $h^{(1)}$	X	$\begin{aligned} & \mathrm{q}_{\mathrm{n}} \\ & \mathrm{q}_{\mathrm{n}} \end{aligned}$	(d)

$H=$ HIGH voltage level steady state
$L=$ LOW voltage level steady state.
$h=H$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$1=$ LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
$X=$ Don't care.
$q=$ Lower case letters indicate the state of the referenced output pror to the LOW-to-HIGH clock transition
$\uparrow=$ LOW-to-HIGH clock transition.
NOTES:
(a) The TC output is HIGH when CET is HIGH and the counter is at Terminal Count (HHHH for ' 161 and HLLH for '160).
(b) The HIGH-to-LOW transition of CEP or CET on the 74161 and 74160 should only occur while CP is HIGH for conventional operation.
(c) The LOW-to-HIGH transition of $\overline{\text { PE }}$ on the 74161 and 74160 should only occur while CP is HIGH for conventional operation.
(d) The TC output is HIGH when CET is HIGH and the counter is at Terminal Count (HLLH for ' 162 and HHHH for '163).
(e) The HIGH-to-LOW transition of CEP or CET on the 74163 should only occur while CP is HIGH for conventional operation.
(f) The LOW-to-HIGH transition of $\overline{\text { PE }}$ or $\overline{M R}$ on the 74163 should only occur while CP is HIGH for conventional operation.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

| | PARAMETER | 74 | 74LS | UNIT |
| :--- | :--- | :---: | :---: | :---: | :---: |
| V_{CC} | Supply voltage | 7.0 | 7.0 | V |
| $\mathrm{~V}_{\mathrm{IN}}$ | Input voltage | -0.5 to +5.5 | -0.5 to +7.0 | V |
| I_{N} | Input current | -30 to +5 | -30 to +1 | mA |
| $\mathrm{~V}_{\mathrm{OUT}}$ | Voltage applied to output in HIGH output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | |
| T_{A} | Operating free-air temperature range | | V | |

74164, LS164 Shift Registers

8-Bit Serial-In Parallel-Out Shift Register Product Specification

Logic Products

FEATURES

- Gated serial Data inputs
- Typical shift frequency of $\mathbf{3 6 M H z}$
- Asynchronous Master Reset
- Fully buffered Clock and Data inputs

DESCRIPTION

The ' 164 is an 8 -bit edge-triggered shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs ($\mathrm{D}_{\text {sa }}$ or $\mathrm{D}_{\text {st }}$); either input can be used as an active HIGH enable for data entry through the other input. Both inputs must be connected together or an unused input must be tied HIGH.

Data shifts one place to the right on each LOW-to-HIGH transition of the Clock (CP) input, and enters into Q_{0} the logical AND of the two Data inputs ($\mathrm{D}_{\mathrm{sa}} \cdot \mathrm{D}_{\mathrm{sb}}$) that existed one set-up time before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all outputs LOW.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74164	36 MHz	37 mA
74 LS 164	36 MHz	16 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{v}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T A}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74164N, N74LS164N
Plastic SO	N74LS164D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
All	Inputs	$1 u \mathrm{l}$	1LSul
All	Outputs	$5 u l$	10LSul

NOTE:
Where a 74 unit load ($u l$) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 14$
$G N D=\operatorname{Pin} 7$

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS		
	$\overline{\text { MA }}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{s a}}$	$\mathbf{D}_{\mathbf{s b}}$	\mathbf{Q}_{0}	$\mathbf{Q}_{\mathbf{1}}-\mathbf{Q}_{\mathbf{7}}$	
Reset (clear)	L	X	X	X	L	L	
	H	\uparrow	L				
Shift	H	\uparrow	I	h	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$	
	H	\uparrow	h	I	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$	
	H	\uparrow	h	h	H	$\mathrm{q}_{0}-\mathrm{q}_{6}$	
		$\mathrm{q}_{0}-\mathrm{q}_{6}$					

$\mathrm{H}=\mathrm{HIGH}$ voltage level.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH Clock transition.
L = LOW voltage level.
$1=$ LOW voltage level one set-up time prior to the LOW-to-HIGH Clock transition.
= Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the
LOW-to-HIGH Clock transition.
$X_{\uparrow}=$ Don't care.
$=$ LOW-to-HIGH Clock transition.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	\checkmark
I_{N}	Input current	-30 to +5	-30 to +1	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+V_{c c}$	V
T_{A}	Operating free-air temperature range	0 to 70		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {II }}$	LOW-level input voltage			$+0.8$			+0.8	V
lik	Input clamp current			-12			-18	mA
l OH	HIGH-level output current			-400			-400	$\mu \mathrm{A}$
la	LOW-level output current			8			8	mA
T_{A}	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

74165
 Shift Register

8-Bit Serial/Parallel-In, Serial-Out Shift Register Product Specification

Logic Products

- Asynchronous 8-bit parallel load
- Synchronous Serial input
- Clock Enable for "do nothing' mode
- See '166 for fully synchronous operation

DESCRIPTION

The '165 is an 8 -bit parallel load or serial-in shift register with complementary Serial outputs (Q_{7} and Q_{7}) available from the last stage. When the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW, parallel data from the $D_{0}-D_{7}$ inputs are loaded into the register asynchronously. When the $\overline{\mathrm{PL}}$ input is HIGH, data enters the register serially at the D_{S} input and shifts one place to the right ($Q_{0} \rightarrow Q_{1} \rightarrow Q_{2}$, etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the Q_{7} output to the D_{s} input of the succeeding stage.
The Clock input is a gated-OR structure which allows one input to be used as an active LOW Clock Enable (CE) input. The pin assignment for the CP and CE

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74165	26 MHz	42 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $v_{C C}=5 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 74165 N

NOTE:
For information regarding devices processed to Military Specitications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
PL	Input	2 ul
Other	Inputs	1 ul
All	Outputs	10 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
inputs is arbitrary and can be reversed for layout convenience. The LOW-toHIGH transition of $\overline{C E}$ input should only take place while the CP is HIGH for predictable operation. Also, the CP and
$\overline{C E}$ inputs should be LOW before the LOW-to-HIGH transition of $\overline{\mathrm{LL}}$ to prevent shifting the data when $\overline{\mathrm{PL}}$ is released.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS					$\mathbf{Q}_{\mathbf{n}}$ REGISTER		OUTPUTS	
	PL	CE	CP	$\mathrm{D}_{\text {S }}$	$D_{0}-D_{7}$	Q_{0}	$\mathrm{a}_{1}-\mathrm{a}_{6}$	0_{7}	\mathbf{Q}_{7}
Parallei load	L	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L-L \\ & H-H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Serial shift	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & q_{0}-q_{5} \\ & q_{0}-q_{5} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{6} \\ & \mathrm{q}_{6} \end{aligned}$	\bar{q}_{6} \bar{q}_{6}
Hold "do nothing"	H	H	X	X	X	90	$q_{1}-q_{6}$	q_{7}	$\overline{\mathrm{q}}_{7}$

H = HIGH voltage level.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
L $=$ LOW voltage level.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{x}=$ Don't care.
$\uparrow=$ LOW-to-HIGH clock transition.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Synchronous paraliel to serial applications
- Synchronous serial data input for easy expansion
- Clock enable for "do nothing' mode
- Asynchronous Master Reset
- See '165 for asynchronous parallel data load

DESCRIPTION

The ' 166 is an 8 -bit shift register that has fully synchronous serial or parallel data entry selected by an active LOW Parallel Enable ($\overline{\mathrm{PE}}$) input. When the $\overline{\mathrm{PE}}$ is LOW one set-up time before the LOW-toHIGH clock transition, parallel data is entered into the register. When $\overline{P E}$ is HIGH, data is entered into internal bit position Q_{0} from Serial Data Input (D_{S}), and the remaining bits are shifted one place to the right ($Q_{0} \rightarrow Q_{1} \rightarrow Q_{2}$, etc.) with each positive-going clock transition. For expansion of the register in parallel to serial converters, the Q_{7} output is connected to the D_{S} input of the succeeding stage.

PIN CONFIGURATION

74166
 Shift Register

8-Bit Serial/Parallel-In, Serial-Out Shift Register Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74166	35 MHz	90 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	N 74166 N
Plastic SO	N 74166 D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$
All	Inputs	1 ul
Q_{7}	Output	10 ul

NOTE:
Where a 74 unit load $(u l)$ is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$.

The clock input is a gated OR structure which allows one input to be used as an active LOW Clock Enable ($\overline{\mathrm{CE}}$) input. The pin assignment for the CP and CE inputs is arbitrary and can be reversed for layout convenience. The LOW-toHIGH transition of $\overline{C E}$ input should only
take place while the CP is HIGH for predictable operation. A LOW on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a LOW state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS					Q_{n} REGISTER		$\frac{\text { OUTPUT }}{Q_{7}}$
	$\overline{\text { PE }}$	CE	CP	$\mathrm{D}_{\text {s }}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	\mathbf{Q}_{0}	$\mathrm{Q}_{1}-\mathbf{Q}_{6}$	
Parallel load	1	1	$\uparrow \uparrow$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & H \\ & h-h \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L}-\mathrm{L} \\ & \mathrm{H}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Serial shift	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	1	\uparrow	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x-x \\ & x-x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & q_{0}-q_{5} \\ & q_{0}-q_{5} \end{aligned}$	$\begin{aligned} & q_{6} \\ & q_{6} \end{aligned}$
Hold (do nothing)	X	h	X	X	X-X	90	$\mathrm{q}_{1}-\mathrm{q}_{6}$	q_{7}

$H=H I G H$ voltage level
$h=H I G H$ voltage level one set-up time prior to the LOW-to-HIGH Clock transition.
L = LOW voltage level
I =LOW voltage level one set-up time prior to the LOW-to-HIGH Clock transition.
$\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH Clock transition. $x=$ Don't care.
$=$ LOW-to-HIGH Clock transition.

TYPICAL CLEAR, SHIFT, LOAD, INHIBIT, AND SHIFT SEQUENCES

Logic Products

FEATURES

- Synchronous counting and loading
- Up/down counting
- Modulo 16 binary counter '169A
- BCD decade counter - '168A
- Two Count Enable inputs for n-bit cascading
- Positive edge-triggered clock

DESCRIPTION

The '168A is a synchronous, presettable BCD decade up/down counter featuring an internal carry look-ahead for applications in high-speed counting designs. Synchronous operation is provided by having all tlip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the Count Enable inputs and internal gating. This mode of operation eliminates the output spikes which are normally associated with asynchronous (ripple clock) counters. A buffered Clock input triggers the flip-flops on the LOW-to-HIGH transition of the clock.

74LS168A, 74LS169A, S168A, S169A
 4-Bit Bidirectional Counters

4-Bit Up/Down Synchronous Counter Product Specification

TYPE	TYPICAL $\mathrm{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 168 A	32 MHz	20 mA
74 S 168 A	70 MHz	100 mA
74 LS 169 A	32 MHz	20 mA
74 S 169 A	70 MHz	100 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74LS168AN, N74S168AN
N74LS169AN, N74S169AN	
Plastic SO	N74LS169AD, N74LS169AD, N74S169AD

NOTE:
For intormation regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
$\overline{\text { PE }}$	Input	1Sul	2LSul
$\overline{\mathrm{CET}}$	Input	2Sul	1LSul
Other	Inputs	1 Sul	1LSul
All	Outputs	10 Sul	10LSul

NOTE:
Where a 74 S unit load (Sul) is understood to be $\left.50 \mu \mathrm{~A}\right|_{I H}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$ and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A}$ $I_{I H}$ and $-0.4 m A I_{I L}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The counter is fully programmable; that is, the outputs may be preset to either levei. Presetting is synchronous with the clock and takes place regardless of the levels of the Count Enable inputs. A LOW level on the Paraliel Enable ($\overline{\mathrm{PE}}$) input disables the counter and causes the data at the D_{n} input to be loaded into the counter on the next LOW-to-HIGH transition of the clock.

The direction of counting is controlled by the Up/Down (U/D \bar{D}) input; a HIGH will cause the
count to increase, a LOW will cause the count to decrease.
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two Count Enable inputs (CET - CEP) and a Terminal Count ($\overline{\mathrm{TC}}$) output. Both Count Enable inputs must be LOW to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a LOW
output pulse with a duration approximately equal to the HIGH level portion of the Q_{0} output. This LOW level TC pulse is used to enable successive cascaded stages. See Figure A for the fast synchronous multistage counting connections.

The '169A is identical except that it is a Modulo 16 counter.

LOGIC DIAGRAM, '168A

4-Bit Bidirectional Counters
74LS168A, 74LS169A, S168A, S169A

LOGIC DIAGRAM, '169A

L001990S
() $=$ Pin numbers

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS	
	CP	U/D	$\overline{\text { CEP }}$	$\overline{\text { CET }}$	$\overline{\text { PE }}$	D_{n}	$\mathbf{Q}_{\mathbf{n}}$	TC
Parallel Load	\uparrow	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { i } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { i } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	(1) (1)
Count Up	\uparrow	h	1	1	h	X	Count Up	(1)
Count Down	\uparrow	1	1	1	h	X	Count Down	(1)
Hold (do nothing)	\uparrow	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & h \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & h \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	$\begin{gathered} (1) \\ H \end{gathered}$

$\mathrm{H}=\mathrm{HIGH}$ voltage level steady state
$h=$ HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition
$\mathrm{L}=$ LOW voltage level steady state
$\mathrm{i}=$ LOW voltage level one setup time prior to the LOW-to-HIGH clock transition
$\mathrm{X}=$ Don't care
$q=$ Lower case letters indicate the state of the referenced output prior to the LOW-to-HIGH clock transition
$\uparrow=$ LOW-to-HIGH clock transition
NOTE:

1. The TC is LOW when CET is LOW and the counter is at Terminal Count. Terminal Count Up is (HHHH) and Terminal Count Down is (LLLL) for '169A. The TC is LOW when CET is LOW and the counter is at Terminal Count. Terminal Count Up is (HLLH) and Terminal Count Down is (LLLL) for '168A.

WAVEFORM (Typical Load, Count, and Inhibit Sequences)

lllustrated below is the following sequence for 1. Load (preset) to BCD seven the '168A. The operation of the '169A is similar.
2. Count up to eight, nine (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum). nine, eight, and seven.

Logic Products

FEATURES

- Simultaneous and independent Read and Write operations
- Expandable to 1024 words by n-bits
- Open Collector outputs for wiredAND expansion
- See '670 for 3-State output version

DESCRIPTION

The ' 170 is a 16 -bit register file organized as 4 words of 4 bits each, permitting simultaneous writing into one word locaticn and reading from another location. The 4-bit word to be stored is presented to four Data inputs. The Write Address inputs (W_{A} and W_{B}) determine the location of the stored word. When the Write Enable ($\overline{\mathrm{WE}}$) input is LOW, the data is entered into the addressed location. The addressed location remains transparent to the data while the $\overline{W E}$ is LOW. Data supplied at the inputs will be read out in true (non-inverting) form. Data and Write Address inputs are inhibited when $\overline{W E}$ is HIGH.
Direct acquisition of data stored in any of the four registers is made possible by individual Read Address inputs $\left(R_{A}\right.$ and $\left.R_{B}\right)$. The addressed word appears at the four outputs when the Read Enable ($\overline{\mathrm{RE}}$)

PIN CONFIGURATION

74170, LS170
 Register Files

4×4 Register File (Open Collector)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY (RE to Q).	TYPICAL SUPPLY CURRENT (TOTAL)
74170	10ns (tpLH) 20ns (tPHL	127 mA
74 LS 170	20ns (tpLH 20ns (tpHL	25 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
Plastic DIP	$\mathrm{V} \mathbf{C C}=54170 \mathrm{~T}, \mathrm{~N} 74 \mathrm{LS} 170 \mathrm{~N}$

NOTE:
For intormation regarding devices processed to Military Specifications, see the Signetics Miliary Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74 LS
$\mathrm{D}, \mathrm{W}_{\mathrm{A}}, \mathrm{W}_{\mathrm{B}}, \mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$	Inputs	1 ul	1 LSul
$\overline{\mathrm{WE}}, \overline{\mathrm{RE}}$	Inputs	1 ul	2 2LSul
All	Outputs	10 ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu A I_{\mathbb{H}}$ and - $1.6 \mathrm{~mA} I_{\mathbb{L}}$ and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.
is LOW. Data outputs are inhibited and remain HIGH when the Read Enable input is HIGH. This permits simultaneous reading and writing, eliminates recovery times, and is limited in speed only by the read time and the write time.

Up to 256 devices can be stacked to increase the word size to 1024 locations by tying the Open Collector outputs together. Parallel expansion to generate n bit words is accomplished by driving the Enable and Address inputs of each device in parallel.

LOGIC SYMBOL (IEEE/IEC)

74173, LS173
 Flip-Flops

Quad D-Type Flip-Flop With 3-State Outputs Product Specification

Logic Products

FEATURES

- Edge-triggered D-type register
- Gated Input enable for hold "do nothing" mode
- 3-State output buffers
- Gated output enable control
- Pin compatible with the 8T10 and DM8551

DESCRIPTION

The ' 173 is a 4 -bit parallel load register with clock enable control, 3-State buffered outputs and master reset. When the two Clock Enable (\bar{E}_{1} and E_{2}) inputs are LOW, the data on the D inputs is loaded into the register synchronously with the LOW-to-HIGH Clock (CP) transition. When one or both E inputs are HIGH one set-up time before the LOW-to-HIGH clock transition, the register will retain the previous data. Data inputs and Clock Enable inputs are fully edge triggered and must be stable only one setup time before the LOW-to-HIGH clock transition.

The Master Reset (MR) is an active HIGH asynchronous input. When the MR is HIGH, all four flip-flops are reset (cleared) independently of any other input condition.

PIN CONFIGURATION

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74173	35 MHz	50 mA
74 LS 173	50 MHz	20 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74173N, N74LS173N
Plastic SO-16	N74LS173D
Plastic SOL-16	CD7186D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
All	Inputs	1 ul	1LSul
All	Outputs	10 ul	30LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu A I_{\mathbb{H}}$ and -1.6mA $I_{\mathbb{I}}$ and a 74 LS unit load (LSul) is $20 \mu A I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{1 \mathrm{~L}}$.
The 3-State output buffers are controlled by a 2 -input NOR gate. When both Output Enable ($\overline{O E}_{1}$ and $\bar{O} E_{2}$) inputs are LOW, the data in the register is presented at the Q outputs. When one or both OE inputs is HIGH, the outputs are
forced to a HIGH impedance "off' state. The 3-State output buffers are completely independent of the register operation; the $\overline{O E}$ transition does not affect the clock and reset operations.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

REGISTER OPERATING MODES	INPUTS					OUTPUTS
	MR	CP	\bar{E}_{1}	\bar{E}_{2}	$\mathrm{D}_{\boldsymbol{n}}$	\mathbf{Q}_{n} (Register)
Reset (clear)	H	X	X	X	X	L
Parallel load	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	1	1	$\begin{aligned} & \text { I } \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Hold (no change)	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & h \\ & \text { X } \end{aligned}$	X h	X X	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$

3-STATE BUFFER OPERATING MODES	INPUTS			OUTPUTS
	Q_{n} (Register)	OE_{1}	OE_{2}	$\mathbf{Q}_{0}, \mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}$
Read	$\begin{aligned} & \text { L } \\ & \mathrm{H} \end{aligned}$	$\stackrel{L}{L}$	$\stackrel{\mathrm{L}}{\mathrm{~L}}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Disabled	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline X \\ & H \end{aligned}$	$\begin{aligned} & (Z) \\ & (Z) \end{aligned}$

[^6]
74174, LS174, S174 Flip-Flops

Hex D Flip-Flops

Product Specification

Logic Products

FEATURES

- Six edge-triggered D-type flipflops
- Three speed-power ranges available
- Buffered common clock
- Buffered, asynchronous Master Reset

DESCRIPTION

The '174 has six edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.
The register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.
All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{M R}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

PIN CONFIGURATION

TYPE	TYPICAL $f_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74174	35 MHz	45 mA
74 LS 174	40 MHz	16 mA
74 S 174	110 MHz	90 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}^{\mathbf{~}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}}$
Plastic DIP	N74174N, N74LS174N, N74S174N
Plastic SO-16	N74L.S174D, N74S174D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data. Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74S	74LS
All	Inputs	$1 u \mathrm{l}$	1 Sul	1 LSul
$Q_{0}-Q_{5}$	Outputs	10 ul	10 Sul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{\mathbb{H}}$ and -2.0mA I_{IL}, and 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	$\overline{\text { MR }}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Reset (clear)	L	X	X	L
Load '1"'	H	\uparrow	h	H
Load '0"	H	\uparrow	l	L

$H=$ HIGH voltage level steady state
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
= LOW voltage level steady state.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$x=$ Don't care.
$\uparrow=$ LOW-to-HIGH clock transition.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

| PARAMETER | $\mathbf{7 4}$ | $\mathbf{7 4 L S}$ | $\mathbf{7 4 S}$ | UNIT | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| V_{CC} | Supply voltage | 7.0 | 7.0 | 7.0 | V |
| $\mathrm{~V}_{\mathrm{IN}}$ | Input voltage | -0.5 to +5.5 | -0.5 to +7.0 | -0.5 to +5.5 | V |
| I_{N} | Input current | -30 to +5 | -30 to +1 | -30 to +5 | mA |
| $\mathrm{~V}_{\mathrm{OUT}}$ | Voltage applied to output in HIGH output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| T_{A} | Operating free-air temperature range | | 0 to 70 | | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voitage	2.0			2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8			+0.8			+0.8	V
I_{K}	Input clamp current			-12			-18			-18	mA
IOH^{\prime}	HIGH-level output current			-800			-400			-1000	$\mu \mathrm{A}$
lOL	LOW-level output current			16			8			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Four edge-triggered D flip-flops
- Three speed-power ranges available
- Buffered common clock
- Buffered, asynchronous Master Reset

DESCRIPTION

The ' 175 is a quad, edge-triggered D type flip-flop with individual D inputs and both Q and $\overline{\mathrm{Q}}$ outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flipflops simultaneously.
The register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.
All Q outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{\mathrm{MR}}$ input. The device is useful for applications where both true and complement outputs are required, and the Clock and Master Reset are common to all storage elements.

74175, LS175, S175
 Flip-Flops

Quad D Flip-Flop
 Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74175	35 MHz	30 mA
74 LS 175	40 MHz	11 mA
74 S 175	110 MHz	60 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74175N, N74LS175N, N74S175N
Plastic SO-16	N74LS175D, N74S175D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	$\mathbf{7 4 S}$	74LS
All	Inputs	1 ul	1 Sul	1LSul
All	Outputs	10 ul	10 Sul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

LD01920s
$V_{C C}=P_{\text {in }} 16$
() $=$ Pin number

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	$\overline{\text { MR }}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
Reset (clear)	L	X	X	L	H
Load "1"	H	\uparrow	h	H	L
Load "0"	H	\uparrow	I	L	H

$H=H I G H$ voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{L}=$ LOW voltage level steady state.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{X}=$ Don't care.
$\uparrow=$ LOW-to-HIGH clock transition.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	74	74 LS	74S	UNIT	
V_{CC}	Supply voltage	7.0	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +5.5	V
I_{N}	Input current	-30 to +5	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70			
${ }^{\circ} \mathrm{C}$					

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voitage	2.0			2.0			2.0			V
V_{IL}	LOW-level input voltage			+0.8			+0.8			+ 0.8	v
I K	Input clamp current			-12			-18			-18	mA
IOH	HIGH-level output current			-800			-400			-1000	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {l }}$	LOW-level output current			16			8			20	mA
T_{A}	Operating free-air temperature	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Word length easily expanded by cascading
- Generate even or odd parity
- Checks for parity errors
- See '280 for faster parity checker

DESCRIPTION

The '180 is a 9 -bit parity generator or checker commonly used to detect errors in high speed data transmission or data retrieval systems. Both Even and Odd parity enable inputs and parity outputs are available for generating or checking parity on 8-bits.
True active-HIGH or true active-LOW parity can be generated at both the Even and Odd outputs. True active-HIGH parity is established with Even Parity enable input $\left(P_{E}\right)$ set HIGH and the Odd Parity enable input (P_{0}) set LOW. True activeLOW parity is established when P_{E} is LOW and P_{O} is HIGH. When both enable inputs are at the same logic level, both outputs will be forced to the opposite logic level.
Parity checking of a 9 -bit word (8 bits plus parity) is possible by using the two

74180

Parity Generator/Checker

9-Bit Odd/Even Parity Generator/Checker Product Specification

TYPE	TYPICAL PROPAGATION DELAY, PO $=0 \mathrm{~V}$	TYPICAL SUPPLY CURRENT
74180	36 ns	34 mA

ORDERING CODE

PACKAGES	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N 74180 N

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
$I_{O}-I_{7}$	Data inputs	$1 u \mathrm{l}$
$\mathrm{P}_{\mathrm{E}}, \mathrm{P}_{\mathrm{O}}$	Parity inputs	2 ul
Σ_{E}, Σ_{O}	Parity outputs	10 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathrm{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.
enable inputs plus an inverter as the ninth data input. To check for true ac-tive-HIGH parity, the ninth data input is tied to the P_{O} input and an inverter is connected between the P_{O} and P_{E} inputs. To check for true active-LOW parity, the ninth data input is tied to the P_{E} input and an inverter is connected between the P_{E} and P_{O} inputs.

Expansion to larger word sizes is accomplished by serially cascading the ' 180 in 8 -bit increments. The Even and Odd parity outputs of the first stage are connected to the corresponding P_{E} and P_{O} inputs, respectively, of the succeeding stage.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUTS	
Number of HIGH Data Inputs ($\mathrm{I}_{0}-\mathrm{I}_{7}$)	Pe	Po	Σ_{E}	Σ_{0}
Even Odd	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & H \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Even Odd	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

$H=$ HIGH voltage level
$L=$ LOW voltage level
X = Don't care

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\mathbf{I N}}$	Input voltage	-0.5 to +5.5	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voitage	2.0			V
V_{IL}	LOW-level input voltage			+0.8	\checkmark
I_{IK}	Input clamp current			-12	mA
IOH	HIGH-level output current			-800	$\mu \mathrm{A}$
loL	LOW-level output current			16	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Provides 16 arithmetic operations: ADD, SUBTRACT, COMPARE, DOUBLE, plus 12 other arithmetic operations
- Provides all 16 logic operations of two variables: Exclusive-OR, Compare, AND, NAND, NOR, OR, plus 10 other logic operations
- Full lookahead carry for highspeed arithmetic operation on long words

DESCRIPTION

The ' 181 is a 4 -bit high-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and the Mode Control Input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations.

74181, LS181, S181 Arithmetic Logic Units

4-Bit Arithmetic Logic Unit Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74181	22 ns	91 mA
74 S 181	22 ns	21 mA
74 S 181	11 ns	120 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$\mathrm{N} 74181 \mathrm{~N}, \mathrm{~N} 74 \mathrm{LS} 181 \mathrm{~N}, \mathrm{~N} 74 \mathrm{~S} 181 \mathrm{~N}$

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	745	74LS
Mode	Input	1ul	1Sul	1LSul
\bar{A} or \bar{B}	Inputs	3 ul	3Sul	3LSul
S	Inputs	4 ul	4Sul	4LSul
Carry	Input	5 ul	5Sul	5LSul
$F_{0}-F_{3}=B, C_{n+4}$	Outputs	10ul	10Sul	10LSul
$\overline{\mathbf{G}}$	Output	10ul	10Sul	40LSul
$\overline{\mathbf{P}}$	Output	10ul	10Sul	20LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} I_{\mathrm{L}}$, and 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Arithmetic Logic Units

When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control Input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}}+4$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and \bar{G} (Carry Generate). \bar{P} and \bar{G} are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output ($\mathrm{C}_{\mathrm{n}}+4$) signal to the Carry input $\left(C_{n}\right)$ of the next unit. For high-speed operation the device is used in conjunction with the

182 carry lookahead circuit. One carry lookahead package is required for each group of four '181 devices. Carry lookahead can be provided at various levels and offers highspeed capability over extremely long word lengths.

The $\mathrm{A}=\mathrm{B}$ output from the device goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over 4 bits when the unit is in the subtract mode. The $A=B$ output is open collector and can be wired-AND with other $A=B$ outputs to give a comparison for more than 4 bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An
incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2 s complement notation) without a carry in and generates A minus B when a carry is applied.
Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus, a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE HIGH INPUTS \& OUTPUTS	
\mathbf{S}_{3}	\mathbf{S}_{2}	S_{1}	$\mathbf{S}_{\mathbf{0}}$	Logic $(\mathbf{M}=\mathbf{H})$	Arithmetic** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	\bar{A}	A
L	L	L	H	$\overline{A+B}$	$A+B$
L	L	H	1.	$\bar{A} B$	$A+\bar{B}$
L	L	H	H	Logical 0	minus 1
L	H	L	L	$\overline{A B}$	A plus $A \bar{B}$
L	H	L	H	\bar{B}	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$A \bullet B$	A minus B minus 1
L	H	H	H	$A \bar{B}$	$A B$ minus 1
H	L	L	L	$\bar{A}+B$	A plus $A B$
H	L	L	H	$\overline{A \bullet B}$	A plus B
H	L	H	L	B	$(A+\bar{B})$ plus $A B$
H	L	H	H	$A B$	$A B$ minus 1
H	H	L	L	Logical 1	A plus A^{*}
H	H	L	H	$A+\bar{B}$	$(A+B)$ plus A
H	H	H	L	$A+B$	$(A+\bar{B})$ plus A
H	H	H	H	A	A minus 1

MODE SELECT INPUTS				ACTIVE LOW INPUTS \& OUTPUTS	
\mathbf{S}_{3}	$\mathbf{S}_{\mathbf{2}}$	\mathbf{S}_{1}	\mathbf{S}_{0}	Logic $(M=H)$	Arithmetic** $(M=L)\left(C_{n}=L\right)$
L	L	L	L	$\overline{\text { A }}$	A minus 1
L	L	L	H	$\overline{A B}$	$A B$ minus 1
L	L	H	L	$\overline{\mathrm{A}}+\mathrm{B}$	$A \bar{B}$ minus 1
L	L	H	H	Logical 1	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($A+\bar{B}$)
L	H	L	H	\bar{B}	$A B$ plus $(A+\bar{B})$
L	H	H	L	$\overline{A \bullet B}$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$A+\bar{B}$
H	L	L	L	$\bar{A} B$	A plus ($A+B$)
H	L	L	H	$\overline{A \bullet B}$	A plus B
H	L	H	L	B	$A \bar{B}(A+B)$
H	L	H	H	A+B	$A+B$
H	H	L	L	Logical 0	A plus A^{*}
H	H	L	H	$A \bar{B}$	$A B$ plus A
H	H	H	L	$A B$	$A \bar{B}$ plus A
H	H	H	H	A	A

$\mathrm{L}=$ LOW voltage
$\mathrm{H}=$ HIGH voltage level
"Each bit is shifted to the next more significant position.
**Arithmetic operations expressed in 2s complement notation.

Active High Operands

Active Low Operands

74S182
 Carry Generator

Lookahead Carry Generator Product Specification

Logic Products

FEATURES

- Provides carry lookahead across a group of four ALU's
- Multi-level lookahead for highspeed arithmetic operation over long word lengths

DESCRIPTION

The '182 carry lookahead generator accepts up to four pairs of active LOW Carry Propagate ($\overline{\mathrm{P}}_{0}, \overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}, \overline{\mathrm{P}}_{3}$) and Carry Generate ($\bar{G}_{0}, \bar{G}_{1}, \bar{G}_{2}, \bar{G}_{3}$) signals and an active HIGH Carry input (C_{n}) and provides anticipated active HIGH carries ($C_{n+x}, C_{n+y}, C_{n+z}$) across four groups of binary adders. The '182 also has active LOW Carry Propagate ($\overline{\mathrm{P}}$) and Carry Generate ($\overline{\mathrm{G}}$) outputs which may be used for further levels of lookahead.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 S 182	5.8 ns	69 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
Plastic DIP	N74S182N
Plastic SO-16	N74S182D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S
C_{n}	Input	1Sul
$\overline{\mathrm{P}}_{3}$	Input	2Sul
$\overline{\mathrm{P}}_{2}$	Input	3Sul
$\overline{\mathrm{P}}_{0}, \overline{\mathrm{P}}_{1}, \overline{\mathrm{G}}_{3}$	Inputs	4Sul
$\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{2}$	Inputs	7 Sul
$\overline{\mathrm{G}}_{1}$	Input	8Sul
All	Outputs	10 Sul

NOTE:
A 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() = Pin Numbers

FUNCTION TABLE

INPUTS									OUTPUTS				
C_{n}	$\bar{G}_{\mathbf{0}}$	$\overline{\mathbf{P}}_{0}$	\mathbf{G}_{1}	$\overline{\mathbf{P}}_{1}$	G_{2}	$\overline{\mathbf{P}}_{2}$	\bar{G}_{3}	$\overline{\mathbf{P}}_{3}$	C_{n+x}	C_{n+y}	C_{n+2}	$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$
$\begin{aligned} & X \\ & L \\ & X \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & H \\ & X \\ & X \\ & L \end{aligned}$							$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$				
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & H \\ & H \\ & X \\ & L \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & L \\ & X \\ & X \end{aligned}$	$\begin{aligned} & H \\ & X \\ & X \\ & X \\ & X \\ & L \end{aligned}$						$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$			
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & H \\ & H \\ & H \\ & X \\ & X \\ & L \\ & X \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { X } \\ & \text { H } \\ & \text { X } \end{aligned}$	$\begin{aligned} & X \\ & H \\ & H \\ & H \\ & X \\ & L \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	H H H H L X X X	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$					$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$		
	$\begin{aligned} & \hline X \\ & X \\ & X \\ & H \\ & H \\ & X \\ & X \\ & X \end{aligned}$		$\begin{aligned} & X \\ & X \\ & X \\ & H \\ & H \\ & X \\ & X \\ & L \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & H \\ & H \\ & H \\ & X \\ & L \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & H \\ & L \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$				$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	
		H X X X X L		$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & X \\ & X \\ & X \\ & H \\ & L \end{aligned}$					$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
$\mathrm{H}=\mathrm{HIGH}$ voltage level L = LOW voltage level X = Don't care													

$H=$ HIGH voltage level
$\mathrm{L}=$ LOW voltage level
$X=$ Don't care

The logic equations provided at the outputs are:

$$
\begin{aligned}
& C_{n+x}=G_{0}+P_{0} C_{n} \\
& C_{n+y}=G_{1}+P_{1} G_{0}=P_{1} P_{0} C_{n} \\
& C_{n+z}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0} \\
& G=\overline{G_{3}}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0} \\
& \bar{P}=\overline{P_{3} P_{2} P_{1} P_{0}}
\end{aligned}
$$

The ' 182 can also be used with binary ALU's in an active LOW or active HIGH input operand mode. The connections to and from the ALU to the carry lookahead generator are identical in both cases.

Logic Products

FEATURES

- Synchronous, reversible counting
- BCD/decade-' 190

4-bit binary-'191

- Synchronous, reversible counting
- Asynchronous parallel load capability
- Count enable control for synchronous expansion
- Single Up/Down control input

DESCRIPTION

The '190 is an asynchronously presettable up/down BCD decade counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. The '191 is similar, but is a 4-bit binary counter.

PIN CONFIGURATION

74190, 191, LS191 Counters

'190 Presettable BCD/Decade Up/Down Counter '191 Presettable 4-Bit Binary Up/Down Counter Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74190	25 MHz	65 mA
74191	25 MHz	65 mA
74 LS 191	25 MHz	20 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{5 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
Plastic DIP	N74190N, N74191N, N74LS191N
Plastic SOL-16	N74LS191D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74S
$\overline{\mathrm{CE}}$	Input	3 ul	3LSul
Other	Inputs	1 ul	1 LSul
All	Outputs	10 ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Counters

Asynchronous parallel load capability permits the counter to be preset to any desired number. Information present on the parallel Data inputs ($D_{0}-D_{3}$) is loaded into the counter and appears on the outputs when the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW. As indicated in the Mode Select Table, this operation overrides the counting function.
Counting is inhibited by a HIGH level on the Count Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the Clock input. The Up/Down (U/D) input signal determines the direction of counting as indicated in the Mode Select Table. The CE input may go LOW when the clock is in either state, however, the LOW-to-HIGH CE transition must occur only when the clock is HIGH. Also, the \bar{U} / D input should be changed only when either $\overline{C E}$ or CP is HIGH.
Overflow/underflow indications are provided by two types of outputs, the Terminal Count (TC) and Ripple Clock ($\overline{\mathrm{RC}}$). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches " 9 ' in the count-up mode for 74190 ,
and reaches " 15 " in the count-up mode for 74191/74LS191. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until \bar{U} / D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes.
The TC signal is used internally to enable the $\overline{\mathrm{RC}}$ output. When TC is HIGH and $\overline{\mathrm{CE}}$ is LOW, the RC follows the Clock Pulse (CP) delayed by two gate delays. The $\overline{\mathrm{RC}}$ output essentially duplicates the LOW clock pulse width, although delayed in time by two gate delays. This feature simplifies the design of multistage counters, as indicated in Figures A and B. In Figure A, each $\overline{\mathrm{RC}}$ output is used as the Clock input for the next higher stage. When the clock source has a limited drive capability this configuration is particularly advantageous, since the clock source drives only the first stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH signal on CE inhibits the $\overline{\mathrm{RC}}$ output pulse as indicated in the Mode Select Table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it
ripples through the preceding stages. This is a disadvantage of the configuration in some applications.
Figure B shows a method of causing state changes to occur simultaneously in all stages. The $\overline{\mathrm{RC}}$ outputs propagate the carry/borrow signals in ripple fashion and all Clock inputs are driven in parallel. The LOW state duration of the clock in this configuration must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the $\overline{\mathrm{RC}}$ output of any package goes HIGH shortly after its CP input goes HIGH, there is no such restriction on the HIGH state duration of the clock.
In Figure C, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the $\overline{C E}$ input signal for a given stage. An enable signal must be included in each carry gate in order to inhibit counting. The TC output of a given stage is not affected by its own $\overline{C E}$, therefore, the simple inhibit scheme of Figure A and B does not apply.

Figure 1. N-Stage Counter Using Ripple Clock

Figure 2. Synchronous N-Stage Counter Using Ripple Carry Borrow

Figure 3. Synchronous N-Stage Counter With Parallel Gated Carry Borrow

LOGIC DIAGRAM '190

$V_{C C}=\operatorname{Pin} 16$
$G N D=P$ in 8
() = Pin numbers

Counters

LOGIC DIAGRAM '191

MODE SELECT - FUNCTION TABLE, '190, '191

OPERATING MODE	INPUTS					OUTPUTS
	$\overline{\text { PL }}$	$\overline{\mathbf{U}}$ /D	$\overline{C E}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	
Parallel load	L	X	X	X	L	L
	L	X	X	X	H	H
Count up	H	L	I	\uparrow	X	count up
Count down	H	H	I	\uparrow	X	count down
Hold "do nothing"	H	X	H	X	X	no change

TC AND $\overline{R C}$ FUNCTION TABLE, '190

InPUTS			TERMINAL COUNT STATE				OUTPuTS	
U/D	CE	CP	\mathbf{Q}_{0}	a_{1}	\boldsymbol{a}_{2}	a_{3}	TC	AC
H	H	X	H	X	x	H	L	H
L	H	x	H	x	X	H	H	H
L	L	บ	H	x	x	H	5	U
L	H	x	L	,	L	L	L	H
H	H	x	L	L	L	L	H	H
H	L	凹	L	L	L	L	\checkmark	ป

TC AND $\overline{\mathrm{RC}}$ FUNCTION TABLE, ' 191

InPUTS			TERMINAL COUNT STATE				OUTPUTS	
U/D	$\overline{\text { CE }}$	CP	\mathbf{Q}_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}	TC	$\overline{\mathbf{R C}}$
H	H	x	H	H	H	H	L	H
L	H	x	H	H	H	H	H	H
L	L	Ј	H	H	H	H	」	Ј
L	H	x	L	L	L	L	L	H
H	H	X	L	L	L	L	H	H
H	L	Ј	L	L	L	L	」	U

$H=$ HIGH voltage level steady state.
$\mathrm{L}=\mathrm{LOW}$ voltage level steady state.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$X=$ Don't care.
$\uparrow=$ LOW-to-HIGH clock transition.
Ч-LOW pulse.
$\Gamma=$ TC goes LOW on a LOW-to-HIGH clock transition.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	$74 L S$	
V_{CC}	Supply voltage	7.0	7.0	
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	-30 to +1	V
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	mA
T_{A}	Operating free-air temperature range	V		

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			74LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{Cc}	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8			+0.8	V
1 IK	Input clamp current			-12			-18	mA
IOH	HIGH-level output current			-800			-400	$\mu \mathrm{A}$
IOL	LOW-level output current			16			8	mA
TA	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

Logic Products

FEATURES

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset (clear)
- Expandable without external logic

DESCRIPTION

The '192 and '193 are 4-bit synchronous up/down counters - the '192 counts in BCD mode and the '193 counts in the binary mode. Separate up/down clocks, $C P_{U}$ and $C P_{D}$ respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either Clock input. If the CP_{u} clock is pulsed while $C P_{D}$ is held HIGH, the device will count up . . . if $C P_{D}$ is pulsed while the $C P_{U}$ is held HIGH, the device will count down. Only one Clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous reset pin - it may also be loaded in parallel by activating the asynchronous parallel load pin.

74192, 74193, LS192, LS193 Counters

'192 Presettable BCD Decade Up/Down Counter '193 Presettable 4-Bit Binary Up/Down Counter Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT
74192	32 MHz	65 mA
74 LS 192	32 MHz	19 mA
74193	32 MHz	65 mA
74 LS 193	32 MHz	19 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
Plastic DIP	N74192N, N74LS192N, N74193N, N74LS193N
Plastic SO	N74LS193D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	74LS
All	Inputs	1ul	1LSul
All	Outputs	10 ul	10LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Inside the device are four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions.

Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the $C P_{D}$ input will decrease the count by one, while a similar transition on the CPU U input will advance the count by one.
One clock should be held HIGH while counting with the other, because the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW. Applications requiring reversible operation must make the reversing decision while the
activating clock is HIGH to avoid erroneous counts.
The Terminal Count Up ($\overline{T C}_{U}$) and Terminal Count down ($\overline{T C}_{D}$) outputs are normally HIGH. When the circuit has reached the maximum count state of 9 (for the '192 and 15 for the '193), the next HIGH-to-LOW transition of CP_{U} will cause $\overline{T C}_{U}$ to go LOW. $\overline{T C}_{U}$ will stay LOW until CP_{U} goes HIGH again, duplicating the count up clock, although delayed by two gate delays. Likewise, the $\overline{T C}_{D}$ output will go LOW when the circuit is in the zero state and the $C P_{D}$ goes LOW. The TC outputs can be used as the Clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a two-
gate delay time difference added for each stage that is added.
The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel Data inputs $\left(D_{0}-D_{3}\right)$ is loaded into the counter and appears on the outputs regardless of the conditions of the Clock inputs when the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW. A HIGH level on the Master Reset (MR) input will disable the parallel load gates, override both Clock inputs, and set all Q outputs LOW. If one of the Clock input is LOW during and after a reset or load operation, the next LOW-toHIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

LOGIC DIAGRAM, '192

STATE DIAGRAM, '192

COUNT UP
COUNT DOWN

L002010S
$T \bar{C}_{U}=Q_{0} \cdot Q_{0} \cdot Q_{3} \cdot \bar{Q}_{\mathrm{D}}$
$\mathrm{Q}_{0} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2} \cdot \overline{\mathrm{Q}}_{3} \cdot \mathrm{CP}_{\mathrm{D}}$
Logic Equations For Terminal Count

MODE SELECT — FUNCTION TABLE, '192

OPERATING MODE	INPUTS								OUTPUTS					
	MR	$\overline{\text { PL }}$	$\mathrm{CP}_{\mathbf{U}}$	CP_{D}	D_{0}	D_{1}	D_{2}	D_{3}		Q	Q_{2}	Q_{3}	$\overline{\mathbf{T C}}$	$\overline{T C}_{\text {d }}$
Reset (clear)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{X} \end{aligned}$	\bar{L}	L	$\overline{\mathrm{L}}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Parallel load	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline L \\ & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$		$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ Q_{n}= \\ Q_{n}= \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & L \\ = & \mathrm{D}_{\mathrm{n}} \\ = & \mathrm{D}_{\mathrm{l}} \end{aligned}$	\bar{L}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Count up	L	H	\uparrow	H	X	X	X	X		Coun	up		$H^{(a)}$	H
Count down	L	H	H	\uparrow	X	X	X	X		Count	down		H	$H^{(b)}$

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ LOW-to-HIGH clock transition
a. $\overline{T C}_{U}=C P_{u}$ at terminal count up (HLLH).
b. $\overline{T C}_{D}=C P_{D}$ at terminal count down (LLLL).

Counters

LOGIC DIAGRAM, '193

STATE DIAGRAM, '193

MODE SELECT — FUNCTION TABLE, '193

OPERATING MODE	INPUTS								OUTPUTS					
	MR	$\overline{\text { PL }}$	$\mathrm{CP}_{\mathbf{u}}$	CP_{D}	D_{0}	D_{1}	D_{2}	D_{3}		\mathbf{Q}_{1}		Q_{3}	$\overline{T C}_{U}$	$\overline{T C}_{\text {d }}$
Reset (clear)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$
Parallel load	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L H H	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \\ & \text { L } \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Count up	L	H	\uparrow	H	X	X	X	X		Coun	up		$\mathrm{H}^{(c)}$	H
Count down	L	H	H	\uparrow	X	X	X	X		Count	down		H	$\mathrm{H}^{(d)}$

$H=H I G H$ voltage level
$L=$ LOW voltage level
$X=$ Don't care
$\uparrow=$ LOW-to-HIGH clock transition
NOTES:
c. $T C_{U}=C P_{U}$ at terminal count up (HHHH).
d. $T C_{D}=C P_{D}$ at terminal count down (LLLL).

FUNCTIONAL WAVEFORMS (Typical clear, load, and count sequences)

NOTES

1. Clear overrides load, data. and count inputs.
2. When counting up, count-down input must be high; when counting down, count-up input must be high.
'192 Decade Counter

FUNCTIONAL WAVEFORMS (Typical clear, load, and count sequences)

NOTES:

1. Clear overrides load, data, and count inputs.
2. When counting up, count-down input must be high; when counting down, count-up input must be high.

Logic Products

- Buffered clock and control inputs
- Shift left and shift right capability
- Synchronous paraliel and serial data transfers
- Easily expanded for both serial and parallel operation
- Asynchronous Master Reset
- Hold (do nothing) mode

DESCRIPTION

The functional characteristics of the '194 4-Bit Bidirectional Shift Register are indicated in the Logic Diagram and Function Table. The register is fully synchronous, with all operations taking place in less than 20 ns (typical) for the 54/74 and 54LS/74LS, and 12ns (typical) for $54 \mathrm{~S} / 74 \mathrm{~S}$, making the device especially useful for implementing very high speed CPUs, or for memory buffer registers.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74194	36 MHz	39 mA
74 LS 194 A	36 MHz	15 mA
74 S 194	105 MHz	85 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
VCC $^{\mathbf{~} 5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}}$	
Plastic DIP	N74194N, N74LS194AN, N74S194N
Plastic SO-16	N74LS194AD, N745194D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4}$	$\mathbf{7 4 S}$	74LS
All	Inputs	1 ul	1 Sul	1 LSul
$Q_{0}-Q_{3}$	Outputs	10 ul	10 Sul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{I H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

74194, LS194A, S194 Shift Registers

4-Bit Bidirectional Universal Shift Register

 Product SpecificationLOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS							OUTPUTS			
	CP	$\overline{\text { MR }}$	S_{1}	S	$\mathrm{D}_{\text {SR }}$	DSL	D_{n}	\mathbf{a}_{0}	Q_{1}	a_{2}	\mathbf{Q}_{3}
Reset (clear)	X	L	X	X	X	X	X	L	L	L	L
Hold (do nothing)	X	H	$1^{(a)}$	$\mathrm{I}^{(a)}$	X	X	X	q_{0}	q_{1}	C_{2}	q_{3}
Shift left	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{f}^{(a)} \\ & \mathrm{f}^{(\mathrm{a})} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift right	\uparrow	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & f^{(a)} \\ & f^{(a)} \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallel load	\uparrow	H	h	h	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}

$\mathrm{H}=\mathrm{HIGH}$ voltage level.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{L}=$ LOW voltage level.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{d}_{\mathrm{n}}\left(\mathrm{q}_{\mathrm{n}}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.
$X=$ Don't care.
$\uparrow=$ LOW-to-HIGH clock transition.
NOTE:
a. The HIGH-to-LOW transition of the S_{0} and S_{1} inputs on the $\mathbf{7 4 1 9 4}$ should only take place while CP is HIGH for conventional operation.

TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT AND CLEAR SEQUENCES

The '194 design has special logic features which increase the range of application. The synchronous operation of the device is determined by two Mode Select inputs, S_{0} and S_{1}. As shown in the Mode Select Table, data can be entered and shifted from left to right (shift right, $Q_{0} \rightarrow Q_{1}$, etc.) or, right to left (shift left, $Q_{3} \rightarrow Q_{2}$, etc.) or, parallel data can be entered, loading all 4 bits of the register simultaneously. When both S_{0} and S_{1} are LOW, existing data is retained in a hold (do nothing) mode. The first and last stages provide D-type Serial Data inputs ($\mathrm{D}_{\text {SR }}, \mathrm{D}_{\mathrm{SL}}$) to allow multistage shift right or shift left data transfers without interfering with parallel load operation.

Mode Select and Data inputs on the 74S194 and 74LS194A are edge-triggered, responding only to the LOW-to-HIGH transition of the Clock (CP). Therefore, the only timing restriction is that the Mode Control and selected Data inputs must be stable one set-up time prior to the positive transition of the clock pulse. The Mode Select inputs of the 74194 are gated with the clock and should be changed from HIGH-to-LOW only while the Clock input is HIGH.
The four parallel data inputs ($D_{0}-D_{3}$) are D type inputs. Data appearing on $D_{0}-D_{3}$ inputs when S_{0} and S_{1} are HIGH is transferred to the $Q_{0}-Q_{3}$ outputs respectively, following the next LOW-to-HIGH transition of the clock When LOW, the asynchronous Master Reset ($\overline{\mathrm{MR}}$) overrides all other input conditions and forces the Q outputs LOW.

LOGIC DIAGRAM

LOGIC DIAGRAM

74S194, 74LS194A

74195, LS195A, S195 Shift Registers

4-Bit Parallel Access Shift Register Product Specification

Logic Products

FEATURES

- Buffered Clock and Control inputs
- Shift right and parallel load capability
- J-K (D) inputs to first stage
- Complement output from last stage
- Asynchronous Master Reset

DESCRIPTION

The functional characteristics of the '195 4-Bit Parallel Access Shift register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-toserial data transfers at very high speeds.

The '195 operates on two primary modes: shift right $\left(Q_{0} \rightarrow Q_{1}\right)$ and parallel load, which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. Serial data enters the first flip-flop (Q_{0}) via the J and \bar{K} inputs when the $\overline{P E}$ input is HIGH, and is shifted 1 bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each LOW-to-HIGH clock transition.

PIN CONFIGURATION

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT
74195	39 MHz	39 mA
74 LS 195 A	39 MHz	14 mA
74 S 195	105 MHz	70 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74195N, N74LS195N, N74S195N
Plastic SO-16	N74LS195AD

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74 S	74 LS
All	Inputs	1 ul	1 Sul	1 LSul
All	Outputs	10 ul	10 Sul	10 LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$. a 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and 74 LS unit load (LSUl) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

The J and \bar{K} inputs provide the flexibility of the JK type input for special applications and, by tying the two pins together, the simple D type input for general applications. The device appears as four
LOGIC SYMBOL

common clocked D flip-flops when the $\overline{\mathrm{PE}}$ input is LOW. After the LOW-to-HIGH clock transition, data on the parallel inputs $\left(D_{0}-D_{3}\right)$ is transferred to the respective $Q_{0}-Q_{3}$ outputs.
LOGIC SYMBOL (IEEE/IEC)

Shift left operation ($Q_{3} \rightarrow Q_{2}$) can be achieved by tying the Q_{n} outputs to the D_{n-1}) inputs and holding the $\overline{\mathrm{PE}}$ input low.
All parallel and serial data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. The '195 utilizes edge-trig-
gering, therefore, there is no restriction on the activity of the J, \bar{K}, D_{n}, and $\overline{P E}$ inputs for logic operation, other than the set-up and release time requirements.

A LOW on the asynchronous Master Reset $(\overline{\mathrm{MR}})$ input sets all Q outputs LOW, indepen-
dent of any other input condition. The $\overline{M R}$ on the 54/74195 is gated with the clock. Therefore, the LOW-to-HIGH $\overline{M R}$ transition should only occur while the clock is LOW to avoid false clocking on the 54/74195.

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS						OUTPUTS				
	$\overline{\text { WR }}$	CP	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	D_{n}	0_{0}	a_{1}	Q_{2}	\mathbf{a}_{3}	\mathbf{Q}_{3}
Asynchronous reset	L	X	X	X	X	X	L	L	L	L	H
Shift, set first stage Shift, reset first stage Shift, toggle first stage Shift, retain first stage	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow \uparrow \uparrow \uparrow	$\begin{aligned} & h \\ & h \\ & h \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{l} \\ & \mathrm{~h} \\ & \mathrm{l} \end{aligned}$	$\begin{aligned} & h \\ & \text { l } \\ & \text { l } \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & H \\ & L \\ & \bar{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & 9_{0} \\ & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \\ & \mathrm{CO}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\overline{\mathrm{q}}_{2}$ $\overline{\mathrm{q}}_{2}$ $\overline{\mathrm{q}}_{2}$ $\overline{\mathrm{q}}_{2}$
Parallel load	H	\uparrow	1	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}	\bar{d}_{3}

$\mathrm{H}=$ HIGH voltage level.
$\mathrm{L}=\mathrm{LOW}$ voltage level.
X = Don't care.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH. clock transition.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$d_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.
$\uparrow=$ LOW-to-HIGH clock transition.

74LS197
 Counter

Presettable 4-Bit Binary Ripple Counter Product Specification

Logic Products

FEATURES

- High speed 4-bit binary counting
- Asynchronous parallel load for presetting counter
- Overriding Master Reset
- Buffered \mathbf{Q}_{0} output drives $\overline{\mathbf{C P}}_{1}$ input plus standard fan-out

DESCRIPTION

The '197 is an asynchronously presettable binary ripple counter partitioned into divide-by-2 and divide-by-8 sections with each section having a separate Clock input. Stage changes are initiated in the counting modes by the HIGH-to-LOW transition of the Clock inputs, however, state changes of the Q outputs do not occur simultaneously because of the internal ripple delays. Designers should keep in mind when using external logic to decode the Q outputs, that the unequal delays can lead to decoding spikes, and thus a decoded signal should not be used as a strobe or clock. The Q_{0} flip-flop is triggered by the $\overline{C P}_{0}$ input while the $\overline{\mathrm{CP}}_{1}$ input triggers the divide-by-8 section.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT
74 LS 197	40 MHz	16 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5} \pm \mathbf{5 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Nlastic DIP	N74LS197N
Plastic SO-14	N74LS197D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
$\overline{\mathrm{CP}}_{0}$	Clock input	6LSul
$\overline{\mathrm{CP}}_{1}$	Clock input	3.5 LSul
All	Other inputs	1LSul
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Outputs	10LSul

NOTE:
Where a 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -0.4 mA IL.

The device has an asynchronous activeLOW Master Reset ($\overline{\mathrm{MR}}$) input which overrides all other inputs and forces all outputs LOW. The counter is also asynchronously presettable. A LOW on the Parallel Load ($\overline{\mathrm{PL}}$) input overrides the

Clock inputs and loads the data from parallel Data ($D_{0}-D_{3}$) inputs into the flip-flops. The counter acts as a transparent latch while the PL is LOW and any change in the D_{n} inputs will be reflected in the outputs.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V_{CC}	Supply voitage	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	V
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

COUNT SEQUENCE

COUNT	4-BIT BINARY ${ }^{1}$			
	\mathbf{Q}_{3}	\mathbf{Q}_{2}	Q_{1}	Q_{0}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	L	L	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

NOTE:

1. Q_{0} connected to input $\overline{C P} 1$ input applied to

MODE SELECT -
FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUT
	$\overline{\text { MR }}$	$\overline{\text { PL }}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
Reset (clear)	L	X	X	X	L
Parallel load	H	L	X	L	L
	H	L	X	H	H
Count	H	H	\downarrow	X	count

$\mathrm{H}=\mathrm{HIGH}$ voltage level
$L=L O W$ voltage level
$X=$ Don't care
$\downarrow=$ HIGH-to-LOW clock transition

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74LS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8	V
IIK	Input clamp current			-18	mA
IOH	HIGH-level output current			-400	$\mu \mathrm{A}$
lol	LOW-level output current			8	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

74199
 Shiff Register

8-Bit Parallel-Access Shift Register

 Product Specification
Logic Products

FEATURES

- Buffered clock and control inputs
- Shift right and parallel load capability
- Fully synchronous data transfers
- J-K (D) inputs to first stage
- Clock enable for hold (do nothing) mode
- Asynchronous Master Reset DESCRIPTION

The functional characteristics of the '199 8-Bit Parallel-Access Shift Register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT
74199	35 MHz	90 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE Plastic DIP

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74
All	Inputs	1 ul
$Q_{0}-Q_{7}$	Parallel outputs	10 ul

NOTE:
A 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I H}$ AND $-1.6 \mathrm{~mA} \mathrm{~h}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS							OUTPUTS			
	$\overline{\text { MR }}$	CP	$\overline{\mathbf{C E}}$	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	D_{n}	a_{0}	Q_{1}	$\ldots \ldots . \mathrm{Q}_{6}$	Q_{7}
Reset (clear)	L	X	X	X	X	X	X	L	L L	L
Shift, set first stage	H	\uparrow	1	h	h	h	X	H	q_{0}	$\ldots{ }^{\text {..... }} 9$	96
Shift, reset first stage	H	\uparrow	I	h	1	1	X	L	90	$\ldots{ }^{\text {..... }} \mathrm{q}_{5}$	96
Shift, toggle first stage	H	\uparrow	1	h	h	1	X	\bar{q}_{0}	90	$\ldots \ldots .9_{5}$	96
Shift, retain first stage	H	\uparrow	1	h	1	h	X	90	90	$\ldots{ }^{\text {..... }} \mathrm{q}_{5}$	Q_{6}
Parallel load	H	\uparrow	1	1	X	X	d_{n}	d_{0}	d_{1}	$\ldots \ldots . d_{6}$	d_{7}
Hold (do nothing)	H	\uparrow	$h^{(a)}$	X	X	x	X	90	q_{1}	$\ldots{ }_{6}$	Q_{7}

$\mathrm{H}=\mathrm{HIGH}$ voltage level steady state.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{L}=$ LOW voltage level steady state.
$I=$ LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$x=$ Don't care
$d_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW-to-HIGH clock transition.
$\uparrow=$ LOW-to-HIGH clock transition.

NOTE:

a. The LOW-to-HIGH transition of CE should only occur while CP is HIGH for conventional operation.

The ' 199 operates in two primary modes: shift right ($Q_{0} \rightarrow Q_{1}$) and parallel load, which are controlled by the state of the Parallel Enable $(\overline{\mathrm{PE}})$ input. Serial data enters the first flip-flop $\left(Q_{0}\right)$ via the J and \bar{K} inputs when the $\overline{P E}$ input is HIGH, and is shifted one bit in the direction $\mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1} \rightarrow \mathrm{Q}_{3}$ following each LOW-toHIGH clock transition. The J and \bar{K} inputs provide the flexibility of the J-K type input for special applications and, by tying the two pins together, the simple D-type input for general applications. The device appears as eight common clocked D flip-flops when the $\overline{\mathrm{PE}}$ input is LOW. After the LOW-to-HIGH clock transition, data on the parallel inputs ($D_{0}-D_{7}$) is transterred to the respective $Q_{0}-Q_{7}$ outputs.

All parallel and serial data transfers are synchronous, occuring after each LOW-to-HIGH clock transition. The '199 utilizes edge-triggering, therefore, there is no restriction on the activity of the J, \bar{K}, D_{n}, and $\overline{P E}$ inputs for logic operation, other than the set-up and release time requirements.
The clock input is a gated OR structure which allows one input to be used as an active-LOW Clock Enable ($\overline{\mathrm{CE}}$) input. The pin assignment for the CP and $\overline{C E}$ inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of $\overline{C E}$ input should only take place while the CP is HIGH for conventional operation.
A LOW on the Master Reset ($\overline{M R}$) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a LOW state.

TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT AND CLEAR SEQUENCES

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	$\mathbf{7 4}$	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			V
V_{IL}	LOW-level input voltage			+0.8	V
IIK	Input clamp current			-12	mA
$\mathrm{lOH}^{\text {a }}$	HIGH-level output current			-800	V
loL	LOW-level output current			16	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

74LS245

Transceiver

Octal Transceiver (3-State) Product Specification

Logic Products

FEATURES

- Octal bidirectional bus interface
- 3-State buffer outputs
- PNP inputs for reduced loading
- Hysteresis on all Data inputs

DESCRIPTION

The 'LS245 is an octal transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The outputs are all capable of sinking 24 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features a Chip Enable (CE) input for easy cascading and a Send/Receive (S/R) input for direction control. All data inputs have hysteresis built in to minimize AC noise effects.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 245	8 ns	58 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
Plastic DIP	N74LS245N
Plastic SOL-20	N74LS245D

NOTE:
For information regarding devices processed to Military Specrfications, see the Signetics Military Products Data Manual

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
All	Inputs	1LSul
All	Outputs	30 LSul

NOTE:
Where a 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74LS251, S251
 Multiplexers

8-Input Multiplexer (3-State) Product Specification

Logic Products

FEATURES

- High speed 8 -to-1 multiplexing
- True and complement outputs
- Both outputs are 3-State for further multiplexer expansion
- 3-State outputs are buffer type with $12 \mathrm{~mA} / 24 \mathrm{~mA}$ outputs for Military/Commercial applications

DESCRIPTION

The '251 is a logical implementation of a single-pole, 8 -position switch with the state of three Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$) controlling the switch position. Assertion (Y) and Negation $(\overline{\mathrm{Y}})$ outputs are both provided. The Output Enable input ($\overline{\mathrm{OE}}$) is active LOW. The logic function provided at the output, when activated, is:

$$
\begin{aligned}
\mathrm{Y}= & \overline{\mathrm{OE}} \cdot\left(\mathrm{I}_{0} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{2}\right. \\
& +I_{2} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2}+I_{3} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{2} \\
& +\mathrm{I}_{4} \cdot \overline{\mathrm{~S}}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{2} \\
& \left.+\mathrm{I}_{6} \cdot \overline{\mathrm{~S}}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+I_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)
\end{aligned}
$$

Both outputs are in the HIGH impedance (HIGH Z) state when the output enable is HIGH, aliowing multiplexer expansion by tying the outputs of up to 128 devices together. All but one device must be in

ORDERING CODE

NOTE: Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

the HIGH impedance state to avoid high currents that would exceed the maximum ratings, when the outputs of the $3-$ State devices are tied together. Design

TYPE	TYPICAL PROPAGATION DELAY (DATA TO Y)	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 251	18 ns	9 mA
74 S 251	8 ns	55 mA

PACKAGES	COMMERCIAL RANGE Plastic DIP\quad N74S251N, N74LS251AN

For information regarding devices processed to Military Specifications, see the Signetics Military Products

PINS	DESCRIPTION	74S	74LS
All	Inputs	1 Sul	1LSul
All	Outputs	10 Sul	10 LSul

A 74 S unit load (Sul) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$ and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
of the output enable signals must ensure there is no overlap in the active LOW portion of the enable voltages.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS												OUTPUTS	
$\overline{\mathbf{O E}}$	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	14	15	I_{6}	17	$\overline{\mathbf{Y}}$	Y
H	X	X	X	X	X	X	X	X	X	X	X	(Z)	(Z)
L	L	L	L	L	x	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	x	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

$H=$ HIGH voltage level
$L=$ LOW voltage level
$\mathrm{L}=$ LOW voltage level
X = Don't care
(Z) $=$ HIGH impedance (off) state

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	$\mathbf{7 4 L S}$	$\mathbf{7 4 S}$	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathbb{N}}$	Input voltage	-0.5 to +7.0	-0.5 to +5.5	V
I_{N}	Input current	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output for HIGH output state	-0.5 to +5.5	-0.5 to +5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$	

74LS253, S253 Multiplexers

Dual 4-Input Multiplexer (3-State) Product Specification

Logic Products

FEATURES

- 3-State outputs for bus interface and multiplex expansion
- Common Select inputs
- Separate Output Enable inputs

DESCRIPTION

The '253 has two identical 4-input multiplexers with 3-State outputs which select two bits from four sources selected by common Select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$. When the individual Output Enable ($\overline{\mathrm{E}}_{0 \mathrm{a}}, \overline{\mathrm{E}}_{0 \mathrm{~b}}$) inputs of the 4-input multiplexers are HIGH, the outputs are forced to a HIGH impedance (HIGH Z) state.

TYPE	TYPICAL PROPAGATION DELAY (From Data)	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 253	15 ns	8 mA
74 S 253	8 ns	48 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C H}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	N74S253N, N74LS253N
Plastic SO-16	N74LS253D, N74S253D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
All	Inputs	1Sul	1LSul
All	Outputs	10 Sul	10LSul

NOTE:
A 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74LS256 Latch

Dual 4-Bit Addressable Latch Product Specification

Logic Products

FEATURES

- Combines dual demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common Clear input
- Useful as dual 1-of-4 active HIGH decoder

DESCRIPTION

The '256 dual addressable latch has four distinct modes of operation and are selectable by controlling the Clear and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states.
In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 L S 256$	19 ns	22 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}=5 \mathrm{5} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	N74LS256N
Plastic SO-16	N74LS256D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manuai.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
\bar{E}	Input	2LSul
Other	inputs	1LSul
All	Outputs	10LSul

NOTE:
A 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.
should be held HIGH (inactive) while the address lines are changing. In the dual 1-of-4 decoding or demultiplexing mode ($\overline{\mathrm{CLR}}=\overline{\mathrm{E}}=\mathrm{LOW}$), addressed outputs will follow the level of the D inputs, with
all other outputs LOW. In the clear mode, all outputs are LOW and unaffected by the Address and Data inputs.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FEATURES

- Multifunction capability
- Inverting data path
- 3-State outputs
- See '257 for non-inverting version

DESCRIPTION

The '258 has four identical 2-input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Data Select input (S). The I_{0} inputs are selected when the Select input is LOW and the I_{1} inputs are selected when the Select input is HIGH. Data appears at the outputs in inverted (complementary) form.

74LS258A, S258 Data Selectors/Multiplexers

Quad 2-Line To 1-Line Data Selector/Multiplexer (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 258 A	13 ns	9 mA
74 S 258	6 ns	48 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C O}} \mathbf{5 V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74S258N, N74LS258AN
Plastic SOL-16	N74LS258AD

NOTE:
For information regarding devices processed to Miitary Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74S	74LS
S	Input	2Sul	2LSul
Other	Inputs	1Sul	1LSul
All	Outputs	10Sul	30LSul

NOTE:
Where a 74 S unit load (Sul) is to be $50 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -0.4 mA in .

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74LS258A, S258

LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

FUNCTION TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
$\overline{\mathbf{O E}}$	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\overline{\mathrm{Y}}$
H	X	X	X	(Z)
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

$H=$ HIGH voltage level
$L=$ LOW voltage level
X $=$ Don't care
(Z) $=$ HIGH impedance (off) state

Absolute maximu

	PARAMETER	$\mathbf{7 4 S}$	74S	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	-0.5 to +5.5	V
I_{N}	Input current	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74LS			74S			UNIT
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{H}	HIGH-level input voltage	2.0			2.0			V
V_{IL}	LOW-level input voltage			+0.8			+ 0.8	V
I_{IK}	Input clamp current			-18			-18	mA
I_{OH}	HIGH-level output current			-2.6			-6.5	mA
l L	LOW-level output current			24			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	0		70	${ }^{\circ} \mathrm{C}$

74LS259 Latch

8-Bit Addressable Latch Product Specification

Logic Products

FEATURES

- Combines demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common Clear input
- Useful as a 1-of-8 active HIGH decoder

DESCRIPTION

The '259 addressable latch has four distinct modes of operation that are selectable by controlling the Clear and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs. To eliminate the possibility of entering erroneous data in the

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 259	19 ns	22 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	N74LS259N
Plastic SO-16	N74LS259D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
All	inputs	1LSUl
All	Outputs	10LSul

NOTE:
A 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
latches, the enable should be held HIGH (inactive) while the address lines are changing. In the 1 -of -8 decoding or demultiplexing mode ($\overline{C L R}=\bar{E}=$ LOW $)$, addressed outputs will follow the level of
the D inputs, with all other outputs LOW. In the clear mode, all outputs are LOW and unaffected by the Address and Data inputs.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT-FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS							
	CLR	\bar{E}	D	A_{0}	A_{1}	A_{2}	\mathbf{Q}_{0}	\mathbf{Q}_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}	\mathbf{Q}_{4}	O_{5}	Q_{6}	Q_{7}
Clear	L	H	X	X	X	X	L	L	L	L	L	L	L	L
Demultiplex (active HIGH decoder when $\mathrm{D}=\mathrm{H}$)	L L \mathbf{L} \mathbf{i}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \stackrel{\rightharpoonup}{\mathrm{~L}} \end{aligned}$	$\begin{aligned} & d \\ & d \\ & d \\ & \text { d } \\ & \text { - } \\ & \text { - } \\ & \text { d } \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \bullet \\ \bullet \\ \bullet \\ H \end{gathered}$	L L H \bullet \bullet H	L L L \bullet \bullet \bullet	$\begin{gathered} Q=d \\ L \\ L \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	$\begin{gathered} L \\ Q=d \\ L \\ \bullet \\ \vdots \\ i \end{gathered}$	$\begin{gathered} L \\ L \\ Q=d \\ \bullet \\ \vdots \end{gathered}$	L L L 				$\begin{gathered} L \\ L \\ L \\ \bullet \\ \bullet \\ \bullet=d \end{gathered}$
Store (do nothing)	H	H	X	X	X	X	90	q_{1}	q_{2}	q_{3}	q_{4}	a_{5}	q_{8}	q_{7}
Addressable latch		L	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \text { - } \\ & \stackrel{\rightharpoonup}{\mathrm{d}} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \bullet \\ & \bullet \\ & \stackrel{H}{C} \end{aligned}$	L	L L L 	$\begin{gathered} Q=d \\ \mathrm{q}_{0} \\ \mathrm{q}_{0} \\ \bullet \\ \cdot \\ \mathrm{q}_{0} \end{gathered}$	$\begin{gathered} q_{1} \\ Q=d \\ q_{1} \\ \vdots \\ \vdots \\ q_{1} \end{gathered}$	$\begin{gathered} \mathrm{q}_{2} \\ \mathrm{q}_{2} \\ \mathrm{Q}=\mathrm{d} \\ \vdots \\ \vdots \\ \vdots \\ \mathrm{q}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & : \\ & : \\ & : \\ & \stackrel{\mathrm{q}}{3} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{4} \\ & \mathrm{q}_{4} \\ & \mathrm{q}_{4} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \mathrm{q}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{5} \\ & \mathrm{q}_{5} \\ & \mathrm{q}_{5} \\ & \bullet \\ & \bullet \\ & \bullet \\ & \cdot \\ & \mathrm{q}_{5} \end{aligned}$	$\begin{gathered} \mathrm{q}_{6} \\ \mathrm{q}_{6} \\ \mathrm{q}_{6} \\ \bullet \\ \bullet \\ \bullet \\ \cdot \\ \mathrm{q}_{6} \end{gathered}$	$\begin{gathered} q_{7} \\ q_{7} \\ \mathrm{q}_{7} \\ \bullet \\ \vdots \\ \bullet \\ Q=d \end{gathered}$

$H=$ HIGH voltage level steady state.
$\mathrm{L}=$ LOW voltage level steady state.
X = Don't care.
$d=$ HIGH or LOW data one set-up time prior to the LOW-to-HIGH Enable transition.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

74LS266 Gate

Quad 2-Input Exclusive-NOR Gate (Open Collector) Product Specification

Logic Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 L S 266$	18 ns	8 mA

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	L
H	L	L
H	H	H

$H=H I G H$ voltage levei L = LOW voltage level

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\quad \mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
A, B	Inputs	2LSul
Y	Output	10LSul

NOTE:
A 74LS unit load (LSul) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74LS273, S273

Flip-Flops

Octal D Flip-Flops
 Product Specification

Logic Products

FEATURES

- Ideal buffer for MOS microprocessor or memory
- Eight edge-triggered D flip-flops
- High speed Schottky version available
- Buffered common clock
- Buffered, asynchronous Master Reset
- Slim 20-pin plastic and ceramic DIP packages
- See '377 for Clock Enable version
- See '373 for transparent latch version
- See '374 for 3-state version

DESCRIPTION

The '273 has eight edge-triggered Dtype flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transi-

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 273	40 MHz	17 mA
74 S 273	95 MHz	109 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{5 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}^{\circ} \mathbf{C}$
Plastic DIP	N74S273N, N74LS273N
Plastic SOL-20	N74LS273D, N74S273D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\mathbf{7 4 S}$	74LS
All	Inputs	1Sul	1LSul
All	Outputs	10Sul	10LSul

NOTE:
A 74 S unit load (Sul) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathrm{FL}}$ and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and $-\left.0.4 \mathrm{~mA}\right|_{\mathrm{L}}$.
tion, is transferred to the corresponding flip-flop's Q output.
All outputs will be forced LOW independently of Clock or Data inputs by a LOW
voltage level on the $\overline{M R}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

74LS283 Adder

4-Bit Full Adder With Fast Carry Product Specification

Logic Products

FEATURES

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Fast internal carry lookahead

DESCRIPTION

The '283 adds two 4-bit binary words (A_{n} plus B_{n}) plus the incoming carry. The binary sum appears on the Sum outputs ($\Sigma_{1}-\Sigma_{4}$) and the outgoing carry ($\mathrm{C}_{\text {OUT }}$) according to the equation:

$$
\begin{aligned}
& C_{I N}+\left(A_{1}+B_{1}\right)+2\left(A_{2}+B_{2}\right) \\
& +4\left(A_{3}+B_{3}\right)+8\left(A_{4}+B_{4}\right) \\
& =\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}+16 C_{\mathrm{OUT}}
\end{aligned}
$$

$$
\text { Where }(+)=\text { plus. }
$$

Due to the symmetry of the binary add function, the '283 can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic) - see Function Table. In case of all active LOW operands the results $\Sigma_{1}-\Sigma_{4}$ and COUT should be interpreted also as active LOW. With active HIGH inputs, $\mathrm{C}_{\mathbb{N}}$ cannot be left open; it must be held LOW when no "carry in" is

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 283	13 ns	20 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74LS283N
Plastic SO-16	N74LS283D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
A, B	Inputs	2LSUl
C_{IN}	Input	1LSUl
All	Outputs	10LSul

NOTE:

A 74LS unit load (LSui) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.
intended. Interchanging inputs of equal thus $\mathrm{C}_{\mathrm{IN}}, A_{1}, B_{1}$ can arbitrarily be asweight does not affect the operation, signed to pins $5,6,7$, etc.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

PINS	$\mathbf{C I N}_{\mathbf{I N}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{4}}$	$\boldsymbol{\Sigma}_{\mathbf{1}}$	$\boldsymbol{\Sigma}_{\mathbf{2}}$	$\boldsymbol{\Sigma}_{\mathbf{3}}$	$\boldsymbol{\Sigma}_{\mathbf{4}}$	$\mathbf{C}_{\text {OUT }}$
Logic levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Example:
$H=H I G H$ voltage level
$\mathrm{L}=$ LOW voltage level
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\mathbb{N}}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

74LS290
 Counter

Logic Products

DESCRIPTION

The '290 is a 4-bit, ripple type decade counter. The device consists of four master-slave flip-flops internally connected to provide a divide-by-two section and a divide-by-five section. Each section has a separate Clock input to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous Master Reset $\left(M R_{1} \cdot M R_{2}\right)$ is provided which overrides both clocks and resets (clears) all the flip-flops. Also provided is a gated AND asynchronous Master Set (MS ${ }_{1}$. MS_{2}) which overrides the Clock and MR inputs, setting the outputs to nine (HLLH).

PIN CONFIGURATION

TYPE	TYPICAL. $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 290	42 MHz	9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C c}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
Plastic DIP	N74LS290N
Plastic SO-14	N74LS290D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
MR, MS	Inputs	1LSul
$\overline{\mathrm{CP}}_{0}$	Input	4LSul
$\overline{\mathrm{CP}}_{1}$	Input	8L.Sul
All	Outputs	10LSul

NOTE:
A 74LS unit load (LSui) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a BCD (8421) counter the $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the Q_{0} output. The $\overline{\mathrm{CP}}_{0}$ input receives the incoming count, producing a

BCD count sequence. In a symmetrical biquinary divide-by-ten counter the Q_{3} output must be connected externally to the CP_{0} input. The input count is then applied to the CP_{1} input and a divide-by-ten square wave is obtained at output Q_{0}. To operate as a divide-by-two and a divide-by-five counter, no exter-
nal interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function ($\overline{C P}_{0}$ as the input and Q_{0} as the output). The $\mathbf{C P}_{1}$ input is used to obtain divide-by-five operation at the Q_{3} output.

LOGIC DIAGRAM

$V_{c c}=P_{n} 14$ () Pin numbers

BCD COUNT SEQUENCE - FUNCTION TABLE

cOUNT	OUTPUTS			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	H	H	H	L
7	L	H	H	L
8	H	L	L	H
9		L	L	H

NOTE:
Output Q_{0} connected to input CP_{1}.
MODE SELECTION - FUNCTION TABLE

RESET INPUTS				OUTPUTS			
MR_{1}	MR2	MS ${ }_{1}$	MS_{2}	\mathbf{a}_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
L	X	L	X				
X	1	X	L				
L	X	X	L				
X	L	L	x				

[^7]
74LS293
 Counter

4-Bit Binary Ripple Counter Product Specification

Logic Products

DESCRIPTION

The '293 is a 4-bit ripple type binary counter. The device consists of four master-slave flip-flops internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate Clock input to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous Master Reset $\left(M R_{1} M R_{2}\right)$ is provided which overrides both clocks and resets (clears) all the flip-flops.

PIN CONFIGURATION

TYPE	TYPICAL $\mathrm{I}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 293	42 MHz	9 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{~}} \mathbf{5 V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74LS293N
Plastic SO-14	N74LS293D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
MR	Inputs	1LSul
$\overline{\mathrm{CP}}_{0}$	Input	6 LSul
$\overline{\mathrm{CP}}_{1}$	Input	4LSul
All	Outputs	10LSul

NOTE:

A 74LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

cOUNT	OUTPUTS			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
$\mathbf{0}$	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
$\mathbf{8}$	H	L	L	H
9	L	L	L	H
10	H	H	L	H
11	L	L	L	H
12	H	L	H	H
13	L	H	H	H
14	H	H	H	H
15				

NOTE:
Output Q_{0} connected to input CP_{1}.
MODE SELECTION

RESET INPUTS		OUTPUTS			
$\mathbf{M R}_{\mathbf{1}}$	$\mathbf{M R}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
H	H	L	L	L	L
L	H			Count	
H	L			Count	
L	L			Count	

[^8]Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_{0} must be connected externally to input $\overline{C P}_{1}$. The input count pulses are applied to input $\overline{C P}_{0}$. Simultaneous divisions of 2, 4, 8 and 16 are preformed at the Q_{0}, Q_{1}, Q_{2} and Q_{3} outputs as shown in the function table. As a 3-bit ripple counter the input count pulses are applied to input CP_{1}. Simultaneous frequency divisions of 2,4 and 8 are available at the Q_{1}, Q_{2} and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

Logic Products

FEATURES

- 8-bit positive edge-triggered register
- 3-State MOS compatible output buffers
- Common Clock input with hysteresis
- Common 3-State Output Enable control
- Independent register and 3-State buffer operation

DESCRIPTION

The ' 364 is an 8 -bit edge-triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transi-

74LS364 Flip-Flop

Octal D Flip-Flop With 3-State Outputs Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 364	50 MHz	42 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{5V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74LS364N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
All	Inputs	1LSul
All	Outputs	30LSul

NOTE:

A 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.
tion, is transferred to the corresponding flip-flop's Q output. The clock buffer has about 400 mV of hysteresis built in to
help minimize problems that signal and ground noise can cause on the clocking operation.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Logic Products

FUNCTION TABLE, '365A, '366A

INPUTS			OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\overline{\mathbf{O E}}_{\mathbf{2}}$	\mathbf{I}	\mathbf{Y}	$\overline{\mathbf{Y}}$
L	L	L	L	H
L	L	H	H	L
X	H	X	(Z)	(Z)
H	X	X	(Z)	(Z)

FUNCTION TABLE, '367A, '368A

INPUTS		OUTPUTS	
$\mathbf{O} \mathbf{E}$	\mathbf{I}	\mathbf{Y}	$\overline{\mathbf{Y}}$
L	L	L	H
L	H	H	L
H	X	(Z)	(Z)

L = LOW voltage level
$H=$ HIGH voltage level
$x=$ Don't care
$(Z)=H G H$ impedance (off) state

74365A, 366A, 367A, 368A, LS365A, LS366A, LS367A, LS368A Buffers/Drivers
'365A, '367A Hex Buffer/Driver (3-State) '366A, '368A Hex Inverter Buffer (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74365 A, 367 \mathrm{~A}$	10 ns	65 mA
$74 \mathrm{LS365A}, 367 \mathrm{~A}$	10 ns	14 mA
$74366 \mathrm{~A}, 368 \mathrm{~A}$	9 ns	59 mA
$74 \mathrm{LS} 366 \mathrm{~A}, 368 \mathrm{~A}$	10 ns	12 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE Plastic DIP
Plastic SO-16 $\pm 5 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
N74365AN, N74LS365AN, N74366AN, N/4LS366AN	
N74367AN, N74LS367AN, N74368AN, N74LS368AN	

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
All	Inputs	1 ul	1LSul
All	Outputs	20 ul	30LSul

NOTE:
Where a 74 unit load (ul) is understood to be $40 \mu \mathrm{~A} I_{I_{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{LL}}$, and a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{I H}$ and -0.4 mA IIL .

PIN CONFIGURATION

LOGIC SYMBOL

	 1504870S		LS04890S

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74	74LS	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	
T_{A}	Operating tree-air temperature range	0 to 70	V	

Logic Products

FEATURES

－8－bit transparent latch－＇373
－8－bit positive，edge－triggered register－＇374
－3－State output buffers
－Common 3－State Output Enable
－Independent register and 3－State buffer operation

DESCRIPTION

The＇373 is an octal transparent latch coupled to eight 3－State output buffers． The two sections of the device are controlled independently by Latch En－ able（ E ）and Output Enable（ $\overline{\mathrm{OE}}$ ）control gates．

PIN CONFIGURATION

＇373		
		$20 . \mathrm{cc}$
		7iin 0
		間
		160^{4}
		13）a_{5}
		1095
		［13 0_{4}
		［1］O_{4}
		勿
		cosossos
＇374		200 ${ }^{\text {vec }}$
		旬0\％
		Tis
		160
		1598
		凩 0_{5}
		（3） 0_{4}
		${ }^{12} 0_{4}$
		Wcr
		cososeos

74LS373，74LS374，S373，
 S374
 Latches／Flip－Flops

＇373 Octal Transparent Latch With 3－State Outputs ＇374 Octal D Flip－Flop With 3－State Outputs Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT （TOTAL）
74 LS 373	19 ns	24 mA
74 S 373	10 ss	105 mA
74 LS 374	19 ns	27 mA
74 S 374	8 ns	116 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 5 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$ Plastic DIP $\mathrm{N74LS373N,N74S373N,N74LS374N,N74S374N}$
Plastic SOL－20	N74LS373D，N74S373D，N74LS374D，N74S374D

NOTE：

For intormation regarding devices processed to Military Specifications，see the Signetics Military Products Data Manual

INPUT AND OUTPUT LOADING AND FAN－OUT TABLE

PINS	DESCRIPTION	$74 S$	74LS
All	Inputs	1 Sul	1LSul
All	Outputs	10 Sul	30LSul

NOTE：
Where a 74 S unit load（Sul）is $50 \mu \mathrm{~A} I_{I H}$ and－2．0mA I_{L} ，and a 74 LS unit load（LSul）is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and -0.4 mA ILL．

LOGIC SYMBOL

LOGIC SYMBOL（IEEE／EC）

The data on the D inputs are transferred to the latch outputs when the Latch Enable (E) input is HIGH. The latch remains transparent to the data inputs while E is HIGH, and stores the data present one set-up time before the HIGH-to-LOW enable transition. The enable gate has hysteresis built in to help minimize problems that signal and ground noise can cause on the latching operation.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active LOW Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the latch
operation. When $\overline{O E}$ is LOW, the latched or transparent data appears at the outputs. When $\overline{\mathrm{OE}}$ is HIGH, the outputs are in the HIGH impedance "off' state, which means they will neither drive nor load the bus.
The ' 374 is an 8-bit, edge-triggered register coupied to eight 3 -State output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable ($\overline{O E}$) control gates.
The register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred
to the corresponding flip-flop's Q output. The clock buffer has hysteresis built in to help minimize problems that signal and ground noise can cause on the clocking operation.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The ac tive LOW Output Enable ($\overline{O E}$) controls all eight 3-State buffers independent of the register operation. When $\overline{O E}$ is LOW, the data in the register appears at the outputs. When $\overline{\mathrm{OE}}$ is HIGH, the outputs are in the HIGH impedance "off" state, which means they will neither drive nor load the bus.

LOGIC DIAGRAM, '373

LOGIC DIAGRAM, '374

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

MODE SELECT - FUNCTION TABLE '373

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS$a_{0}-a_{7}$
	OE	E	D_{n}		
Enable and read register	${ }_{L}^{L}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Latch and read register	L	L	I h	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \bar{L} \\ & H \end{aligned}$
Latch register and disable outputs	H H	${ }_{L}^{L}$	I	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & (Z) \\ & (Z) \end{aligned}$

Logic Products

FEATURES

- Two BCD decade or bi-quinary counters
- One package can be configured to divide-by-2, 4, 5, 10, 20, 25, 50 or 100
- Two Master Resets to clear each decade counter individually

DESCRIPTION

The '390 is a dual 4-bit decade ripple counter divided into four separately clocked sections. The counter has two divide-by-two sections and two divide-by-five sections. These sections are normally used in a BCD decade or a biquinary configuration, since they share a common Master Reset input. If the two Master Resets can be used to simultaneously clear all 8 bits of the counter, a number of counting configurations are possible within one package. The separate clocks of each section allow ripple counter or frequency division applications of divide-by-2, 4,5,10,20,25, 50 or 100.

74LS390 Counter

Dual Decade Ripple Counter Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {max }}$	TYPIGAL SUPPLY CURRENT (TOTAL)
74 LS 390	55 MHz	15 mA

ordering code
$\left.\begin{array}{|l|c|}\hline \text { PACKAGES } & \text { COMMERCIAL RANGE } \\ V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{TA}_{\mathbf{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}\right]$ N74LS390N

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
MR	Inputs	1 LSul
CP_{0}	Inputs	4 LSul
CP_{1}	Inputs	6 LSUl
All	Outputs	10LSul

NOTE:

A 74LS unit load (LSUI) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$V_{c c}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
() = Pin numbers

bCD COUNT SEQUENCE
 FOR $\mathbf{1}_{\mathbf{2}}$ THE '390

COUNT	OUTPUTS			
	\mathbf{Q}_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

H = HIGH voltage level
$L=$ LOW voltage level
NOTE:
Output Q_{0} is connected to input $\overline{C P}_{1}$ with
Counter input on $\overline{\mathrm{CP}}_{\mathrm{o}}$.

BI-QUINARY COUNT
SEQUENCE FOR $1 / 2$ THE '390

count	OUTPUTS			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	L	H	L	L
2	L	L	H	L
3	L	H	H	L
4	L	L	L	H
5	H	L	L	L
6	H	H	L	L
7	H	L	H	L
8	H	H	H	L
9	H	L	L	H

NOTE:
Output Q_{3} is connected to input $\overline{C P}_{0}$ with Counter input on $\overline{\mathrm{CP}}_{1}$.

Each section is triggered by the HIGH-toLOW transition of the Clock ($\overline{\mathrm{CP}}$) inputs. For $B C D$ decade operation, the Q_{0} output is connected to the $\overline{\mathrm{CP}}$, input of the divide-byfive section. For bi-quinary decade operation (50% duty cycle output), the Q_{3} output is connected to the $C P_{0}$ input, and Q_{0} becomes the decade output.

The Master Resets (MR_{a} and MR_{b}) are active HIGH synchronous inputs to each decade counter which operate on the portion of the counter identified by the " a " and " b " suffixes in the Pin Configuration. A HIGH level on the MR input overrides the clocks and sets the four outputs LOW.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

NOTE:

$\mathrm{V}_{\text {iH }}$ limited to 5.5 V on CP_{0} and CP_{1} inputs.

74LS393 Counter

Dual 4-Bit Binary Ripple Counter Product Specification

Logic Products

FEATURES

- Two 4-bit binary counters
- Divide-by any binary module up to 28 in one package
- Two Master Resets to clear each 4-bit counter individually

DESCRIPTION

The '393 is a Dual 4-bit Binary Ripple Counter with separate Clock and Master Reset inputs to each counter. The operation of each half of the ' 393 is the same as the '93 except no external clock connections are required. The counters are triggered by a HIGH-to-LOW transition of the Clock ($\overline{\mathrm{CP}}_{\mathrm{a}}$ and $\overline{\mathrm{CP}}_{\mathrm{b}}$) inputs. The counter outputs are internally connected to provide Clock inputs to succeeding stages. The outputs of the ripple counter do not change synchronously and should not be used for high speed address decoding.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 LS 393	35 MHz	15 mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE $\mathbf{v}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{5 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
Plastic DIP	N74LS393N
Plastic SO-14	N74LS393D

NOTE:
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
MR	Master Reset input	1LSul
$\overline{\mathrm{CP}}$	Clock input	4LSul
Q	Output	10LSul

NOTE:
Where a 74 LS unit load (LSul) is $20 \mu \mathrm{~A} I_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$
() $=$ Pin number

The Master Resets (MR_{a} and MR_{b}) are ac-tive-HIGH asynchronous inputs to each 4-bit counter identified by the ' a " and ' b '' suffixes in the Pin Configuration. A HIGH level on the MR input overrides the clock and sets the outputs LOW.

COUNT SEQUENCE
FOR $1 / 2$ THE '393

COUNT	OUTPUTS			
	\boldsymbol{O}_{0}	\mathbf{Q}_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V_{CC}	Supply voltage	7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +1	mA
$\mathrm{~V}_{\mathrm{OUT}}$	Voltage applied to output in HIGH output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
T_{A}	Operating free-air temperature range	0 to 70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		74LS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.75	5.0	5.25	V
V_{IH}	HIGH-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage			+0.8	V
I_{K}	Input clamp current			-18	mA
IOH	HIGH-level output current			-400	$\mu \mathrm{A}$
lOL	LOW-level output current			8	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

	CD 4000	
$\begin{aligned} & \text { PRODUCT } \\ & \text { NUMBER } \end{aligned}$	PRODUCT DESCPIPTION	PIN OUT DIL CERAMIC+MOLDED
00	GATE	
01	GATE	
02	GATE	
03		
06	REGISTER	

	CD 4000	
$\begin{aligned} & \text { PRODUCT } \\ & \text { NUMBER } \end{aligned}$	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC+MOLDED
07	INVERTER	
08	ADDER	
09	BUFFER	
10	BUFFER	
11	GATE	

	CD 4000	
PRODUCT number	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC+MOLDED
12	GATE	
13	FLIP-FLOP	
14	REGISTER	
15	REGISTER	
16	SWITCH	

	CD 4000	
PRODUCT NLMBER	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC + MOLDED
17	COUNTER	
18	COUNTER	
19	GATE	
20	COUNTER	
21	REGISTER	

	CD 4000	
PRODUCT NUMBER	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC+MOLDED
22	COUNTER	
23	GATE	
24	COUNTER	
25	GATE	
26		

	CD 4000	
PRODUCT NUMBER	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC + MOLDED
27	FLIP-FLOP	
28	DECODER	
29	COUNTER	
30	GATE	
31	REGISTER	

	CD 4000	
PRODUCT NUMBER	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC+MOLDED
34	REGISTER	
35	REGISTER	
38		
40	COUNTER	
41	BUFFER	

	CD 4000	
PRODUCT NUMBER	PRODUCT DESCRIPTION	PIN OUT DIL CERAMIC+MOLDED
42	LATCH	
43	LATCH	
44	LATCH	
46	PLL	
47	MULTIVIBRATOR	

	CD 4000	
PRODUCT NUMBER	PRODUCT DESCRIPTION	PIN OUT DLL CERAMC+MOLDED
48	GATE	
49	BUFFER	
50	BUFFER	
51	DEMULTIPLEXER	
52	DEMULTIPLEXER	

	CD 4000	
PRODUCT NUMBER	PRODUCT DESCRIPTION	PIN OUT DIL CERAMC+MOLDED
53	DEMULTIPLEXER	
60	COUNTER	
66	SWITCH	
69	INVERTER	
70	GATE	

	CD 4000	
$\begin{array}{\|l\|} \hline \text { PRODUCT } \\ \text { NMBER } \end{array}$	PRODUCT DESCRIPTION	PIN OUT DIL CERAMC+MOLDED
163	COUNTER	
174	FLIP-FLOP	
175	FLIP-FLOP	
192	COUNTER	
193	COUNTER	

CMOS BCD UP/DOWN COUNTER

FEATURES

- Internaily Synchronous for High Speed
- Asynchronous Preset Enable
- Asynchronous Reset
- Logic Edge-Clocked Design
- 6 MHz Counting Rate @ 10Vdc
- Carry Output for Cascading Stages

DESCRIPTION

The SCL4510B consists of a four-stage Up/ Down Counter with provisions for "look-ahead" carry in both counting modes. The inputs consist of a single Clock, Carry-in (Clock Enable), Reset, Up/Down, Preset Enable, and four individual Jam signals. Four separate buffered \mathbf{Q} signals and a Carry out signal are provided as outputs.

A high Preset Enable signal allows information on the Jam inputs to preset the counter to any state asynchronously with the Clock. A high on the Reset line resets all stages to the "zero" state. The counter is advanced one count at the positive transition of the Clock when the Carry-in and Preset Enable signals are low. Advancement is inhibited when the Carry-in or Preset Enable signals are high. The Carry-out signal is normally high and goes low when the counter reaches its maximum count in the Up mode or the minimum count in the Down mode, provided the Carry-in signal is low. The Carry-in signal in the low state can thus be considered a "Clock Enable." The Carry-in terminal must be connected to $\mathrm{V}_{\text {ss }}$ when not in use.

The counter counts Up when the Up/Down input is high, and Down when the Up/Down input is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement. Parallel clocking provides synchronous control and hence faster response from all counting cutputs. Ripple-clocking allows for longer clock input rise and fall times.

This counter finds primary use in up/down and differential counting and frequency synthesizer applications. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

TRUTH TABLE

CARRY IN	UP/DOWN	PRESET ENABLE	RESET	ACTION
1	x	0	0	No Count
0	1	0	0	Count Up
0	0	0	0	Count Down
x	x	1	0	Preset
x	x	x	1	Reset

X = Don't Care

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

| DC Suppiy Voltage | $V_{D D}-V_{S S}$ | 3 to 15 | Vdc |
| :--- | :--- | :--- | :--- | :--- |
| Operating Temperature | T_{A} | | |
| C, D, F, H Device | | $-5 \$$ to +125 | ${ }^{\circ} \mathrm{C}$ |
| E Device | | -40 to +85 | $\circ^{\circ} \mathrm{C}$ |

BLOCK DIAGRAM

TIMING DIAGRAM

SCL4511B

CMOS BCD-TO-SEVEN SEGMENT LATCH/JECODER/DRIVER

FEATURES

- High-Current Sourcing Bipolar Outputs (Up to $25 \mathrm{~mA})$
- Latched Storage of Input Code
- Blanking Input for Display Intensity Modulation
- Lamp Test Provision
- Readout Blanking for Illegal Input Combinations

DESCRIPTION

The SCL4511B provides the functions of a 4bit storage latch, an 8421 BCO-to-seven segment decoder, and an output drive capability to source up to 25 mA of current. Lamp Test, Blanking, and Latch Enable inputs are used to test the display, turn off the display, and store a BCD code, respectively. It can be used with LED, incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include counter display drivers, sever-segment decimal display, and various clock, watch, and timer uses.

TRUTH TABLE

LE	81	LT	D	C	8	A	-	b	c	d	e	1	9	DISPLAY
x	\times	0	\times	\times	x	\times	1	1	1	1	1	1	1	8
\times	0	1	\times	x	\times	x	0	0	0	0	0	0	0	Blank
$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1 0 1 1 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1 0 1 1	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	0 1 0 1	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 0	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1 1 0 0	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 0 0 0	1 0 0 0	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	1 1 0 0	8 9 Blank Blank
$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	0 0 0 0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0	Blank Blank Blank Blank
1	1	1	\times	\times	X	\times				*				*

$x=$ Don'r care

* Depends upon the BCD code applied during the 0 to 1 trensition of LE.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS
For maximum reliability:

DC Supply Voliage	$V_{D D}-V_{S S}$	3 to 15	Vdc
Operating Temperature	TA		
C, D, F, H Device		-55 to +125	${ }^{\circ} \mathrm{C}$
E Device		-40 to +85	${ }^{\circ} \mathrm{C}$

The maximum continuous (worst case) derated output drive current applies to a single output with all other outputs sourcing an equal amount of current. Operation above the derating curve at a given temperature is not recommended.

APPLICATIONS INFORMATION

32-INPUT MULTIPLEXER

Output terminals of several SCL4512B devices can be connected to a single data bus. One SCL4512B is selected by the 3 -state Disable control, and the remaining devices are disabled into
a high-impedance state. A 32-input multiplexer utilizing four SCL4512B data selectors and a single SCL4011B is shown.

LOGIC FUNCTION GENERATORS

In addition to the standard application of multiplexers in date conversion techniques, these kircuits can also be used in generating logic functions, which in many cases can reduce system package count.

A multiplexer is a multiple-position single-pole switch. One set of inputs selects the position of the switch. The second set of inputs collects the input data, which is transferred through the circuit to one output. By using the binary select inputs and the data inputs, the SCL4512B can generate any of the $\mathbf{6 5 , 5 3 6}$ different functions of four variables.

Assume the four binary inputs are A, B, C, and $D_{\text {, }}$, and that \mathbf{Z} is the desired function. Using the

select inputs as the first three variables, any combination of A, B, and C will select a data input (assuming the output is enabled). For each combination of A, B, and C, the required output, as a function of the fourth variable D, can be HIGH or LOW or the same as D or the inverse of D. Therefore, the truth table may be examined and each data input of the SCL4512B is connected to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{D}$, or $\overline{\mathrm{D}}$ as required. In such fashion, the function is generated

In the example shown, the first two outputs are the inverse of D , so $X O$ is connected to $\overline{\mathrm{D}}$. The next two are HIGH, so $X 1$ is connected to VDD. etc.

SCL4514B SCL4515B

CMOS 4-TO-16 LINE DECODERS WITH LATCH

FEATURES

- Strobed Input Latch
- Inhibit Control
- Selected Output Active High (SCL4514B) or Active Low (SC L4515B)

DESCRIPTION

The SCL4514B and SCL4515B are two output options of a 4 to-16 Line Decoder with Latched Inputs. The SCL4514B presents a logic " 1 " at the selected output, and the SCL4515B presents a logic " 0 ' at the selected output. The latches hold the last input data presented prior to the Strobe transition from " 1 " to " 0 ". Inhibit allows all outputs to be placed at " 0 " (SCL4514B), or "1" (SCL4515B), regardless of the state of the Data or Strobe inputs.

Applications include code conversion, address decoding, memory selection control, demultiplexing, and readout decoding.

TRUTH TABLE (Strobe $=1)$

RECOMMENDED OPERATING CONDITIONS
For maximum reliability:

DC Supply Voltage	$V_{D D}-V_{S S}$	3 to 15	Vdc
Operating Temperature	T_{A}		
D. H Device		-55 to +125	${ }^{\circ} \mathrm{C}$
E Device		-40 to +85	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

FEATURES

- Internally Synchronous for High Speed
- Asynchronous Preset Enable
- Asynchronous Reset
- Logic Edge-Clocked Design
-6MHz Counting Rate @ 10Vdc
- Carry Output for Cascading Stages

DESCRIPTION

The SCL4516B consists of a four-stage Up/ Down Counter with provisions for "look-ahead" carry in both gounting modes. The inputs consist of a single Clock, Carry-in (Clock Enable), Reset, Up/Down, Preset Enable, and four individual Jam signals. Four separate buffered Q signals and a Carry-out signal are provided as outputs.

A high Preset Enabie signal allows information or the Jam inputs to preset the counter to any state asynchronously with the Clock. A high on the Reset line resets all stages to the "zero" state. The counter is advanced one count at the positive transition of the Clock when the Carry-in and Preset Enable signals are low. Advancement is inhibited when the Carry-in or Preset Enable signals are high. The Carry-out signal is normally high and goes low when the counter reaches its maximum count in the Up mode or the minimum count in the Down mode, provided the Carry-in signal is low. The Carry-in signal in the low state can thus be considered a "Clock Enable." The Carry-in terminal must be connected to $V_{S S}$ when not in use.

The counter counts Up when the Up/Down input is high, and Down when the Up/Down input is low. Multiple packages can be connected in either a paralletclocking or a ripple-clocking arrangement. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

This counter finds primary use in up/down and differential counting and frequency synthesizer applications. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

TRUTH TABLE

| | CARRY IN | UP/DOWN | PRESET
 ENABLE | RESET |
| :---: | :---: | :---: | :---: | :---: | ACTION | ACT |
| :---: |
| 1 |

[^9]

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage	$V_{D D}-V_{S S}$	3 to 15	$V d c$
Operating Temperature	T_{A}		
C, D, F, H Device		-55 to +125	${ }^{\circ} \mathrm{C}$
E Device		-40 to +85	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

SCL4518B SCL4520B

CMOS DUAL UP COUNTERS

FEATURES

- Two Independent 4-Bit Counters
- Internally Synchronous for High Speed
- Dual BCD (SCL4518B) and Dual Binary (SCL4520B) Configurations
- Direct Reset
- Logic Edge-Clocked Design
- Trigger from either Edge of Clock Signal
- Static Operation- DC to 5 MHz @ 10 Vdc

DESCRIPTION

The SCL4518B Dual BCD Counter and the SCL4520B Dual Binary Counter are constructed with MOS P-channel and N -channel enhancementmode devices in a single monolithic structure. Each consists of two identical, independent, internally synchronous 4 -stage counters. The counter stages are type-D flip-flops, with interchangeable Clock and Enable lines for incrementing on either the positive-going or negative-going transition as required when cascading multiple stages. Each counter can be cleared by applying a high level on the Reset line. In addition, the SCL4518B will count out of all undefined states within two clock periods. These complementary MOS up counters find primary use in multi-stage synchronous or ripple counting applications requiring low power dissipation and/or high noise immunity.

TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
	1	0	Increment Counter
0		0	Increment Counter
	X	0	No Change
x		0	No Change
	0	0	No Change
1	-	0	No Change
X	X	1	OO thru Q3 $=0$

$x=$ Don't Care
TIMING DIAGRAM

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage	$V_{D D}-V_{\text {SS }}$	3 to 15	Vdc
Operating Temperature	T_{A}		
C, D, F, H Device -55 to +125 ${ }^{\circ} \mathrm{C}$ E Device -40 to +85 ${ }^{\circ} \mathrm{C}$			

BLOCK DIAGRAM

SCL4528B

CMOS DUAL MONOSTABLE MULTIVIBRATOR

FEATURES

- Two Independent Multivibrators on One Chip
- Triggerable from Leading- or Trailing-Edge Pulse
- Retriggerable
- Resettable
- \mathbf{Q} and $\overline{\mathbf{Z}}$ Buffered Ouitputs Available
- Wide Range of Output Pulse Widths

DESCRIPTION

The SCL4528B Dual Multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application. Timing for the circuit is controlled by an external resistorcapacitor combination ($\mathrm{R}_{\mathbf{x}}-\mathrm{C}_{\mathrm{x}}$). Adjustment of these components permits generation of output pulse widths from nanoseconds to minutes. Leading-edge and trailing-edge Trigger inputs are provided, and both positive-going and negativegoing pulses are available from complementary outputs.

Timing pulses may be terminated at any time by applying a low logic level to the Reset input C_{D}.

RECOMMENDED OPERATING CONDITIONS
For maximum reliability:

| DC Supply Voltage | $V_{D D} \cdot V_{S S}$ | 3 to 15 | Vdc |
| :--- | :--- | :--- | :--- | :--- |
| Operating Temperature | T_{A} | | |
| C, D, F,H Device | | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| E Device | | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |

BLOCK DIAGRAM
(one of two duvices)

SCL4543B
Preliminary

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

FEATURES

- Phase Input Signal Reproduced on Outputs tor Liquid Crystal Display
- Latched Storage of Input Code
- Blarking Input for Display Intensity Modulation
- Readout Blanking for Illegal Input Combinations
- Pin Compatible with CD4056A (with Pin 7 Tied to $V_{S S}$)
- Belanced Output Drive Current Specifications

DESCRIPTION

The SCL4543B BCD-to-7 Segment Latch/ Decoder/Driver is designed for use with liquid crystal readouts and is constructed with complementary MOS (CMOS) enhancement-mode devices. The circuit provides the functions of a 4-bit storage latch and a 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combinations. The Phase (Ph), Blanking (BI), and Latch Disable (LD) inputs are used to reverse the truth-table phase, blank the display, and store a BCD code, respectively. For liquid crystal readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter,
TRUTH TABLE

x = Don't care

1. Above Combination

- For hound errstal reedouts, apoty a squere meve to m For common Cathode LED reedouts, welect Mh - 0 - - Dependit upon the BCD code previouzly applied when LD-1.

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:
DC Supply Voltage $V_{D D} \cdot V_{S S} \quad 3$ to $15 \quad$ Vde
Operating Temperature T_{A}

C, D, F, H Device	-55 to $+125{ }^{\circ} \mathrm{C}$
E Device	-40 to $+85{ }^{\circ} \mathrm{C}$

DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

BLOCK DIAGRAM

SCL4581B

CMOS 4-BIT ARITHMETIC LOGIC UNIT

FEATURES

- Function and Pinour Equivalent to $\mathbf{7 4 1 8 1}$
- Provides 16 Logic Functions and 16 Arithmetic Functions
- Comparator Function
- Positive or Negative Logic
- Full Look-Ahead for High-Speed Operations on Long Words

DESCRIPTION

The SCL4581B is a CMOS 4-Bit Arithmetic Logic Unit (ALU) capable of providing 16 functions of two Boolean variables and 16 binary arithmetic operations on two 4 -bit words. The level of the Mode Control input determines whether the output function is logic or arithmetic. The desired logic function is selected by applying the appropriate binary word to the Select inputs (SO thru S3) with the Mode Control input high, while the desired arithmetic operation is selected by applying a low voltage to the Mode Control input, the required level to Carry in, and the appropriate word to the Select inputs. The Word inpuits and Function outputs can be operated with either active-high or active-low data.

Carry propagate (P) and Carry generate (G) outputs are provided to allow a full look-ahead carry scheme for fast simultaneous carry generation for the four bits in the package. Fast arithmetic operations on long words are obtainable by using the SCL4582B as a second-order lookahead block. An inverted Ripple-Carry input ($\mathrm{C}_{\boldsymbol{n}}$) and a Ripple-Carry output ($\mathrm{C}_{\mathrm{n}+4}$) are included for ripple-through operation.

ALU SIGNAL DESIGNATIONS

Designation	Pin Nos.	Function
A3, A2, A1, AO	$19,21,23,2$	Word A Inputs
B3, B2, B1, B0	$18,20,22,1$	Word B Inputs
S3, S2, S1, S0	$3,45,6$	Function-Select Inputs
C $_{n}$	7	Inv. Carry Input
MC	8.	Mode Control Input
F3, F2, F1, F0	$13,11,10,9$	Function Outputs
A = B	14	Comparator Output
P	15	Carry Propagate Output
Cn+4 $^{\text {G }}$	16	Inv. Carry Output
Garry Generate		
Output		

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage	$V_{D D}-V_{\text {SS }}$	3 to 15	Vdc
Operating Temperature	T_{A}		
D, H Device		-55 to +125	${ }^{\circ} \mathrm{C}$
E Device		-40 to +85	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

ALU FUNCTION GENERATION

The SCL4581B can be used with the signal designations of either Figure 1 or Figure 2.
The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1; those obrained with the signal desigrations of Figure 2 are given in Table 2.

TABLE 1

SELECTION	AĆTIVE-LOW DATA		
	MC-H	MC = L. ARITHM	ETIC OPERATIONS
	LOGIC FUNCTIONS	$\begin{gathered} C_{n}=L \\ \text { (no amry) } \end{gathered}$	$\begin{gathered} C_{n}=H \\ \text { (wath } \end{gathered}$
L L L L	$F=\boldsymbol{R}$	- rAMINUS?	$F=A$
$L \begin{array}{llll}L & L & L & H\end{array}$	$F=$ 事	f = AB MINUS :	$F=A B$
L L L $\quad \mathrm{H}$ L	$F=X+B$	$F=A B$ minus ;	$F=A E$
L L L H H	$F=1$	$F=$ MINUS 1 (2's COMP)	$F=2 E R O$
$\begin{array}{lllll}L & H & L & L\end{array}$	$F=A+B$	$F=A$ PLUS $(A+\bar{B})$	$F=A$ PLUS IA + Ti PLUS 1
L H L L	$F=\mathbf{E}$	$F=A B P L U S ~(A+\bar{B})$	$F=A B$ PLUS $(A+E) P L U S ~ 1$
L H H H L	$F=A$ (\%)	$F=A$ MINUS 8 MINUS it	$F=A$ minus 8
$\begin{array}{lllll}\mathrm{L} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$	$F=A+E$	$F=A+E$	$F=(A+\bar{B})$ PLUS 1
$\begin{array}{llll}H & L & L & L\end{array}$	$F=\boldsymbol{A B}$	$F=A \operatorname{PLUS}(A+B)$	$F=A$ PLUS $(A+B) P$ PLUS 1
H L L	$F=$ * © ${ }^{\text {c }}$	F = APLUSE	$F=A$ PLUS B PLUS 1
$\begin{array}{lllll}\mathrm{H} & \mathrm{L} & \mathrm{H} & \mathrm{L}\end{array}$	$F=8$	$F=A E$ PLUS $(A+8)$	$F=A E P L U S ~(A+B) P L U S ~ 1$
H L L H H	$F=A+B$	$F=(A+B)$	$F=(A+B) P L U S$!
H H L \mathbf{L} L	$F=0$	$F=A P L U S A *$	$F=A$ PLUS A PLUS 1
H H L H	$F=A E$	$F=A B P L U S A$	$F=A B$ PLUS A PLUS 1
$\begin{array}{lllll} \\ H & \mathrm{H} & \mathrm{H} & \mathrm{L}\end{array}$	$F=A B$	$F=$ AIPLUSA	$F=A \bar{B}$ PLUS A PLUS 1
H H H H H	$F=A$	$F=\mathbf{A}$	$F=A$ PLUS 1

TABLE 2

SELECTION	ACTIVE.HIGH DATA		
	Me = in	MC = L: AM1?	ETHC OPERATIONS
	$\begin{aligned} & \text { LOBIC } \\ & \text { Runctions } \\ & \hline \end{aligned}$	$\begin{gathered} \varepsilon_{n}=H \\ 1 \infty \end{gathered}$	$\begin{gathered} e_{n}=2 \\ \text { inith entil } \end{gathered}$
$\begin{array}{lllll}L & L & L & L\end{array}$	F- ${ }^{\text {a }}$	$\boldsymbol{F}=\mathbf{A}$	$F=A P L U S$ I
$1 \begin{array}{llll}1 & L & L & N\end{array}$	$F=\boldsymbol{A}+$	$F=A+B$	$F=(A+B)$ PLUS ;
L L L H L	$F=\overline{1} 8$	$F=A+E$	$F=(A+E)$ PLUS 1
L L N L	$F=0$	$F=$ MINUS 1 (2;s COMPL)	$F=$ 2ERO
$\begin{array}{llll}L & H & L & L\end{array}$	F-7	$F=A$ PLUSAT	F = A PLUS AEPLUS 1
L H L	$F=$ E	$F=(A+B)$ PLUS AT.	$F=(A+B)$ PLUS AB PLUS 1
L H H L	$F=A$ (1)	F - A Minus a minus 1	$F=A$ minus B
L H H H H	A	- AE MINUS 1	$F=A E$
$\begin{array}{llll}H & L & L & L\end{array}$	$F=\underline{\underline{R}}+\mathrm{B}$	$F=A P L U S A B$	$F=A$ PLUS AB PLUS 1
H L L	$F=A$ (9)B	Plus 8	$F=A$ PLUS B PLUS 1
H L L H L		$F=(A+E) P L U S A B$	$F=(A+B)$ PLUS AB PLUS 1
$\begin{array}{llll}\mathrm{H} & \mathrm{L} & \mathrm{H} & \mathrm{H}\end{array}$	AB	$F=A B$ MINUS 1	$\mathrm{F}=\mathbf{A B}$
H H H L L		$F=A P L U S A^{*}$	F = A PLUSA PLUS 1
H H H 2 L	$F=A+$	$F=(A+B) P L U S A$	$F=(A+B)$ PLUS A PLUS 1
H H H H H	$\mathrm{A}+\mathrm{B}$	$F=(A+E) P L U S A$	$F=(A+B)$ PLUS A PLUS 1
H Hi H	F:A	$F=A$ MINUS 1	$\mathrm{F}=\mathbf{A}$

- Each bit is shifted to the next more significant position.

When the device is in the subtract mode (LHHL), comparison of two 4-bit words present at the A and B inputs is provided using the $A=B$ output. It assumes a high-level state when indicating equality. Also, when the ALU is in the subtract mode the C_{n+4} output can be used to indicate relative magnitude as shown in this table:

Data Level	C_{n}	$C_{n}+i$	Magnitude
\because	H	H	$A \leq B$
Active	L	H	$A<B$
Hagh	H	L	$A>B$
	L	L	$A \geq B$
	L	L	$A \leq B$
Acrive	H	L	$A<B$
Low	L	H	$A>B$
	H	H	$A \geq B$

8080A/8080A-1/8080A-2 8-BIT N-CHANNEL MICROPROCESSOR

- TTL Drive Capability
- 2

$2 \mu \mathrm{~s}(-1: 1.3 \mu \mathrm{~s},-2: 1.5 \mu \mathrm{~s}$) Instruction Cycle

Powerful Problem Solving Instruction Set

6 General Purpose Registers and an Accumulator

- 16-Bit Program Counter for Directly Addressing up to 64 K Bytes of Memory
- 16-Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment
- Decimal, Binary, and Double Precision Arithmetic
- Ability to Provide Priority Vectored Interrupts
512 Directly Addressed I/O Ports
- Available in EXPRESS
- Standard Temperature Range

The Intel 8080 A is a complete 8 -bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.
The 8080A contains 68 -bit general purpose working registers and an accumulator. The 6 general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.
The 8080A has an external stack teature wherein any portion of memory may be used as a last in/first out stack to store/retrieve the contents of the accumulator, flags, program counter, and all of the 6 general purpose registers. The 16-bit stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.
This microprocessor has been designed to simplify systems design. Separate 16 -line address and 8 -line bidirectional data busses are used to facilitate easy interiace to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR-tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

NOTE:
The 8080A is functionally and electrically compatible with the Intel ${ }^{\bullet} 8080$.

Figure 1. Block Diagram

Figure 2. Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function
$A_{15} \mathrm{~A}_{0}$	0	Address Bus: The address bus provides the address to memory (up to 64 K 8 -bit words) or denotes the I/O device number for up to 256 input and 256 output devices. A_{0} is the least significant address bit.
$D_{7}-D_{0}$	1/0	Data Bus: The data bus provides bi-directional communication betweeen the CPU. memory, and I/O devices for instructions and data transfers. Also, during the first clock cycle of each machine cycle. the 8080A outputs a status word on the data bus that describes the current machine cycle. D_{0} is the least significant bit.
SYNC	0	Synchronizing Signal: The SYNC pin provides a signal to indicate the beginning of each machine cycle.
DBIN	0	Data Bus In: The DBIN signal indicates to external circuits that the data bus is in the input mode. This signal should be used to enable the gating of data onto the 8080A data bus from memory or $1 / 0$.
READY	1	Ready: The READY signal indicates to the 8080A that valid memory or input data is available on the 8080A data bus. This signal is used to synchronize the CPU with slower memory or I/O deviçes. If after sending an address out the 8080A does not receive a READY input, the 8080A will enter a WAIT state for as long as the READY line is low. READY can also be used to single step the CPU.
WAIT	0	Wait: The WAIT signal acknowledges that the CPU is in a WAIT state.
$\overline{W R}$	0	Write: The $\overline{W R}$ signal is used for memory WRITE or I/O output control. The data on the data bus is stable while the $\overline{W R}$ signal is active low ($\overline{W R}=0$).
HOLD	1	Hold: The HOLD signal requests the CPU to enter the HOLD state. The HOLD state allows an external device to gain control of the 8080A address and data bus as soon as the 8080A has completed its use of these busses for the current machine cycle. It is recognized under the following conditions: - the CPU is in the HALT state. - the CPU is in the T2 or TW state and the READY signal is active. As a result of entering the HOLD state the CPU ADDRESS BUS ($A_{15}-A_{0}$) and DATA BUS ($D_{7}-D_{0}$) will be in their high impedance state. The CPU acknowledges its state with the HOLD ACKNOWLEDGE (HLDA) pin.
HLDA	0	Hold Acknowledge: The HLDA signal appears in response to the HOLD signal and indicates that the data and address bus will go to the high impedance state. The HLDA signal begins at: - T3 for READ memory or input. - The Clock Period following T3 for WRITE memory or OUTPUT operation. In either case, the HLDA signal appears after the rising edge of $\phi_{\mathbf{2}}$.
INTE	0	Interrupt Enable: indicates the content of the internal interrupt enable flip/flop. This flip/flop may be set or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted by the CPU when it is reset. It is automatically reset (disabling further interrupts) at time T1 of the instruction fetch cycle (M1) when an interrupt is accepted and is also reset by the RESET signal.
INT	1	Interrupt Request: The CPU recognizes an interrupt request on this line at the end of the current instruction or while halted. If the CPU is in the HOLD state or if the Interrupt Enable flip/flop is reset it will not honor the request.
RESET ${ }^{1}$	1	Reset: While the RESETsignal is activated, the content of the program counter is cleared. After RESET, the program will start at location 0 in memory. The INTE and HLDA flip/fiops are also reset. Note that the flags, accumulator, stack pointer, and registers are not cleared.
$V_{\text {SS }}$		Ground: Reference.
$V_{\text {DD }}$		Power: $+12 \pm 5 \%$ Volts.
$V_{\text {cc }}$		Power: $+5 \pm 5 \%$ Volts.
V_{BB}		Power: $-5 \pm 5 \%$ Volts.
ϕ_{1}, ϕ_{2}		Clock Phases: 2 externally supplied clock phases. (non TTL compatible)

INSTRUCTION SET

The accumulator group instructions include arithmetic and logical operators with direct, indirect, and immediate addressing modes.
Move, load, and store instruction groups provide the ability to move either 8 or 16 bits of data between memory, the six working registers and the accumulator using direct, indirect, and immediate addressing modes.
The ability to branch to different portions of the program is provided with jump, jump conditional, and computed jumps. Also the ability to call to and return from subroutines is provided both conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for interrupt vector operation.

Double precision operators such as stack manipulation and double add instructions extend both the arithmetic and interrupt handling capability of the 8080A. The ability to
increment and decrement memory, the six general registers and the accumulator is provided as well as extended incre ment and decrement instructions to operate on the register pairs and stack pointer Further capability is provided by the ability to rotate the accumulator left or right through or around the carry bit.

Input and output may be accomplished using memory addresses as 1/O ports or the directlv addressed I/O provided for in the 8080A instruction set.

The following special instruction group completes the 8080A instruction set: the NOP instruction, HALT to stop processc: execution and the DAA instructions provide decimal arithmetic capability. STC allows the carry flag to be di rectly set, and the CMC instruction allows it to be complemented. CMA complements the contents of the accumulator and XCHG exchanges the contents of two 16 -bit register pairs directly.

Data and Instruction Formats

Data in the 8080A is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the same format.

$$
\frac{D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1} D_{0}}{\text { DATA WORD }}
$$

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored in successive words in program memory. The instruction formats then depend on the particular operation executed.

One Byte Instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Two Byte Instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

Three Byte Instructions

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	OP CODE
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	

Jump, call or direct load and store instructions

[^10]Table 2. Instruction Set Summary

Mnemonic									Operations Description	Clock Cycles [2]
$\begin{aligned} & \mathrm{JPO} \\ & \mathrm{PCHL} \end{aligned}$	$\left[\begin{array}{l} 1 \\ 1 \end{array}\right.$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Jump on parity odd H\& L to program counter	$\begin{array}{r} 10 \\ 5 \end{array}$
CALL										
CALL	1	1	0	0	1	1	0	1	Call unconditional	17
CC	1	1	0	1	1	1	0	0	Call on carry	11/17
CNC	1	1	0	1	0	1	0	0	Call on no carry	11/17
CZ	1	1	0	0	1	1	0	0	Call on zero	11/17
CNZ	1	1	0	0	0	1	0	0	Call on no zero	11/17
CP	1	1	1	1	0	1	0	0	Call on positive	11/17
CM	1	1	1	1	1	1	0	0	Call on minus	11/17
CPE	1	1	1	0	1	1	0	0.	Call on parity even	11/17
CPO	1	1	1	0	0	1	0	0	Call on parity odd	11/17
RETURAN										
RET	1	1	0	0	1	0	0	1	Return	10
RC	1	1	0	1	1	0	0	0	Return on carry	5/11
RNC	1	1	0	1	0	0	0	0	Return on no carry	5/11
RZ	1	1	0	0	1	0	0	0	Return on zero	5/11
RNZ	1	1	0	0	0	0	0	0	Return on no zero	5/11
RP	1	1	1	1	0	0	0	0	Return on positive	5/11
RM	1	1	1	1	1	0	0	0	Return on minus	5/11
RPE	1	1	1	0	1	0	0	0	Return on parity even	5/11
RPO	1	1	1	0	0	0	0	0	Return on parity odd	5/11
RESTART										
INCREMENT AND DECAEETENT										
INR r	0	0	D	D	D	1	0	0	Increment register	5
DCR ${ }^{\text {r }}$	0	0	D	D	D	1	0	1	Decrement register	5
INR M	0	0	1	1	0	1	0	0	Increment memory	10
DCR M	0	0	1	1	0	1	0	1	Decrement memory	10
INX B	0	0	0	0	0	0	1	1	Increment B \& C registers	5
INX D	0	0	0	1	0	0	1	1	Increment D\&E registers	5
INXH	0	0	1	0	0	0	1	1	increment H\& L registers	5
DCX 8	0	0	0	0	1	0	1	1	Decrement B\&C	5
DCX D	0	0	0	1	1	0	1	1	Decrement D \& E	5
DCXH	0	0	1	0	1	0	1	1	Decrement H\& L	5
ADD										
ADD r	1	0	0	0	0	S	S	S	Add register to \mathbf{A}	4
ADC r	1	0	0	0	1	S	S	S	Add register to \mathbf{A} with carry	4
ADDM	1	0	0	0	0	1	1	0	Add memory to A	7
ADC M	1	0	0	0	1	1	1	0	Add memory to A with carry	7
ADI	1	1	0	0	0	1	1	0	Add immediate to \mathbf{A}	7
ACI	1	1	0	0	1	1	1	0	Add immediate to \mathbf{A} with carry	7
DAD 8	0	0	0	0	1	0	0	1	Add B\&C to H\&L	10
DAD D	0	0	0	1	1	0	0	1	Add D \& E to H\& L	10
DADH	0	0	1	0	1	0	0	1	Add H\&L to H\& L	10
DAD SP	0		1	1				1	Add stack pointer to H\&L	10

8080A/8080A-1/8080A-2

Summary of Processor Instructions (Cont.)

NOTES:

1. DDD or SSS: $\mathrm{B}=000, \mathrm{C}=001, \mathrm{D}=010, \mathrm{E}=011, \mathrm{H}=100, \mathrm{~L}=101$, Memory=110, $\mathrm{A}=111$.
2. Two possible cycle times ($6 / 12$) indicate instruction cycles dependent on condition flags.

All mnemonics copyright Ointel Corporation 1977

8085AH/8085AH-2/8085AH-1 8-BIT HMOS MICROPROCESSORS

- Single +5 V Power Supply with 10% Voltage Margins
- $3 \mathrm{MHz}, 5 \mathrm{MHz}$ and 6 MHz Selections Available
- 20\% Lower Power Consumption than 8085A for 3 MHz and 5 MHz
- $1.3 \mu \mathrm{~s}$ Instruction Cycle (8085AH); 0.8 $\mu \mathrm{s}$ (8085AH-2); $0.67 \mu \mathrm{~s}$ (8085AH-1)
- 100% Compatible with 8085A
- 100\% Software Compatible with 8080A
- On-Chip Clock Generator (with External Crystal, LC or RC Network)
- On-Chip System Controller; Advanced Cycle Status Information Available for Large System Control
- Four Vectored Interrupt Inputs (One is Non-Maskable) Plus an 8080A-Compatible Interrupt
- Serial In/Serial Out Port
- Decimal, Binary and Double Precision Arithmetic
- Direct Addressing Capability to $\mathbf{6 4 K}$ Bytes of Memory
- Available in EXPRESS

- Standard Temperature Range

- Extended Temperature Range

The Intel ${ }^{n}$ 8085AH is a complete 8 bit parallel Central Processing Unit (CPU) implemented in N -channel, depletion load, silicon gate technology (HMOS). Its instruction set is 100\% software compatible with the 8080A microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its high level of system integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/IO) and 8355/8755A (ROM/PROM/IO)] while maintaining total system expandability. The 8085AH-2 and 8085AH-1 are faster versions of the 8085AH.
The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for the 8080A, thereby offering a high level of system integration.
The 8085AH uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus. The on-chip address latches of $8155 \mathrm{H} / 8156 \mathrm{H} / 8355 / 8755 \mathrm{~A}$ memory products allow a direct interface with the 8085AH.

Figure 2. 8085AH Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function	Symbol	Type	Name and Function
$A_{8}-A_{15}$	0	Addr-ss Bus: The most significant 8 bits of the memory address or the 8 bits of the $1 / O$ address, 3 -stated during Hold and Halt modes and during RESET	READY	1	Ready: If READY is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If READY is low, the cpu will wait an integral
$A D_{0-7}$	I/O	Multiplexed Address/Data Bus: Lower 8 bits of the memory address (or I/O address) appear on the bus during the first clock cycle (T state) of a machine cycle. It then becomes the data bus during the second and third clock cycles			number of clock cycles for READY to go high before completing the read or write cycle. READY must conform to specified setup and hold times.
			HOLD	1	Hold: Indicates that another master is requesting the use of the address and data buses The cpu, upon receiving the hold request, will relinquish the use of the bus as soon as the completion of the current bus transfer internal processing can continue. The processor can regain the bus only after the HOLD is removed. When the HOLD is acknowledged. the Address. Data $\overline{R D}$. $\overline{W R}$, and $10 / \bar{M}$ lines are 3-stated.
ALE	0	Address Latch Enable: It occurs during the first clock state of a machine cycle and enables the address to get latched into the on-chip latch of periphwials The falling edge of ALE is set to guarantee setup and hold times for the address information. The falling edge of ALE can also be used to strobe the status information. ALE is neyer 3 - \boldsymbol{y}, ied.			
$\mathrm{S}_{0}, \mathrm{~S}_{1}$, and $10 / \overline{\mathrm{M}}$	0	Machine Cycle Status:	HLDA	0	Hold Acknowledge: Indicates that the cpu has received the HOLD request and that it will relinquish the bus in the next clock cycle HL.DA goes low after the Hold request is removed. The cpu takes the bus one half clock cycle after HLDA goes low.
		Acknowledge 0 O Halt $x \quad x$ Hold $X \quad X$ Reset - = 3-state (high impedance) $X=$ unspecified S_{1} can be used as an advanced R / \bar{W} status. $10 / \bar{M}, S_{0}$ and S_{1} become valid at the beginning of a machine cycle and remain stable throughout the cycle The falling edge of ALE may be used to latch the state of these lines.	INTR	1	Interrupt Request: is used as a general purpose interrupt it is sampled only during the next to the last clock cycle of an instruction and during Hold and Halt states if it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.
$\overline{\mathrm{RD}}$	0	Read Control: A low level on $\overline{R D}$ indicates the selected memory or I/O device is to be read and that the Data Bus is available for the data transfer, 3-stated during Hold and Halt modes and during RESET	$\overline{\text { INTA }}$	0	Interrupt Acknowledge: Is used instead of (and has the same timing as) $\overline{R D}$ during the instruction cycle after an INTR is accepted. It can be used to activate an 8259A Interrupt chip or some other interrupt port.
$\bar{W} \bar{A}$	0	Write Control: A low level on WR indicates the data on the Data Bus is to be written into the selected memory or I/O location. Data is set up at the trailing edge of WR. 3stated during Hold and Halt modes and during RESET	RST 5.5 RST 6.5 RST 7.5	1	Restart Interrupts: These three inputs have the same timing as INTR except they cause an internal RESTART to be automatically inserted. The priority of these interrupts is ordered as shown in Table 2. These interrupts have a higher priority than INTR. In addition, they may be individually masked out using the SIM instruction.

Table 1. Pin Description (Continued)

Symbet	Type	Name and Function
TRAP	I	Trap: Trap interrupt is a non- maskable RESTART interrupt. It is recognized at the same time as INTR or RST 5.5-7.5. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any inter- rupt. (See Table 2.)
RESET IN	I	Reset In: Sets the Program Counter to zero and resets the Inter- rupt Enable and HLDA flip-flops. The data and address buses and the control lines are 3-stated during RESET and because of the asyn- chronous nature of RESET, the pro- cessor's internal registers and flags may be altered by RESET with un- predictable results. RESET IN is a Schmitt-triggered input, allowing connection to an R-C network tor power-on RESET delay (see Figure
3). Upon power-up, RESET IN must		
remain low for at least 10 ms after		
minimum Vcc has been reached.		
For proper reset operation after the		
power-up duration, RESET IN		
should be kept low a minimum of		
threeclock periods. The CPU is held		
in the reset condition as long as		
RESET IN is applied.		

Symbol	Type	Name and Function
RESET OUT	0	Heset Out: Reset Out indicates cpu is being reset. Can be used as a system reset. The signal is synchronized to the processor clock and lasts an integral number ol clock periods.
$\mathrm{X}_{1}, \mathrm{X}_{2}$	1	X_{1} and X_{2} : Are connected to a crystal. LC, or AC network to drive the internal. clack $^{\text {nch }}$ generator. X_{1} can also be ant_...rnal clock input from a logic gate. The input frequency is divided by 2 to give the processor's internal operating frequency.
CLK	,	Clock: Clock output for use as a system clock. The period of CLK is twice the X_{1}, X_{2} input period.
SID	1	Serial Input Data Line: The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.
SOD	0	Serial Output Data Line: The output SOD is set or reset as specified by the SIM instruction.
$\mathrm{V}_{\text {CC }}$		Power: + 5 volt supply.
$V_{\text {SS }}$		Ground: Reference.

Table 2. Interrupt Priority, Restart Address, and Sensitivity

Name	Priority	Address Branched To (1) When Interrupt Occurs	Type Trigger
TRAP	1	24 H	Rising edge AND high level until sampled.
RST 7.5	2	3 CH	Rising edge ilatched.
RST 6.5	3	34 H	High level until sampled.
RST 5.5	4	2 CH	High level until sampled.
INTR	5	See Note $2 \cdot$	High level until sampled.

NOTES:

1. The processor pushes the PC on the stack before branching to the indicated address.
2. The address branched to depends on the instruction provided to the cpu when the interrupt is acknowledged.

TYPICAL POWER-ON RESET RC VALUES*
$R_{1}=75 \mathrm{~K} \Omega$
$C_{1}=1 \mu \mathrm{~F}$

- Values may have to vary due to

APPLIED POWER SUPPLY RAMP UP TIME.

8085AH/8085AH-2/8085AH-1

FUNCTIONAL DESCRIPTION

The 8085AH is a complete 8 -bit parallel central processor. It is designed with N -channel, depletion load, silicon gate technology (HMOS), and requires a single +5 volt supply. Its basic clock speed is 3 MHz (8085AH), 5 MHz (8085AH-2), or 6 MHz (8085AH-1), thus improving on the present 8080A's performance with higher system speed. Also it is designed to fit into a minimum system of three IC's: The CPU (8085AH), a RAM/IO (8156H), and a ROM or EPROM/IO chip (8355 or 8755A).

The 8085AH has twelve addressable 8-bit registers. Four of them can function only as two 16 -bit register pairs. Six others can be used interchangeably as 8 -bit registers or as 16 -bit register pairs. The 8085AH register set is as follows:

Mnemonic	Register	Contents
ACC or A	Accumulator	8 bits
PC	Program Counter	16-bit address
BC,DE,HL	General-Purpose Registers; data pointer (HL)	$\begin{aligned} & 8 \text { bits } \times 6 \text { or } \\ & 16 \text { bits } \times 3 \end{aligned}$
SP	Stack Pointer	16-bit address
Flags or F	Fiag Register	5 flags (8-bit space)

The 8085AH uses a multiplexed Data Bus. The address is split between the higher 8 -bit Address Bus and the lower 8 -bit Address/Data Bus. During the first T state (clock cycle) of a machine cycle the low order address is sent out on the Address/Data bus. These lower 8 bits may be latched externally by the Address Latch Enable signal (ALE). During the rest of the machine cycle the data bus is used for memory or I/O data.

The 8085AH provides $\overline{R D}, \overline{W R}, S_{0}, S_{1}$, and $10 / \bar{M}$ signals for bus control. An Interrupt Acknowiedge signal ($\overline{\mathbb{N T A}}$) is also provided. HOLD and all Interrupts are synchronized with the processor's internal clock. The 8085AH also provides Serial Input Data (SID) and Serial Output Data (SOD) lines for simple serial interface.

In addition to these features, the 8085AH has three maskable, vector interrupt pins, one nonmaskable TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT AND SERIAL I/O

The 8085AH has 5 interrupt inputs: INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. INTR is identical in function to the 8080A INT. Each of the three RESTART inputs, $5.5,6.5$, and 7.5 , has a programmable mask. TRAP is also a RESTART interrupt but it is nonmaskable.

The three maskable interrupts cause the internal execution of RESTART (saving the program counter in the stack and branching to the RESTART address) if the interrupts are enabled and if the interrupt mask is not set. The nonmaskable TRAP causes the internal execution of a RESTART vector independent of the state of the interrupt enable or masks. (See Table 2.)

There are two different types of inputs in the restart interrupts. RST 5.5 and RST 6.5 are high levelsensitive like INTR (and INT on the 8080) and are recognized with the same timing as INTR. RST 7.5 is rising edge-sensitive.

For RST 7.5, only a pulse is required to set an internal flip-flop which generates the internal interrupt request (a normally high level signal with a low going pulse is recommended for highest system noise immunity). The RST 7.5 request flip-flop remains set until the request is serviced. Then it is reset automatically. This flip-flop may also be reset by using the SIM instruction or by issuing a RESET IN to the 8085AH. The RST 7.5 internal flipflop will be set by a pulse on the RST 7.5 pin even when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only be affected by the SIM instruction and RESET IN. (See SIM, Chapter 5 of the MCS-80/85 User's Manual.)

The interrupts are arranged in a fixed priority that determines which interrupt is to be recognized if more than one is pending as follows: TRAPhighest priority, RST 7.5, RST 6.5, RST 5.5, INTRlowest priority. This priority scheme does not take into account the priority of a routine that was started by a higher priority interrupt. RST 5.5 can interrupt an RST 7.5 routine if the interrupts are re-enabled before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events such as power failure or bus error. The TRAP input is recognized just as any other interrupt but has the highest priority. It is not affected by any flag or mask. The TRAP input is both edge and level sensitive. The TRAP input must go high and remain high until it is acknowledged. It will not be recognized again until it goes low, then high again. This avoids any false triggering due to noise or logic glitches. Figure 4 illustrates the TRAP interrupt request circuitry within the 8085AH. Note that the servicing of any interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR) disables all future interrupts (except TRAPs) until an El instruction is executed

Figure 4. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables interrupts, but preserves the previous interrupt enable status. Performing the first RIM instruction following a TRAP interrupt allows you to determine whether interrupts were enabled or disabled prior to the TRAP. All subsequent RIM instructions provide current interrupt enable status. Performing a RIM instruction following INTR, or RST $5.5-7.5$ will provide current Interrupt Enable status, revealing that Interrupts are disabled. See the description of the RIM instruction in the MCS-80/85 Family User's Manual.

The serial I/O system is also controlled by the RIM and SIM instructions. SID is read by RIM, and SIM sets the SOD data.

DRIVING THE X_{1} AND X_{2} INPUTS

You may drive the clock inputs of the 8085AH, 8085AH-2, or 8085AH-1 with a crystal, an LC tuned circuit, an RC network, or an external clock source. The crystal frequency must be at least $1 . \mathrm{MHz}$, and must be twice the desired internal clock frequency; hence, the 8085AH is operated with a 6 MHz crystal (for 3 MHz clock), the 8085AH-2 operated with a 10 MHz crystal (for 5 MHz clock), and the 8085AH-1 can be operated with a 12 MHz crystal (for 6 MHz clock). If a crystal is used, it must have the following characteristics:

Parallel resonance at twice the clock frequency desired
C_{L} (load capacitance) $\leqslant 30 \mathrm{pF}$
C_{S} (shunt capacitance) $\leqslant 7 \mathrm{pF}$
R_{S} (equivalent shunt resistance) $\leqslant 75$ Ohms
Drive level: 10 mW
Frequency tolerance: $\pm .005 \%$ (suggested)
Note the use of the 20 pF capacitor between X_{2} and ground. This capacitor is required with crystal frequencies below 4 MHz to assure oscillator startup at the correct frequency. A parallel-resonant LC circuit may be used as the frequency-determining network for the 8085AH, providing that its frequency tolerance of approximately $\pm 10 \%$ is acceptable. The components are chosen from the formula:

$$
f=\frac{1}{2 \pi \sqrt{L\left(C_{e x t}+C_{i n t}\right)}}
$$

To minimize variations in frequency, it is recommended that you choose a value for $\mathrm{C}_{\text {ext }}$ that is at least twice that of $\mathrm{C}_{\text {int }}$, or 30 pF . The use of an LC circuit is not recommended for frequencies higher than approximately 5 MHz .

An RC circuit may be used as the frequencydetermining network for the 8085AH if maintaining a precise clock frequency is of no importance. Variations in the on-chip timing generation can cause a wide variation in frequency when using the RC mode. Its advantage is its low component cost. The driving frequency generated by the circuit shown is approximately 3 MHz . It is not recommended that frequencies greatly higher or lower than this be attempted.

Figure 5 shows the recommended clock driver circuits. Note in D and E that pullup resistors are required to assure that the high level voltage of the input is at least 4 V and maximum low level voltage of 0.8 V .

For driving frequencies up to and including 6 MHz you may supply the driving signal to X_{1} and leave X_{2} open-circuited (Figure 5D). If the driving frequency is from 6 MHz to 12 MHz , stability of the clock generator will be improved by driving both X_{1} and X_{2} with a push-pull source (Figure 5E). To prevent self-oscillation of the 8085AH, be sure that X_{2} is not coupled back to X_{1} through the driving circuit.

Figure 5. Clock Driver Circults

GENERATING AN 8085AH WAIT STATE

If your system requirements are such that slow memories or peripheral devices are being used, the circuit shown in Figure 6 may be used to insert one WAIT state in each 8085AH machine cycle.

The D flip-flops should be chosen so that

- CLK is rising edge-triggered
- CLEAR is low-level active.

-ALE NDD CUK (OUT) SHOULD BE BUFFEAED F CUK WPUT OF LATCH EXCEEDS BOHSNH IOL OR IOH

Figure 6. Generation of a Walt State for 8085AH CPU

Figure 8. MCS-85* Minimum System (Memory Mapped I/O)

Figure 9. MCS-85* System (Using Standard Memories)

8085AH/8085AH-2/8085AH-1

As in the 8080, the READY line is used to extend the read and write pulse lengths so that the 8085AH can be used with slow memory. HOLD causes the CPU to relinquish the bus when it is through with it by floating the Address and Data Buses.

SYSTEM INTERFACE

The 8085AH family includes memory components, which are directly compatible to the 8085AH CPU. For example, a system consisting of the three chips, 8085AH, 8156 H , and 8355 will have the following features:

- 2K Bytes ROM
- 256 Bytes RAM
- 1 Timer/Counter
- 4 8-bit I/O Ports
- 16 -bit I/O Port
- 4 Interrupt Levels
- Serial In/Serial Out Ports

This minimum system, using the standard I/O technique is as shown in Figure 7.

In addition to standard I/O, the memory mapped I/O offers an efficient I/O addressing technique. With this technique, an area of memory address space is assigned for I/O address, thereby, using the memory address for I/O manipulation. Figure 8 shows the system configuration of Memory Mapped I/O using 8085AH.

The 8085AH CPU can also interface with the standard memory that does not have the multiplexed address/data bus. It will require a simple 8212 (8-bit latch) as shown in Figure 9.

Figure 7. 8085AH Minimum Svstem (Standard I/O Technique)

8085AH/8085AH-2/8085AH-1

BASIC SYSTEM TIMING

The 8085AH has a multiplexed Data Bus. ALE is used as a strobe to sample the lower 8 -bits of address on the Data Bus. Figure 10 shows an instruction fetch, memory read and I/O write cycle (as would occur during processing of the OUT instruction). Note that during the I/O write and read cycle that the I/O port address is copied on both the upper and lower half of the address.

There are seven possible types of machine cycles. Which of these seven takes place is defined by the status of the three status lines $\left(1 O / \bar{M}, S_{1}, S_{0}\right)$ and the three control signals ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and INTA). (See Table 3.) The status lines can be used as advanced controls (for device selection, for example), since they become active at the T_{1} state, at the outset of each machine cycle. Control lines RD and WR become active later, at the time when the transfer of data is to take place, so are used as command lines.

A machine cycle normally consists of three T states, with the exception of OPCODE FETCH, which normally has either four or six T states (unless WAIT or HOLD states are forced by the receipt of READY or HOLD inputs). Any T state must be one of ten possible states, shown in Table 4.

Table 3. 8085AH Machine Cycle Chart

MACHINE CYCLE		STATUS			CONTROL		
		10/M	S1	SO	- $\overline{\text { D }}$	W下	INTA
OPCODE FETCH	(OF)	0	1	1	0	1	1
MEMORY READ	(MR)	0	1	0	0	1	1
MEMORY WRITE	(MW)	0	0	1	1	0	1
I/O READ	(IOR)	1	1	0	0	1	1
I/O WRITE	(IOW)	1	0	1	1	0	1
ACKNOWLEDGE							
OF INTR	(INA)	1	1	1	1	1	0
BUS IDLE	(BI). DAD	0	1	0	1	1	1
	ACK. OF						
	RST, TRAP HALT	$\stackrel{1}{T S}$	1	1	$\stackrel{1}{\text { TS }}$	TS	1

Table 4. 8085AH Machine State Chart

Machine State	Status \& Buses				Control		
	s1,S0	10/M	$A_{8}-A_{15}$	$A D_{0}-A D_{7}$	$\overline{\mathrm{R}} \mathbf{D}, \overline{W R}$	INTA	ALE
T_{1}	x	X	X	X	1	1	$1 *$
T_{2}	x	x	x	x	x	x	0
Twalt	x	x	x	x	x	x	0
T_{3}	x	x	x	X	X	x	0
T_{4}	1	0 .	x	TS	1	1	0
T_{5}	1	0.	x	TS	1	1	0
T_{6}	1	0.	X	TS	1	1	0
Treset	x	TS	TS	TS	TS	1	0
THALT	0	TS	; TS	TS	TS	1	0
$\mathrm{T}_{\text {HOLD }}$	X	TS	: TS	TS	TS	1	0

$\begin{array}{lr}0=\text { Logic " } 0 \text { " } & \text { TS }=\text { High Impedence } \\ 1=\text { Logic " } 1 " & X=\text { Unspucified }\end{array}$

- ALE not generated during 2 nd and 3 rd machine cycles of DAD instruction
$+10 / \mathrm{M}=1$ during $\mathrm{T}_{4}-\mathrm{T}_{6}$ of INA machine cycle

Figure 10. 80e5AH Basic System Timing

Table 6. Instruction Set Summary

Mnemonic								D_{0}	Operations Description
MOVE, LOAD, AND STORE									
MOVr1 12	0	1	D	D	D	5	S	S	Move register to register Move register to memory Move memory to register Move immediate register Move immediate memory Load immediate register Pair B \& C
MOV M.r	0	1	1	1	0	S	S	S	
MOV r.M	0	1	D	D	D	1	1	0	
MVI ${ }^{\text {r }}$	0	0	D	D	D	1	1	0	
MVI M	0	0	1	1	0	1	1	0	
UXIB	0	0	0	0	0	0	0	1	
LXID	0	0	0	1	0	0	0	1	Load immedıate register Pair D \& E
LXiH	0	0	1	0	0	0	0	1	Load immediate register Pair H\& L
Stax B	0	0	0	0	0	0	1	0	Store A indirect Store A indirect
STAX D	0	0	0	1	0	0	1	0	
LDAX B	0	0	0	0	1	0	1	0	Load A indirect
LDAX D	0	0	0	1	1	0	1	0	Load \mathbf{A} indirect
STA	0	0	1	1	0	0	1	0	Store A direct
LDA	0	0	1	1	1	0	1	0	Load A direct
SHLD	0	0	1	0	0	0	1	0	Store H \& L direct
LHLD	0	0	1	0	1	0	1	0	Load H\& L direct Exchange $D \& E . H \& L$ Registers
XCHG	1	1	1	0	1	0	1	1	
STACK OPS									Push register Pair B \& C on stack Push register Pair D \& E on stack
PUSH B	1	1	0	0	0	1	0	1	
PUSH D	1	1	0	1	0	1	0	1	
PUSH H	1	1	1	0	0	1	0	1	Push register Pair H \& L on stack
FUSH PSW	1	1	1	1	0	1	0	1	Push A and Flags on stack
POP B	1	1	0	0	0	0	0	1	Pop register Pair B \& C off stack
POP D	1	1	0	1	0	0	0	1	Pop register Pair O \& E off stack
POP H	1	1	1	0	0	0	0	1	Pop register Pair H \& L off stack
POP PSW	1	1	1	1	0	0	0	1	Pop A and Flags off stack
XTHL	1	1	1	0	0	0	1	1	Exchange top of stack. H\& L
SPHL	1	1	1	1	1	0	0	1	H\& L to stack pointer
LXI SP	0	0	1	1	0	0	0	1	Laad immediate stack pointer
INX SP	0	0	1	1	0	0	1	1	Increment stack pointer Decrement stack pointer
DCX SP	0	0	1	1	1	0	1	1	
JUMP									
JMP	1	1	0	0	0	0	1	1	Jump unconditional Jump on carry Jump on no carry Jump on zero Jump on no zero Jump on positive Jump on minus Jump on parity even Jump on parity odd H\& L to program counter
JC	1	1	0	1	1	0	1	0	
JNC	1	1	0	1	0	0	1	0	
JZ	1	1	0	0	1	0	1	0	
JNZ	1	1	0	0	0	0	1	0	
JP	1	1	1	1	0	0	1	0	
JM	1	1	1	1	1	0	1	0	
JPE	1	1	1	0	1	0	1	0	
JPO	1	1	1	0	0	0	1	0	
PCHL	1	1	1	0	1	0	0	1	
CALL									
CALL	1	1	0	0	1	1	0	1	Call unconditional Call on carry Call on no carry
CC	1	1	0	1	1	1	0	0	
CNC	1	1	0	1	0	1	0	0	

Mnemonic			$\begin{gathered} \text { Inatr } \\ D_{5} \end{gathered}$					D_{0}	Operations Description
CZ	1	1	0	0	1	1	0	0	Call on zero
CNZ	1	1	0	0	0	1	0	0	Call on no zero
CP	1	1	1	1	0	1	0	0	Call on positive
CM	1	1	1	1	1	1	0	0	Call on minus
CPE	1	1	1	0	1	1	0	0	Call on parity even
CPO	1	1	1	0	0	1	0	0	Call on parity odd
RETURN									
RET	1	1	0	0	1	0	0	1	Return
RC	1	1	0	1	1	0	0	0	Return on carry
RNC	1	1	0	1	0	0	0	0	Return on no carry
RZ	1	1	0	0	1	0	0	0	Return on zero
RNZ	1	1	0	0	0	0	0	0	Return on no zero
RP	1	1	1	1	0	0	0	0	Return on positive
RM	1	1	1	1	1	0	0	0	Return on minus
RPE	1	1	1	0	1	0	0	0	Return on parity even
RPO	1	1	1	0	0	0	0	0	Return on parity odd
$\begin{aligned} & \text { RESTART } \\ & \text { RST } \\ & \hline \end{aligned}$	1	1	A	A	A	1	1	1	Restart
INPUT/OUTPUT									
IN	1	1	0	1	1	0	\dagger	1	Input
OUT	1	1	0	1	0	0	1	1	Output
INCREMENT AND DECREMENT									
DCR r		0	D	D	D	1	0	1	increr
INR M		0	1	1	0	1	0	0	Increment memory
DCR M		0	1	1	0	1	0	1	Decrement memory
INX B		0	0	0	0	0	1	1	increment B \& C registers
INX D	0	0	0	1	0	0	1	1	Increment D\&E registers
INXH	0	0	1	0	0	0	1	1	Increment H\& L registers
DCX B	0	0	0	0	1	0	1	1	Decrement B \& C
DCX 0	0	0	0	1	1	0	1	1	Decrement D\&E
DCX H	0	0	1	0	1	0	1	1	Decrement H \& L
ADD									
				$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	
ADC ${ }^{\text {r }}$			0					S	with carry
ADO M		0	C	0	0	1	1	0	Add memory to A
ADC M		0	0	0	1	1	1	0	Add memory to A with carry
AD	1	1	0	0	0	1	1	0	Add immediate to A
ACl		1	0	0	1	1	1	0	Add immediate to A with carry
DAD 8	0	0	0	0	1	0	0	1	Add B \& C to H\& L
DAD D	0	0	0	1	1	0	0	1	Add D \& E to H\&L
DAD H	0	0	1	0	1	0	0	1	Add H\& L to H\& L.
DAD SP	0	0		1	1	0	0	1	Add stack pointer to H\&L
SUBTRACT									
SUB r			0	1	0	S	S	5	Subtract register from A
SB8 r		0	0	1	1	S	S	S	Subtract register from A with borrow
SUB M		0	0	1	0	1	1	0	Subtract memory from A
SBB M		0	0	1	1	1	1	0	Subtract memory from A with borrow
Sut		1	0	1	0	1	1	0	Subtract immediate from A
S81	1	1	0	1	1	1	1	0	Subtract immediate from A with borrow

Table 6. Instruction Set Summary (Continued)

Mremonic	D_{7}								Operations Description
SPECIALS CMA	0	0	1	0	1	1	1	1	Complement A
STC	0	0	1	1	0	1	1	1	Set carry
CMC	0	0	1	1	1	1	1	1	Complement carry
DAA	0	0	1	0	0	1	1	1	Decimal adjust A
$\begin{aligned} & \text { CONTROL } \\ & \text { EI } \end{aligned}$	1	1	1	1	1	0	1	1	Enable Interrupts
Di	1	1	1	1	0	0	1	1	Disable Interrupt
NOP	0	0	0	0	0	0	0	0	No-operation
HLT	0	1	1	1	0	1	1	0	Hatt
NEW 8085A INSTRUCTIONS									
RIM	0	0	1	0	0	0	0	0	Read Interrupt Mask
SIM	0	0	1	1	0	0	0	0	Set Interrupt Mask

NOTES:

1. DDS or SSS: B 000, C 001, D 010. E011. H.100. L 101. Memory 110. A 111
2. Two possible cycle times $(6 ; 12)$ indicate instruction cycles dependent on condition flags.
-All mnemonics copyrighted (c) Intel Corporation 1976

NEW CONDITION CODES
Conctition code format S Z $\times 5$ $A C$ 0 P V

DSUB (double subtraction)
$(H)(L)=(H)(L)-(B) \therefore)$
The contents of register pair 8 and C are subtracted rom the contents of register pair H and L . The result is placed in register pair H and L All condition flags are affected.

000	0	0	1	0	0

ARHL farithmetic shift of H and L to the right)
$(\mathrm{H} 7=\mathrm{H} 7),(\mathrm{Hn}-1)=(\mathrm{Hn})$
$(\mathrm{L} 7=\mathrm{Ho}),(\mathrm{Ln}-1)=(\mathrm{Ln}),(\mathrm{CY})=(\mathrm{Lo})$
The contents of register pair H and L are shifted right one bit
The uppermost bit is duplicated and the lowest bit is shifted
into the carry bit. The result is placed in register pair H and L. Note only the CY flag is affected

RDEL (rotate D and E left through carry)
$\left(D_{n}+1\right)=\left(D_{n}\right) ;\{$ Do $\left.)=(E\rangle\right)$
$(C Y)=(D 7),(E n+1)=(E n),(E 0)=(C Y)$
The contents of register pair D and E are rotated left one position through the carry flag. The low order bit is set equal to the CY flag and the CY flay is set to the value shifted out
of the high order bit Oniy the CY and the V flags are affected

0	0	0	1	1	0	0	0
cycles				3			
states			10				
addressing			register				
flags			CY, V				

LDHI lload D and E with H and L plus immediate byte) (D) $(E)=(H)(L)+$ (byte 2$)$

The contents of register pair H and L are added to the immediate byte The result is placed in register pair D and E. Note. no condition flags are affected.

LDSI (load D and E with SP plus immediate byte)
(D) $(E)=(S P H)(S P L)+($ byte 2$)$

The contents of register pair SP are added to the immediate byte. The result is placed in register pair D and E. Note: no condition flags are affected.

0	0	1	1	1	0	0
		0				
	data					

s complement overflow
Underflow (DCX: or overfiow (INX)
$X 5=01 \cdot 02+01 \cdot R+02 \cdot R$, where
$01=\operatorname{sign}$ of operand $1.02=\operatorname{sign}$ of operand 2 .
$R=$ sign oi result for subtraction and comparisons
replace 02 with 02
RSTV (restart on overflow)
($(S P)-1)=(P C H)$
$((S P)-2)=(P C L)$
$(S P)=(S P)-2$
$(\mathrm{PC})=40$ he
If the overflow flag V is set, the actions specified above are performed; otherwise control continues sequentially.

SHLX (store H and L indirect through O and E)
(D D) (E)) $=(L)$
(D) $(E)+1)=(H)$

The contents of register L are moved to the memory iocation whose address is in register pair D and E. The contents of register H are moved to the succeeding memory location

1	1	0	1	1	0	0	1		
cycles			3						
states									
addressing									
flags								\quad	10
:---	:---								
register indirect									
none	\quad (09)								

JNX5 (jump on not $\times 5$) If (not X5)

$$
(P C)=(\text { byte } 3)(\text { byte } 2)
$$

If the $\times 5$ fiag is reset control is transferred to the instruction whose address is specified in byte 3 and byte 2 of the curren instruction, otherwise control continues sequentially.

low-order address	
high order address	
cycles: states. addressing flags	$\begin{aligned} & 2 \text { or } 3 \\ & 7 \text { or } 10 \\ & \text { immediate } \\ & \text { none } \end{aligned}$

(DD)

HLX (load H and L indirect through D and $E)$
$(L)=($ (D) $(E) \mid$
$(H)=((D)(E)+1$
The content of the memory location whose address is in D and \mathcal{E}, are moved to register L. The contents of the succeeding memory location are moved to register H.

$$
\left.\begin{array}{llllll}
\hline \begin{array}{llllll}
\hline 1 & 1 & 1 & 0 & 1 & 1
\end{array} & 0 & 1
\end{array}\right] \quad \text { (ED) }
$$

If (X5)
If the $\times 5$ flag is reset, control is transferred to the instruction whose address is specified in bytel 3 and byte 2 of the curren instruction, otherwise confrol continues sequentially

1	1	1	1	1	1	0	1
low-order	address						
high-order address							
cycles:			2 or 3				
states:		7 or 10					
addressing:		immediate					
flags:		none					

WAVEFORMS

8155H/8156H/8155H-2/8156H-2 2048-BIT STATIC HMOS RAM WITH I/O PORTS AND TIMER

\author{

- Single +5V Power Supply with 10\% Voltage Margins
 - 30\% Lower Power Consumption than the 8155 and 8156
 - 100\% Compatible with 8155 and 8156
 - 256 Word x 8 Bits
 - Completely Static Operation
 - Internal Address Latch
 - 2 Programmable 8-Bit I/O Ports
}
- 1 Programmable 6-Bit I/O Port
- Programmable 14-Bit Binary Counter/ Timer
- Compatible with 8085AH, 8085A and 8088 CPU
- Multiplexed Address and Data Bus
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel ${ }^{8155 H}$ and 8156 H are RAM and I / O chips implemented in N -Channel, depletion load, siticon gate technology (HMOS), to be used in the 8085AH and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256×8. They have a maximum access time of 400 ns to permit use with no wait states in 8085AH CPU.The $8155 \mathrm{H}-2$ and $8156 \mathrm{H}-2$ have maximum access times of 330 ns for use with the $8085 \mathrm{AH}-2$ and the 5 MHz 8088 CPU .'
The I/O portion consists of three general purposel/O ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshake mode.
A 14-bit programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.

Figure 1. Block Diagram

Figure 2. Pin Configuration

8155H/8156H/8155H-2/8156H-2

Table 1. Pin Description

Symbol	Type	Name and Function
RESET	1	Reset: Pulse provided by the 8085AH to initialize the system (connect to 8085AH RESET OUT). Input high on this line resets the chip and initializes the three I/O ports to input mode. The width of RESET pulse should typically be two 8085AH clock cycle times.
AD_{0-7}	1/O	Address/Data: 3-state Address/Data lines that interface with the CPU lower 8-bit Address/Data Bus. The 8 -bit address is latched into the address latch inside the $8155 \mathrm{H} / 56 \mathrm{H}$ on the falling edge of ALE. The address can be either for the memory section or the I/O section depending on the $10 / \bar{M}$ input. The 8 -bit data is either written into the chip or read from the chip. depending on the $\overline{W R}$ or $\overline{R D}$ inpuif signal.
$C E$ or $\overline{C E}$	1	Chip Enable: On the 8155H, this pin is $\overline{\mathrm{CE}}$ and is ACTIVE LOW. On the 8156H, this pin is CE and is ACTIVE HIGH.
$\overline{R D}$	1	Read Control: Input low on this line with the Chip Enabie active enables and $A D_{0-7}$ buffers. If $10 / \bar{M}$ pin is low, the RAM content will be read out to the AD bus. Otherwise the content of the selected I/O port or command/status registers will be read to the AD bus
$\overline{W R}$	1	Write Control: Input low on this line with the Chip Enable active causes the data on the Address/Data bus to be written to the RAM or I/O ports and command/status register, depending on $10: \bar{M}$.
ALE	1	Address Latch Enable: This control signal latches both the address on the $A D_{0-7}$ lines and the state of the Chip Enable and $I \mathrm{C} / \overline{\mathrm{M}}$ into the chip at the falling edge of ALE.
$10 / \bar{M}$	1	1/O Memory: Selects memory if low and I/O and command/status registers if high.
$\mathrm{PA}_{0-7}(8)$	$1 / \mathrm{O}$	Port A: These 8 pins are general purpose I / O pins. The in'out direction is selected by programming the command register.
$\mathrm{PB}_{0-7}(8)$	1/0	Port B: These 8 pins are general purpose $1 / O$ pins. The in/out direction is selected by programming the command register.
$\mathrm{PC}_{0-5}(6)$	110	Port C: These 6 pins can function as either input port, output port, or as control signals for PA and PB. Programming is done through the command register. When PC_{0-5} are used as control signals, they will provide the following: $\mathrm{PC}_{0}-\mathrm{A}$ INTR (Port A Interrupt) PC_{1} - ABF (Port A Buffer Full) $\mathrm{PC}_{2}-\overline{\mathrm{ASTB}}$ (Port A Strobe) $\mathrm{PC}_{3}-\mathrm{B}$ INTR (Port B Interrupt) $\mathrm{PC}_{4}-\mathrm{B} \mathrm{BF}$ (Port B Buffer. Full) PC_{5} - $\overline{\mathrm{BSTB}}$ (Port B Strobe)
TIMERIN	1	Timer Input: Input to the counter-timer.
TIMER OUT	0	Timer Output: This output can be either a square wave or a pulse, depending on the timer mode.
$\mathrm{V}_{C C}$		Voltage: - 5 volt supply.
$\mathrm{V}_{S S}$		Ground: Ground reference.

FUNCTIONAL DESCRIPTION

The $8155 \mathrm{H} / 8156 \mathrm{H}$ contains the following:

- $2 k$ Bit Static RAM organized as 256×8
- Two 8-bit I/O ports / PA \& PB and one 6-bit I/Oport IPC,
- 14-bit tim coun'

The IO/M $10 /$ Memory Select pin selects either the five registers Command, Status, $\mathrm{PA}_{0-7}, \mathrm{~PB}_{0-7}, \mathrm{PC}_{0-5}$ or the memory RAM portion.

The 8 -bit address on the Address/Data lines, Chip Enable input $C E$ or $\overline{C E}$, and $10 / \bar{M}$ are all latched on-chip at the falling edge of ALE.

Figure 3. $\mathbf{8 1 5 5 H} / \mathbf{8 1 5 6 H}$ Internal Registers

Figure 4. 8155H/8156H On-Board Memory Read/Write Cycie

PROGRAMMING OF THE COMMAND REGISTER

The command register consists of eight latches. Four bits $0-3$ define the mode of the ports, two bits $14-5$ । enable or disable the interrupt from port C when it acts as control port, and the last two bits $6-7$, are for the timer

The command register contents can be altered at any time by using the I/O address XXXXXXOOO during a WRITE operation with the Chip Enable active and $I O / \bar{M}=1$. The meaning of each bit of the command byte is defined in Figure 5. The contents of the command register may never be read.

READING THE STATUS REGISTER

The status register consists of seven latches, one for each bit: six $0-5$, for the status of the ports and one 6 , for the status of the timer
The status of the timer and the I/O section can be polled by reading the Status Register (Address XXXXX000). Status word format is shown in Figure 6. Note that you may never write to the status register since the command register shares the same I/O address and the command register is selected when a write to that address is issued.

Figure 5. Command Register Bit Assignment

Figure 6. Status Register Bit Assignment

INPUT/OUTPUT SECTION

The I/O section of the $8155 \mathrm{H} / 8156 \mathrm{H}$ consists of five regis-* ters: (See Figure 7.)

- Command/Status Register (C/S) - Both registers are assigned the address XXXXX000. The C/S address serves the dual purpose.
When the C/S registers are selected during WRITE operation, a command is written into the command register. The contents of this register are not accessible through the pins.
When the C/S ($X X X X X 000$) is selected during a READ operation, the status information of the $1 / O$ ports and the timer becomes available on the AD_{0-7} lines.
- PA Register - This register can be programmed to be either input or output ports depending on the status of the contents of the C/S Register. Also depending on the command, this port can operate in either the basic mode or the strobed mode (See timing diagram). The I/O pins assigned in relation to this register are PA0-7. The address of this register is $\mathrm{XXXXX001}$.
- PB Register - This register functions the same as PA Register. The I/O pins assigned are PB_{0-7}. The address of this register is $\mathbf{X X X X X 0 1 0 .}$
- PC Register - This register has the address $X X X X X 011$ and contains only 6 bits. The 6 bits can be programmed to be either input ports, output ports or as control signals for PA and PB by properly programming the $A D_{2}$ and $A D_{3}$ bits of the C / S register.
When PC_{0-5} is used as a control port, 3 bits are assigned for Port A and 3 for Port B. The first bit is an
interrupt that the 8155 H sends out. The second is an output signal indicating whether the buffer is full or empty, and the third is an input pin to accept a strobe for the strobed input mode. (See Table 2.)
When the ' C ' port is programmed to either ALT3 or ALT4, the control signals for PA and PB are initialized as follows:

CONTROL	INPUT MODE	OUTPUT MODE
BF	Low	Low
INTR	Low	High
STB	Input Control	Input Control

I/O ADDRESS ${ }^{+}$								SELECTION
A7	A6	A5	A4	A3	A2	A1	AO	
X	X	X	X	x	0	0	0	Interval Command Status Register
x	x	X	x	X	0	0	1	General Purpose 10 Port A
x	x	x	x	x	0	:	0	General Purpose 1 O Port B
\times	x	x	x	x	0	1	1	Port C-General Purpose 10 or Control
x	x	x	x	x	1	0	0	Low-Order 8 bits of Timer Count
x	\times	x	X	x	1	0	1	High 6 bits of Timer Count and 2 bits of Timer Mode

x Don't Care
i: I/OAddress must be quallied by $C E=1(8156 \mathrm{H})$ or $C E=0(8155 \mathrm{H})$ and $10 / \overline{\mathrm{M}}=1 \mathrm{in}$ order to select the appropriate register.

Figure 7. I/O Port and Timer Addressing Scheme

Figure 8 shows how I/O PORTS A and B are structured within the 8155H and 8156H:

Figure 8. 8155H/8156H Port Functions

8155H/8156H/8155H-2/8156H-2

Table 2. Port Control Assignment

Pin	ALT 1	ALT 2	ALT 3	ALT 4
PC0	Input Port	Output Port	A INTR (Port A Interrupt)	A INTR : Port A Interrupt/
PC1	Input Port	Output Port	A BF (Port A Buffer Full)	A BF Port A Buffer Full
PC2	Input Port	Output Port	A STB Port A Strobe)	A $\overline{\text { STB }}$, Port A Strobe,
PC3	Input Port	Output Port	Output Port	B INTR Port B Interrupt;
PC4	Input Port	Output Port	Output Port	B BF Port B Buffer Full)
PC5	Input Port	Output Port	Output Port	B $\overline{\text { STB }}$, Port B Strobe

Note in the diagram that when the I/O ports are programmed to be output ports, the contents of the output ports can still be read by a READ operation when appropriately addressed.

The outputs of the $8155 \mathrm{H} / 8156 \mathrm{H}$ are "glitch-free" meaning that you can write a "1" to a bit position that was previously " 1 " and the level at the output pin will not change.

Note also that the output latch is cleared when the port enters the input mode. The output latch cannot be loaded by writing to the port if the port is in the input mode. The result is that each time a port mode is changed from input to output, the output pins will go low. When the $8155 \mathrm{H} / 56 \mathrm{H}$ is RESET, the output latches are all cleared and all 3 ports enter the input mode.
When in the ALT 1 or ALT 2 modes, the bits of PORT C are structured like the diagram above in the simple input or output mode, respectively.

Reading from an input port with nothing connected to the pins will provide unpredictable results.

Figure 9 shows how the $8155 \mathrm{H} / 8156 \mathrm{H}$ I/O ports might be configured in a typical MCS-85 system.

Figure 9. Example: Command Register $=00111001$

TIMER SECTION

The timer is a 14-bit down-counter that counts the TIMER IN pulses and provides either a square wave or pulse when terminal count (TC) is reached.

The timer has the I/O address $X X X X \times 100$ for the low order byte of the register and the $1 / O$ address $X X X X X 101$ for the high order byte of the register. (See Figure 7.)

To program the timer, the COUNT LENGTH REG is loaded first, one byte at a time, by selecting the timer addresses. Bits $0-13$ of the high order count register will specify the length of the next count and bits 14-15 of the high order register will specify the timer output mode (see Figure 10). The value loaded into the count length register can have any value from 2 H through $3 F F H$ in Bits 0-13.

Figure 10. Timer Format

There are four modes to choose from: M2 and M1 define the timer mode, as shown in Figure 11.

Figure 11. Timer Modes

8155H/8156H/8155H-2/8156H-2

Bits 6-7 (TM_{2} and TM_{1}) of command register contents are used to start and stop the counter. There are four commands to choose from:

TM2	TM $_{1}$	
0	0	NOP - Do not affect counter operation.
0	1	STOP - NOP if timer has not started; stop counting if the timer is running.
1	0	STOP AFTER TC - Stop immediately after present TC is reached (NOP if timer has not started)
1	1	START - Load mode and CNT length and start immediately after loading (if timer is not presently running). If timer is running, start the new mode and CNT length immediately after present TC is reached.

Note that while the counter is counting, you may load a new count and mode into the count length registers. Before the new count and mode will be used by the counter, you must issue a START command to the counter. This applies even though you may only want to change the count and use the previous mode.

In case of an odd-numbered count, the first half-cycle of the squarewave output, which is high, is one count longer than the second (low) half-cycle, as shown in Figure 12.

note 5 and 4 REfER TO THE NUMBER OF CLOCKS in that time period

The counter in the 8155 H is not initialized to any particular mode or count when hardware RESET occurs, but RESET does stop the counting. Therefore, counting cannot begin following RESET until a START command is issued via the C/S register.

Please note that the timer circuit on the $8155 \mathrm{H} / 8156 \mathrm{H}$ chip is designed to be a square-wave timer, not an event counter. To achieve this, it counts down by twos twice in completing one cycle. Thus, its registers do not contain values directly representing the number of TIMER IN pulses received. You cannot load an initial value of 1 into the count register and cause the timer to operate, as its terminal count value is 10 (binary; or 2 (decimal). (For the detection of single pulses, it is suggested that one of the hardware interrupt pins on the 8085AH be used.) After the timer has started counting down, the values residing in the count registers can be used to calculate the actual number of TIMER IN pulses required to complete the timer cycle if desired. To obtain the remaining count, perform the following operations in order:

1. Stop the count
2. Read in the $\mathbf{1 6}$-bit value from the count length registers
3. Reset the upper two mode bits
4. Reset the carry and rotate right one position all 16 bits through carry
5. If carry is set, add $1 / 2$ of the full original count ($1 / 2$ full count - 1 if full count is odd).

Note: If you started with an odd count and you read the count length register before the third count pulse occurs, you will not be able to discern whether one or two counts has occurred. Regardless of this, the $8155 \mathrm{H} / 56 \mathrm{H}$ always counts out the right number of pulses in generating the TIMER OUT waveforms.

8155H/8156H/8155H-2/8156H-2

8085A MINIMUM SYSTEM CONFIGURATION

Figure 13 a shows a minimum system using three chips, containing:

- 256 Bytes RAM
- 2K Bytes ROM
- 38 I/O Pins
- 1 Interval Timer
- 4 Interrupt Levels

Figure 13a. 8085AH Minimum System Configuration (Memory Mapped I/O)

8155H/8156H/8155H-2/8156H-2

8088 FIVE CHIP SYSTEM

Figure 13b shows a tive chip system containing:

- 1.25K Bytes RAM
- 2K Bytes ROM
- 38 I/O Pins
- 1 Interval Timer
- 2 Interrupt Levels

Figure 13b. 8088 Five Chip System Configuration

8185/8185-2 1024×8-BIT STATIC RAM FOR MCS-85 ${ }^{\circ}$

- Multiplexed Address and Data Bus
- Directly Compatible with 8085A and IAPX 88 Microprocessors
- Low Operating Power Dissipation
- Low Standby Power Dissipation

■ Single $+5 V$ Supply
■ High Density 18-Pin Package

The Intel 8185 is an 8192 -bit static random access memory (RAM) organized as 1024 words by 8 -bits using N -channel Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to interface directly to the 8085A and iAPX 88 microprocessors to provide a maximum level of system integration.
The low standby power dissipation minimizes system power requirements when the 8185 is disabled.
The 8185-2 is a high-speed selected version of the 8185 that is compatible with the $5 \mathrm{MHz} 8085 \mathrm{~A}-2$ and the 5 MHz iAPX 88 .

FUNCTIONAL DESCRIPTION

The 8185 has been designed to provide for direct interface to the multiplexed bus structure and bus timing of the 8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8 bit address on $\mathrm{AD}_{0-7}, \mathrm{~A}_{3}$ and Ag , and the status of $\overline{\mathrm{CE}}_{1}$ and CE_{2} are all latched internally in the 8185 by the falling edge of ALE. If the latched status of both $\overline{C E_{1}}$ and $C E_{2}$ are active, the 8185 powers itself up, but no action occurs until the $\overline{\mathrm{CS}}$ line goes low and the appropriate $\overline{\mathrm{RD}}$ or $\overline{W R}$ control signal input is activated.
The $\overline{\mathrm{CS}}$ input is not latched by the 8185 in order to allow the maximum amount of time for address decoding in selecting the 8185 chip. Maximum power consumption savings will occur, however, only when $\overline{C E}_{1}$ and $C E_{2}$ are activated selectively to power down the 8185 when it is not in use. A possible connection would be to wire the 8085A's $10 / \bar{M}$ line to the 8185's $\overline{C E} 1$ input, thereby keeping the 8185 powered down during I/O and interrupt cycles.

Table 1.
Truth Table for Power Down and Function Enable

$\overline{\mathrm{CE}}_{1}$	CE_{2}	$\overline{\mathrm{CS}}$	$\left(\mathbf{C S}^{*}\right)^{[2]}$	8185 Status
1	X	X	0	Power Down and Function Disable $[1]$
X	0	X	0	Power Down and Function Disable $[1]$
0	1	1	0	Powered Up and Function Disable $[1]$
0	1	0	1	Powered Up and Enabled

NOTES:
X: Don't Care
1: Function Disable imnties Data Bus in high impedance state and not writing
2: $C S^{*}=(\overline{C E} 1=0) \cdot\left(C E_{2}=1\right) \cdot \overline{C S}=0$
CS* $=1$ signifies all chip enables and chip select active

Table 2.
Truth Table for Control and Data Bus Pin Status

(CS*)	$\overline{\text { RD }}$	$\overline{\text { WR }}$	AD Portion of Cycle	$\mathbf{8 1 8 5}$ Function
0	X	X	Hi-Impedance	No Function
1	0	1	Data from Memory	Read
1	1	0	Data to Memory	Write
1	1	1	Hi-Impedance	Reading, but not Driving Data Bus

NOTE:

X: Don't Care.

Figure 3. 8185 in an MCS-85 System

4 Chips:

2K Bytes ROM
1.25 K Bytes RAM

38 I/O Lines
1 Counter/Timer
2 Serial I/O Lines
5 Interrupt Inputs

8202A
 DYNAMIC RAM CONTROLLER

- Provides All Signals Necessary to Control 2117, or 2118 Dynamic Memories
- Directly Addresses and Drives Up to 64K Bytes Without External Drivers

■ Provides Address Multiplexing and Strobes

- Provides a Refresh Timer and a Refresh Counter
- Refresh Cycles May be Internally or Externally Requested
- Provides Transparent Refresh Capability
- Fully Compatible with Intel ${ }^{\circ}$ 8080A, 8085A, iAPX 88, and IAPX 86 Family Microprocessors
- Decodes CPU Status for Advanced Read Capability with the 8202A-1 or 8202A-3
- Provides System Acknowledge and Transfer Acknowledge Signals

■ Internal Clock Capability with the 8202A-1 or 8202A-3

The Intel ${ }^{8}$ 8202A is a Dynamic Ram System Controller designed to provide all signals necessary to use 2117 or 2118 Dynamic RAMs in microcomputer systems. The 8202A provides multiplexed addresses and address strobes, as well as refresh/access arbitration. The 8202A-1 or 8202A-3 support an internal crystal oscillator.

Figure 1. 8202A Block Diagram
Figure 2. Pin Configuration

8203
 64K DYNAMIC RAM CONTROLLER

- Provides All Signals Necessary to Control 64K and 16K Dynamic Memories
- Directly Addresses and Drives Up to 64 Devices Without External Drivers
- Provides Address Multiplexing and Strobes
- Provides a Refresh Timer and a Refresh Counter
- Provides Refresh/Access Arbitration
- Internal Clock Capability with the 8203-1 and the 8203-3
- Fully Compatible with Intel* 8080A 8085A, iAPX88, and IAPX 86 Family Microprocessors
- Decodes CPU Status for Advanced Read Capability in 16K Mode with the 8203-1 and the 8203-3.
- Provides System Acknowledge and Transfer Acknowledge Signals
- Refresh Cycles May be Internally or Externally Requested (For Transparent Refresh)
- Internal Series Damping Resistors on All RAM Outputs

The Intel* 8203 is a Dynamic RAM System Controller designed to provide all signals necessary to use 64 K or 16K Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address strobes, refresh logic, refresh/access arbitration. Refresh cycles can be started internally or externally. The 8203-1 and the 8203-3 support an internal crystal oscillator and Advanced Read Capability. The 8203-3 is a $\pm 5 \% V_{\text {CC }}$ part.

Figure 1. 8203 Block Diagram

Table 1. Pin Descriptions

Symbol	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Type	Name and Function
ALO $A L_{1}$ AL2 AL_{3} AL4 $A L_{5}$ AL_{6}	$\begin{gathered} \hline 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ADDRESS LOW: CPU address inputs used to generate memory row address.
AH_{0} AH_{1} AH_{2} AH_{3} AH_{4} AH_{5} AH_{6}	$\begin{aligned} & 5 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 39 \\ & 38 \end{aligned}$	1 1 1 1	ADDRESS HIGH: CPU address inputs used to generate memory column address.
$\begin{aligned} & \mathrm{B}_{0} / \mathrm{AL} L_{7} \\ & \mathrm{~B}_{1} / O P_{1} / \\ & \mathrm{AH}_{7} \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	1	BANK SELECT INPUTS: Used to gate the appropriate RAS output for a memory cycle. $\mathrm{B}_{1} /$ OP P_{1} option used to select the Advanced Read Mode. (Not available in 64 K mode.) See Figure 5. When in 64 K RAM Mode, pins 24 and 25 operate as the AL_{7} and AH_{7} address inputs.
PCS	33	1	PROTECTED CHIP SELECT: Used to enable the memory read and write inputs. Once a cycle is started, it will not abort even if PCS goes inactive before cycle completion.
WR	31	1	MEMOAY WRITE REQUESTI.
RD/S1	32	1	MEMORY READ REQUEST: S1 function used in Advanced Read mode selected by OP_{1} (pin 25).
REFRQ/ ALE	34	1	EXTERNAL REFRESH REQUEST: ALE function used in Advanced Read mode, selected by OP 1 (pin 25).
	7 9 11 13 15 17 19	0 0 0 0 0 0 0	OUTPUT OF THE MULTIPLEXER: These outputs are designed to drive the addresses of the Dynamic RAM array. (Note that the OUT ${ }_{0-7}$ pins do not require inverters or drivers for proper operation.)
WE	28	0	WRITE ENABLE: Drives the Write Enable inputs of the Dynamic RAM array.
CAS	27	0	COLUMN ADDRESS STROBE: This output is used to latch the Column Address into the Dynamic RAM array.
AAS RAS ${ }_{1}$ RAS $_{2}$ / OUT_{7} $\mathrm{RAS}_{3} / \mathrm{B}_{0}$	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 26 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 1 / 0 \end{gathered}$	ROW ADDRESS STROBE: Used to latch the Row Address into the bank of dynamic RA: : :s, selected by the 8203 Bank Select pins (B_{0}. $\mathrm{B}_{1} / \mathrm{OP}_{1}$). In 64 K mode, only RAS_{0} and RAS_{1} are available; pin 23 operates as OUT $_{7}$ and pin 26 operates as the B_{0} bank select input.
XACK	29	0	TRANSFER ACKNOWLEDGE: This output is a strobe indicating valid data during a read cycle or data writt:en during a write cycle. XACK can be used to latch valid data from the RAM array.

Table 1. Pin Descriptions (Continued)

S . bol	Pin No.	Type	Name and Function
$\overline{\mathrm{SAC}}$	30	0	SYSTEM ACKNOWLEDGE: This output indicates the beginning of a memory access cycle. It can be used as an advanced transfer acknowledge to eliminate wait states. (Note; If a memory access request is made during a refresh cycle, $\overline{\text { SACK }}$ is delayed until $\overline{\text { XACK }}$ in the memory access cycle).
$\begin{aligned} & \mathrm{X}_{0} / \mathrm{OP}_{2} \\ & \mathrm{X}_{1} / \mathrm{CLK} \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \end{aligned}$	OSCILLATOR INPUTS: These inputs are designed for a quartz crystal to control the frequency of the oscillator. If $\mathrm{X}_{0} / \mathrm{OP}_{2}$ is shorted to pin 40 $\left(\mathrm{V}_{\mathrm{CC}}\right)$ or if $\mathrm{X}_{0} / \mathrm{OP}_{2}$ is connected to +12 V through a $1 \mathrm{~K} \Omega$ resistor then $\mathrm{X}_{1} /$ CLK becomes a TTL input for an external clock. (Note: Crystal mode for the 8203-1 and the 8203-3 only).
$16 \mathrm{~K} / \overline{64 \mathrm{~K}}$	35	1	MODE SELECT: This input selects 16 K mode or 64 K mode. Pins 23-26 change function based on the mode of operation.
$V_{C C}$	40		POWER SUPPLY: + 5V.
GND	20		GROUND.

FUNCTIONAL DESCRIPTION

The 8203 provides a complete dynamic RAM controller for microprocessor systems as well as expansion memory boards.

The 8203 has two modes, one for 16 K dynamic RAMs and one for 64 Ks , controlled by pin 35 .

Figure 3. Crystal Operation for the 8203-1 and 8203-3

All 8203 timing is generated from a single reference clock. This clock is provided via an external oscillator or an on-chip crystal oscillator. All output signal
transitions are synchronous with respect to this clock reference, except for the trailing edges of the CPU handshake signals SACK and XACK.

CPU memory requests normally use the $\overline{R D}$ and $\overline{W R}$ inputs. The Advanced-Read mode aliows A!LE and S1 to be used in place of the $\overline{\mathrm{RD}}$ input.

Failsafe refresh is provided via an internal timer which generates refresh requests. Refresh requests can also be generated via the REFRQ input.

An on-chip synchronizer/arbiter prevents memory and refresh requests from affecting a cycle in progress. The READ, WRITE, and external REFRESH requests may be asynchronous to the 8203 clock; on-chip logic will synchronize the requests, and the arbiter will decide if the requests should be delayed, pending completion of a cycle in progress.

16K/64 Option Selection

Pin 35 is a strap input that controls the two 8203 modes. Figure 4 shows the four pins that are multiplexed. In 16 K mode (pin 35 tied to V_{CC} or left open), the 8203 has two Bank Select inputs to select one of four RAS outputs. In this mode, the 8203 is exactly compatible with the Intel 8202A Dynamic RAM Controller. In 64K mode (pin 35 tied to GND), there is only one Bank Select input (pin 26) to select the two $\overline{\text { RAS }}$ outputs. More than two banks of 64 K dynamic RAMs can be used with external logic.

Other Option Selections

The 8203 has two strapping options. When OP_{1} is selected (16 K mode only), pin 32 changes from a $\overline{R D}$ input to an S1 input, and pin 34 changes from a REFRQ input to an ALE input. See "Refresh Cycles" and "Read Cycles" for more detail. OP ${ }_{1}$ is selected by tying pin 25 to +12 V through a $5.1 \mathrm{~K} \Omega$ resistor on the 8203-1 or 8203-3 only.

When $O P_{2}$ is selected, the internal oscillator is disabled and pin 37 changes from a crystal input $\left(X_{1}\right)$ to a CLK input for an external TTL clock. OP 2 is selected by shorting pin $36\left(X_{0} / O P_{2}\right)$ directly to pin 40 (V_{cc}). No current limiting resistor should be used. OP_{2} may also be selected by tying pin 36 to +12 V through a $1 \mathrm{~K} \Omega$ resistor.

Refresh Timer

The refresh timer is used to monitor the time since the last refresh cycle occurred. When the appropriate amount of time has elapsed, the refresh timer will request a refresh cycle. External refresh requests will reset the refresh timer.

Refresh Counter

The refresh counter is used to sequentially refresh all of the memory's rows. The 8 -bit counter is incremented after every refresh cycle.

Pin *	16K Function	64K Function
23	$\overline{\mathrm{AAS}}_{2}$	Address Output $\left(\overline{\mathrm{OUT}}{ }_{7}\right)$
24	Bank Select $\left(\mathrm{B}_{0}\right)$	Address Input $\left(\mathrm{AL}_{7}\right)$
25	Bank Select $\left(\mathrm{B}_{1}\right)$	Address Input $\left(\mathrm{AH}_{7}\right)$
26	RAS $_{3}$	Bank Select $\left(\mathrm{B}_{0}\right)$

Figure 4. 16K/64K Mode Selection

Inputs			Outputs			
	B_{1}	$\mathrm{~B}_{0}$	$\overline{\mathrm{AAS}}_{0}$	$\overline{\mathrm{RAS}}_{1}$	$\overline{\mathrm{RAS}}_{2}$	$\overline{\mathrm{AAS}}_{3}$
16 K	0	0	0	1	1	1
Mode	0	1	1	0	1	1
	1	0	1	1	0	1
	1	1	1	1	1	0
64 K	-	0	0	1	-	-
Mode	-	1	1	0	-	-

Figure 5. Bank Selection

Address Multiplexer

The address multiplexer takes the address inputs and the refresh counter outputs, and gates them onto the address outputs at the appropriate time. The address outputs, in conjunction with the RAS and CAS outputs, determine the address used by the dynamic RAMs for read, write, and refresh cycles. During the first part of a read or write cycle, $\mathrm{AL}_{0}-\mathrm{AL}_{7}$ are gated to $\mathrm{OUT}_{0}-\mathrm{OUT}_{7}$, then $\mathrm{AH}_{0}-\mathrm{AH}_{7}$ are gated to the address outputs.

During a refresh cycle, the refresh counter is gated onto the address outputs. All refresh cycles are RAS-only refresh (CAS inactive, RAS active).

To minimize buffer delay, the information on the address outputs is inverted from that on the address inputs.
$\overline{\mathrm{OUT}}_{0}-$ ठUT $_{7}$ do not need inverters or buffers unless additional drive is required.

Synchronizer/Arbiter

The 8203 has three inputs, REFRQ/ALE (pin 34), $\overline{R D}$ (pin 32) and $\overline{W R}$ (pin 31). The $\overline{R D}$ and WR inputs allow an external CPU to request a memory read or write cycle, respectively. The REFRQ/ALE input allows refresh requests to be requested external to the 8203.

All three of these inputs may be asynchronous with respect to the 8203's clock. The arbiter will resolve conflicts between refresh and memory requests, for both pending cycles and cycles in progress. Read and write requests will be given priority over refresh requests.

System Operation

The 8203 is always in one of the following states:
a) IDLE
b) TEST Cycle
c) REFRESH Cycle
d) READ Cycle
e) WRITE Cycle

The 8203 is normally in the IDLE state. Whenever one of the other cycles is requested, the 8203 will

Description	Pin $*$	Normal Function	Option Function
$\mathrm{B}_{1} / \mathrm{OP}_{1}$ (16K only)/AH7	25	Bank (RAS) Select	Advanced-Read Mode (8203-1, -3)
$\mathrm{X}_{0} / \mathrm{OP}_{2}$	36	Crystal Oscillator (8203-1 and 8203-3)	External Oscillator

Figure 6. 8203 Option Selection
leave the IDLEE state to perform the desired cycle. If no other cycles-are pending, the 8203 will return to the IDLE state.

Test Cycle

The TEST Cycle is used to check operation of several 8203 internal functions. TEST cycles are requested by activating the PCS, $\overline{R D}$ and WR inputs. The TEST Cycle will reset the refresh address counter and perform a WRITE Cycle. The TEST Cycle should not be used in normal system operation, since it would affect the dynamic RAM refresh.

Refresh Cycles

The 8203 has two ways of providing dynamic RAM refresh:

1) Internal (failsafe) refresh
2) External (hidden) refresh

Both types of 8203 refresh cycles activate all of the RAS outputs, while CAS, WE, SACK, and XACK remain inactive.

Internal refresh is generated by the on-chip refresh timer. The timer uses the 8203 clock to ensure that refresh of all rows of the dynamic RAM occurs every 2 milliseconds (128 cycles) or every 4 milliseconds (256 cycles). If REFRQ is inactive, the refresh timer will request a refresh cycle every 10-16 microseconds.

External refresh is requested via the REFRQ input (pin 34). External refresh control is not available when the Advanced-Read mode is selected. External refresh requests are latched, then synchronized to the $\mathbf{8 2 0 3}$ clock.

The arbiter will allow the refresh request to start a refresh cycle only if the $\mathbf{8 2 0 3}$ is not in the middle of a cycle.

When the 8203 is in the idle state a simultaneous memory request and external refresh request will result in the memory request being honored first. This 8203 characteristic can be used to "hide" refresh cycles during system operation. A circuit similar to Figure 7 can be used to decode the CPU's instruction fetch status to generate an external refresh request. The refresh request is latched while the 8203 performs the instruction fetch; the refresh cycle will start immediately after the memory cycle is completed, even it the RD input has not gone inactive. If the CPU's instruction decode time is long enough, the 8203 can complete the refresh cycle before the next memory request is generated.

If the $\mathbf{8 2 0 3}$ is not in the idie state then a simultaneous memory request and an external refresh request may result in the refresh request being honored first.

Figure 7. Hidden Refresh
Certain system configurations require complete external refresh requests. If external refresh is requested faster than the minimum internal refresh timer (tref), then, in effect, all refresh cycles will be caused by the external refresh request, and the internal refresh timer will never generate a refresh request.

Read Cycles

The 8203 can accept two different types of memory Read requests:

1) Normal Read, via the $\overline{R D}$ input
2) Advanced Read, using the S1 and ALE inputs (16K mode only)

The user can select the desired Read request configuration via the $\mathrm{B}_{1} / O P_{1}$ hardware strapping option on pin 25.

	Normal Read	Advanced Read
Pin 25	B_{1} Input	OP ${ }_{1}(+12 \mathrm{~V})$
Pin 32	RD input	S1 Input
Pin 34	REFRQ Input	ALE Input
* RAM Banks	4 (RAS $_{0-3}$)	2 (RAS $_{2-3}$)
Ext. Retresh	Yes .	No

Figure 8. 8203 Read Options
Normal Reads are requested by activating the RD input, and keeping it active until the 8203 responds with an XACK pulse. The RD input can go inactive as soon as the command hold time ($\mathrm{t}_{\mathrm{CHS}}$) is met.

Advanced Read cycles are requested by pulsing ALE while S1 is active; if $S 1$ is inactive (low) ALE is ignored. Advanced Read timing is similar to Normal Read timing, except the falling edge of ALE is used as the cycle start reference.

If a Read cycle is requested while a refresh cycle is in progress, then the 8203 will set the internal delayed-SACK latch. When the Read cycie is eventually started, the 8203 will delay the active SACK transition until $\overline{\text { XACK }}$ goes active, as shown in the A.C. timing diagrams. This delay was designed to compensate for the CPU's READY setup and hold times. The delayed-SACK latch is cleared after every READ cycle.

Based on system requirements, either SACK or XACK can be used to generate the CPU READY signal. XACK will normally be used; if the CPU can tolerate an advanced READY, then SACK can be used, but only if the CPU can tolerate the amount of advance provided by SACK. If SACK arrives too early to provide the appropriate number of WAIT states, then either XACK or a delayed form of SACK should be used.

Write Cycles

Write cycles are similar to Normal Read cycles, except for the $\bar{W} E$ output. WE is held inactive for Read cycles, but goes active for Write cycles. All 8203 Write cycles are "early-write" cycies; $\bar{W} E$ goes active before CAS goes active by an amount of time sufficient to keep the dynamic RAM output buffers turned off.

General System Considerations

All memory requests (Normal Reads, Advanced Reads, Writes) are qualified by the PCS input. PCS should be stable, either active or inactive, prior to the leading edge of RD, WR, or ALE. Systems which use battery backup should pullup PCS to prevent erroneous memory requests.

In order to minimize propagation delay, the 8203 uses an inverting address multiplexer without latches. The system must provide adequate address setup and hoid times to guarantee RAS and CAS setup and hold times for the RAM. The t $_{\text {AD }}$ A.C. parameter should be used for this system calculation.

The $\mathrm{B}_{0}-\mathrm{B}_{1}$ inputs are similar to the address inputs in that they are not latched. B_{0} and B_{1} should not be changed during a memory cycle, since they directly control which RAS output is activated.

The 8203 uses a two-stage synchronizer for the memory request inputs (RD, WR, ALE), and a separate two stage synchronizer for the external refresh input (REFRQ). As with any synchronizer, there is always a finite probability of metastable states inducing system errors. The 8203 synchronizer was
designed to have system error rate less than 1 memory cycle eve) three years based on the full operating range of the 8203 .

A microprocessor system is concerned when the data is valid after RD goes low. See Figure 9. In order to calculate memory read access times, the dynamic RAM's A.C. specifications must be examined, especially the $\overline{\operatorname{RAS}}$-access time (t_{RAC}) and the CAS-access time (tCAC). Most configurations will be CAS-access limited; i.e., the data from the RAM will be stable $\mathrm{t}_{\text {cc,max }}(8203)+\mathrm{t}_{\mathrm{CAC}}$ (RAM) after a memory read cycle is started. Be sure to add any delays (due to buffers, data latches, etc.) to calculate the overall read access time.

Since the 8203 normally performs "early-write" cycles, the data must be stable at the RAM data inputs by the time C̄AS goes active, including the RAM's data setup time. If the system does not normally guarantee sufficient write data setup, you must either delay the $\overline{W R}$ input signal or delay the $8203 \overline{W E}$ output.

Delaying the $\overline{W R}$ input will delay all 8203 timing, including the READY handshake signals, SACK and XACK, which may increase the number of WAIT states generated by the CPU.

Figure 9. Read Access Time
If the WE output is externally delayed beyond the CAS active transition, then the RAM will use the falling edge of WE to strobe the write data into the RAM. This WE transition should not occur too late during the CAS active transition, or else the WE to CAS requirements of the RAM will not be met.

The $\overline{\operatorname{RAS}}_{0-3}, \overline{\mathrm{CAS}}, \overline{\mathrm{OUT}}_{0-7}$, and $\overline{\mathrm{WE}}$ outputs contain on-chip series damping resistors (typically 20Ω) to minimize overshoot.

Some dynamic RAMs require more than $2.4 \mathrm{~V} \mathrm{~V}_{1 H}$. Noise immunity may be improved for these RAMs by
adding pull-up resistors to the 8203's outputs. Intel RAMs do not require pull-up resistors.

Figure 10. Typical 8088 System

8205
 HIGH SPEED 1 OUT OF 8 BINARY DECODER

- I/O Port or Memory Selector
- Simple Expansion - Enable Inputs
- High Speed Schottky Bipolar Technology - 18ns Max. Delay
- Directly Compatible with TTL Logic Circuits
- Low Input Load Current - .25 mA max., 1/6 Standard TTL Input Load
- Minimum Line Reflection - Low Voltage Diode Input Clamp
- Outputs Sink 10 mA min.
- 16-Pin Dual-In-Line Ceramic or Plastic Package

The Intel 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and memory components with active low chip select input. When the 8205 is enabled, one of its 8 outputs goes "low," thus a single row of a memory system is selected. The 3-chip enable inputs on the 8205 allow easy system expansion. For very large systems. 8205 decoders can be cascaded such that each decoder can drive 8 other decoders for arbitrary memory expansions.

The 8205 is packaged in a standard 16-pin dual in-line package. and its performance is specified over the temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffussion process.

ADCRFSS			[NABLE			O1.TPリイ5							
A..	${ }^{4}$	A_{2}	E)	f.	1	0	1	\therefore	i	4		1 ,	,
t	1	t	1	1	${ }_{\mathrm{H}}$	1	H	H	H	4	$\stackrel{ }{+}$	"	$1 \cdot$
H	i	1	1	1	H	H	1	+	H	${ }^{+}$	4	H	14
t	H	1	i	1	H	H	H	1	4	H	H	H	-
H	M	1	1	1	H	H	H	H	-	${ }^{\prime}$	$\stackrel{ }{4}$	H	H
t	1	H	1	\downarrow	H	H	H	H	H	1	H	${ }^{\prime}$	H
H	1	H	1	t	H	H	${ }^{+}$	H	H	H	-	H	H
i	H	H	t	1	+	H	${ }^{4}$	H	H	H	H	1	H
${ }^{\text {H }}$	H	H	1	t	M	${ }^{\text {H }}$	H	+	${ }^{\text {H }}$	H	H	H	1
x	$\stackrel{x}{x}$	\times	1	t	1	H	H	H	H	"	H	H	H
*	\times	$\boldsymbol{\lambda}$	H	-	1	H	H	H	H	H	${ }^{+}$	H	H
${ }^{*}$	\times	\times	1	H	1	H	H	H	H	H	M	H	H
-	\times	\times	H	H	1	H	H	H	H	H	H	H	H
\times	\times	\times	H	1	H	H	H	H	H	H	H	H	${ }^{\text {H }}$
\times	-	\times	1		H	H	H	${ }^{\text {H }}$	H	H	"	H	H
\times	\times	\times	H	H	H	H	H	H	H	H	H	H	

A_{0}	A_{2}
ADDRESS INPUTS	
$\overline{E_{1}} \overline{E_{3}}$	ENABLE INPUTS
δ_{0}	$\bar{\sigma}_{7}$
DECODED OUTPUTS	

Figure 1. Logic Symbol
Figure 2. Pin Configuration

Applications of the $\mathbf{8 2 0 5}$

The 8205 can be used in a wide variety of applications in microcomputer systems. I/O ports can be decoded from the address bus, chip select signals can be generated to select memory devices and the type of machine state such as in 8008 systems can be derived from a simple decoding of the state lines (S0, S1, S2) of the 8008 CPU .

I/O PORT DECODER

Shown in the figure below is a typical application of the 8205. Address input lines are decoded by a group of 8205 s (3). Each input has a binary weight. For example, $A 0$ is assigned a value of 1 and is the LSB; A4 is assigned a value of 16 and is the MSB. By connecting them to the decoders as shown, an active low signal that is exclusive in nature and represents the value of the input address lines, is available at the outputs of the 8205s.
This circuit can be used to generate enable signals for 1/O ports or any other decoder related application.

Note that no external gating is required to decode up to 24 exclusive devices and that a simple addition of an inverter or two will allow expansion to even larger decoder networks.

CHIP SELECT DECODER

Using a very similar circuit to the I/O port decoder, an ar-

Figure 4. I/O Port Decoder
ray of 8205 s can be used to create a simple interface to a 24K memory system.

The memory devices used can be either ROM or RAM and are 1 K in storage capacity. 2708s and 2114As are devices typically used for this application. This type of memory device has ten (10) address inputs and an active "low" chip select ($\overline{\mathrm{CS}}$). The lower order address bits A0-A9 which come from the microprocessor are "bussed" to all memory elements and the chip select to enable a specific device or group of devices comes from the array of 8205 s . The output of the 8205 is active low so it is directly compatible with the memory components.

Basic operation is that the CPU issues an address to identify a specific memory location in which it wishes to "write" or "read" data. The most significant address bits A10-A 14 are decoded by the array of 8205s and an exclusive, active low. chip select is generated that enables a specific memory device. The least significant address bits A0-A9 identify a specific location within the selected device. Thus, all addresses throughout the entire memory array are exclusive in nature and are non-redundant.
This technique can be expanded almost indefinitely to support even larger systems with the addition of a few inverters and an extra decoder (8205).

Figure 5. 24K Memory Interface

8206
 ERROR DETECTION AND CORRECTION UNIT

- Detects All Single Bit, and Double Bit and Most Multiple Blt Errors
- Corrects All Single Blt Errors

3 Selections	$8206-1$	8206				
Detection	35 ns	42 ns				
Correction	55 ns	67 ns		Correction	55 ns	67 ns
:---	:---	:---				

- Syndrome Outputs for Error Logging
m Automatic Error Scrubbing with 8207
- Expandable to Handle 80 Blt Memories

Separate Input and Output Busses-No Timing Strobes Required
 - Supports Read With and Without Correction, Writes, Partial (Byte) Writes, and Read-Modify-Writes
 - HMOS III Technology for Low Power
 - 68 PIn Leadiess JEDEC Package
 - 68 Pin Grid Array Package

The HMOS 8206 Error Detection and Correction Unit is a high-speed device that provides error detection and correction for memory systems (static and dynamic) requiring high reliability and performance. Each 8206 handles 8 or 16 data bits and up to 8 check bits. 8206's can be cascaded to provide correction and detection for up to 80 bits of data. Other 8206 features include the ability to handle byte writes, memory initialization, and error logging.

Figure 1. 8206 Block Diagram

Table 1. 8206 Pin Description

Symbol	Pin No.	Type	Name and Function
Dl_{0-15}	$\begin{gathered} 1,68-61 \\ 59-53 \end{gathered}$	1	DATA IN: These inputs accept a 16 bit data word from RAM for error detection and/or correction.
CBI/SYIO CBI/SYI 1 $\mathrm{CBI} / \mathrm{SYI}_{2}$ $\mathrm{Cl} / \mathrm{SYI}_{3}$ $\mathrm{CBI} / \mathrm{SYI}_{4}$ CBI/SYI 5 CBI/SYI 6 $\mathrm{CBI} / \mathrm{SYI}_{7}$	$\begin{gathered} 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	CHECK BITS IN/SYNDROME IN: in a single 8206 system, or in the master in a multi-8206 system, these inputs accept the check bits (5 to 8) from the RAM. In a single 820616 bit system, CBI_{0-5} are used. In slave 8206's these inputs accept the syndrome from the master.
DO/WDI DO/WDI 1 $\mathrm{DO} / \mathrm{WDI}_{2}$ $\mathrm{DO}^{\mathrm{W}} \mathrm{WDl}_{3}$ $\mathrm{DO}^{\mathrm{WDI}} 4$ DO/WDI 5 DO/WDi $\mathrm{DO}^{\mathrm{WDD}} 7$ DO/WDI DO/WDig DO/WDI ${ }_{10}$ DO/WDI 11 DO/WDI ${ }_{12}$ DO/WDI 13 DO/WDI 14 DO/WDI 15	51 50 49 48 47 46 45 44 42 41 40 39 38 37 36 35	I/O I/O 1/0 1/O 1/0 1/0 1/0 1/0 $1 / 0$ $1 / 0$ 1/0 1/0 $1 / 0$ I/O 1/0 1/0	DATA OUT/WRITE DATA IN: In a read cycle, data accepted by DI O_{-15} appears at these outputs corrected if CRCT is low, or uncorrected if CRCT is high. The $\overline{B M}$ inputs must be high to enable the output buffers during the read cycle. In a write cycle, data to be written into the RAM is accepted by these inputs for computing the write check bits. In a partial-write cycle, the byte not to be modified appears at either DO_{0-7} if $\overline{\mathrm{BM}}_{0}$ is high, or DO_{8-15} if $\overline{\mathrm{BM}}_{1}$ is high, for writing to the RAM. When WZ is active, it causes the 8206 to output all zeros at DO_{0-15}, with the proper write check bits on CBO.
SYO/CBO/PPO 0 SYO/CBO/PPO ${ }_{1}$ $\mathrm{SYO} / \mathrm{CBO} / \mathrm{PPO}_{2}$ $\mathrm{SYO} / \mathrm{CBO} / \mathrm{PPO}_{3}$ SYO/CBO/PPO ${ }_{4}$ SYO/CBO/PPO 5 SYO/CBO/PPO 6 SYO/CBO/PPO 7	$\begin{aligned} & 23 \\ & 24 \\ & 25 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	SYNDROME OUT/CHECK BITS OUT/PARTIAL PARITY OUT: In a single 8206 system, or in the master in a multi-8206 system, the syndrome appears at these outputs during a read. During a write, the write check bits appear. In slave 8206's the partial parity bits used by the master appear at these outputs. The syndrome is latched (during read-modity-writes) by R/W going low.
$\begin{aligned} & \mathrm{PPI}_{0} / \mathrm{POS}_{0} \\ & \mathrm{PPI}_{1} / \mathrm{POS}_{1} \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	1	PARTIAL PARITY IN/POSITION: In the master in a multi-8206 system, these inputs accept partial parity bits 0 and 1 from the slaves. In a slave 8206 these inputs inform it of its position within the system (1 to 4). Not used in a single 8206 system.
$\mathrm{PPl}_{2} / \mathrm{NSL}_{0}$ $\mathrm{PPI}_{3} / \mathrm{NSL}_{1}$	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	1	PARTIAL PARITY IN/NUMBER OF SLAVES: In the master in a multi-8206 system, these inputs accept partial parity bits 2 and 3 from the slaves. In a multi-8206 system these inputs are used in slave number 1 to tell it the total number of slaves in the system (1 to 4). Not used in other slaves or in a single 8206 system.
$\mathrm{PPI}_{4} \mathrm{CE}$	17	1/0	PARTIAL PARITY IN/CORRECTABLE ERROR: in the master in a multi-8206 system this pin accepts partial parity bit 4 . In slave number 1 only, or in a single 8206 system, this pin outputs the correctable error flag. CE is latched by R/W going low. Not used in other slaves.

8207
 DUAL-PORT DYNAMIC RAM CONTROLLER

- Provides All Signals Necessary to Control 16K, 64K and 256K Dynamic RAMs
- Directly Addresses and Drives up to 2 Megabytes without External Drivers
- Supports Single and Dual-Port Configurations
- Automatic RAM Initialization in All Modes
- Four Programmable Refresh Modes
- Transparent Memory Scrubbing in ECC Mode

■ Fast Cycle Support for 8 MHz 80286 with 8207-16

- Slow Cycle Support for $8 \mathbf{~ M H z}, 10 \mathrm{MHz}$ 8086/88, 80186/188 with 8207-8, 8207-10
- Provides Signals to Directly Control the 8206 Error Detection and Correction Unit
- Supports Synchronous or Asynchronous Operation on Either Port 68 Lead JEDEC Type A Leadless Chip Carrier (LCC) and Pin Grid Array (PGA), Both in Ceramic.

The Intel 8207 Dual-Port Dynamic RAM Controller is a high-performance, systems-oriented, Dynamic RAM controller that is designed to easily interface $16 \mathrm{~K}, 64 \mathrm{~K}$ and 256 K Dynamic RAMs to Intel and other microprocessor systems. A dual-port interface allows two different busses to independently access memory. When configured with an 8206 Error Detection and Correction Unit the 8207 supplies the necessary logic for designing large error-corrected memory arrays. This combination provides automatic memory initialization and transparent memory error scrubbing.

82C08
 CHMOS DYNAMIC RAM CONTROLLER

- 0 Wait State with INTEL μ Processors
- IAPX 286 (10, 8 MHz) iAPX 186/88 \} 82C08-10 10 MHz 86/88 82C08-8 8 MHz
- Supports 64 K and 256K DRAMs (256K $\times 1$ and $256 \mathrm{~K} \times 4$ Organizations)
- Power Down Mode with Programmable Memory Refresh using Battery Backup
- Directly Addresses and Drives up to 1 Megabyte without External Drivers
- Microprocessor Data Transfer and Advance Acknowledge Signals
- Five Programmable Refresh Modes
- Automatic RAM Warm-up
- Pin-Compatible with 8208

■ 48 Lead Plastic DIP; 68 Lead PLCC (See Intel Packaging; Order Number: 231369-001)

- Compatible with Normal Modes of Static Column and Ripplemode DRAMs

The Intel 82C08 Dynamic RAM Controller is a CMOS, high performance, systems oriented, Dynamic RAM controller that is designed to easily interface 64 K and 256 K Dynamic RAMs to Intel and other microprocessors. The 82C08 also has a power down mode where only the refresh logic is activated using battery backup.

Figure 1. Block Diagram and Pinout Diagrams

8212
 8-BIT INPUT/OUTPUT PORT

- Fully Parallel 8-Bit Data Register and Buffer
- Service Request Flip-Flop for Interrupt Generation
- Low Input Load Current - . 25mA Max.
- Three State Outputs
- Outputs Sink 15 mA
- 3.65V Output High Voltage for Direct Interface to 8008, 8080A, or 8085A CPU

The 8212 input/output port consists of an 8-bit latch with 3-state output buffers along with control and device selection logic. Also included is a service request flip-flop for the generation and control of interrupts to the microprocessor.
The device is multimode in nature. It can be used to implement latches, gated buffers or multiplexers. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with this device.

- Asynchronous Register Clear
- Replaces Buffers, Latches and Multiplexers in Microcomputer Systems
- Reduces System Package Count
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

Figure :. Logic Diagram

Figure 2. Pin Configuration

FUNCTIONAL DESCRIPTION

Data Latch

The 8 flip-flops that make up the data latch are of a "D" type design. The output (Q) of the flip-flop will follow the data input (D) while the clock input (C) is high. Latching will occur when the clock $(C$, returns low.
The latched data is cleared by an asynchronous reset input ($\overline{\mathrm{CLR}}$). (Note: Clock (C) Overrides Reset ($\overline{\mathrm{CLR}}$).)

Output Buffer

The outputs of the data latch (Q) are connected to 3-state, non-inverting output buffers. These buffers have a common control line (EN); this control line either enables the buffer to transmit the data from the outputs of the data latch (Q) or disables the buffer, forcing the output into a high impedance state. (3-state)
The high-impedance state allows the designer to connect the 8212 directly onto the microprocessor bi-directional rata bus.

Control Logic

The 8212 has control inputs $\overline{\mathrm{DS} 1}, \mathrm{DS2}, \mathrm{MD}$ and STB. These inputs are used to control device selection, data latching, output buffer state and service request flip-flop.

$\overline{\text { DS1, DS2 }}$ (Device Select)

These 2 inputs are used for device selection. When $\overline{\mathrm{DS} 1}$ is low and DS2 is high ($\overline{\mathrm{DS} 1} \cdot \mathrm{DS} 2$) the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

MD (Mode)

This input is used to control the state of the output buffer and to determine the source of the clock input (C) to the data latch.
When MD is high (output mode) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{\mathrm{DS} 1} \cdot \mathrm{DS2}$).
When MD is low (input mode) the output buffer state is determined by the device selection logic ($\overline{\mathrm{DS} 1} \cdot \mathrm{DS} 2$) and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

This input is used as the clock (C) to the data latch for the input mode $M D=0$) and to synchronously reset the service request flip-flop (SR).

Note that the SR flip-flop is negative edge triggered.

Service Request Filp-Flop

The (SR) flip-flop is used to generate and control interrupts in microcomputer systems. It is asynchronously set by the CLR input (active low). When the (SR) flipflop is set it is in the non-interrupting state.

The output of the (SR) flip-flop (Q) is connected to an inverting input of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic ($\overline{\mathrm{DS} 1}$. DS2). The output of the "NOR" gate (INT) is active low (interrupting state) for connection to active low input priority generating circuits.

8216/8226
 4-BIT PARALLEL BIDIRECTIONAL BUS DRIVER

\author{

- Data Bus Buffer Driver for 8080 CPU
 - Low Input Load Current - 0.25 mA Maximum
}
- High Output Drive Capability for Driving System Bus

- 3.65V Output High Voltage for Direct Interface to 8080 CPU

- 3-State Outputs
- Reduces System Package Count
- Available in EXPRESS
- Standard Temperature Range

The $8216 / 8226$ is a 4-bit bidirectional bus driver/receiver. All inputs are low power TTL compatible. For driving MOS. The DO outputs provide a high $3.65 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$, and for high capacitance terminated bus structures, the DB oulputs provide a high $50 \mathrm{~mA} I_{\mathrm{OL}}$ capability. A non-inverting (8216) and an inverting (8226) are available to meet a wide variety of applications for buffering in microcomputer systems.

- Note: The specifications for the $3218 / 3226$ are identical with those for the 8216/8226

8216

8226

O80, 08	data bus B. DIAECTIONAL
$\mathrm{O}_{6} \mathrm{O} 5$	data infut
$\mathrm{DO}_{0} \mathrm{DO}_{3}$	data output
DIEN	DATA IN ENABLE DIRESTION CONTMOL
\%	chip select

Figure 1. Block Diagrams
Figure 2. Pin Configuration

8218/8219 BIPOLAR MICROCOMPUTER BUS CONTROLLERS FOR MCS-80 ${ }^{\circledR}$ AND MCS-85 ${ }^{\circledR}$ FAMILIES

- 8218 for Use in MCS-80 ${ }^{\text {® }}$ Systems
- 8219 for Use inMCS-85 ${ }^{\text {® }}$ Systems
- Coordinates the Sharing of a Common Bus Between Several CPU's
- Reduces Component Count in Multimaster Bus Arbitration Logic
- Single +5 Volt Power Supply
- 28 Pin Package

The 8218 and 8219 Microcomputer Bus Controllers consist of control logic which allows a bus master device such as a CPU or DMA channel to interface with other masters on a common bus, sharing memory and I/O devices. The 8218 and 8219 consist of:

1. Bus Arbitration Logic which operates from the Bus Clock ($\overline{\mathrm{BCLK}}$) and resolves bus contention between devices sharing a common bus.
2. Timing Logic which when initiated by the bus arbitration logic generates timing signals for the memory and I/O command lines to guarantee set-up and hold times of the address/data lines onto the bus. The timing logic also signals to the bus arbitration logic when the current data transfer is completed and the bus is no longer needed.
3. Output Drive Logic which contains the logic and output drivers for the memory and I/O command lines.

An external RC time constant is used with the timing logic to generate the guaranteed address set-up and hold times on the bus. The 8219 can interiace directly to the 8085A CPU and the 8218 interfaces to the 8080A CPU chip and the 8257 DMA controller.

Figure 1. Block Diagram

	8218	8219
(A)	IOWR	10/M
(B)	MWTR	\bar{W} R
(C)	$\overline{\text { IORR }}$	$\overline{\text { RO }}$
(D)	MRDR	ASRO
(E)	$\overline{\text { BCR2 }}$	BCR2

Figure 2. Pin Configuration

8224
 CLOCK GENERATOR AND DRIVER FOR 8080A CPU

- Single Chip Clock Generator/Driver for 8080A CPU

- Power-Up Reset for CPU
- Ready Synchronizing Flip-Flop
- Advanced Status Strobe
- Oscillator Output for External System Timing
- Crystal Controlled for Stable System Operation
- Reduces System Package Count
- Available in EXPRESS
- Standard Temperature Range

The Intel* 8224 is a single chip clock generator/driver for the 8080 ACPU . It is controlled by a crystal, selected by the designer to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe, and synchronization of ready.
The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.

Figure 1. Block Diagram
Figure 2. Pin Configuration

8228/8238
 SYSTEM CONTROLLER AND BUS DRIVER FOR 8080A CPU

- Single Chip System Control for MCS-80 ${ }^{\text {® }}$ Systems

- Built-In Bidirectional Bus Driver for
Data Bus Isolation
- Allows the Use of Multiple Byte
Instructions (e.g. CALL) for Interrupt
Acknowledge
- User Selected Single Leval Interrupt Vector (RST 7)
- 28-Pin Dual In-Line Package
- Reduces System Package Count
- 8238 Had Advanced IOW/MEMW for Large System Timing Control
- Available in EXPRESS
- Standard Temperature Range

The Intel 8228 is a single chip system controlier and bus driver for MCS-80. It generates ali signals required to directly interface MCS-80 family RAM, ROM, and I/O components.
A bidirectional bus driver is included to provide high system TTL fan-out. It also provides isolation of the 8080 data bus from memory and IIO. This allows for the optimization of control signals, enabling the systems designer to use slower memory and I/O. The isolation of the bus driver also provides for enhanced system noise immunity.
A user selected single level interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small system requirements. The 8228 also generates the correct control signals to allow the use of multiple byte instructions ie.g., CALL) in response to an interrupt acknowledge by the 8080A. This feature permits large, interrupt driven systems to have an unlimited number of interrupt levels.
The 8228 is designed to support a wide variety of system bus structures and also reduce system package count for cost effective, reliable design of the MCS-80 systems.

Note: The epecificaNons for the 3228/3238 are identical with those for the 8228/8238

O7 00	DATA BUS (8000 SIDE)
087080	DATA BUS (SYSTEM SIIE)
17\%	I/O READ
\%\%	I/O WRITE
MEMA	memoray afad
MELWW	memory waite
Daw	Dein (FROM 8000)

INTA	INTERAUPT ACKNOWLEDGE
HLDA	HLDA (FROW E000)
Wh	Wh ifnOm meeor
BUSEN	BuS Emasie Imput
3TSTE	STALUS STROAE (FAOM 8229)
$\mathrm{V}_{\text {ce }}$	+5V
GNO	0 VOLTS

8231A
 ARITHMETIC PROCESSING UNIT

- Fixed Point Single and Double Precision (16/32 Bit)
- Floating Point Single Precision (32 Bit)
- Binary Data Formats
- Add, Subtract, Multiply and Divide
- Trignometric and Inverse Trigonometric Functions
- Square Roots, Logarithms, Exponentiation
- Float to Fixed and Fixed to Float Conversions
- Compatible with all Intel and most other Microprocessor Families
- Direct Memory Access or Programmed I/O Data Transfers
- End of Execution Signal
- General Purpose 8-Bit Data Bus Interface
- Standard 24 Pin Package

■ +12V and +5V Power Supplies
Advanced N-Channel Sillicon Gate HMOS Technology

- Stack Oriented Operand Storage

The Intel 8231A Arithmetic Processing Unit (APU) is a monolithic HMOS LSI device that provides high performance fixed and floating point arithmetic and floating point trigonometric operations. It may be used to enhance the mathematical capability of a wide variety of processor-oriented systems. Chebyshev polynomials are used in the implementation of the APU algorithms.

All transfers, including operand, result, status and command information, take place over an 8-bit bidirectional data bus. Operands are pushed onto an internal stack and commands are issued to perform operations on the data and the stack. Results are then available to be retrieved from the stack.

Transfers to and from the APU may be handied by the associated processor using conventional programmed I/O, or may be handled by a direct memory access controller for improved performance. Upon completion of each command, the APU issues an end of execution signal that may be used as an interrupt by the CPU to help coordinate program execution.

Figure 2. Pin Configuration

Figure 1. Block Diagram

8232
 FLOATING POINT PROCESSING UNIT

Compatible with Proposed IEEE Format and Existing Intel Floating Point Standard

. Single (32-Bit) and Double (64-Bit) Precision Capability

- Add, Subtract, Multiply and Divide Functions
- Stack Oriented Operand Storage
- General Purpose 8-Bit Data Bus Interface
- Standard 24-Pin Package
- 12V and 5V Power Supplies
- Compatible with MCS-80™, MCS-85'm and MCS-86™ Microprocessor Families
- Error Interrupt
- Direct Memory Access or Programmed I/O Data Transfers
- End of Execution Signal
- Advanced N.Channel Silicon Gate HMOS Technology

The Intel* 8232 is a high performance floating-point processor unit (FPU). It provides single precision (32-bit) and double precision (64-bit) add, subtract, multiply and divide operations. The 8232 's floating point arithmetic is a subset of the proposed IEEE standard. It can be easily interfaced to enhance the computational capabilities of the host microprocessor.
The operand, result, status and command information transfers take place over an 8-bit bidirectional data bus. Oper ands are pushed onto an internal stack by the host processor and a command is issued to perform an operation on the data stack. The results of the operation are available to the host processor from the stack.
Information transfers between the 8232 and the host processor can be handled by using programmed IIO or direct memory access techniques. After completing an operation, the 8232 activates an "end of execution" signal that can be used to interrupt the host processor.

Figure 1. Block Diagram
Figure 2. Pin Configuration

8237A/8237A-4/8237A-5 HIGH PERFORMANCE PROGRAMMABLE DMA CONTROLLER

\author{

- Enable/Disable Control of Individual DMA Requests
 - Four Independent DMA Channels
 - Independent Autoinitialization of all Channels
 - Memory-to-Memory Transfers
 - Memory Block Initialization
 Address Increment or Decrement
}
- High performance: Transfers up to 1.6 M Bytes/Second with 5 MHz 8237A-5
- Directly Expandable to any Number of Channels
- End of Process Input for Terminating Transfers
- Software DMA Requests
- Independent Polarity Control for DREQ and DACK Signals
- Available in EXPRESS - Standard Temperature Range

The 8237A Multimode Direct Memory Access (DMA) Controller is a peripheral interface circuit for microprocessor systems. It is designed to improve system performance by allowing external devices to directly transfer information from the system memory. Memory-to-memory transfer capability is also provided. The 8237A offers a wide variety of programmable control features to enhance data throughput and system optimization and to allow dynamic reconfiguration under program control.
The 8237A is designed to be used in conjunction with an external 8 -bit address register such as the 8282. It contains four independent channels and may be expanded to any number of channels by cascading additional controller chips.
The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be individually programmed to Autoinitialize to its original condition following an End of Process (EOP).
Each channel has a full 64 K address and word count capability.
The 8237A-4 and 8237A-5 are 4 MHz and 5 MHz selected versions of the standard 3 MHz 8237 A respectively

Figure 2.
Pin Configuration

Table 1. Pin Description

Symbol	Type	Name and Function	Symbol	Type	Name and Function
$V_{\text {cc }}$		Power: + 5 volt supply.			ory-to-memory operations, data
$V_{\text {SS }}$		Ground: Ground.			from the memory comes into the 82374 on the data bus during the
CLK	I	Clock Input: Clock Input controls the internal operations of the 8237A and its rate of data transfers. The input may be driven at up to 3 MHz for the standard 8237A and up to 5 MHz for the 8237A-5.			read-from-memory transfer. In the write-to-memory transfer, the data bus outputs place the data into the new memory location.
			$\overline{\text { IOR }}$	110	I/O Read: //O Read is a bidirectional active low three-state line. In the Idie cycle, it is an input control signal used by the CPU to read the control registers. In the Active cycle, it is an output control signal used by the 8237A to access data from a peripheral during a DMA Write transfer.
CS	1	Chip Select: Chip Select is an active low input used to select the 8237A as an I/O device during the Idle cycle. This allows CPU cornmunication on the data bus.			
RESET	1	Reset: Reset is an active high input which clears the Command,			
		Status, Request and Temporary registers. It also clears the first/last flip/flop and sets the Mask register. Following a Reset the device is in the Idle cycle.	10W	1/0	I/O Write: I/O Write is a bidirectional active low three-state line. In the Idie cycle, it is an input control signal used by the CPU to load information into the 8237A. In the Active cycle, it is an output control signal used by the 8237A to load data to the peripheral during a DMA Read transfer.
READY	1	Ready: Ready is an input used to extend the memory read and write pulses from the 8237A to accom-			
		ipheral devices. Ready must not make transitions during its specified setup/hold time.	$\overline{\mathbf{E O P}}$	IIO	End of Process: End of Process is an active low bidirectional signal. Information concerning the completion of DMA services is available at the bidirectional EOP pin. The 8237A allows an external sig nal to terminate an active DMA service. This is accomplished by pulling the EOP input low with an external EOP signal. The 8237A also generates a pulse when the ter minal count (TC) for any channel is reached. This generates an EOP signal which is output through the EOP Line. The reception of EOP, either internal or external, will cause the 8237A to terminate the service, reset the request, and, it Autotnitialize is enabled, to write the base registers to the current registers of that channel. The mask bit and TC bit in the status word will be set for the currently active channel by EOP unless the channel is programmed for Autoinitialize. In that case, the mask bit remains clear. During memory-to-memory transfers, EOP will be output when the TC for channel 1 occurs. EOP should be tied high with a pull-up resistor if it is not used to preven erroneous end of process inputs.
HLDA	1	Hold Acknowledge: The active high Hold Acknowledge from the CPU indicates that it has relinquished control of the system busses.			
DREQ0-DREQ3	I	DMA Request: The DMA Request lines are individual asynchronous channel request Inputs used by peripheral circuits to obtain DMA service. In fixed Priority, DREQO has the highest priority and DREQ3 has the lowest priority. A request is generated by activating the DREQ line of a channel. DACK will acknowledge the recognition of DREQ signal. Polarity of DREQ is programmable. Reset intializes these lines to active high. DREQ must be maintained until the corresponding DACK goes active.			
DB0-DB7	110	Data Bus: The Data Bus lines are bidirectional three-state signals connected to the system data bus. The outputs are enabled in the Program condition during the I/O Read to output the contents of an Address register, a Status register, the Temporary register or a Word			
		Count register to the CPU. The outputs are disabled and the inputs are read during an I/O Write cycle when the CPU is programming the 8237A control registers. During DMA cycles the most significant 8 bits of the address are output onto the data bus to be strobed into an external latch by ADSTB. In mem-	A0-A3	VO	Addreas: The four least significant address lines are bidirectional three-state signals. In the Idie cycle they are inputs and are used by the 8237A to address the control register to be loaded or read. In the Active cycle they are outputs and provide the lower 4 bits of the output address.

Tabie 1. Pin Description (Continued)

Symboi	Type	Name and Function
A4-A7	0	Address: The four most significant address lines are three-state out- puts and provide 4 bits of address. These lines are enabled only during the DMA service.
HRQ	0	Hold Request: This is the Hold Re- quest to the CPU and is used to re- quest control of the system bus. If the corresponding mask bit is clear, the presence of any valid DREQ causes 8237A to issue the HRQ. After HRQ goes active at least one clock cycle (TCY) must occur before HLDA goes active.
DACKO-DACK3	O	DMA Acknowledge: DMA Ac- knowledge is used to notify the in- dividual peripherals when one has been granted a DMA cycle. The sense of these lines is program- mable. Reset initializes them to ac- tive low.

FUNCTIONAL DESCRIPTION

The 8237A block diagram includes the major logic blocks and all of the internal registers. The data interconnection paths are also shown. Not shown are the various control signais between the blocks. The 8237A contains 344 bits of internal memory in the form of registers. Figure 3 lists these registers by name and shows the size of each. A detailed description of the registers and their functions can be found under Register Description.

Name	Size	Number
Base Address Registers	16 bits	4
Base Word Count Registers	16 bits	4
Current Address Registers	16 bits	4
Current Word Count Registers	16 bits	4
Temporary Address Register	16 bits	1
Temporary Word Count Register	16 bits	1
Status Register	8 bits	1
Command Register	8 bits	1
Temporary Register	8 bits	1
Mode Registers	6 bits	4
Mask Register	4 bits	1
Request Register	4 bits	1

Figure 3. 8237A Internal Registers
The 8237A contains three basic blocks of control logic. The Timing Control block generates internal timing and external controi signals for the 8237A. The Program Command Control block decodes the various commands given to the 8237A by the microprocessor prior to servicing a DMA Request. It also decodes the Mode Control word used to select the type of DMA during the servicing. The Priority Encoder block resolves priority contention between DMA channels requesting service sìmultaneously.

The Timing Control block derives internal timing from the clock input. In 8237A systems this input will usually

Symbal	Type	Name and Function
AEN	0	Address Enable: Address Enable enables the 8 -bit latch containing the upper 8 address bits onto the system address bus. AEN can also be used to disable other system bus drivers during DMA transfers. AEN is active HIGH.
ADS ${ }^{\text {² }}$	0	Address Strobe: The active high, Address Strobe is used to strobe the upper address byte into an external latch.
MEMR	0	Memory Read: The Memory Read signal is an active low three-state output used to access data from the selected memory location during a DMA Read or a memory-to-memory transfer.
MEMW	0	Memory Write: The Memory Write is an active low three-state output used to write data to the selected memory location during a DMA Write or a memory-to-memory transter.

be the $\phi 2$ TTL clock from an 8224 or CLK from an 8085AH or 8284A. For $8085 \mathrm{AH}-2$ systems above 3.9 MHz , the 8085 CLK(OUT) does not satisfy $8237 A-5$ clock LOW and HIGH time requirements. In this case, an external clock should be used to drive the 8237A-5.

DMA Operation

The 8237A is designed to operate in two major cycles. These are called Idle and Active cycles. Each device cycle is made up of a number of states. The 8237A can assume seven separate states, each composed of one full clock period. State I (SI) is the inactive state. It is entered when the 8237A has no valid DMA requests pending. While in SI, the DMA controller is inactive but may be in the Program Condition, being programmed by the processor. State $S 0(S 0)$ is the first state of a DMA service. The 8237A has requested a hold but the processor has not yet returned an acknowledge. The 8237A may still be programmed until it receives HLDA from the CPU. An acknowledge from the CPU will signal that DMA transfers may begin. S1, S2, S3 and S4 are the working states of the DMA service. If more time is needed to complete a transfer than is available with normal timing, wait states (SW) can be inserted between S2 or S3 and S4 by the use of the Ready line on the 8237A. Note that the data is transferred directly from the $1 / \mathrm{O}$ device to memory (or vice versa) with IOR and MEMW (or $\overline{M E M} \bar{R}$ and $\overline{I O W}$) being active at the same time. The data is not read into or. driven out of the 8237A in 1/O-tomemory or memory-to-I/O DMA transfers.
Memory-to-memory transfers require a read-from and a write-to-memory to complete each transfer. The states, which resemble the normal working states, use two digit numbers for identification. Eight states are required for a single transfer. The first four states (S11, S12, S13, S14) are used for the read-from-memory half
and the last four states (S21, S22, S23, S24) for the write-to-memory half of the transfer.

IDLE CYCLE

When no channel is requesting service, the 8237A will enter the Idle cycle and perform " Sl " states. In this cycle the 8237A will sample the DREQ lines every clock cycle to determine if any channel is requesting a DMA service. The device will also sample $\overline{C S}$, looking for an attempt by the microprocessor to write or read the internal registers of the 8237A. When $\overline{\mathrm{CS}}$ is low and HLDA is low, the 8237A enters the Program Condition. The CPU can now establish, change or inspect the internal definition of the part by reading from or writing to the internal registers. Address lines AO-A3 are inputs to the device and select which registers will be read or written. The $\overline{I O R}$ and $\overline{I O W}$ lines are used to select and time reads or writes. Due to the number and size of the internal registers, an internal flip-flop is used to generate an additional bit of address. This bit is used to determine the upper or lower byte of the 16 -bit Address and Word Count registers. The flip-flop is reset by Master Clear or Reset. A separate software command can also reset this flip-flop.

Special software commands can be executed by the 8237A in the Program Condition. These commands are decoded as sets of addresses with the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OWW}}$. The commands do not make use of the data bus. Instructions include Clear First/Last Flip-FLop and Master Clear.

ACtive Cycle

When the 8237A is in the Idle cycle and a non-masked channel requests a DMA service, the device will output an HRQ to the microprocessor and enter the Active cycle. It is in this cycle that the DMA service will take place, in one of four modes:

Single Transfor Mode - In Single Transfer mode the device is programmed to make one transfer only. The word count will be decremented and the address decremented or incremented following each transfer. When the word count "rolls over" from zero to FFFFH, a Terminal Count (TC) will cause an Autoinitialize if the channel has been programmed to do so.

DREQ must be held active until DACK becomes active in order to be recognized. II DREQ is held active throughout the single transfer, HRQ will go inactive and release the bus to the system. It will again go active and, upon receipt of a new HLDA, another single transfer will be pertermed, in 8080A, 8085AH, 8088, or 8086 system this will ensure one full machine cycle execution between DMA transiers. Details of timing between the 8237A and other bus control protocols will depend upon the characteristics of the microprocessor involved.

Block Transier Mode - In Block Transfer mode the device is activated by DREQ to continue making transfers during the service until a TC, caused by word count going to FFFFH, or an external End of Process (EOP) is encountered. DREQ need only be held active until DACK
becomes active. Again, an Autoinitialization will occur at the end of the service if the channel has been programmed for it.

Dernand Transfer Mode - In Demand Transfer mode the device is programmed to contifue making transfers until a TC or external EOP is encountered or until DREQ goes inactive. Thus transters may continue until the I/O device has exhausted its data capacity. After the I/O device has had a chance to catch up, the DMA service is re-established by means of a DREQ. During the time between services when the microprocessor is allowed to operate, the intermediate values of address and word count are stored in the 8237A Current Address and Current Word Count registers. Only an EOP can cause an Autoinitialize at the end of the service. $\overline{E O P}$ is generated either by TC or by an external signal.

Cascade Mode - This mode is used to cascade more than one 8237A together for simple system expansion. The HRQ and HLDA signals from the additional 8237A are connected to the DREQ and DACK signals of a channel of the initial 8237A. This allows the DMA requests of the additional device to propagate through the priority network circuitry of the preceding device. The priority chain is preserved and the new device must wait for its turn to acknowledge requests. Since the cascade channel of the initial 8237A is used only for prioritizing the additional device, it does not output any address or control signals of its own. These could conflict with the outputs of the active channel in the added device. The 8237A will respond to DREQ and DACK but all other outputs except HRQ will be disabled.

Figure 4 shows two additional devices cascaded into an initial device using two of the previous channels. This forms a two level DMA system. More 8237As could be added at the second level by using the remaining channels of the first level. Additional devices can also be added by cascading into the channels of the second level devices, forming a third ievel.

Figure 4. Cascaded 8237As

TRANSFER TYPES

Each of the three active transfer modes can perform three different types of transfers. These are Read, Write and Verify. Write transfers move data from an I/O device to the memory by activating MEMW and $\overline{\mathrm{OR}}$. Read transfers move data from memory to an I/O device by activating MEMR and $\overline{\mathrm{IOW}}$. Verify transfers are pseudo transfers. The 8237A operates as in Read or Write transfers generating addresses, and responding to EOP, etc. However, the memory and I/O control lines all remain inactive. Verify mode is not permitted during memory to memory operation.

Memory-to-Memory - To perform block moves of data from one memory address space to another with a minimum of program effort and time, the 8237A includes a memory-to-memory transfer feature. Programming a bit in the Command register selects channels 0 and 1 to operate as memory-to-memory transfer channels. The transfer is initiated by setting the software DREQ for channel 0 . The 8237A requests a DMA service in the normal manner. After HLDA is true, the device, using eightstate transfers in Block Transfer mode, reads data from the memory. The channel 0 Current Address register is the source for the address used and is decremented or. incremented in the normal manner. The data byte read from the memory is stored in the 8237A internal Temporary register. Channel 1 then writes the data from the Temporary register to memory using the address in its Current Address register and incrementing or decrementing it in the normal manner. The channel 1 Current Word Count is decremented. When the word count of channel 1 goes to FFFFH, a TC is generated causing an $\overline{E O P}$ output terminating the service.

Channel 0 may be programmed to retain the same address for all transfers. This allows a single word to be written to a block of memory.

The 8237A will respond to external $\overline{\mathrm{EOP}}$ signals during memory-to-memory transfers. Data comparators in block search schemes may use this input to terminate the service when a match is found. The timing of memory-to-memory transfers is found in Figure 12. Memory-to-memory operations can be detected as an active AEN with no DACK outputs.

Autoinitialize - By programming a bit in the Mode register, a channel may be set up as an Autoinitialize channel. During Autoinitialize initialization, the original values of the Current Address and Current Word Count registers are automatically restored from the Base Address and Base Word count registers of that channel following $\overline{E O P}$. The base registers are loaded simultaneously with the current registers by the microprocessor and remain unchanged throughout the DMA service. The mask bit is not set when the channel is in Autoinitialize. Following Autoinitialize the channel is ready to perform another DMA service, without CPU intervention, as soon as a valid DREQ is detected.
Priority - The 8237A has two types of priority encoding available as software selectable options. The first is Fixed Priority which fixes the channels in priority order
based upon the descending value of their number. The channel with the lowest priority is 3 followed by 2,1 and the highest priority channel, 0 . After the recognition of any one channel for service, the other channels are prevented from interferring with that service until it is completed.

The second scheme is Rotating Priority. The last channel to get service becomes the lowest priority channel with the others rotating accordingly.

With Rotating Priority in a single chip DMA system, any device requesting service is guaranteed to be recognized after no more than three higher priority services have occurred. This prevents any one channel from monopolizing the system.

Compressed Timing - In order to achieve even greater throughput where system characteristics permit, the 8237A can compress the transfer time to two clock cycies. From Figure 11 it can be seen that state S3 is used to extend the access time of the read pulse. By removing state 53 , the read pulse width is made equal to the write pulse width and a transfer consists only of state $\mathbf{S} 2$ to change the address and state S 4 to perform the read/write. S1 states will still occur when A8-A15 need updating (see Address Generation). Timing for compressed transfers is found in Figure 14.

Address Generation - In order to reduce pin count, the 8237A multiplexes the eight higher order address bits on the data lines. State S1 is used to output the higher order address bits to an external latch from which they may be placed on the address bus. The falling edge of Address Strobe (ADSTB) is used to load these bits from the data lines to the latch. Address Enable (AEN) is used to enable the bits onto the address bus through a threestate enable. The lower order address bits are output by the 8237A directly. Lines A0-A7 should be connected to the address bus. Figure 11 shows the time relationships between CLK, AEN, ADSTB, DB0-DB7 and A0-A7.

During Block and Demand Transfer mode services, which include multiple transfers, the addresses generated will be sequential. For many transfers the data held in the external address latch will remain the same. This data need only change when a carry or borrow from A7 to A8 takes place in the normal sequence of addresses. To save time and speed transfers, the 8237A executes Si states only when updating of A8-A15 in the latch is necessary. This means for long services, S1 states and Address Strobes may occur only once every 256 transfers, a savings of 255 clock cycles for each 256 transfers.

REGISTER DESCRIPTION

Current Address Register - Each channel has a 16-bit Current Address register. This register hoids the value of the address used during DMA transfers. The address is automatically incremented or decremented after each transfer and the intermediate values of the address are stored in the Current Address register during the transfer. This register is written or read by the microprocessor in successive 8 -bit bytes. It may also be reinitialized by an Autoinitialize back to its original value. Autoinitialize takes place only after an EOP.

Current Word Register - Each channel has a 16-bit Current Word Count register. This register determines the number of transfers to be performed. The actual number of transfers will be one more than the number programmed in the Current Word Count register (i.e., programming a count of 100 will result in 101 transfers). The word count is decremented after each transfer. The intermediate value of the word count is stored in the register during the transfer. When the value in the register goes from zero to FFFFH, a TC will be generated. This register is loaded or read in successive 8 -bit bytes by the microprocessor in the Program Condition. Following the end of a DMA service it may also be reinitialized by an Autoinitialization back to its original value. Autoinitialize can occur only when an EOP occurs. If it is not Autoinitialized, this register will have a count of FFFFH after TC.

Base Address and Base Word Count Registers - Each channel has a pair of Base Address and Base Word Count registers. These 16 -bit registers store the original value of their associated current registers. During Autoinitialize these values are used to restore the current registers to their original values. The base registers are written simultaneously with their corresponding current register in 8 -bit bytes in the Program Condition by the microprocessor. These registers cannot be read by the microprocessor.

Command Register - This 8-bit register controls the operation of the 8237 A . It is programmed by the microprocessor in the Program Condition and is cleared by Reset or a Master Clear instruction. The following table lists the function of the command bits. See Figure 6 for address coding.

Mode Register - Each channel has a 6-bit Mode register associated with it. When the register is being written to by the microprocessor in the Program Condition, bits 0 and 1 determine which channel Mode register is to be written.

Request Register - The 8237A can respond to requests for DMA service which are initiated by software as well as by a DREQ. Each channel has a request bit associated with it in the 4-bit Request register. These are nonmaskable and subject to prioritization by the Priority Encoder network. Each register bit is set. of reset sepa-

Command Register

Mode Register

Request Register

rately under software control or is cleared upon generation of a TC or external EOP. The entire register is cleared by a Reset. To set or reset a bit, the software loads the proper form of the data word. See Figure 5 for register address coding. In order to make a software request, the channel must be in Block Mode.

Mask Register - Each channel has associated with it a mask bit which can be set to disable the incoming DREQ. Each mask bit is set when its associated channel produces an $\overline{E O P}$ if the channel is not programmed for Autoinitialize. Each bit of the 4-bit Mask register may also be set or cleared separately under software control. The entire register is also set by a Reset. This disables all DMA requests until a clear Mask register instruction allows them to occur. The instruction to separately set or clear the mask bits is similar in form to that used with the Request register. See Figure 5 for instruction addressing.

All four bits of the Mask register may also be written with a single command.

Register	Operation			.	Signals							
			$\overline{\text { CS }}$	$\overline{\text { OR }}$	$\overline{\overline{O W}}$	A3	A2	A1	A0			
Command	Write	0	1	0	1	0	0	0				
Mode	Write	0	1	0	1	0	1	1				
Request	Write	0	1	0	1	0	0	1				
Mask	Set/Reset	0	1	0	1	0	1	0				
Mask	Write	0	1	0	1	1	1	1				
Temporary	Read	0	0	1	1	1	0	1				
Status	Read	0	0	1	1	0	0	0				

Figure 5. Definition of Register Codes

Status Register - The Status register is available to be read out of the 8237A by the microprocessor. It contains information about the status of the devices at this point. This information includes which channels have reached a terminal count and which channels have pending DMA requests. Bits 0-3 are set every time a TC is reached by that channel or an external EOP is applied. These bits are cleared upon Reset and on each Status Read. Bits 4-7 are set whenever their corresponding channel is requesting service.

Temporary Register - The Temporary register is used to hold data during memory-to-memory transfers. Following the completion of the transfers, the last word moved can be read by the microprocessor in the Program Condition. The Temporary register always contains the last byte transferred in the previous memory-to-memory operation, uriless cleared by a Reset.
Software Commands - These are additional special software commands which can be executed in the Program Condition. They dc not depend on any specific bit pattern on the data bus. The two software commands are:

Clear First/Last Flip-Flop: This command is executed prior to writing or reading new address or word count information to the 8237A. This initializes the flip-flop to a known state so that subsequent accesses to register contents by the microprocessor will address upper and lower bytes in the correct sequence.

Master Clear: This software instruction has the same effect as the hardware Reset. The Command, Status, Request, Temporary, and Internal First/Last Flip-Flop registers are cleared and the Mask register is set. The 8237A will enter the Idle cycle.

Clear Mask Register: This command clears the mask bits of all four channels, enabling them to accept DMA requests.
Figure 6 lists the address codes for the software commands:

Stanals						Operation
A3	A2	A1	AO	$\overline{\text { IOR }}$	Iow	
1	0	0	0	0	1	Read Status Register
1	0	0	0	1	0	Write Command Register
1	0	0	1	0	1	Illegal
1	0	0	1	1	0	Write Request Register
1	0	1	0	0	1	Illegal
1	0	1	0	1	0	Write Single Mask Registar Bit
1	0	1	1	0	1	lifegal
1	0	1	1	1	0	Write Mode Register
1	1	0	0	0	1	Illogal
1	1	0	0	1	0	Clear Byte Pounter Flip/Flop
1	1	0	1	0	1	Read Temporary Register
1	1	0	1	1	0	Master Clear
1	1	1	0	0	1	illegal
1	i	1	0	1	0	Clear Mask Register
1	1	1	1	0	1	Illegal
1	1	1	1	1	0	Write All Mask Register Bits

Figure 6. Software Command Codes

Channel	Registor	Operation	Signala							Internal Flip-Flop	Data Bus DB0-0B7
			$\overline{\mathbf{C S}}$	$\overline{\text { 10月 }}$	IOW	A3	A2	A1	AC		
0	Base and Current Address	Write	0	1	0	0	0	0	0	0	A0.A7
			0	1	0	0	0	0	0	1	A8-A15
	Current Address	Read	0	0	1	0	0	0	0	0	AO-A7
			0	0	1	0	0	0	0	1	48-A 15
	Base and Current Word Count	Write	0	1	0	0	0	0	1	0	W0-W7
			0	1	0	0	0	0	1	1	WS-W15
	Current Word Count	Read	0	0	1	0	0	0	1	0	W0-W7
			0	0	1	0	0	0	1	1	W8-W15
1	Base and Current Address	Write	0	1	0	0	0	1	0	0	A0-A7
			0	1	0	0	0	1	0	1	A8-A15
	Current Address	Read	0	0	1	0	0	1	0	0	A0-A7
			0	0	1	0	0	1	0	1	A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	1	1	0	W0-W7
			0	1	0	0	0	1	1	1	W8-W15
	Current Word Count	Read	0	0	1	0	0	1	1	0	W0-W7
			0	0	1	0	0	1	1	1	W8-W 15
2	Base and Current Address	Write	0	1	0	0	1		0	0	A0-A7
			0	1	0	0	1	0	0	1	A8-A15
	Current Address	Read	0	0	1	0	1	0	0	0	AO-A]
			0	0	1	0	1	0	0	1	A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	0	1	0	W0-W7
			0	1	0	0	1	0	1	1	W8-W15
	Current Word Count	Read	0	0	1	0	1	0	1	0	W0-W7
			0	0	1	0	1	0	1	1	W8-W15
3	Base and Current Address	Write	0	1	0	0	1	1	0	0	A0-A7
			0	1	0	0	1	1	0	1	A8-A15
	Current Address	Read	0	0	1	0	1	1	0	0	A0-A7
			0	0	1	0	1	1	0	1	A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	1	1	0	WG-W7
			0	1	0	0	1	1	1	1	W8-W15
	Current Word Count	Read	0	0	1	0	1	1	1	0	W0-W7
			0	0	1	0	1	1	1	1	W8-W15

Figure 7. Word Count and Address Register Command Codes

PROGRAMMING

The 8237A will accept programming from the host processor any time that HLDA is inactive; this is true even if HRQ is active. The responsibility of the host is to assure that programming and HLDA are mutually exclusive. Note that a problem can occur if a DMA request occurs, on an unmasked channel while the 8237A is being programmed. For instance, the CPU may be starting to reprogram the two byte Address register of channel 1 when channel 1 receives a DMA request. If the 8237A is enabled (bit 2 in the command register is 0) and channel 1 is unmasked, a DMA service will occur after only one byte of the Address register has been reprogrammed. This can be avoided by disabling the controller (setting bit 2 in the command register) or masking the channel before pregramminy any other registers. Once the programming is complete, the controller can be enabled/unmasked.

After power-up it is suggested that all internal locations, especially the Mode registers, be loaded with some valid value. This should be done even if some channels are unused.

APPLICATION INFORMATION

Figure 8 shows a convenient method for configuring a DMA system with the 8237A controller and an 8080A 8085AH microprocessor system. The multimode DMA controller issues a HRQ to the processor whenever there is at least one valid DMA request from a peripheral device. When the processor replies with a HLDA signal, the 8237A takes control of the address bus, the data bus and the control bus. The address for the first transfer
operation comes out in two bytes - the least signiticant 8 bits on the eight address outputs and the most significant 8 bits on the data bus. The contents of the data bus are then latched into the 82828 -tit latch to complete the full 16 bits of the address bus. The 8282 is a high speed, 8-bit, three-state latch in a 20-pin package. After the initial transfer takes place: the latch is updated only after a carry or borrow is generated in the least sig. nificant address byte. Four DMA channels are provided when one 8237A is used.

Flgure 8. 8237A Systionitnetorface

UM8250A/B
 Asynchronous Communication Element (ACE)

FEATURES:

- Adds or Deletes Standard Asynchronous Communication Bits (Start. Stop, and Parity) to or from Serial Data Stream
- Full Double Buffering Eliminates Need for Precise Synchronization
- Independently Controlled Transmit, Receive, Line Status, and Data Set Interrupts
- Programmable Baud Rate Generator Allows Division of Any Input Clock by 1 to ($2^{16}-1$) and Generates the Internal 16X Clock
- Independent Receiver Clock Input
- Modem Control Functions (CTS, RTS, DSR, DTR, RI, and Carrier Detect)
- Internal Diagnostic Capabilities
- Loopback Controls for Communications Link Fault Isolation
- Break", Parity, Overrun, Framing Error Simulation
- Single +5 Volt Power Supply
- Fully Programmable Serial Interface Characteristics
- 5, 6, 7, or 8-bit Characters
- Even, Odd, or No-parity Bit Generation and Detection
- $1,11 / 2$, or 2 Stops Bit Generation
- Baud Rate Generation (DC to 56K Baud)
- INS 8250A Spec. Compatible
- False Start Bit Detection
- Complete Status Reporting Capabilities
- Easily Interfaces with Most Popular Microprocessors
- Line-8reak Generation and Detection
- Fully Prioritized Interrupt System Controls.

PIN CONFIGURATION

$0_{0} 5$		40	$\mathrm{v}_{\text {Do }}$
$0_{1} \square^{2}$		39	R1
$\mathrm{O}_{2} \square^{3}$		38	ALSO
$\mathrm{O}_{3} \mathrm{~B}$		37	${ }^{\text {OSR }}$
$\mathrm{O}_{4} \mathrm{C}_{5}$		36	CTS
$\mathrm{O}_{5}{ }^{\circ}$		36	MR
0807		34	OUT
078		33	TTR
acik $\mathrm{O}^{\text {a }}$		32	$\overline{\text { RTS }}$
Sin ${ }^{10}$	${ }_{6}$	31	$\overline{O U T 2}$
sout ${ }^{11}$	8	30	wtrpt
cs0 Cl_{12}		28	NC
cs1 13		28	
cs2 14		27	A_{1}
EAUOOUT ${ }^{\text {a }}$		20	A_{2}
xtal 18		25	$\stackrel{\text { A }}{ }$
\times XTAL 2917		24	csout
DOSTR - 18		23	dois
Dostr 19		22	DISTR
$\mathrm{v}_{\text {SS }}{ }_{20}$		21	DISTR

8251A PROGRAMMABLE COMMUNICATION INTERFACE

- Synchronous and Asynchronous Operation
- Synchronous 5-8 Bit Characters; Internal or External Character Synchronization; Automatic Sync Insertion
- Asynchronous 5-8 Bit Characters; Clock Rate-1, 16 or 64 Times Baud Rate; Break Character Generation; 1, 1 $1 / 2$, or 2 Stop Bits; False Start Bit Detection; Automatic Break Detect and Handling
- Synchronous Baud Rate-DC to 64K Baud
- Asynchronous Baud Rate-DC to 19.2K Baud
- Full-Duplex, Double-Buffered Transmitter and Receiver
- Error Detection-Parity, Overrun and Framing
- Compatible with an Extended Range of Intel Microprocessors
- 28-Pin DIP Package
- All Inputs and Outputs are TTL Compatible
- Available in EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel ${ }^{\text {825 }}$ 8 4 is the enhanced version of the industry standard Intel 8251 Universal Synchronous/ Asynchronous Receiver/Transmitter (USART), designed for data communications with Intel's microprocessor families such as MCS-68, 80,85 , and $\mathrm{IAPX}-86,88$. The 8251 A is used as a peripheral device and is programmed by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM "bi-sync"). The USART accepts data characters from the CPU in parallel format and then converts them into a continuous serial data stream for transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of the USART at any time. These include data transmission errors and control signals such as SYNDET, TxEMPTY. The chip is fabricated using N-channel silicon gate technology.

Figure 1. Block Diagram

Figure 2. Pin Configuration

FEATURES AND ENHANCEMENTS

The 8251A is an advanced design of the industry standard USART, the Intel 8251. The 8251A operates with an extended range of Intel microprocessors and maintains compatibility with the 8251. Familiarization time is minimal because of compatibility and involves only knowing the additional features and enhancements, and reviewing the AC and DC specifications of the 8251A.

The 8251A incorporates all the key features of the 8251 and has the following additional features and enhancements:

- 8251A has double-buffered data paths with separate I/O registers for control, status, Data In, and Data Out, which considerably simplifies control programming and minimizes CPU overhead.
- In asynchronous operations, the Receiver detects and handles "break" automatically, relieving the CPU of this task.
- A refined Rx initialization prevents the Receiver from starting when in "break" state, preventing unwanted interrupts from a disconnected USART.
- At the conclusion of a transmission, TxD line will always return to the marking state unless SBRK is programmed.
- Tx Enable logic enhancement prevents a Tx Disable command from halting transmission until all data previously written has been transmitted. The logic also prevents the transmitter from turning off in the middle of a word.
- When External Sync Detect is programmed, Internal Sync Detect is disabled, and an External Sync Detect status is provided via a flip-flop which clears itself upon a status read
- Possibility of false sync detect is minimized by ensuring that if double character sync is programmed, the characters be contiguously detected and also by clearing the Rx register to all ones whenever Enter Hunt command is issued in Sync mode.
- As long as the 8251A is not selected, the $\overline{R D}$ and WR do not affect the internal operation of the device.
- The 8251A Status can be read at any time but the status update will be inhibited during status read
- The 8251A is free from extraneous glitches and has enhanced AC and DC characteristics, providing higher speed and better operating margins.
- Synchronous Baud rate from DC to 64 K .

FUNCTIONAL DESCRIPTION

General

The 8251A is a Universal Synchronous/Asynchronous Receiver/Transmitter designed for a wide range of Intel microcomputers such as 8048, 8080, 8085, 8086 and 8088. Like other I/O devices in a microcomputer system, its functional configuration is programmed by the system's software for maximum flexibility. The 8251A can support most serial data techniques in use, including IBM "bi-sync."

In a communication environment an interface device must convert paraliel format system data into serial format for transmission and convert incoming serial format data into parallel system data for reception. The interface device must also delete or insert bits or characters that are functionally unique to the communication technique. In essence, the interface should appear "transparent" to the CPU, a simple input or output of byte-oriented system data.

Data Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface the 8251A to the system Data Bus. Data is transmitted or received by the buffer upon execution of INput or OUTput instructions of the CPU. Control words. Command words and Status information are also transferred through the Data Bus Buffer. The Command Status, Data-In and Data-Out registers are separate, 8 -bit registers communicating with the system bus through the Data Bus Buffer.

This functional block accepts inputs from the system Control bus and generates control signals for overall device operation. It contains the Control Word Register and Command Word Register that store the various control formats for the device functional definition.

RESET (Reset)

A "high" on this input forces the 8251A into an "Idle" mode. The device will remain at "Idle" until a new set of control words is written into the 8251A to program its functional definition. Minimum RESET pulse width is $6 t_{\mathrm{CY}}$ (clock must be running).

A command reset operation also puts the device into the "Idle" state.

CLK (Clock)

The CLK input is used to generate internal device timing and is normally connected to the Phase 2 (TTL) output of the Slock Generator. No external inputs or outputs are referenced to CLK but the frequency of CLK must be greater than 30 times the Receiver or Transmitter data bit rates.

WR (Write)

A "low" on this input informs the 8251A that the CPU is writing data or control words to the 8251A.

RD (Read)

A "low" on this input informs the 8251A that the CPU is reading data or status information from the 8251A.

Figure 3. 8251A Block Diagram Showing Data Bus Buffer and Read/Write Logic Functions

C/D	$\overline{R D}$	$\overline{\text { WR }}$	$\overline{\text { CS }}$	
0	0	1	0	8251A DATA \Rightarrow DATA BUS
0	1	0	0	DATA BUS \rightarrow 8251A DATA
1	0	1	0	STATUS \rightarrow DATA BUS
1	1	0	0	DATA BUS \rightarrow CONTROL
x	1	1	0	DATA BUS \rightarrow 3-STATE
x	x	x	1	DATA BUS $=3$ STATE

C/D (Control/Data)

This input, in conjunction with the $\overline{W R}$ and $\overline{R D}$ inputs. informs the 8251A that the word on the Data Bus is either a data character, control word or status information.

1 : CONTROL/STATUS; $0=$ DATA.

C̄ (Chip Select)

A "low" on this input selects the 8251A. No reading or writing will occur unless the device is selected. When $\overline{\mathrm{C}} \overline{\mathrm{S}}$ is high, the Data Bus is in the float state and $\bar{R} \bar{D}$ and $\bar{W} \bar{R}$ have no effect on the chip.

Modem Control

The 8251A has a set of contro! inputs and outputs that can be used to simplify the interface to almost any modem. The modem control signals are general purpose in nature and can be used for functions other than modem control, if necessary.

$\overline{\text { DSR (Data Set Ready) }}$

The $\overline{\mathrm{DSR}}$ input signal is a general-purpose, 1-bit inverting input port. Its condition can be tested by the CPU using a Status Read operation. The DSR input is normally used to test modem conditions such as Data Set Ready.

DTR (Data Terminal Ready)

The DTR output signal is a general-purpose, 1 -bit inverting output port. It can be set "low" by programming the appropriate bit in the Command Instruction word. The DTR output signal is normally used for modem control such as Data Terminal Ready.

RTS (Request to Send)

The RTS output signal is a general-purpose, 1-bit inverting output port. It can be set "low" by programming the appropriate bit in the Command Instruction word. The RTS output signal is normally used for modem control such as Request to Send.

CTS (Clear to Send)

A "low" on this input enables the 8251A to transmit serial data if the Tx Enable bit in the Command byte is set to a "one." If either a Tx Enable off or CTS off condition occurs while the T_{x} is in operation, the T_{x} will transmit all the data in the USART, written prior to Tx Disable command before shutting down.

Transmitter Buffer

The Transmitter Buffer accepts parallel data from the Data Bus Buffer, converts it to a serial bit stream, inserts the appropriate characters or bits (based on the communication technique) and outputs a composite serial stream of data on the TxD output pin on the falling edge of $\overline{T x C}$. The transmitter will begin transmission upon being enabled if CTS $=0$. The TxD line will be held in the marking state immediately upon a master Reset or when Tx Enable or CTS is off or the transmitter is empty.

Transmitter Control

The Transmitter Control manages all activities associated with the transmission of serial data. It accepts and issues signals both externally and internally to accomplish this function.

TxRDY (Transmitter Ready)

This output signals the CPU that the transmitter is ready to accept a data character. The TxRDY output pin can be used as an interrupt to the system, since it is masked by TxEnable; or, for Polled operation, the CPU can check TxRDY using a Status Read operation. TxRDY is automatically reset by the leading edge of WR when a data character is loaded from the CPU.

Note that when using the Polled operation, the TxRDY status bit is not masked by TxEnable, but will only indicate the Empty/Full Status of the Tx Data Input Register.

TxE (Transmitter Empty)

When the 8251A has no characters to send, the TxEMPTYoutput will go "high." It resets upon receiving a character from CPU if the transmitter is enabled. TxEMPTY remains high when the transmitter is disabled. TxEMPTY can be used to indicate the end of a transmission mode, so that the CPU "knows" when to "turn the line around" in the half-duplex operational mode.

In the Synchronous mode, a "high" on this output indicates that a character has not been loaded and the SYNC character or characters are about to be or are being transmitted automatically as "fillers." TxEMPTY does not go low when the SYNC characters are being shifted out.

Figure 4. 8251A Block Diagram Showing Modem and Transmitter Buffer and Control Functions

TxC (Transmitter Clock)

The Transmitter Clock controls the rate at which the character is to be transmitted. In the Synchronous transmission mode, the Baud Rate (1x) is equal to the $\overline{T x C}$ frequency. In Asynchronous transmission mode, the baud rate is a fraction of the actual $\overline{T x C}$ frequency. A portion of the mode instruction selects this factor; it can be $1,1 / 16$ or $1 / 64$ the $\overline{T \times C}$.

For Example:
If Baud Rate equais 110 Baud,
TxC equals 110 Hz in the 1 x mode.
TxC equals 1.72 kHz in the 16 x mode.
$\overline{T x C}$ equals 7.04 kHz in the 64 x mode.
The falling edge of $\overline{\mathrm{T} X}$ shifts the serial data out of the 8251A.

Receiver Buffer

The Receiver accepts serial data, converts this serial input tg parallel format, checks for bits or characters that are unique to the communication technique and sends an "assembled" character to the CPU. Serial data is input to RxD pin, and is clocked in on the rising edge of $\overline{R \times C}$.

Receiver Control

This functional block manages all receiver-related activities which consists of the following features.

The RxD initialization circuit prevents the 8251A from mistaking an unused input line for an active low data line in the "break condition." Before starting to receive serial characters on the RxD line, a valid " 1 " must first be detected after a chip master Reset. Once this has been determined, a search for a valid low (Start bit) is enabled. This feature is only active in the asynchronous mode, and is only done once for each master Reset.

The False Start bit detection circuit prevents talse starts due to a transient noise spike by first detecting the falling edge and then strobing the nominal center of the Start bit (RxD = low).

Parity error detection sets the corresponding status bit.

The Framing Error status bit is set if the Stop bit is absent at the end of the data byte (asynchronous mode).

RxRDY (Receiver Ready)

This output indicates that the 8251A contains a character that is ready to be input to the CPU. RxRDY can be connected to the interrupt structure of the CPU or, for polled operation, the CPU can check the condition of RxRDY using a Status Read operation.

RxEnable, when off, holds RxRDY in the Reset Condition. For Asynchronous mode, to set RxRDY, the Receiver must be enabled to sense a Start Bit and a complete character must be assembled and transferred to the Data Output Register. For Synchronous mode, to set RxRDY, the Receiver must be enabled and a character must finish assembly and be transferred to the Data Output Register.

Failure to read the received character from the Rx Data Output Register prior to the assembly of the next Rx Data character will set overrun condition error and the preyious character will be written over and lost. If the Rx Data is being read by the CPU when the internal transfer is occurring, overrun error will be set and the old character will be lost.

RXC (Receiver Clock)

The Receiver Clock controls the rate at which the character is to be received. In Synchronous Mode, the Baud Rate (1 x) is equal to the actual frequency of $\overline{\mathrm{RxC}}$. In Asynchronous Mode, the Baud Rate is a fraction of the actual $\overline{\mathrm{RxC}}$ frequency. A portion of the mode instruction selects this factor: $1,1 / 16$ or 1/64 the $\overline{\mathrm{RxC}}$.
For example:
Baud Rate equals 300 Baud, if
$\overline{R x C}$ equals 300 Hz in the $1 x$ mode;
$\overline{R x C}$ equals 4800 Hz in the 16 x mode;
RxC equals 19.2 kHz in the 64 x mode.
Baud Rate equals 2400 Baud, if
RXC equals 2400 Hz in the $1 \times$ mode;
$\overline{\mathrm{RxC}}$ equals 38.4 kHz in the 16 x mode;
$\overline{\mathrm{RXC}}$ equals 153.6 kHz in the 64 x mode.
Data is sampled into the 8251A on the rising edge of $\overline{\mathrm{RxC}}$.

NOTE: In most communications systems, the 8251A will be handling both the transmission and reception operations of a single link. Consequently, the Receive and Transmit Baud Rates will be the same. Both $\overline{\mathrm{TXC}}$ and $\overline{\mathrm{RXC}}$ will require identical frequencies for this operation and can be tied together and connected to a single frequency source (Baud Rate Generator) to simplify the interface.

Figure 5. 2251A Block Diagram Showing Recelver Buffer and Control Functions

SYNDET (SYNC Detect/ BRKDET Break Detect)

This pin is used in Synchronous Mode for SYNDET and may be used as either input or output, programmable through the Control Word. It is reset to output mode low upon RESET. When used as an output (internal Sync mode), the SYNDET pin will go "high" to indicate that the 8251A has located the SYNC character in the Receive mode. If the 8251A is programmed to use double Sync characters (bisync), then SYNDET will go "high" in the middle of the last bit of the second Sync character. SYNDET is automatically reset upon a Status Read operation.

When used as an input (external SYNC detect mode), a positive going signal will cause the 8251A to start assembling data characters on the rising edge of the next $\overline{\mathrm{RXC}}$. Once in SYNC, the "high" input signal can be removed. When External SYNC Detect is programmed, Internal SYNC Detect is disabled.

BREAK (Async Mode Only)

This output will go high whenever the receiver remains low through two consecutive stop bit sequences (including the start bits, data bits, and parity bits). Break Detect may also be read as a Status bit. It is reset only upon a master chip Reset or Rx Data returning to a "one" state.

Figure 6. 8251A Interface to $\mathbf{8 0 8 0}$ Standard System Bus

DETAILED OPERATION DESCRIPTION

General

The complete functional definition of the 8251A is programmed by the system's software. A set of control words must be sent out by the CPU to initialize the 8251A to support the desired communications format. These control words will program the: BAUD RATE, CHARACTER LENGTH, NUMBER OF STOP BITS, SYNCHRONOUS OI ASYNCHRONOUS OPERATION, EVEN/ODD/OFF PARITY, etc. In the Synchronous Mode, options are also provided to select either internal or external character synchronization.

Once programmed, the 8251A is ready to perform its communication functions. The TxRDY output is raised "high" to signal the CPU that the 8251A is ready to receive a data character from the CPU. This output (TxRDY) is reset automatically when the CPU writes a character into the 8251A. On the other hand, the 8251A receives serial data from the MODEM or I/O device. Upon receiving an entire character, the RxRDYoutput is raised "high" to signal the CPU that the 8251A has a complete character ready for the CPU to fetch. RxRDY is reset automatically upon the CPU data read operation.

The 8251A cannot begin transmission until the Tx Enable (Transmitter Enable) bit is set in the Command Instruction and it has received a Clear To Send (CTS) input. The TxD output will be held in the marking state upon Reset.

Figure 7. Typical Data Block

Programming the 8251A

Prior to starting data transmission or reception, the 8251A must be loaded with a set of control words generated by the CPU. These control signals define the complete functional definition of the 8251A and must immediately follow a Reset operation (internal or external).

The control words are split into two formats:

1. Mode Instruction
2. Command Instruction

Mode Instruction

This instruction defines the general operational characteristics of the 8251A. It must follow a Reset operation (internal or external). Once the Mode Instruction has been written into the 8251A by the CPU, SYNC characters or Command Instructions may be written.

Command Instruction

This instruction defines a word that is used to control the actual operation of the 8251A.

Both the Mode and Command Instructions must conform to a specified sequence for proper device operation (see Figure 7). The Mode Instruction must be written immediately following a Reset operation, prior to using the 8251A for data communication.

All control words written into the 8251A after the Mode Instruction will load the Command Instruction. Command Instructions can be written into the 8251A at any time in the data block during the operation of the 8251A. To return to the Mode Instruction format, the master Reset bit in the Command Instruction word can be set to initiate an internal Reset operation which automatically places the 8251A back into the Mode Instruction format. Command Instructions must follow the Mode Instructions or Sync characters.

Mode Instruction Definition

The 8251A can be used for either Asynchronous or Synchronous data communication. To understand how the Mode Instruction defines the functional operation of the 8251A, the designer can best view the device as two separate components, one Asynchronous and the other Synchronous, sharing
the same package. The format definition can be changed only after a master chip Reset. For explanation purposes the two formats will be isolated.

NOTE: When parity is enabled it is not considered as one of the data bits for the purpose of programming the word length. The actual parity bit received on the Rx Data line cannot be read on the Data Bus. In the case of a programmed character length of less than 8 bits, the least significant Data Bus bits will hold the data; unused bits are "don't care" when writing data to the 8251A, and will be "zeros" when reading the data from the 8251 A .

Asynchronous Mode (Transmission)

Whenever a data character is sent by the CPU the 8251A automatically adds a Start bit (low level) followed by the data bits (least significant bit first), and the programmed number of Stop bits to each character. Also, an even or odd Parity bit is inserted prior to the Stop bit(s), as defined by the Mode Instruction. The character is then transmitted as a serill data stream on the TxD output. The serial data is shifted out on the falling edge of $\overline{T \times C}$ at a rate equal to $1,1 / 16$, or $1 / 64$ that of the $\overline{\mathrm{T} X C}$, as defined by the Mode Instruction. BREAK characters can be continuously sent to the TXD if commanded to do so.

When no data characters have been loaded into the 8251A the TxD output reamins "high" (marking) unless a Break (continuously low) has been programmed.

Figure 8. Mode Instruction Format, Asynchronous Mode

Asynchronous Mode (Receive)

The RxD line is normally high. A falling edge on this line triggers the beginning of a START bit. The validity of this START bit is checked by again strobing this bit at its nominal center (16 X or 64 X mode only). If a low is detected again, it is a valid START bit, and the bit counter will start counting. The bit counter thus locates the center of the data bits, the parity bit (if it exists) and the stop bits. If parity error occurs, the parity error flag is set. Data and parity bits are sampled on the RxD pin with the rising edge of $\overline{\mathrm{RxC}}$. If a low level is detected as the STOP bit, the Framing Error flag will be set. The STOP bit signals the end of a character. Note that the receiver requires only one stop bit, regardless of the number of stop bits programmed. This character is then loaded into the parallel I/O buffer of the 8251A. The RxRDY pin is raised to signal the CPU that a character is ready to be fetched. If a previous character has not been fetched by the CPU, the present character replaces it in the I/O buffer, and the OVERRUN Error flag is raised (thus the previous character is lost). All of the error flags can be reset by an Error Reset Instruction. The occurrence of any of these errors will not affect the operation of the 8251A.

Figure 9. Asynchronous Mode

Synchronous Mode (Transmission)

The TxD output is continuously high until the CPU sends its first character to the 8251A which usually is a SYNC character. When the CTS line goes low, the first character is serially transmitted out. All characters are shifted out on the falling edge of $\overline{T \times C}$. Data is shifted out at the same rate as the $\overline{\mathrm{TXC}}$.

Once transmission has started, the data stream at the $T x D$ output must continue at the $\overline{T x C}$ rate. If the CPU does not provide the 8251A with a data character before the 8251A Transmitter Buffers become empty, the SYNC characters (or character if in single SYNC character mode) will be automatically inserted in the TXD data stream. In this case, the TxEMPTY pin is raised high to signal that the 8251A is empty and SYNC characters are being sent out. TXEMPTY does not go low when the SYNC is being shifted out (see figure below). The TxEMPTY pin is internally reset by a data character being written into the 8251A.

Synchronous Mode (Receive)

In this mode, character synchronization can be internally or externaliy achieved. If the SYNC mode has been programmed, ENTER HUNT command should be included in the first command instruction word written. Data on the RxD pin is then sampled on the rising edge of $\overline{\mathrm{R} \times \mathrm{C}}$. The content of the Rx buffer is compared at every bit boundary with the first SYNC character until a match occurs. If the 8251A has been programmed for two SYNC characters, the subsequent received character is also compared; when both SYNC characters have been detected, the USARTends the HUNT mode and is in character synchronization. The SYNDET pin is then set high, and is reset automatically by a STATUS READ. If parity is programmed, SYNDET will not be set until the middle of the parity bit instead of the middle of the last data bit.

In the external SYNC mode, synchronization is achieved by applying a high level on the SYNDET pin, thus forcing the 8251A out of the HUNT mode. The high level can be removed after one $\overline{\mathrm{RxC}}$ cycle. An ENTER HUNT command has no effect in the asynchronous mode of operation.

Parity error and overrun error are both checked in the same way as in the Asynchronous Rx mode. Parity is checked when not in Hunt, regardless of whether the Receiver is enabled or not.

Figure 10. Mode Instruction Format, Synchronous Mode

The CPU can command the receiver to enter the HUNT mode if synchronization is lost. This will also set all the used character bits in the buffer to a "one," thus preventing a possible false SYNDET caused by data that happens to be in the Rx Buffer at ENTER HUNT time. Note that the SYNDET F/F is reset at each Status Read, regardless of whether internal or external SYNC has been programmed. This does not cause the 8251A to return to the HUNT mode. When in SYNC mode, but not in HUNT, Sync Detection is still functional, but only occurs at the "known" word boundaries. Thus, if one Status Read indicates SYNDET and a second Status Read also indicates SYNDET, then the programmed SYNDET characters have been received since the previous Status Read. (If double character sync has been programmed, then both sync characters have been contiguously received to gate a SYNDET indication.) When external SYNDET mode is selected, internal Sync Detect is disabled, and the SYNDET F/F may be set at any bit boundary.

Figure 11. Data Format, Synchronous Mode

COMMAND INSTRUCTION DEFINITION

Once the functional definition of the 8251A has been programmed by the Mode Instruction and the sync characters are loaded (if in Sync Mode) then the device is ready to be used for data communication. The Command Instruction controls the actual operation of the selected format. Functions such as: Enable Transmit/Receive, Error Reset and Modem Controls are provided by the Command Instruction.

Once the Mode Instruction has been written into the 8251A and Sync characters inserted, if necessary, then all further "control writes" ($C / D=1$) will load a Command Instruction. A Reset Operation (internal or external) will return the 8251A to the Mode Instruction format.

Note: Internal Reset on Power-up

When power is first applied, the 8251A may come up in the Mode, Sync character or Command format. To guarantee that the device is in the Command Instruction format before the Reset command is issued, it is safest to execute the worst-case initialization sequence (sync mode with two sync characters). Loading three $\mathbf{0 0 H s}$ consecutively into the device with $C / \overline{\mathrm{D}}=1$ configures sync operation and writes two dummy 00 H sync characters. An Internal Reset command (40 H) may then be issued to return the device to the "idle" state.

Figure 12. Command Instruction Format

STATUS READ DEFINITION

In data communication systems it is often necessary to examine the "status" of the active device to ascertain if errors have occurred or other conditions that require the processor's attention. The 8251A has facilities that allow the programmer to "read" the status of the device at any time during the functional operation. (Status update is inhibited during status read.)

A normal "read" command is issued by the CPU with $C / \bar{D}=1$ to accomplish this function.

Some of the bits in the Status Read Format have identical meanings to external output pins so that the 8251A can be used in a completely polled or interrupt-driven environment. TxRDY is an exception.

Note that status update can have a maximum delay of 28 clock periods from the actual event affecting the status.

Figure 13. Status Read Format

APPLICATIONS OF THE 8251A

Figure 14. Asynchronous Serial Interface to CRT Terminal, DC-9600 Baud

Figure 15. Synchronous Interface to Terminal or Peripheral Device

Figure 16. Asynchronous Interface to Telephone Lines

Figure 17. Synchronous Interface to Telephone Lines

8253/8253-5 PROGRAMMABLE INTERVAL TIMER

- MCS-85TM Compatible 8253-5

E 3 Independent 16-Bit Counters

- DC to 2.6 MHz
- Programmable Counter Modes
- Count Binary or BCD
- Single +5V Supply

■ Available in EXPRESS

- Standard Temperature Range
- Extended Temperature Range

The Intel* 8253 is a programmable counter/timer device designed for use as an Intel microcomputer peripheral. It uses NMOS technology with a single +5 V supply and is packaged in a 24 -pin plastic DIP.

It is organized as 3 independent 16 -bit counters, each with a count rate of up to 2.6 MHz . All modes of operation are software programmable.

Figure 2. Pin Configuration

8254
 PROGRAMMABLE INTERVAL TIMER

- Compatible with All Intel and Most Other Microprocessors
- Handles Inputs from DC to 10 MHz
- 5 MHz 8254-5
- 8 MHz 8254
- 10 MHz 8254-2
- Status Read-Back Command
- Six Programmable Counter Modes
- Three Independent 16-Bit Counters
- Binary or BCD Counting

■ Single + 5V Supply

- Available in EXPRESS
-Standard Temperature Range

The Intel 8254 is a counter/timer device designed to solve the common timing control problems in microcomputer system design. It provides three independent 16-bit counters, each capable of handling clock inputs up to 10 MHz . All modes are software programmable. The 8254 is a superset of the 8253.

The 8254 uses HMOS technology and comes in a 24-pin plastic or CERDIP package.

231164-2
Figure 2. Pin Configuration

8255A/8255A-5 PROGRAMMABLE PERIPHERAL INTERFACE

■ MCS-85TM Compatible 8255A-5

- 24 Programmable I/O Pins
- Completely TTL Compatible
- Fully Compatible with Intel Microprocessor Families
- Improved Timing Characteristics
- Direct Bit Set/Reset Capability Easing Control Application Interface
- Reduces System Package Count
- Improved DC Driving Capability
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range
- 40 Pin DIP Package or 44 Lead PLCC
(See Intel Packaging Order Number: 231369)

The Intel 8255A is a general purpose programmable I/O device designed for use with Intel microprocessors. It has 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first mode (MODE 0), each group of 12 I/O pins may be programmed in sets of 4 to be input or output. In MODE 1, the second mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for handshaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

Figure 1. 8255A Block Diagram

8255A FUNCTIONAL DESCRIPTION

General

The 8255A is a programmable peripheral interface (PPI) device designed for use in Intel microcomputer systems. Its function is that of a general purpose I/O component to interface peripheral equipment to the microcomputer system bus. The functional configuration of the 8255A is programmed by the system software so that normally no external logic is necessary to interface peripheral devices or structures.

Data Bus Buffer

This 3 -state bidirectional 8 -bit buffer is used to interface the 8255A to the system data bus. Data is transmitted or received by the buffer upon execution of input or output instructions by the CPU. Control words and status information are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the

CPU Address and Control busses and in turn, issues commands to both of the Control Groups.

($\overline{C S})$

Chip Select. A "low" on this input pin enables the communication between the 8255A and the CPU.

($\overline{\text { RD }})$

Read. A "low" on this input pin enables the 8255A to send the data or status information to the CPU on the data bus. In essence, it allows the CPU to "read from" the 8255A.

(WR)

Write. A "low" on this input pin enables the CPU to write data or control words into the 8255A.

(A_{0} and A_{1})

Port Select 0 and Port Select 1. These input signals, in conjunction with the RD and WR inputs, control the selection of one of the three ports or the control word registers. They are normally connected to the least significant bits of the address bus (A_{0} and A_{1}).

Flgure 3. 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions

8255A BASIC OPERATION

A_{1}	A_{0}	$\overline{\text { RD }}$	$\overline{\text { WR }}$	$\overline{\mathbf{C S}}$	Input Operation (READ)
0	0	0	1	0	Port A \rightarrow Data Bus
0	1	0	1	0	Port B \rightarrow Data Bus
1	0	0	1	0	Port $\mathrm{C} \rightarrow$ Data Bus
					Output Operation (WRITE)
0	0	1	0	0	Data Bus \rightarrow Port A
0	1	1	0	0	Data Bus \rightarrow Port B
1	0	1	0	0	Data Bus \rightarrow Port C
1	1	1	0	0	Data Bus \rightarrow Control
					Disable Function
X	X	X	X	1	Data Bus \rightarrow 3-State
1	1	0	1	0	Illegal Condition
X	X	1	1	0	Data Bus \rightarrow 3-State

(RESET)

Reset. A "high" on this input clears the control register and all ports ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) are set to the input mode.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence, the CPU "outputs" a control word to the 8255A. The control word contains information such as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 8255A.

Each of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control Logic, receives "control words" from the internal data bus and issues the proper commands to its associated ports.

Control Group A-Port A and Port C upper (C7-C4) Control Group B-Port B and Port C lower (C3-C0)

The Control Word Register can Only be written into. No Read operation of the Control Word Register is allowed.

Ports A, B, and C

The 8255A contains three 8-bit ports (A, B, and C). All can be configured in a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the 8255A.

Port A. One 8 -bit data output latch/buffer and one 8 -bit data input latch.

Port B. One 8-bit data input/output latch/buffer and one 8 -bit data input buffer.

Port C. One 8 -bit data output latch/buffer and one 8 -bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4 -bit port contains a 4 -bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with ports A and B .

Figure 4. 8225A Block Diagram Showing Group A and Group B Control Functions

Pin Names

$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus (Bi-Directional)
RESET	Reset Input
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{RD}}$	Read Input
$\overline{\mathrm{WR}}$	Write Input
$\mathrm{AO}, \mathrm{A1}$	Port Address
PA7-PAO	Port A (BIT)
PB7-PB0	Port B (BIT)
PC7-PCO	Port C (BIT)
V_{CC}	+5 Volts
GND	O Volts

8255A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can be selected by the system software:

Mode 0-Basic Input/Output
Mode 1-Strobed Input/Output
Mode 2-Bi-Directional Bus
When the reset input goes "high" all ports will be set to the input mode (i.e., all 24 lines will be in the high impedance state). After the reset is removed the 8255A can remain in the input mode with no additional initialization required. During the execution of the system program any of the other modes may be selected using a single output instruction. This allows a single 8255A to service a variety of peripheral devices with a simple software maintenance routine.

The modes for Port A and Port B can be separately defined, while Port C is divided into two portions as required by the Port A and Port B definitions. All of the output registers, including the status flip-flops, will be reset whenever the mode is changed. Modes may be combined so that their functional definition can be "tailored" to almost any I/O structure. For instance; Group B can be programmed in Mode 0 to monitor simple switch closings or display computational results, Group A could be programmed in Mode 1 to monitor a keyboard or tape reader on an interrupt-driven basis.

Figure 5. Basic Mode Definitions and Bus Interface

Figure 6. Mode Definition Format
The mode definitions and possible mode combinations may seem confusing at first but after a cursory review of the complete device operation a simple, logical I/O approach will surface. The design of the 8255A has taken into account things such as efficient PC board layout, control signal definition vs PC layout and complete functional flexibility to support almost any peripheral device with no external logic. Such design represents the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a single OUTput instruction. This feature reduces software requirements in Control-based applications.

Figure 7. Bit Set/Reset Format
When Port C is being used as status/control for Port A or B, these bits can be set or reset by using the Bit Set/Reset operation just as if they were data output ports.

Interrupt Control Functions

When the 8255A is programmed to operate in mode 1 or mode 2, control signals are provided that can be used as interrupt request inputs to the CPU. The interrupt request signals, generated from port C, can be inhibited or enabled by setting or resetting the associated INTE flip-flop, using the bit set/reset function of port C .

This function allows the Programmer to disallow or allow a specific I/O device to interrupt the CPU without affecting any other device in the interrupt structure.

INTE flip-flop definition:
(BIT-SET)—INTE is set-Interrupt enable
(BIT-RESET)-INTE is RESET—Interrupt disable
NOTE:
All Mask flip-flops are automatically reset during mode selection and device Reset.

Operating Modes

MODE 0 (Basic Input/Output). This functional configuration provides simple input and output operations for each of the three ports. No "handshaking" is required, data is simply written to or read from a specified port.

Mode 0 Basic Functional Definitions:

- Two 8-bit ports and two 4-bit ports.
- Any port can be input or output.
- Outputs are latched.
- Inputs are not latched.
- 16 different Input/Output configurations are possible in this Mode.

MODE 0 (BASIC INPUT)

MODE 0 (BASIC OUTPUT)

MODE 0 PORT DEFINITION

A		B		Group \mathbf{A}			Group B	
$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	Port A	Port C (Upper)	$*$	Port B	Port C (Lower)
0	0	0	0	OUTPUT	OUTPUT	0	OUTPUT	OUTPUT
0	0	0	1	OUTPUT	OUTPUT	1	OUTPUT	INPUT
0	0	1	0	OUTPUT	OUTPUT	2	INPUT	OUTPUT
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT
0	1	0	1	OUTPUT	INPUT	5	OUTPUT	INPUT
0	1	1	0	OUTPUT	INPUT	6	INPUT	OUTPUT
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT
1	0	0	1	INPUT	OUTPUT	9	OUTPUT	INPUT
1	0	1	0	INPUT	OUTPUT	10	INPUT	OUTPUT
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT
1	1	0	1	INPUT	INPUT	13	OUTPUT	INPUT
1	1	1	0	INPUT	INPUT	14	INPUT	OUTPUT
$\mathbf{1}$	1	1	1	INPUT	INPUT	15	INPUT	INPUT

MODE CONFIGURATIONS

CONTROL WORD *2

D_{7}	D_{6}	D_{6}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	0	0	0	1	0

CONTROL WORD *9

Operating Modes

MODE 1 (Strobed Input/Output). This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "handshaking" signals. In mode 1, port A and port B use the lines on port C to generate or accept these "handshaking" signals.

Mode 1 Basic Functional Definitions:

- Two Groups (Group A and Group B)
- Each group contains one 8-bit data port and one 4-bit control/data port.
- The 8-bit data port can be either input or output. Both inputs and outputs are latched.
- The 4-bit port is used for control and status of the 8 -bit data port.

Input Control Signal Definition

$\overline{\text { STB }}$ (Strobe Input). A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been loaded into the input latch; in essence, an acknowledgement. IBF is set by STB input being low and is reset by the rising edge of the RD input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU when an input device is requesting service. INTR is set by the STB is a "one", IBF is a "one" and INTE is a "one". It is reset by the falling edge of $\overline{R D}$. This procedure allows an input device to request service from the CPU by simply strobing its data into the port.

8255A/8255A-5

INTE A
Controlled by bit set/reset of PC_{4}.

Figure 8. MODE 1 Input

Figure 9. MODE 1 (Strobed Input)

Output Control Signal Definition

$\overline{\text { OBF }}$ (Output Buffer Full F/F). The $\overline{O B F}$ output will go "low" to indicate that the CPU has written data out to the specified port. The OBF F/F will be set by the rising edge of the $\overline{W R}$ input and reset by $\overline{A C K}$ input being low.

ACK (Acknowledge Input). A "low" on this input informs the 8255A that the data from port A or port B has been accepted. In essence, a response from the peripheral device indicating that it has received the data output by the CPU.

INTR (Interrupt Request). A "high" on this output can be used to interrupt the CPU when an output
device has accepted data transmitted by the CPU. INTR is set when $\overline{A C K}$ is a "one", $\overline{O B F}$ is a "one", and INTE is a "one". It is reset by the falling edge of WR.

INTE A

Controlled by bit set/reset of PC_{6}.

INTE B

Controlled by bit set/reset of PC_{2}.

Figure 10. MODE 1 Output

Figure 11. MODE 1 (Strobed Output)

Figure 12. Combinations of MODE 1

Combinations of MODE 1

Port A and Port B can be individually defined as input or output in MODE 1 to support a wide variety of strobed I/O applications.

Operating Modes

MODE 2 (Strobed Bidirectional Bus I/O). This functional configuration provides a means for communicating with a peripheral device or structure on a single 8 -bit bus for both transmitting and receiving data (bidirectional bus I/O). "Handshaking" signals are provided to maintain proper bus flow discipline in a similar manner to MODE 1. Interrupt generation and enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

- Used in Group A only.
- One 8-bit, bi-directional bus Port (Port A) and a 5bit control Port (Port C).
- Both inputs and outputs are latched.
- The 5-bit control port (Port C) is used for control and status for the 8-bit, bi-directional bus port (Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can be used to interrupt the CPU for both input or output operations.

Output Operations

$\overline{\text { OBF }}$ (Output Buffer Full). The $\overline{O B F}$ output will go "low" to indicate that the CPU has written data out to port A.
$\overline{\text { ACK }}$ (Acknowledge). A "low" on this input enables the tri-state output buffer of port A to send out the data. Otherwise, the output buffer will be in the high impedance state.

INTE 1 (The INTE Flip-Flop Associated with OBF). Controlled by bit set/reset of PC_{6}.

Input Operations

$\overline{\text { STB }}$ (Strobe Input). A "low" on this input loads data into the input latch.

8255A/8255A-5

IBF (Input Buffer Full F/F). A "high" on this output indicates that data has been loaded into the input latch.

Figure 13. MODE Control Word

INTE 2 (The INTE Flip-Flop Associated with IBF). Controlled by bit set/reset of PC_{4}.

Figure 14. MODE 2

Figure 15. MODE 2 (Bidirectional)

Figure 16. MODE $1 / 4$ Combinations

Mode Definition Summary

	MODE 0		MODE 1	
	IN	OUT	IN	OUT
	IN	OUT	in	OUT
PA_{1}	IN	OUT	IN	OUT
PA_{2}	IN	OUT	IN	OUT
PA_{3}	IN	OUT	IN	OUT
PA_{4}	IN	OUT	IN	OUT
PA_{5}	IN	OUT	IN	OUT
PA_{6}	IN	OUT	in	OUT
PA_{7}	IN	OUT	IN	OUT
PB_{0}	IN	OUT	IN	OUT
PB_{1}	IN	OUT	IN	OUT
PB_{2}	IN	OUT	IN	OUT
PB_{3}	IN	OUT	IN	OUT
PB_{4}	IN	OUT	IN	OUT
PB_{5}	IN	OUT	IN	OUT
PB_{6}	IN	OUT	IN	OUT
PB_{7}	IN	OUT	IN	OUT
PC_{0}	IN	OUT	$\mathrm{INTR}_{\text {B }}$	${ }_{\text {INTR }}$
PC_{1}	IN	OUT	$\mathrm{IBF}_{\mathrm{B}}$	OBF_{B}
PC_{2}	IN	OUT	STB_{B}	$\overline{\text { ACK }}^{\text {B }}$
PC_{3}	IN	OUT	INTR_{A}	$\mathrm{INTR}_{\text {A }}$
PC_{4}	IN	OUT	STB $_{\text {A }}$	1/0
PC_{5}	IN	OUT	${ }^{\prime} \mathrm{IBF}_{\text {A }}$	1/O
PC_{6}	IN	OUT	$1 / 0$	$\overline{\text { ACK }}^{\text {A }}$
PC_{7}	IN	OUT	$1 / 0$	$\overline{\mathrm{OBF}}_{\mathrm{A}}$

Special Mode Combination Considerations

There are several combinations of modes when not all of the bits in Port C are used for control or status. The remaining bits can be used as follows:

If Programmed as Inputs-
All input lines can be accessed during a normal Port C read.

If Programmed as Outputs-

Bits in C upper ($\mathrm{PC}_{7}-\mathrm{PC}_{4}$) must be individually accessed using the bit set/reset function.

Bits in C lower ($\mathrm{PC}_{3}-\mathrm{PC}_{0}$) can be accessed using the bit set/reset function or accessed as a threesome by writing into Port C .

Source Current Capablilty on Port B and Port C

Any set of eight output buffers, selected randomly from Ports B and C can source 1 mA at 1.5 volts.

This feature allows the 8255 to directly drive Darlington type drivers and high-voltage displays that require such source current.

Reading Port C Status

In Mode 0, Port C transfers data to or from the peripheral device. When the 8255 is programmed to function in Modes 1 or 2, Port C generates or accepts "hand-shaking" signals with the peripheral device. Reading the contents of Port C allows the programmer to test or verify the "status" of each peripheral device and change the program flow accordingly.

There is no special instruction to read the status information from Port C. A normal read operation of Port C is executed to perform this function.

Figure 17. MODE 1 Status Word Format

Figure 18. MODE 2 Status Word Format

APPLICATIONS OF THE 8255A

The 8255A is a very powerful tool for interfacing peripheral equipment to the microcomputer system. It represents the optimum use of available pins and is flexible enough to interface almost any I/O device without the need for additional external logic.

Each peripheral device in a microcomputer system usually has a "service routine" associated with it. The routine manages the software interface between the device and the CPU. The functional definition of the 8255 A is programmed by the I/O service routine and becomes an extension of the system software. By examining the I/O devices interface characteristics for both data transier and timing, and matching this information to the examples and tables in the detailed operational description, a control word can easily be developed to initialize the 8255A to exactly "fit" the application. Figures 19 through 25 represent a few examples of typical applications of the 8255A.

Figure 19. Printer Interface

Figure 20. Keyboard and Display Interface

Figure 21. Keyboard and Terminal Address Interface

Figure 22. Digital to Analog, Analog to Digital

Figure 23. Basic Floppy Disk Interface

Figure 24. Basic CRT Controlier Interface

8256AH MULTIFUNCTION MICROPROCESSOR SUPPORT CONTROLLER

- Programmable Serial Asynchronous Communications Interface for 5-, 6-, 7-, or 8-Bit Characters, $1,11 / 2$, or 2 Stop Bits, and Parity Generation
- On-Board Baud Rate Generator Programmable for 13 Common Baud Rates up to 19.2 KBits/Second, or an External Baud Clock Maximum of 1M Bit/Second
- Five 8-Bit Programmable Timer/ Counters; Four Can Be Cascaded to Two 16-Bit Timer/Counters
- Two 8-Bit Programmable Parallel I/O Ports; Port 1 Can Be Programmed for Port 2 Handshake Controls and Event Counter Inputs
- Eight-Level Priority Interrupt Controller Programmable for 8085 or iAPX 86, iAPX 88 Systems and for Fully Nested Interrupt Capability
■ Programmable System Clock to $1 \times$, $2 \times, 3 \times$, or $5 \times 1.024 \mathrm{MHz}$

The Intel 8256AH Multifunction Universal Asynchronous Receiver-Transmitter (MUART) combines five commonly used functions into a single 40-pin device. It is designed to interface to the 8086/88, iAPX 186/188, and 8051 to perform serial communications, parallel I/O, timing, event counting, and priority interrupt functions. All of these functions are fully programmable through nine internal registers. In addition, the five timer/counters and two parallel I/O ports can be accessed directly by the microprocessor.

Figure 1. MUART Block Diagram

Figure 2. MUART Pin Configuration

8257/8257.5 PROGRAMMABLE DMA CONTROLLER

- MCS-85 ${ }^{\text {© }}$ Compatible 8257-5
- 4.Channel DMA Controller
- Priority DMA Request Logic
- Channel Inhibit Logic
- Terminal Count and Modulo 128 Outputs
- Single TTL Clock
- Single +5V Supply
- Auto Load Mode
- Available in EXPRESS
- Standard Temperature Range

The Intel' 8257 is a 4 -channel direct memory access (DMA) controller. It is specifically designed to simplify the transfer of data at high speeds for the Intel ${ }^{\circ}$ microcomputer systems. Its primary function is to generate, upon a peripheral request, a sequential memory address which will allow the peripheral to read or write data directly to or from memory. Acquisition of the system bus in accomplished via the CPU's hold function. The 8257 has priority logic that resolves the peripherals requests and issues a composite hold request to the CPU. It maintains the DMA cycle count for each channel and outputs a control signal to notify the peripheral that the programmed number of DMA cycles is complete. Other output control signals simplify sectored data transfers. The 8257 represents a significant savings in component count for DMA-based microcomputer systems and greatly simplifies the transfer of data at high speed between peripherals and memories.

Figure 1. Block Diagram

Figure 2. Pin Configuration

8257/8257-5

FUNCTIONAL DESCRIPTION

General

The 8257 is a programmable. Direct Memory Access (DMA) device which, when coupled with a single intel" 8212 I/O port device, provides a complete four-channel DMA controller for use in Intel microcomputer systems After being initialized by sottware, the 8257 can transfer a block of data. containing up to 16.384 bytes, between memory and a peripheral device directly, without further intervention required of the CPU. Upon receiving a DMA transfer request from an enabled peripheral, the 8257

1. Acquires control of the system bus.
2. Acknowledges that requesting peripheral which is connected to the highest priority channel
3. Outputs the least significant eight bits of the memory address onto system address lines $A_{0}-A_{\text {}}$, outputs the most significant eight bits of the memory address to the 8212 I/O port via the data bus (the 8212 places these address bits on lines $A_{8} \cdot A_{15}$), and
4. Generates the appropriate memory and I/O read/ write control signals that cause the peripheral to receive or deposit a data byte directly from or to the addressed location in memory.
The 8257 will retain control of the system bus and repeat the transfer sequence. as long as a peripheral maintains its DMA request. Thus, the 8257 can transfer a block of data to/from a high speed peripheral (e.g., a sector of data on a floppy disk) in a single "burst" When the specified number of data bytes have been transferred, the 8257 activates its Terminal Count (TC) output, informing the CPU that the operation is complete.

The 8257 offers three different modes of operation: (1) DMA read, which causes data to be transferred from memory to a peripheral; (2) DMA write, which causes data to be transferred from a peripheral to memory. and (3) DMA verify. which does not actually involve the transfer of data When an 8257 channel is in the DMA verify mode. It will respond the same as described for transfer operations. except that no memory or 1/O read/write control signals will be generated, thus preventing the transfer of data The 8257. however, will gain control of the system bus and will acknowledge the peripheral's DMA request for each DMA cycle The peripheral can use these acknowledge signals to enable an internal access of each byte of a data block in order to execute some verification procedure. such as the accumulation of a CRC (Cyclic Redundancy Code) checkword. For example, a block of DMA verify cycles might follow a block of DMA read cycles (memory to peripheral) to allow the peripheral to verify its newly acquired data

Block Diagram Description

1. DMA Channels

The 8257 provides four separate DMA channels (labeled $\mathrm{CH}-0$ to $\mathrm{CH}-3$). Each channel includes two sixteen-bit registers (1) a DMA address register, and (2) a terminal count register Both registers must be initialized before a channel is enabled. The DMA address register is loaded with the address of the first memory location to be accessed The value loaded into the low-order 14-bits of the terminal count register specifies the number of DMA cycles minus one before the Terminal Count (TC) output is activated For instance, a terminal count of 0 would cause the TC output to be active in the first DMA cycle for that channel. In general, if $\mathrm{N}=$ the number of desired DMA cycles. load the value N -1 into the low-order 14-bits of the terminal count register The most significant two bits of the terminal count register specify the type of DMA operation for that channel

Figure 3. 8257 Block Diagram Showing DMA Channels

These two bits are not modified during a DMA cycle, but can be changed between DMA blocks.
Each channel accepts a DMA Request (DROn) input and provides a DMA Acknowledge (DACKn) output.

(DRQ 0-DRQ 3)

DMA Request: These are individual asynchronous channel request inputs used by the peripherals to obtain a DMA cycle. If not in the rotating priority mode then DRQ 0 has the highest priority and DRQ 3 has the lowest. A request can be generated by raising the request line and holding it high until DMA acknowledge. For multiple DMA cycles (Burst Mode) the request line is held high until the DMA acknowledge of the last cycle arrives.

(DACK O-DACK 3)

DMA Acknowledge: An active low level on the acknowledge output informs the peripheral connected to that channel that it has been selected for a DMA cycle. The DACK output acts as a "chip select" for the peripheral device requesting service. This line goes active (low) and inactive (high) once for each byte transferted even if a burst of data is being transferred.

2. Data Bus Buffer

This three-state, bi-directional, eight bit buffer interfaces the 8257 to the system data bus.

($\left.D_{0}-D_{7}\right)$

Data Bus Lines: These are bi-directional three-state lines. When the 8257 is being programmed by the CPU, eightbits of data for a DMA address register, a terminal count register or the Mode Set register are received on the data bus. When the CPU reads a DMA address register, a terminal count register or the Status register, the data is sent to the CPU over the data bus. During DMA cycles (when the 8257 is the bus master). the 8257 will output the most significant eight-bits of the memory address (from one of the DMA address registers! to the 8212 latch via the data bus. These address bits will be transferred at the beginning of the DMA cycle; the bus will then be released to handle the memory data transier during the balance of the DMA cycle.

BIT 15	BIT 14	TYPE OF DMA OPERATION
0	0	Verity DMA Cycle
0	1	Write DMA Cycle
1	0	Read DMA Cycle
1	1	(Illegal)

Figure 4. 8257 Block Diagram Showing Data Bus Buffer

3. Read/Write Logic

When the CPU is programming or reading one of the 8257's registers (i.e., when the 8257 is a "slave" device on the system bus), the Read/Write Logic accepts the I/O Read (I/OR) or I/O Write (I/OW) signal, decodes the least significant four address bits, $\left(A_{0} \cdot A_{3}\right)$, and either writes the contents of the data bus into the addressed register (if $\overline{1 / O W}$ is true) or places the contents of the addressed re.jister onto the data bus (if $\overline{\Pi O R}$ is true).
During DMA cycles (i.e, when the 8257 is the bus "master"), the Read/Write Logic generates the I/O read and memory write (DMA write cycle) or I/O Write and memory read (DMA read cycle) signals which control the data link with the peripheral that has been granted the DMA cycle.
Note that during DMA transfers Non-DMA I/O devices should be de-selected (disabled) using "AEN" signal to inhibit I/O device decoding of the memory address as an erroneous device address.

(IIOR)

I/O Read An active-low, bi-directional three-state line. In the "slave" mode, it is an input which allows the 8 -bit status register or the upper/lower byte of a 16 -bit DMA address register or terminal count register to be read. In the "master" mode, $\overline{I / O R}$ is a control output which is used to access data from a peripheral during the DMA write cycle.

(IIOW)

I/O Write: An active-low, bi-directional three-state line. In the "slave" mode, it is an input which allows the contents of the data bus to be loaded into the 8-bit mode set register or the upper/lower byte of a 16-bit DMA address register or terminal count register. In the "master" mode, $\overline{1 / O W}$ is a control output which allows data to be output to a peripheral during a DMA read cycle.

(CLK)

Clock Input: Generally from an Intel ${ }^{\top} 8224$ Clock Generator device. ($\phi 2 \mathrm{TTL}$) or Intel ${ }^{\circ}$ 8085A CLK output.

(RESET)

Reset: An asynchronous input (generally from an 8224 or 8085 device) which disables all DMA channels by clearing the mode register and 3 -states all control lines.
$\left(A_{0}-A_{3}\right)$
Address Lines: These least significant four address lines are bi-directional. In the "slave" mode they are inputs which select one of the registers to be read or programmed. In the "master" mode, they are outputs which constitute the least significant four bits of the 16 -bit memory address generated by the 8257

(CS)

Chip Select An active-low input which enables the $1 / O$ Read or I/O Write input when the 8257 is being read or programmed in the "slave" mode in the "master" mode. $\overline{\mathrm{CS}}$ is automatically disabled to prevent the chip from selecting itself while performing the DMA function

4. Control Logic

This block controls the sequence of operations during all DMA cycles by generating the appropriate control signals and the 16 -bit address that specifies the memory location to be accessed

Figure 5. 8257 Block Diagram Showing Read/Write Logic Function

($A_{A}-A_{7}$)

Address Lines: These four address lines are three-state outputs which constitute bits 4 through 7 of the 16-bit memory address generated by the 8257 during all DMA cycles.

(READY)

Ready: This asynchronous input is used to elongate the memory read and write cycles in the 8257 with wait states if the selected memory requires longer cycles. READY must conform to specified setup and hold times.

(HRQ)

Hold Request: This output requests control of the system bus In systems with only one 8257, HRQ will normally be applied to the HOLD input on the CPU. HRQ must conform to specified setup and hold times.

(HLDA)

Hold Acknowledge: This input from the CPU inaicates that the 8257 has acquired control of the system bus.

(MEMR)

Memory Read: This active-low three-state output is used to read data from the addressed memory lacation during DMA Read cycles

(MENW)

Memory Write: This active-low three-state output is used to write data into the addressed memory location during DMA Write cycles.

(ADSTB)

Address Strobe: This output strobes the most significant byte of the memory address into the 8212 device from the data bus.

(AEN)

Address Enable. This output is used to disable (float) the System Data Bus and the System Control Bus. It may also be used to disable (float) the System Address Bus by use of an enable on the Address Bus drivers in systems to inhibit non-DMA devices from responding during DMA cycles. It may be further used to isolate the 8257 data bus from the System Data Bus to facilitate the transfer of the \& most significant DMA address bits over the 8257 data 1/O pins without subjecting the System Data Bus to any timing constraints for the transfer. When the 8257 is used in an $1 / O$ device structure las opposed to memory mapped), this AEN output should be used to disable the selection of an I/O device when the DMA address is on the address bus. The I/O device selection should be determined by the DMA acknowledge outputs for the 4 channels.
(TC)
Terminal Count: This output notifies the currently selected peripheral that the present DMA cycle should be the last cycle for this data block. If the TC STOP bit in the Mode Set register is set, the selected channel will be automatically disabled at the end of that DMA cycle. TC is activated when the 14 -bit value in the selected channel's terminal count register equals zero. Recall that the loworder 14 -bits of the terminal count register should be loaded with the values $(n-1)$, where $n=$ the desired number of the DMA cycles.

(MARK)

Modulo 128 Mark: This output notifies the selected peripheral that the current DMA cycle is the 128 th cycle since the previous MARK output MARK always occurs at 128 (and all multiples of 128) cycles from the end of the data block. Only if the total number of DMA cycles (n) is evenly divisable by 128 (and the terminal count register was loaded with $n-1$). will MARK occur at 128 (and each succeeding multiple of 128) cycles from the beginning of the data block

Figure 6. 8257 Block Dlagram Showing Control Loglc and Mode Set Register

825718257.5

5. Mode Set Register

When set, the various bits in the Mode Set register enable each of the four DMA channels, and allow four different options for the 8257:

The Mode Set register is normally programmed by the CPU after the DMA address registeris) and terminal count register(s) are initialized. The Mode Set Register is cleared by the RESET input, thus disabling all options, inhibiting all channels, and preventing bus conflicts on power-up. A channel should not be left enabled unless its DMA address and terminal count registers contain valid values: otherwise, an inadvertent DMA request (DRQn) from a peripheral could initiate a DMA cycle that would destroy memory data.

The various options which can be enabled by bits in the Mode Set register are explained below:

Rotating Priority Bit 4

In the Rotating Priority Mode. the priority of the channels has a circular sequence. After each DMA cycle. the priority of each channel changes. The channel which had just been serviced will have the lowest priority

If the ROTATING PRIORITY bit is not set (set to a zero). each DMA channel has a fixed priority. In the fixed priority mode, Channel 0 has the highest priority and Channel 3 has the lowest priority. If the ROTATING PRIORITY bit is sef to a one, the priority of each channel changes after each DMA cycle (not each DMA. request). Each channel moves up to the next highest priority assignment. while the channel which has just been serviced moves to the lowest priority assignment:

Note that rotating priority will prevent any one channel from monopolizing the DMA mode; consecutive DMA cycles will service different channels if more than one channel is enabled and requesting service. There is no overhead penalty associated with this mode of operation. All DMA operations began with Channei 0 initially assigned to the highest priority for the first DMA cycle.

Extended Write Bit 5

If the EXTENDED WRITE bit is set, the duration of both the $\overline{M E M W}$ and $\overline{1 / O W}$ signals is extended by activating them earlier in the DMA cycle. Data transters within microcomputer systems proceed asynchronously to allow use of various types of memory and $1 / O$ devices with access times. If a device cannot be accessed specific amount of time it returns a "not ready" to the 8257 that causes the 8257 to insert one or more wait states in its internal sequencing. Some devices are fast enough to be accessed without the use of wait states, but if they generate their READY response with the leading edge of the $\overline{1 / O W}$ or $\overline{M E M W}$ signal (which generally occurs late in the transfer sequence), they would normally cause the 8257 to enter a wait state because it does not receive READY in time For systems with these types of devices. the Extended Write option provides alfernative timing for the I / O and memory write signals which allows the devices to return an early READY and prevents the unnecessary occurrence of wait states in the 8257. thus increasing system throughput

TC Stop Bit 6

If the TC STOP bit is set. a channel is disabled (i.e., its enable bit is reset) after the Terminal Count (TC) output goes true. thus automatically preventing further DMA operation on that channel. The enable bit for that channel must be re-programmed to continue or begin another DMA operation. It the TC STOP bit is not set. the occurrence of the TC output has no effect on the channel enable bits. In this case, it is generally the responsibility of the peripheral to cease DMA requests in order to terminate a DMA operation.

Auto Load Bit 7

The Auto Load mode permits Channel 2 to be used for repeat block or block chaining operations, without immediate software intervention between blocks. Channel 2 regrsters are initialized as usual for the first data block: Channel 3 registers, however, are used to store the block re-initialization parameters (DMA starting address. terminal count and DMA transfer mode). After the first block of DMA cycles is executed by Channel 2 (i.e., after the TC output goes true), the parameters stored in the Channel 3 registers are transferred to Channel 2 during an "update" cycle. Note that the TC STOP feature. described above, has no effect on Channel 2 when the Auto Load bit is set.

If the Auto Load bit is set, the initial parameters for Channel 2 are automatically duplicated in the Channel 3 registers when Channel 2 is programmed. This permits repeat block operations to be set up with the programming of a single channel. Repeat block operations can be used in applications such as CRT refreshing. Channels 2 and 3 can still be loaded with separate values if Channel 2 is loaded before loading Channel 3. Note that in the Auto Load mode. Channel 3 is still available to the user if the Channel 3 enable bit is set, but use of this channel will change the values to be auto loaded into Channel 2 at update time. All that is necessary to use the Auto Load feature for chaining-operations is to reload Channel 3 registers at the conclusion of each update cycle with the new parameters for the next data block transfer.
Each time that the 8257 enters an update cycle; the update flag in the status register is set and parameters in Channel 3 are transferred to Channel 2, non-destructively for Channel 3. The actual re-initialization of Channel 2 occurs at the beginning of the next channel 2 DMA cycle after the TC cycle. This will be the first DMA cycle of the new data block for Channel 2. The update flag is cleared at the conclusion of this DMA cycle. For chaining operations, the update flag in the status register can be monitored by the CPU to determine when the re-initialization process has been completed so that the next block parameters can be sately loaded into Channel 3.

6. Status Register

The eight-bit status register indicates which channels have reached a terminal count condition and includes the update flag described previously.

The TC status bits are set when the Termınal Count (TC) output is activated for that channel. These bits remain set until the status register is read or the 8257 is reset. The UPDATE FLAG, however, is not affected by a status register read operation. The UPDATE FLAG can be cleared by resetting the 8257, by changing to the non-auto load mode (i.e., by resetting the AUTO LOAD bit in the Mode Set register) or it can be left to clear itself at the completion of the update cycle. The purpose of the UPDATE FLAG is to prevent the CPU from inadvertently skipping a data block by overwriting a starting address or terminal count in the Channel 3 registers before those parameters are properly auto-loaded into Channel 2.

The user is cautioned against reading the TC status register and using this information to reenable channels that have not completed operation. Unless the DMA channels are inhibited a channel could reach terminal count (TC) between the status read and the mode write. DMA can be inhibited by a hardware gate on the HRQ line or by disabling channels with a mode word before reading the TC status.

Figure 7. Autoload Timing

$8257 / 8257.5$

OPERATIONAL SUMMARY

Programming and Reading the $\mathbf{8 2 5 7}$ Registers

There are four pairs of "channel registers" each pair consisting of a 16 -bit DMA address register and a 16-bit terminal count register (one pair for each channel) The 8257 also includes two "general registers" one 8-bit Mode Set register and one 8 -bit Status register. The registers are loaded or read when the CPU executes a write or read instruction that addresses the 8257 device and the appropriate register within the 8257. The 8228 generates the appropriate read or write control signal Igenerally I/OR or I/OW while the CPU places a 16-bit address on the system address bus, and either outputs the data to be written onto the system data bus or accepts the data being read from the data bus All or some of the most significant 12 address bits $A_{4}-A_{15}$ (depending on the systems memory. I/O configuration) are usually decoded to produce the chip select ($\overrightarrow{C S}$) input to the $8257 \mathrm{An} \mathrm{I/O}$ Write input for Memory Write in memory mapped I/O configurations, described below) specifies that the addressed register is to be programmed. while an $1 / 0$ Read input (or Memory Read) specifies that the addressed register is to be read Address bit 3 specifies whether a "channel register" $\left(A_{3}=0\right)$ or the Mode Set (program only)/Status (read only) register ($A_{3}=1$) is to be accessed

The least significant three address bits, $A_{11}-A_{2}$, indicate the specific register to be accessed. When accessing the Mode Set or Status register, $A_{11}-A_{2}$ are all zero When accessing a channel register bit A_{0} differentiates between the DMA address register ($A_{0}=0$) and the terminal count register $\left(A_{0}=1\right)$, while bits A_{1} and A_{2} specify one of the

CONTROL INPUT	$\overline{\mathrm{CS}}$	$\overline{\overline{1 / O W}}$	$\overline{\mathrm{I} O R}$	$\mathrm{~A}_{3}$
Program Half of a Channel Register	0	0	1	0
Read Hall of a Channel Register	0	1	0	0
Program Mode Set Register	0	0	1	1
Read Status Register	0	1	0	1

four channels Because the "channel registers" are 16 bits, two program instruction cycles are required to load or read an entire register The 8257 contains a first/last (F/L) flip flop which toggles at the completion of each channel program or read operation. The F/L flip flop determines whether the upper or lower byte of the register is to be accessed The F/L flip flop is reset by the RESET input and whenever the Mode Set register is loaded. To maintain proper synchronization when accessing the "channel registers" all channel command instruction operations should occur in pairs, with the lower byte of a register always being accessed first. Do not allow $\overline{C S}$ to clock while either $\overline{/ / O R}$ or $\overline{/ / O W}$ is active. as this will cause an erroneous F / L flip flop state. In systems utilizing an interrupt structure, interrupts should be disabled prior to any paired programming operations to prevent an interrupt from splitting them The result of such a split would leave the F/L F/F in the wrong state. This problem is particularly obvious when other DMA channels are programmed by an interrupt structure

8257 Register Selection

REGISTER	BYTE	ADDRESS INPUTS				F/L	-BI-DIRECTIONAL DATA BUS							
		A_{3}	A_{2}	A_{1}	A_{0}		D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
CH-0 DMA Address	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	0	0.	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathbf{A}_{7} \\ \mathbf{A}_{15} \end{gathered}$	$\begin{gathered} \mathbf{A}_{6} \\ \mathbf{A}_{14} \end{gathered}$	$\begin{gathered} A_{5} \\ A_{13} \end{gathered}$	$\begin{gathered} \mathbf{A}_{4} \\ \mathbf{A}_{12} \end{gathered}$	$\begin{gathered} \mathbf{A}_{3} \\ \mathbf{A}_{11} \end{gathered}$	$\begin{aligned} & \mathbf{A}_{\mathbf{2}} \\ & \mathbf{A}_{10} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1} \\ & \mathbf{A}_{9} \end{aligned}$	$\begin{aligned} & A_{0} \\ & A_{B} \end{aligned}$
CH-0 Terminal Count	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	0	0	0	1	0	$\begin{aligned} & C_{7} \\ & \text { Rd } \end{aligned}$	$\begin{aligned} & C_{6} \\ & W_{r} \end{aligned}$	$\begin{aligned} & C_{5} \\ & C_{13} \end{aligned}$	$\begin{aligned} & C_{4} \\ & C_{12} \end{aligned}$	$\begin{aligned} & C_{3} \\ & C_{11} \end{aligned}$	$\begin{aligned} & \mathbf{C}_{2} \\ & \mathbf{C}_{10} \end{aligned}$	$\begin{aligned} & C_{1} \\ & C_{9} \end{aligned}$	$\begin{aligned} & C_{0} \\ & C_{8} \end{aligned}$
CH-1 DMA Address	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	Same	Ch	nnel 0					
CH-1 Terminal Count	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$								
CH-2 DMA Address	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	Same	as Ch	nel 0					
CH-2 Terminal Count	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	$\begin{array}{r} 0 \\ 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$								
CH-3 DMA Address	LSB MSB	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	0	0	Same	as	nnel 0					
CH-3 Terminal Count	$\begin{aligned} & \text { LSB } \\ & \text { MSB } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$								
MODE SET (Program only)	-	1	0	0	0	0	AL	TCS	EW	RP	EN3	EN2	EN1	ENO
STATUS (Read only)	-	1	0	0	0	0	0	0	0	UP	TC3	TC2	TC1	TCO

${ }^{-A_{0}}-A_{15}$: DMA Starting Address, $\mathrm{C}_{0}-\mathrm{C}_{13}$: Terminal Count value ($\mathrm{N}-1$), Rd and Wr: DMA Verify (00). Write (01) or Read (10) cycle selection, AL:Auto Load, TCS: TC STOP, EW: EXTENDED WRITE, RP: ROTATING PRIORITY, EN3-ENO: CHANNEL ENABLE MASK, UP: UPDATE FLAG, TC3-TCO: TERMINAL COUNT STATUS BITS.

Figure 8. DMA Operation State Diagram

DMA OPERATION

Single Byte Transfers

A single byte transfer is initiated by the I/O device raising the DRQ line of one channel of the 8257. If the channel is enabled, the 8257 will output a HRQ to the CPU. The 8257 now waits until a HLDA is received insuring that the system bus is free for its use. Once HLDA is received the DACK line for the requesting channel is activated (LOW). The DACR line acts as a chip select for the requesting $1 / O$ device. The 8257 then generates the
read and write commands and byte transfer occurs between the selected I/O device and memory. After the transfer is complete, the DACK line is set HIGH and the HRQ line is set LOW to indicate to the CPU that the bus is now free for use. DRQ must remain HIGH until DACK is issued to be recognized and must go LOW before 54 of the transfer sequence to prevent another transfer from occuring. (See timing diagram.)

Consecutive Transfers

If more than one channel requests service simultaneously, the transfer will occur in the same way a burst does. No overhead is incurred by switching from one channel to another. In each S4 the DRQ lines are sampled and the highest priority request is recognized during the next transfer. A burst mode transfer in a lower priority channel will be overridden by a higher priority request. Once the high priority transfer has completed control will return to the lower priority channel if its DRQ is still active. No extra cycles ate needed to execute this sequence and the HRQ line remains active until all DRQ lines go LOW.

Control Override

The continuous DMA transfer mode described above can be interrupted by an external device by lowering the HLDA line. After each DMA transfer the 8257 samples the HLDA line to insure that it is still active. If it is not active, the 8257 completes the current transfer, releases the HRQ line (LOW) and returns to the idle state. If DRQ lines are still active the 8257 will raise the $H R Q$ line in the third cycle and proceed normally. (See timing diagram.)

Not Ready

The 8257 has a Ready input similar to the 8080A and the 8085A. The Ready line is sampled in State 3. If Ready is LOW the 8257 enters a wait state. Ready is sampled during every wait state. When Ready returns HIGH the 8257 proceeds to State 4 to complete the transfer. Ready is used to interface memory or I/O devices that cannot meet the bus set up times required by the 8257

Speed

The 8257 uses four clock cycles to transfer a byte of data. No cycles are lost in the master to master transfer maximizing bus efficiency. A 2 MHz clock input will allow the 8257 to transfer at a rate of 500 K bytes/second.

Memory Mapped I/O Configurations

The 8257 can be connected to the system bus as a memory device instead of as an I/O device for memory mapped I/O configurations by connecting the system memory control lines to the 8257's 1/O control lines and the system 1/O control lines to the 8257's memory control lines
This configuration permits use of the 8080's considerably larger repertoire of memory instrucfions when reading or loading the 8257's registers. Note that with this connection. the programming of the Read (bit 15) and Write (bit 14) bits in the terminal count register will have a different meaning

Figure 9. System Interface for Memory Mapped I/O SYSTEM APPLICATION EXAMPLES

BIT 15 READ	BIT 14 WRITE	
0	0	DMA Verify Cycle
0	1	DMA Read Cycle
1	0	DMA Write Cycle
1	1	Illegal

Figure 10. TC Register for Memory Mapped I/O Only

Figure 11. Floppy Disk Controller (4 Drives)

Figure 12. High-Speed Communication Controller

8259A/8259A-2/8259A-8 PROGRAMMABLE INTERRUPT CONTROLLER

- IAPX 86, IAPX 88 Compatible
- MCS-80*, MCS-85* Compatible
- Eight-Level Priority Controller
- Expandable to 64 Levels
- Programmable Interrupt Modes
- Individual Request Mask Capability
- Single +5V Supply (No Clocks)
- 28-Pin Dual-In-Line Package
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel ${ }^{*}$ 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin DIP. uses NMOS technology and requires a single +5 V supply. Circuitry is static, requiring no clock input.

The 8259A is designed to minimize the software and real time overhead in handling multi-level priority interrupts. It has several modes, permitting optimization for a variety of system requirements.
The 8259A is fully upward compatible with the intel ${ }^{\circ} 8259$. Software originally written for the 8259 will operate the 8259A in all 8259 equivalent modes (MCS-80/85. Non-Buffered, Edge Triggered).

Figure 1. Block Diagram
Figure 2. Pin Configuration

8271/8271-6 PROGRAMMABLE FLOPPY DISK CONTROLLER

\author{

- IBM 3740 Soft Sectored Format Compatible
 - Programmable Record Lengths
 - Multi-Sector Capability
 - Maintain Dual Drives with Minimum Software Overhead Expandable to 4 Drives
 Automatic Read/Write Head Positioning and Verification
 - Internal CRC Generation and Checking
 - Programmable Step Rate, Settie.Time, Head Load Time, Head Unload Index Count
 - Fully MCS-80 ${ }^{\text {TM }}$ and MCS-85 ${ }^{\text {TM }}$ Compatible
 - Single +5V Supply
 - 40-Pin Package
}

The Intel ${ }^{\top} 8271$ Programmable Floppy Disk Controller (FDC) is an LSI component designed to interface one to 4 floppy disk drives to an 8 -bit microcomputer system. Its powerful control functions minimize both hardware and software overhead normally associated with floppy disk controllers.

Figure 1. Block Diagram
Figure 2. Pin Configuration

8272A
 SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLER

- IBM Compatible in Both Single and
Double Density Recording Formats
- Programmable Data Record Lengths: 128, 256, 512, or 1024 Bytes/Sector
- Multi-Sector and Multi-Track Transfer Capability
- Drives Up to 4 Floppy or Mini-Floppy Disks

- Data Transfers in DMA or Non-DMA Mode

- Parallel Seek Operations on Up to Four Drives
- Compatible with all Intel and Most Other Microprocessors
- Single-Phase 8 MHz Clock
- Single +5 Volt Power Supply ($\pm \mathbf{1 0 \%}$)

The 8272A is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or IBM System 34 Double Density format (MFM) including double sided recording. The 8272A provides control signals which simplify the design of an external phase locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a Floppy Disk Drive Interface. The 8272A is a pincompatible upgrade to the 8272 .

Figure 1. 8272A Internal Block Diagram

Figure 2. Pin Configuration

8273, 8273-4, 8273-8 PROGRAMMABLE HDLC/SDLC PROTOCOL CONTROLLER

- CCITT X. 25 Compatible
- HDLC/SDLC Compatible
- Full Duplex, Half Duplex, or Loop SDLC Operation
- Up to 64K Baud Synchronous Transfers
- Automatic FCS (CRC) Generation and Checking
- Up to 9.6K Baud with On-Board Phase Locked Loop
- Programmable NRZI Encode/Decode
- Two Üser Programmable Modem Control Ports
- Digital Phase Locked Loop Clock Recovery
- Minimum CPU Overhead
- Fully Compatible with $8048 / 8080 / 8085 /$ 8088/8086 CPUs
- Single +5V Supply

The Intel 8273 Programmable HDLC/SDLC Protocol Controller is a dedicated device designed to support the ISO/ CCITT's HDLC and IBM's SDLC communication line protocols. It is fully compatible with Intel's new high performance microcomputer systems such as the MCS-88/86 ${ }^{\top \mathrm{M}}$. A frame level command set is achieved by a unique microprogrammed dual processor chip architecture. The processing capability supported by the 8273 relieves the system CPU of the low level real-time tasks normally associated with controllers.

Figure 1. Block Diagram

Figure 2. Pin Configuration

8275H
 PROGRAMMABLE CRT CONTROLLER

Programmable Screen and Character Format

- 6 Independent Visual Field Attributes

- 11 Visual Character Attributes (Graphic Capability)
- Cursor Control (4 Types)

LIght Pen Detection and Registers

- MCS-51 ${ }^{\circledR}$, MCS-85 ${ }^{\circledR}$, IAPX 86, and iAPX 88 Compatible
- Dual Row Buffers
- Programmable DMA Burst Mode
- Single + 5V Supply
- High Performance HMOS-II

The Inte 8275H Programmable CRT Controller is a single chip device to interface CRT raster scan displays with Intel microcomputer systems. It is manufactured on Intel's advanced HMOS-II process. Its primary function is to refresh the display by buffering the information from main memory and keeping track of the display position of the screen. The flexibility designed in the 8275 H will allow simple interface to almost any raster scan CRT display with a minimum of external hardware and software overhead.

Figure 1. Block Diagram

Figure 2. Pin Configuration

8276H
 SMALL SYSTEM CRT CONTROLLER

\author{

- Programmable Screen and Character Format
 - 6 Independent Visual Field Attributes
 - Cursor Control (4 Types)
 iAPX 88 Compatible
}
- Dual Row Buffers
- Single +5V Supply
- 4Q-Pin Package
- 3 MHz Clock with 8276-2
- High Performance HMOS-III

The Intel 8276 H Small System CRT Controller is a single chip device intended to interface CRT raster scan displays with Intel microcomputers in minimum device-count systems, Its primary function is to refresh the display by buffering character information from main memory and keeping track of the display position of the screen. The flexibility designed into the 8276 H will allow simple interface to almost any raster scan CRT display. It can be used with the 8051 Single Chip Microcomputer for a minimum IC count design. It is manufactured on Intel's advanced HMOS-II processor.

Figure 1. Block Diagram

Figure 2. Pin Configuration

8279/8279-5
 PROGRAMMABLE KEYBOARDIDISPLAY INTERFACE

- Simultaneous Keyboard Display
- Scanned Keyboard Mode
- Scanned Sensor Mode
- Strobed Input Entry Mode
- 8-Character Keyboard FIFO
- 2-Key Lockout or N-Key Rollover with Contact Debounce
- Dual 8- or 16-Numerical Display
- Single 16-Character Display
- Right or Left Entry 16-Byte Display RAM
- Mode Programmable from CPU
- Programmable Scan Timing
- Interrupt Output on Key Entry
- Available in EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel" 8279 is a general purpose programmable keyboard and display I/O interface device designed for use with Intel ${ }^{*}$ microprocessors. The keyboard portion can provide a scanned interface to a 64 -contact key matrix. The keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as the hall effect and ferrite variety. Key depressions can be 2-key lockout or N-key rollover. Keyboard entries are debounced and strobed in an 8 -character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output line to the CPU.

The display portion provides a scanned display interface for LED, incandescent, and other popular display technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 has 16×8 display RAM which can be organized into dual 16×4. The RAM can be loaded or interrogated by the CPU. Both right entry, calculator and left entry typewriter display formats are possible. Bath read and write of the display RAM can be done with auto-increment of the display RAM address.

Figure 1. Logic Symbol

Figure 2. Pin Configuration

HARDWARE DESCRIPTION

The 8279 is packaged in a 40 pin DIP. The following is a functional description of each pin.

Table 1. Pin Descriptions

Symbol	Pin No.	Name and Function
$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	8	Bi-directional data bus: All data and commands between the CPU and the 8279 are transmitted on these lines.
CLK	1	Clock: Clock from system used to generate internal timing.
RESET	1	Reset: A high signal on this pin resets the 8279. After being reset the 8279 is placed in the following mode: 1) 168 -bit character display -left entry. 2) Encoded scan keyboard-2 key lockout. Along with this the program clock prescaler is set to 31 .
CS	1	Chip Select: A low on this pin enables the interface functions to receive or transmit.
A_{0}	1	Buffer Address: A high on this line indicates the signals in or out are interpreted as a command or status. A low indicates that they are data.
$\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$	2	Input/Output Read and Write: These signais enable the data buffers to either send data to the external bus or receive it from the external bus.
IRQ	1	Interrupt Request: In a keyboard mode, the interrupt line is high when there is data in the FIFO/Sensor RAM. The interrupt line goes low with each FIFO/ Sensor RAM read and returns high if there is still information in the RAM. In a sensor mode, the interrupt line goes high whenever a change in a sensor is detected.
$\mathbf{V}_{\text {ss }}, \mathrm{V}_{\mathbf{c c}}$	2	Ground and power supply pins.
SLo-SL3	4	Scan Lines: Scan lines which are used to scan the key switch or sensor matrix and the display digits. These lines can be either encoded (1 of 16) or decoded (1 of 4).
RLo-RL,	8	Return Line: Return line inputs which are connected to the scan lines through the keys or sensor switches. They have active internal pullups to keep them high until a switch closure pulls one low. They aiso serve as an 8 -bit input in the Strobed Input mode.

Symbol	Pin No.	Name and Function
SHIFT	1	Shift: The shift input status is stored along with the key position on key closure in the Scanned Keyboard modes. It has an active internal pullup to keep it high until a switch closure pulls it low.
CNTUSTB	1	Control/Strobed Input Mode: For keyboard modes this line is used as a control input and stored like status on a key closure. The line is also the strobe line that enters the data into the FIFO in the Strobed Input mode. (Rising Edge). It has an active internal pullup to keep it high until a switch closure pulls it low.
OUT A0-OUT A OUT B_{0}-OUT B_{3}	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Outputs: These two ports are the outputs for the 16×4 display refresh registers. The data from these outputs is synchronized to the scan lines ($\mathrm{SL}_{0}-\mathrm{SL}_{3}$) for multiplexed digit displays. The two 4 bit ports may be blanked independently. These two ports may also be considered as one 8-bit port.
$\overline{B D}$	1	Blank Display: This output is used to blank the display during digit switching or by a display blanking command.

FUNCTIONAL DESCRIPTION

Since data input and display are an integral part of many microprocessor designs. the system designer needs an interface that can control these functions without placing a large load on the CPU. The 8279 provides this function for 8-bit microprocessars.
The 8279 has two sections: keyboard and display. The keyboard section can interface to regular typewriter style keyboards or random toggle or thumb switches. The display section drives alphanumeric displays or a bank of indicator lights. Thus the CPU is relieved from scanning the keyboard or refreshing the display.
The 8279 is designed to directly connect to the microprocessor bus. The CPU can program all operating modes for the 8279. These modes include:

Input Modes

- Scanned Keyboard - with encoded (8 x 8 key keyboard) or decoded (4×8 key keyboard) scan lines. A key depression generates a 6-bit encoding of key position. Position and shift and control status are stored in the FIFO. Keys are automatically debounced with 2-key lockout or N-key rollover.
- Scanned Sensor Matrix - with encoded (8×8 matrix switches) or decoded (4×8 matrix switches) scan lines. Ke. status (open or closed) stored in RAM aodressable by CPU.
- Strobed Input -- Data on return lines during control line strobe is trarisferred to FIFO.

Output Modes

- 8 or 16 character multiplexed displays that can be organized as dual 4-bit or single 8-bit ($\left.B_{0}=D_{0}, A_{3}=D_{7}\right)$.
- Right entry or left entry display formats.

Other features of the 8279 include:

- Mode programming from the CPU.
- Clock Prescaler
- Interrupt output tu signal CPU when there is keyboard or sensor data available.
- An 8 byte FIFO to store keyboard information.
- 16 byte internal Display RAM for display refresh. This RAM can also be read by the CPU.

PRINCIPLES OF OPERATION

The following is a description of the major elements of the 8279 Programmable Keyboard/Display interface device. Refer to the block diagram in Figure 3.

I/O Control and Data Buffers

The I/O control section uses the $\overline{\mathrm{CS}}, \mathrm{A}_{0}, \overline{\mathrm{RD}}$ and $\overline{W R}$ lines to control data flow to and from the various internal registers and buffers. Ar! data flow to and from the 8279 is enabled by CS. The character of the information, giver, or desired by the CPU, is identified by A_{0}. A logic one means the information is a command or status. A logic zero means the information is data. $\overline{R D}$ and $\overline{W R}$ determine the direction of data flow through the Data Buffers. The Data Buffers are bi-directional buffers that cunnect the internal bus to the external bus. When tive chip is not selected ($\overline{C S}=1$), the devices are in a high impedance state. The drivers input during $\overline{W R} \bullet \overline{C S}$ and output during $\overline{R D} \cdot \overline{C S}$.

Control and Timing Registers and Timing Control

These registers store the keyboard and display modes and other operating conditions programmed by the CPU. The modes are programmed by presenting the proper command on the data lines with $A_{0}=1$ and then sending a WR. The command is latched on the rising edge of WR.

Figure 3. Internal Block Diagram

8279/8279-5

The command is then decoded and the appropriate function is set. The timing control contains the basic timing counter chain. The first counter is a $\div \mathbf{N}$ prescaler that can be programmed to yield an internal frequency of 100 kHz which gives a 5.1 ms keyboard scan time and a 10.3 ms debounce time. The other counters divide down the basic internal frequency to provide the proper key scan, row scan, keyboard matrix scan, and display scan times.

Scan Counter

The scan counter has two modes. In the encoded mode. the counter provides a binary count that must be externally decoded to provide the scan lines for the keyboard and display. In the decoded mode, the scan counter decodes the least significant 2 bits and provides a decoded 1 of 4 scan. Note than when the keyboard is in decoded scan, so is the display. This means that only the first 4 characters ir the, Display RAM are displayed.
In the encoded mode, the scan lines are active high outputs. In the decoded mode, the scan lines are active low outputs.

Return Buffers and Keyboard Debounce and Control

The 8 return lines are buffered and latched by the Return Buffers. In the keyboard mode, these lines are scanned, looking for key closures in that row. If the debounce circuit detects a closed switch, it waits about 10 msec to check if the switch remains closed. If it does, the address of the switch in the matrix plus the status of SHIFT and CONTROL are transferred to the FIFO. In the scanned Sensor Matrix modes, the contents of the return lines is directly transferred to the corresponding row of the Sensor RAM (FIFO) each key scan time. In Strobed Input mode, the contents of the return lines are transferred to the FIFO on the rising edge of the CNTL/STB line pulse.

FIFOISensor RAM and Status

This block is a dual function 8×8 RAM. In Keyboard or Strobed Input modes, it is a FIFO. Each new entry is written into successive RAM positions and each is then read in order of entry. FIFO status keeps track of the number of characters in the FIFO and whether it is full or empty. Too many reads or writes will be recognized as an error. The status can be read by an $\overline{\mathrm{RD}}$ with $\overline{\mathrm{CS}}$ low and Ao high. The status logic also provides an IRQ signal when the FIFO is not empty. In Scanned Sensor Matrix mode. the memory is a Sensor RAM. Each row of the Sensor RAM is loaded with the status of the corresponding row of sensor in the sensor matrix. In this mode, IRQ is high if a change in a sensor is detected.

Display Address Registers and Display RAM

The Display Address Registers hold the address of the word currently being written or read by the CPU and the two 4-bit nibbles being displayed. The read/write addresses are programmed by CPU command. They also can be set to auto increment after each read or write. The Display RAM can be directly read by the CPU after the correct mode and andress is set. The addresses for the A and B nibbles are ..utomatically updated by the 8279 to match data entry by the.CPU. The A and B nibbles can be entered independently or as one word, according to the mode that is set by the CPU Data entry to the display can be set to either left or right entry. See Interface Considerations for details.

SOFTWARE OPERATION

8279 commands

The following commands program the 8279 operating modes. The commands are sent on the Data Bus with $\overline{\mathrm{CS}}$ low and A_{0} high and are loaded to the 8279 on the rising edge of $\overline{W R}$.

Keyboard/Display Mode Set

Where DD is the Display Mode and KKK is the Keyboard Mode.
*

DD

0 0 8 8-bit character display - Left entry
$\begin{array}{lll}0 & 1 & 16 \\ 8 & \text {-bit character display - Left entry }\end{array}$
10 88-bit character display - Right entry
1116 8-bit character display - Right entry
For description of right and left entry, see Interface Considerations. Note that when decoded scan is set in keyboard mode. the display is reduced to 4 characters independent of display mode set.

KKK

0	0	0	Encoded Scan Keyboard - 2 Key Lockout*
0	0	1	Decoded Scan Keyboard - 2-Key Lockout
0	1	0	Encoded Scan Keyboard - N-Key Rollover
0	1	1	Decoded Scan Keyboard - N-Key Rollover
1	0	0	Encoded Scan Sensor Matrix
1	0	1	Decoded Scan Sensor Matrix
1	1	0	Strobed Input, Encoded Display Scan
1	1	1	Strobed Input, Decoded Display Scan

Program Clock

Code: \quad| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} | \mathbf{P} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

All timing and multiplexing signals for the 8279 are generated by an internal prescaler. This prescaler divides the external clock (pin 3) by a programmable integer. Bits PPPPP determine the value of this integer which ranges from 2 to 31. Choosing a divisor that yields 100 kHz will give the specified scan and debounce times. For instance, if Pin 3 of the 8279 is being clocked by a 2 MHz signal, PPPPP should be set to 10100 to divide the clock by 20 to yield the proper 100 kHz operating frequency.

Read FIFOISensor RAM

Code: | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{A l}$ | \mathbf{X} | \mathbf{A} | \mathbf{A} | $\mathbf{A} \quad \mathrm{X}=$ Don't Care |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The CPU sets up the 8279 for a read of the FIFO/Sensor RAM by first writing this command. In the Scan Key-

- Default after reset.
board Mode, the Auto-Increment flag (AI) and the RAM address bits (AAA) are irrelevant. The 8279 will automatically drive the data bus for each subsequent read $\left(A_{0}=0\right)$ in the same sequence in which the data first entered the FIFO. All subsequent reads will be from the FIFO until another command is issued.

In the Sensor Matrix Mode, the RAM address bits AAA select one of the 8 rows of the Sensor RAM. If the AI flag is set $(A I=1)$, each successive read will be from the subsequent row of the sensor RAM.

Read Display RAM

Code:

The CPU sets up the 8279 for a read of the Display RAM by first writing this command. The address bits AAAA select one of the 16 rows of the Display RAM. If the AI flag is set $(A I=1)$, this row address will be incremented after each following read or write to the Display RAM. Since the same counter is used for both reading and writing, this command sets the next read or write address and the sense of the Auto-Increment mode for both operations.

Write Display RAM

Code:

The CPU sets up the 8279 for a write to the Display RAM by first writing this command. After writing the command with $A_{0}=1$, all subsequent writes with $A_{0}=0$ will be to the Display RAM. The addressing and AutoIncrement functions are identical to those for the Read Display RAM. However, this command does not affect the source of subsequent Data Reads; the CPU will read from whichever RAM (Display or FIFO/Sensor) which was last specified. If, indeed, the Display RAM was last specified, the Write Display RAM will, nevertheless, change the next Read location.

Display Write InhibitElanking

Code:

The IW Bits can be used to mask nibble A and nibble B in applications requiring separate 4-bit display ports. By setting the IW flag (IW = 1) for one of the ports, the port becomes marked so that entries to the Display RAM from the CPU do not affect that port. Thus, if each nibble is input to a BCD decoder, the CPU may write a digit to the Display RAM without affecting the other digit being displayed. It is important to note that bit B_{0} corresponds to bit D_{0} on the CPU bus, and that bit A_{3} corresponds to bit D_{7}.

If the user wishes to blank the display, the BL flags are available for each nibble. The last Clear command issued determines the code to be used as a "blank." This code defaults to all zeros after a reset. Note that both BL flags must be set to blank a display formatted with a single 8-bit port.

Clear

Code: \quad| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{C}_{\mathbf{D}}$ | $\mathbf{C}_{\mathbf{D}}$ | $\mathbf{C}_{\mathbf{D}}$ | $\mathbf{C}_{\mathbf{F}}$ | $\mathbf{C}_{\mathbf{A}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The C_{D} bits are available in this command to clear all rows of the Display RAM to a selectable blanking code as follows:

$$
\begin{aligned}
& C_{D} C_{D} C_{D} \\
& \begin{array}{lll}
0 & x & \text { All Zeros (X = Don't Care) } \\
1 & 0 & A B=\text { Hex } 20 \text { (0010 0000) } \\
1 & 1 & \text { All Cnes }
\end{array}
\end{aligned}
$$

$$
\text { - Enable clear display when }=1 \text { (or by } C_{A}=1 \text {) }
$$

During the time the Display RAM is being cleared ($\sim 160 \mu \mathrm{~s}$). it may not be written to. The most significant bit of the FIFO status word is set during this time. When the Display RAM becomes available again, it automatically resets.

If the C_{F} bit is asserted ($C_{F}=1$), the FIFO status is cleared and the interrupt output line is reset. Also, the Sensor RAM pointer is set to row 0 .
C_{A}, the Clear All bit, has the combined effect of C_{D} and C_{F}; it uses the C_{D} clearing code on the Display RAM and also clears FIFO status. Furthermore, it resynchronizes the internal timing chain.

End InterruptVError Mode Set

$$
\text { Code } \quad \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & E & X & X & X & X \\
\hline
\end{array}
$$

For the sensor matrix modes this command lowers the IRQ line and enables further writing into RAM. (The IRQ line would have been raised upon the detection of a change in a sensor value. This would have also inhibited further writing into the RAM until reset).

For the N -key rollover mode - if the E bit is programmed to " 1 " the chip will operate in the special Error mode. (For further details, see Interface Considerations Section.)

Status Word

The status word contains the FIFO status, error, and display unavailable signals. This word is read by the CPU when A_{0} is high and $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are low. See Interface Considerations for more detail on status word.

Data Read

Data is read when $A_{0}, \overline{C S}$ and $\overline{R D}$ are all low. The source of the data is specified by the Read FIFO or Read Display commands. The trailing edge of $\overline{R D}$ will cause the address of the RAM being read to be incremented if the Autoincrement flag is set. FIFO reads always increment (if no error occurs) independent of A .

Data Write

Data that is written with Ao. CS and $\overline{W R}$ low is always written to the Display RAM. The address is specified by the latest Read Display or Write Display command. AutoIncrementing on the rising edge of $\overline{\mathrm{WR}}$ occurs if Al set by the latest display command.

INTERFACE CONSIDERATIONS

Scanned Keyboard Mode, 2.Key Lockout

There are three possible combinations of conditions that can occur during debounce scanning. When a key is depiessed, the debounce logic is set. Other depressed keys are looked for during the next two scans. If none are encountered, it is a single key depression and the key position is entered into the FIFO along with the status of CNTL and SHIFT lines. If the FIFO was empty, IRQ will be set to signal the CPU that there is an entry in the FIFO. If the FIFO was full, the key will not be entered and the error ilag will be set. If another closed switch is encountered, no entry to the FIFO can occur. If all other keys are released before this one, then it will be entered to the FIFO. If this key is released before any other, it will be entirely ignored. A key is entered to the FIFO only once per depression, no matter how many keys were pressed along with it or in what order they were released. If two keys are depressed within the debounce cycle, it is a simultaneous depression. Neither key will be recognized until one key remains depressed alone. The last key will be treated as a single key depression.

Scanned Keyboard Mode, N.Key Rollover

With N -key Rollover each key depression is treated independently from all others. When a key is depressed. the debounce circult waits 2 keyboard scans and then checks to see it the key is still down if it is. the key is entered into the FIFO Any number of keys can be depressed and another can be recognized and entered into the FIFO. If a simultaneous depression occurs, the keys are recognized and entered according to the order the keyboard scan found them.

Scanned Keyboard - Special Error Modes

For N -key rollover mode the user can program a special error mode. This is done by the "End Interrupt/Error Mode Set" command. The debounce cycle and key-validity check are as in normal N -key mode if during a single debounce cycle, two keys are found depressed, this is considered a simultaneous multiple depression, and sets an error flag. This flag will prevent any further wri:ing into the FIFO and will set interrupt (if not yet set) The error flag could be read in this mode by reading the FIFO STATUS word (See "FIFO STATUS" for further details.) The error flag is reset by sending the normal CLEAR command with CF 1

Sensor Matrix Mode

In Sensor Matrix mode, the debounce logic is inhibited The status of the sensor switch is inputted directly to the Sensor RAM. In this way the Sensor RAM keeps an image of the state of the switches in the sensor matrix. Although debouncing is not provided, this mode has the advantage that the CPU knows how long the sensor was closed and when it was released. A keyboard mode can only indicate a validated closure To make the software easier the designer should functionally group the sensors by row since this is the format in which the CPU will read them. The IRQ line goes high if any sensor value change is detected at the end of a sensor matrix scan. The IRQ line is cleared by the first data read operation if the Auto-

Increment flag is set to zero, or by the End Interrupt command if the Auto-Increment flag is set to one.
Note: Multiple changes in the matrix Addressed by (SLO-3 $=0$) may cause multiple interrupts. ($\mathrm{SL}_{0}=0$ in the Decoded Mode). Reset may cause the $\mathbf{8 2 7 9}$ to see multiple changes.

Data Format

In the Scanned Keyboard mode, the character entered into the FIFO corresponds to the position of the switch in the keyboard plus the status of the CNTL and SHIFT lines (non-inverted). CNTL is the MSB of the character and SHIFT is the next most significant bit. The next three bits are from the scan counter and indicate the row the key was found in. The last three bits are from the column counter and indicate to which return line the key was connected.

In Sensor Matrix mode, the data on the return lines is entered directly in the row of the Sensor RAM that corresponds to the row in the matrix being scanned. Therefore, each switch postion maps directly to a Sensor RAM position. The SHIFT and CNTL inputs areignored in this mode. Note that switches are not necessarily the only thing that can be connected to the return lines in this mode. Any logic that can be triggered by the scan lines can enter data to the return line inputs. Eight multiplexed input ports could be tied to the return lines and scanned by the 8279.
MSB

$R L_{7}$	$R L_{6}$	$R L_{5}$	$R L_{4}$	$R L_{3}$	$R L_{2}$	$R L_{1}$	$R L_{0}$

In Strobed Input mode, the data is also entered to the FIFO from the return lines. The data is entered by the rising edge of a CNTL/STB line pulse. Data can come from another encoded keyboard or simple switch matrix. The return lines can also be used as a general purpose strobed input.

$$
\begin{aligned}
& \text { MSB } \\
&
\end{aligned}
$$

Display

Lelt Entry
Left Entry mode is the simplest display format in that each display position directly corresponds to a byte (or nibble) in the Display RAM. Address 0 in the RAM is the left-most display character and address 15 (or address 7 in 8 character display) is the right most display character. Entering characters from position zero causes the display to fill from the left The 17th (9th) character is entered back in the left mosi position and filling again proceeds from there.

8279/8279-5

Right Entry

Right entry is the method used by most electronic calculators The first entry is placed in the right moṣt display character The next entry is also placed in the right most character after the display is shifted left one character The left most character is shifted off the end and is lost

Note that now the display position and register address do not correspond. Consequently, entering a character to an arbitrary position in the Auto Increment mode may have unexpected results. Entry starting at Display RAM address 0 with sequential entry is recommended.

Auto Increment

In the Left Entry mode. Auto Incrementing causes the address where the CPU will next write to be incremented by one and the character appears in the next location. With non-Auto Incrementing the entry is both to the same RAM address and display position. Entry to an arbitrary address in the Auto Increment mode has no undesirable side effects and the result is predictable:

Enter next at Location 5 Auto Increment

LEFT ENTRY MODE (AUTO INCREMENT)
In the Right: Entry mode. Auto Incrementing and non Incrementing have the same effect as in the Left Entry except if the address sequence is interrupted:

RIGHT ENTRY MODE (AUTO INCREMENT)
Starting at an arbitrary location operates as shown below:

8th entry

9th entry

RIGHT ENTRY MODE (AUTO INCREMENT)

Entry appears to be from the initial entry point.

8/16 Character Display Formats

If the display mode is set to an 8 character display, the on duty-cycle is double what it would be for a 16 character display (e.g., 5.1 ms scan time for 8 characters vs. 10.3 ms for 16 characters with 100 kHz internal frequency).

G. FIFO Status

FIFO status is used in the Keyboard and Strobed Input modes to indicate the number of characters in the FIFO and to indicate whether an error has occurred. There are two types of errors possible: overrun and underrun. Overrun occurs when the entry of another character into a full FIFO is attempted. Underrun occurs when the CPU tries to read an empty FIFO.

The FIFO status word also has a bit to indicate that the Display RAM was unavailable because a Clear Display or Clear All command had not completed its clearing operation.

In a Sensor Matrix mode, a bit is set in the FIFO status word to indicate that at least one sensor closure indication is contained in the Sensor RAM.
In Special Error Mode the S/E bit is showing the error flag and serves as an indication to whether a simultaneous multiple closure error has occurred.

Figure 4. System Block Diagram

8355/8355-2
 16,384-BIT ROM WITH I/O

- 2048 Words $\times 8$ Bits

- Single + 5V Power Supply
- Directly Compatible with 8085A and IAPX 88 Microprocessors
- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- Internal Address Latch
- 40-Pin DIP

The Intel ${ }^{\top} 8355$ is a ROM and I/O chip to be used in the 8085A and iAPX 88 microprocessor systems. The ROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in the 8085A CPU.
The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 lines and each I/O port line is individually programmable as input or output.
The 8355-2 has a 300 ns access time for compatibility with the 8085A-2 and 5 MHz iAPX 88 microprocessors.

Figure 1. Block Dlagram

*For 8755A compatibility, pin 5 should be directly tied to vCC.

Figure 2. Pin Configuration

FUNCTIONAL DESCRIPTION

ROM Section

The 8355 contains an 8 -bit address latch which allows it to interface directly to MCS-48. MCS-85. and iAPX 88/10 Microcomputers without additional hardware.
The ROM section of the chip is addressed by an 11-bit address and the Chip Enables. The address and levels on the Chip Enable pins are latched into the address latches on the falling edge of ALE. If the tatched C!up Enables are active and $I O / \bar{M}$ is low when $\overline{R D}$ goes low. the contents of the ROM location addressed by the latched address are put out through A_{0-7} output buffers

1/O Section

The I/O section of the chip is addressed by the latched value of AD0-1. Two 8-bit Data Direction Registers DDR in 8355 determine the input/output status of aach pin in the corresponding ports. A " 0 " in a particular bit position of a DOR signifies that the corresponding I/O port bit is in the input mode A " 1 " in a particular bit position signifies that the corresponding $/ / O$ port bit is in the output mode. In this manner the I/O ports of the 8355 are bit-bybit programmable as inputs or outputs. The table summarizes port and DDR designation. DDR's cannot be read.

$A D_{1}$	$A D_{0}$	Selection
0	0	Port A
0	1	Port B
1	0	Port A Data Direction Register DDR A
1	1	Port B Data Direction Register DDR B

When $\overline{I O W}$ goes low and the Chip Enables are active, the data on the AD_{0-7} is written into $1 / \mathrm{O}$ port selected by the latched value of $A D_{0-1}$. During this operation all I/O bits of the selected port are affected, regardless of their 1/O mode and the state of $10 / \bar{M}$ The actual output level does not change until IOW returns high glitch free output
A port can be read out when the latched Chip Enables are active and either $\overline{R D}$ goes low with $10 / \bar{M}$ high, or $\overline{I O R}$ goes low. Both input and output mode bits of a selected port will appear on lines $A D_{0-7}$.
To clarify the function of the I/O ports and Data Direction Registers, the following diagram shows the configuration of one bit of PORT A and DDR A. The same logic applies to PORT B and DDR B.
Note that hardware RESET or writing a zero to the DDR latch will cause the output latch's output buffer to be disabled, preventing the data in the output latch from being passed through to the pin. This is equivalent to putting the port in the input mode. Note also that the data can be written to the Output Latch even though the Output Buffer has been disabled. This enables a port to be initialized with a value prior to enabling the output.
The diagram also shows that the contents of PORT A and PORT B can be read even when the ports are configured as outputs.

Figure 3. 8355 One Bit of Port A and DDR A

SYSTEM APPLICATIONS

System Interface with 8085A and iAPX 88

A system using the 8355 can use either one of the two 1,O Interface techniques

- Standard 1/O
- Memory Mapped I:O

If a standard I / O technique is used, the system can use the feature of both $C E_{2}$ and $\overline{C E}_{1}$. By using a combination of unused address lines A_{11-15} and the Chip Enable inputs, the system can use up to 5 each 8355's without requiring a CE decoder. See Figure 5a and 5b.

If a memory mapped IIO approach is used the 8355 will be selected by the combination of both the Chip Enables and $10 / \bar{M}$ using $A D_{8-15}$ address lines. See Figure 4.

Figure 4. 8355 in 8085A System (Memory-Mapped I/O)

8755A/8755A-2
 16,384-BIT EPROM WITH I/O

- 2048 Words $\times 8$ Bits
- Single +5 V Power Supply (V_{cc})
- Directly Compatible with 8085A and 8088 Microprocessors
- U.V. Erasable and Electrically Reprogrammable
- Internal Address Latch
- 2 General Purpose 8-Bit I/O Ports
- Each I/O Port Line Individually Programmable as Input or Output
- Multiplexed Address and Data Bus
- 40-Pin DIP
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel ${ }^{8}$ 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O chip to be used in the 8085A and iAPX 88 microprocessor systems. The EPROM portion is organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in an 8085A CPU.

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 port lines, and each I/O port line is individually programmable as input or output.

The 8755A-2 is a high speed selected version of the 8755A compatible with the $5 \mathrm{MHz} 8085 \mathrm{~A}-2$ and the 5 MHz iAPX 88 microprocessor.

Figure 1. Block Diagram

Figure 2. Pin Configuration

8282/8283 OCTAL LATCH

- Address Latch for iAPX 86, 88, 186, 188, MCS-80 ${ }^{\circ}$, MCS-85 ${ }^{\circ}$, MCS-48 ${ }^{\circ}$ Famlies
- High Output Drive Capability for Driving System Data Bus

- Fully Parallel 8-Bit Data Register and Buffer

- Transparent during Active Strobe
- 3-State Outputs
- 20-Pin Package with 0.3" Center
- No Output Low Noise when Entering or Leaving High Impedance State
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 8282 and 8283 are 8-bit bipolar latches with 3 -state output buffers. They can be used to implement latches, buffers, or multiplexers. The $\mathbf{8 2 8 3}$ inverts the input data at its outputs while the $\mathbf{8 2 8 2}$ does not. Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with these devices.

8284A/8284A-1 CLOCK GENERATOR AND DRIVER FOR iAPX 86, 88 PROCESSORS

- Generates the System Clock for the iAPX 86, 88 Processors: $5 \mathrm{MHz}, 8 \mathrm{MHz}$ with 8284A 10 MHz with 8284A-1
- Uses a Crystal or a TTL Signal for Frequency Source
- Provides Local READY and Multibus ${ }^{\text {TM }}$ READY Synchronization
- 18-Pin Package
- Single +5V Power Supply
- Generates System Reset Output from Schmitt Trigger Input
- Capable of Clock Synchronization with Other 8284As
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

8284A/8284A-1 Pin Configuration

8286/8287 OCTAL BUS TRANSCEIVER

- Data Bus Buffer Driver for IAPX 86,88,186,188, MCS-80TM, MCS-85TM, and MCS-48 ${ }^{\text {TM }}$ Familles
- High Output Drive Capability for Driving System Data Bus
- Fully Parallel 8-Bit Transceivers
- 3-State Outputs
- 20-Pin Package with 0.3" Center
- No Output Low Noise when Entering or Leaving High Impedance State
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 8286 and 8287 are 8 -bit bipolar transceivers with 3 -state outputs. The 8287 inverts the input data at its outputs while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

Figure 1. Logic Diagrams

Figure 2. Pin Configurations

8288
 BUS CONTROLLER FOR iAPX 86, 88 PROCESSORS

- Blpolar Drive Capability
 - Provides Advanced Commands
 - Provides Wide Flexlbility in System Configurations
 n. 3-State Command Output Drivers

- Configurable for Use with an VO Bus
- Facilltates Interface to One or Two Multi-Master Busses
- Avallable in EXPRESS
- Standerd Temperature Range
- Extended Temperature Range

The intel 8288 Bus Controlier is a 20-pin bipolar component for use with medium-to-large IAPX 86, 88 processing systems. The bus controller provides command and control timing generation as well as bipolar bus drive capability while optimizing system pertormance.

A strapping option on the bus controlier configures it for use with a multi-master system bus and separate VO bus.

Flgure 1. Block Diagram

Figure 2.
Pin Configuration

8289
 BUS ARBITER

- Provides Multi-Master System Bus Protocol
- Synchronizes IAPX 86, 88 Processors with Multi-Master Bus
- Provides Simple Interface with 8288 Bus Controller
- Four Operating Modes for Flexible System Configuration
- Compatible with Intel Bus Standard MULTIBUS ${ }^{\text {™ }}$
- Provides System Bus Arbitration for 8089 IOP in Remote Mode
- Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel 8289 Bus Arbiter is a 20-pin, 5-volt-only bipolar component for use with medium to large iAPX 86,88 multimaster/multiprocessing systems. The $\mathbf{8 2 8 9}$ provides system bus arbitration for systems with multiple bus masters, such as an 8086 CPU with 8089 IOP in its REMOTE mode, while providing bipolar buffering and drive capability.

Figure 1. Block Diagram

Figure 2. Pin Diagram

Figure 3. Functional Pinout

8291A GPIB TALKER/LISTENER

- Designed to Interface

Microprocessors (e.g., 8048/49, 8051, 8080/85, 8086/88) to an IEEE Standard 488 Digital Interface Bus

- Programmable Data Transfer Rate
- Complete Source and Acceptor Handshake
- Complete Talker and Listener Functions with Extended Addressing
- Service Request, Parallel Poll, Device Clear, Device Trigger, Remote/Local Functions
- Selectable Interrupts
- On-Chip Primary and Secondary Address Recognition
- Automatic Handling of Addressing and Handshake Protocol
- Provision for Software Implementation of Additional Features
- 1-8 MHz Clock Range
- 16 Registers (8 Read, 8 Write), 2 for Data Transfer, the Rest for Interface Function Control, Status, etc.
- Directly Interfaces to External Non-Inverting Transceivers for Connection to the GPIB
- Provides Three Addressing Modes, Allowing the Chip to be Addressed Either as a Major or a Minor Talker/ Listener with Primary or Secondary Addressing
- DMA Handshake Provision Allows for Bus Transfers without CPU Intervention
- Trigger Output Pin
- On-Chip EOS (End of Sequence) Message Recognition Facilltates Handling of Multi-Byte Transfers

The 8291A is an enhanced version of the 8291 GPIB Ta!ker/Listener designed to interface microprocessors to an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface functions except for the controller. The controller function can be added with the 8292 GPIB Controller, and the 8293 GPIB Transceiver performs the electrical interface for Talker/Listener and Talker/Listener/Controller configurations.

Figure 1. Block Diagram
T/R1

Figure 2. Pin Configuration

8292
 GPIB CONTROLLER

- Complete IEEE Standard 488 Controller Function

- Interface Clear (IFC) Sending Capability Allows Seizure of Bus Control and/or Initialization of the Bus
- Responds to Service Requests (SRQ)
- Sends Remote Enable (REN), Allowing Instruments to Switch to Remote Control

- Complete Implementation of Transfer Control Protocol

- Synchronous Control Seizure Prevents the Destruction of Any Data Transmission in Progress

- Connects with the 8291 to Form a Complete IEEE Standard 488 Interface Talker/Listener/Controller

The 8292 GPIB Controller is a microprocessor-controlled chip designed to function with the 8291 GPIB Talker/Listener to implement the full IEEE Standard 488 controller function, including transier control protocol. The 8292 is a preprogrammed intele 8041A.

Figure 1. 8291, 8292 Block Diagram

Figure 2. Pin Configuration

8293
 GPIB TRANSCEIVER

\author{

- Nine Open-collector or Three-state Line Drivers
 - 48 mA Sink Current Capability on Each Line Driver
 - Nine Schmitt-type Line Receivers
 - High Capacitance Load Drive Capability
 - Single 5V Power Supply
 - 28-Pin Package
 - Low Power HMOS Design
}

- On-chip Decoder for Mode Configuration
 - Power Up/Power Down Protection to Prevent Disrupting the IEEE Bus

- Connects with the 8291A and 8292 to Form an IEEE Standard 488 Interface Talker/Listener/Controller with no Additional Components

Only Two 8293's Required per GPIB Interface

- On-Chip IEEE-488 Bus Terminations

The Intel* 8293 GPIB Transceiver is a high-current, non-inverting buffer chip designed to interface the 8291A GPIB Talker/Listener, or the 8291A/8292 GPIB Talker/Listener/Controller combination, to the IEEE Standard 488-1978 Instrumentation Interface Bus. Each GPIB interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used as a general-purpose bus driver.

Figure 1. 8291A, 8292, 8293 Block Diagram

Figure 2. Pin Configuration

8294A DATA ENCRYPTION UNIT

- Certified by National Bureau of Standards

- 400 Byte/Sec Data Conversion Rate
- 64-Bit Data Encryption Using 56-Bit Key
- DMA Interface
- 3 Interrupt Outputs to Aid in Loading and Unloading Data
- 7-Bit User Output Port
- Single 5V $\pm 10 \%$ Power Supply
- Fully Compatible with iAPX-86,88, MCS-85 ${ }^{\text {M }}$, MCS- $^{\text {™ }}$, MCS-51 ${ }^{\text {TM }}$, and MCS-48 ${ }^{\text {™ }}$ Processors
- Implements Federal Information Processing Data Encryption Standard
- Encrypt and Decrypt Modes Available

The Intel ${ }^{\text {® }}$ 8294A Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt 64-bit biocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. The DEU operates on 64-bit text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation is reversible: if the cipher word is operated upon, the original text word is produced. The algorithm itself is permanently contained in the 8294A; however, the 56-bit key is user-defined. and may be changed at any time.
The 56-bit key and 64-bit message data are transferred to and from the 8294A in 8-bit bytes by way of the system data bus. A DMA interface and three interrupt outputs are available to minimize software overhead associated with data transfer. Also, by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system conversion rates which are virtually any multiple of 400 bytes/second. The 8294A also has a 7 -bit TTL compatible output port for user-specified functions.
Because the 8294A implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer applications as well as other electronic banking and data handling applications where data mus̀t be encrypted.

Figure 1. Block Diagram
Figure 2. Pin Configuration

8295 DOT MATRIX PRINTER CONTROLLER

- Programmable Print Intensity
- Single or Double Width Printing
- Programmable Multiple Line Feeds
- 3 Tabulations
- 2 General Purpose Outputs

The Intel ${ }^{\top} 8295$ Dot Matrix Printer Controller provides an interface for microprocessors to the LRC 7040 Series dot matrix impact printers. It may also be used as an interface to other similar printers.

The chip may be used-in a serial or parallel communication mode with the host processor. In parallel mode, data transters are based on polling, interrupts, or DMA. Furthermore, it provides internal buffering of up to 40 characters and contains a 7×7 matrix character generator accommodating 64 ASCII characters.

Flgure 1. Block Dlagram
Figure 2. Pin Confliguration

8041A/8641A/8741A UNIVERSAL PERIPHERAL INTERFACE 8-BIT MICROCOMPUTER

\author{

- 8-Bit CPU plus ROM, RAM, I/O, Timer and Clock in a Single Package
}
- One 8-Bit Status and Two Data Registers for Asynchronous Slave-to-Master Interface
- DMA, Interrupt, or Polled Operation Supported
- 1024×8 ROM/EPROM, 64×8 RAM, 8-Bit Timer/Counter, 18 Programmable I/O Pins
- Fully Compatible with All Microprocessor Families
- Interchangeable ROM and EPROM Versions
- 3.6 MHz 8741A-8 Avaliable
- Expandable I/O
- RAM Power-Down Capability
- Over 90 Instructions: 70\% Single Byte
- Available in EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel ${ }^{*}$ 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8 -blt microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to function as a peripheral controller in MCS-48 ${ }^{\text {TM }}$, MCS- $80^{T M}$, MCS- $85^{\top M}$, MCS-86 ${ }^{\top \mathrm{TM}}$, and other 8-bit systems.
The UPI-41A ${ }^{\text {TM }}$ has 1 K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the program memory is available as ROM in the 8041A version or as UV-erasable EPROM in the 8741A version. The 8741A and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641A is a one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The substitution of 8641A's for 8041A's allows for very fast turnaround for initial code verificatiop and evaluation results.
The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either inputs or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041A), single-step mode for debug (in the 8741A), and dual working register banks.
Becadse it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI interface devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include keyboard scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral devices to microprocessor systems.

BLOCK DIAGRAM

8048AH/8035AHL/8049AH 8039AHL/8050AH/8040AHL HMOS SINGLE-COMPONENT 8-BIT MICROCOMPUTER

- High Performance HMOS II
- Interval Timer/Event Counter
- Two Single Level Interrupts
- Single 5-Volt Supply
- Over 96 Instructions; 90\% Single Byte

- Reduced Power Consumption - Compatible with 8080/8085 Peripherals
 - Easily Expandable Memory and I/O
 - Up to 1.36μ Sec Instruction Cycle All Instructions 1 or 2 cycles

The intel MCS ${ }^{\boldsymbol{-}}-48$ family are totally self-sufficient, 8 -bit parallel computers fabricated on single silicon chips using Intel's advanced N -channel silicon gate HMOS process.
The family contains 27 I/O lines, an 8 -bit timer/counter, and on-board oscillator/clock circuits. For systems that require extra capability, the family can be expanded using MCS ${ }^{*}-80 /$ MCS $^{\pi}-85$ peripherals.
To minimize development problems and provide maximum flexibility, a logically and functionally pin-compatible version of the ROM devices with UV-erasable user-programmable EPROM program memory is available with minor differences.
These microcomputers are designed to be efficient controliers as well as arithmetic processors. They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

Device	Internal Memory		RAM Standby
8050 AH	$4 \mathrm{~K} \times 8 \mathrm{ROM}$	$256 \times 8 \mathrm{RAM}$	yes
8049 AH	$2 \mathrm{~K} \times 8 \mathrm{ROM}$	$128 \times 8 \mathrm{RAM}$	yes
8048 AH	$1 \mathrm{~K} \times 8 \mathrm{ROM}$	$64 \times 8 \mathrm{RAM}$	yes
8040 AHL	none	$256 \times 8 \mathrm{RAM}$	yes
8039 AHL	none	$128 \times 8 \mathrm{RAM}$	yes
8035 AHL	none	$64 \times 8 \mathrm{RAM}$	yes

Figure 1. Block Diagram

Figure 2. Loglc Symbor

FIgure 3. Pin Conflguration

Table 1. Pin Description

Symbol	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Function
$V_{S S}$	20	Circuit GND potential
$V_{\text {DD }}$	26	+5V during normal operation.
		Low power standby pin.
$V_{C C}$	40	Main power supply; +5V during operation.
PROG	25	Output strobe for 8243 I/O expander.
P10-P17 Port 1	27-34	8-bit quasi-bidirectional port.
$\begin{aligned} & \hline \text { P20-P23 } \\ & \text { P24-P27 } \\ & \text { Port } 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 21-24 \\ 35-38 \\ \hline \end{array}$	8-bit quasi-bidirectional port. P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243.
$\begin{array}{\|l} \hline \text { DBO-DB7 } \\ \text { BUS } \end{array}$	12-19	True bidirectional port which can be written or read synchronously using the $\overline{R D}$, WR strobes. The port can also be statically latched.
		Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, $\overline{R D}$, and WR.
T0	1	Input pin testable using the conditional transfer instructions JTO and JNTO. TO can be designated as a clock output using ENTO CLK instruction
T1	39	Input pin testable using the JT1, and JNT1 instructions. Can be designated the timer/ counter input using the STRT CNT instruction.
INT	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Active low) interrupt must remain low for at least 3 machine cycles for proper operation.

Symbol	Pin No.	Function
RD	8	Output strobe activated during a BUS read. Can be used to enable data onto the bus from an external device. Used as a read strobe to external data memory. (Active low)
RESET	4	Input which is used to initialize the processor. (Active low) (Non TTL V_{IH})
		Used during power down.
		Used during ROM verification.
$\overline{\text { WR }}$	10	Output strobe during a bus write. (Active low) Used as write strobe to external data memory.
ALE	11	Address latch enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.
PSEN	9	Program store enable. This output occurs only during a fetch to external program memory. (Active low)
SS	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active Low)
		Used in sync mode
EA	7	External access input which forces all program memory fetches to reference external memory. Useful for emulation and debug. (Active high)
		Used during ROM verification (12V)
XTAL1	2	One side of crystal input for internal oscillator. Also input for external source. (Non TTL $V_{\mid H}$)
XTAL2	3	Other side of crystal input.

8048AH/8035AHL/8049AH 8039AHL8050AH/8040AHL

Tabie 2. Inetruction set

Aceumulator			
Manemonic	Desertpiton	eytes	Cyclee
ADO A, R	Add register to A	1	1
ADD A. @R	Add date memory to A	1	1
ADD A, data	Add immediate to A	2	2
ADDC A, R	Add register with carry	1	1
ADDC A, @R	Add date memory with carry	1	1
ADDC A, \% data	Add immediate with cerry	2	2
ANL A, R	And register to A	1	1
ANL A, ©R	And data memory to A	1	1
ANL A, " data	And immediate to A	2	2
ORL A, R	Or register to A	1	1
ORLA @R	Or data memory to A	1	1
ORL A: \% data	Or immediate to A	2	2
XRL A. R	Exclusive or register to A	1	1
XRL A, @R	Exclusive or data memory to A	1	1
XRL, A. \% data	Exclusive or immediate to \mathbf{A}	2	2
INC A	Increment A	1	1
DECA	Decrement A	1	1
CLRA	Clear A	1	1
CPLA	Complement A	1	1
DAA	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLCA	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1

Mrpue/Oupert			
Mrnemonic	Deoertpeion	Byee	Cyclee
INA, P	input dort to A	1	2
OUTLP, A	Output A to port	1	2
ANL F. \% data	And immediate to port	2	2
ORL P. * data	Or immediate to port	2	2
INS A, BUS	Input BUS to A	1	2
OUTL BUS. A	Output A to BUS	1	2
ANL BUS, " data	And immediate to BUS	2	2
ORL BUS. "data	Or immediate to BUS	2	2
MOVD A, ${ }^{\text {p }}$	Input expander port to A	1	2
MOVD P. A	Output A to expander port	1	2
ANLOP. A	And A to expander port	1	2
ORLD P. A	Or A to expander port	1	2

Regiaters			
Mnemonic	Deecriplion	Bytes	Cycies
INC R	Increment register	1	1
INC @R	Increment data memory	1	1
DEC R	Decrement register	1	1

Branch			
manemonde	Depcrtpilen	Dytes	Cycten
JMP addr	Jump unconditional	2	2
JMPP @A	Jump indirect	1	2
DJNZ R, addr	Decrement register	2	2
	and akip		
JC addr	Jump on carry $=1$	2	2
JNC addr	Jump on carry $=0$	2	2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JTO addr	Jump on TO $=1$	2	2
JNTO addr	Jump on TO $=0$	2	2
JT1 addr	Jump on T1 $=1$	2	2
JNT1 addr	Jump on T1 $=0$	2	2
JFO addr	Jump on F0 $=1$	2	2
JF1 addr	Jump on F1 $=1$	2	2
JTF addr	Jump on timer fiag	2	2
JNI addr	Jump on INT $=0$	2	2
JBb addr	Jump on accumulator	2	2
	bit		

Subroutine			
Mnomonic	Descrialion	Dyme	Cyctes
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and reetore	1	2
	status		

Flege			
ammenoric	Deperturion	Bytios	Cycheo
CLR C	Clear carry	1	1
CPL C	Complefient carry	1	1
CLR FO	Clear fieg 0	1	1
CPL FO	Complement fiag 0	1	1
CLR F1	Clear flag 1	1	1
CPL F 1	Complement fiag 1	1	1

Table 2. Instruction Set (Continued)

Dota Moves			
Mnemonic	Description	Bytes	Cycles
MOV A. R	Move register to A	1	1
MOV A.@R	Move data memory to A	1	1
MOV A. \% data	Move immediate to A	2	2
MOV R, A	Move A to register	1	1
MOV @R. A	Move A to data memory	1	1
MOV R. \# data	Move immediate to register	2	2
MOV @R, \# data	Move immediate to data memory	2	2
MOV A. PSW	Move PSW to A	1	1
MOV PSW, A	Move A to PSW	1	1
$\times \mathrm{CH} A .8$	Exchange A and register	1	1
XCH A.@R	Exchange A and data memory	1	1
XCHO A.@R	Exchange nibble of A and register	1	1
MOVX A, @R	Move external data memory to A	1	2
MOVX@R, A	Move A to external data memory	1	2
MOVP A, @A	Move to A from current page	1	2
MOVP3 A.@	Move to A from Dage 3	1	2

Timer/Counter			
Mnemonic	Descripition	Bytes	Cyctes
MOV A. T	Read timer/counter	1	1
MOV T. A	Load timer/counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start timer	1	1
STOP TCNT	Stop timer/counter	1	1
EN TCNTI	Enable timer/counter interrupt	1	1
DIS TCNTI	Disable timer/counter interrupt	1	1

| Control | | | |
| :--- | :--- | :---: | :---: | :---: |
| Mnomonic | Description
 Enable external
 ENterrupt | Bytee | Cyclee |
| DIS I | Disable external
 interrupt | 1 | 1 |
| SEL RBO | Select register bank 0 | 1 | 1 |
| SEL RB1 | Select register bank 1 | 1 | 1 |
| SEL MBO | Select memory bank 0 | 1 | 1 |
| SEL MB1 | Select memory bank 1 | 1 | 1 |
| ENTO CLK | Enable clock output
 On TO | 1 | 1 |

Mnemonic	Deseription	Bytes	Cyciee
NOP	No operation	1	1
IDL	Select Idie Operation	1	1

MCS ${ }^{\circledR}$-51
 8-BIT CONTROL-ORIENTED MICROCOMPUTERS

$8031 / 8051$
$8031 \mathrm{AH} / 8051 \mathrm{AH}$
$8032 \mathrm{AH} / 8052 \mathrm{AH}$
$8751 \mathrm{H} / 8751 \mathrm{H}-12$

- High Performance HMOS Process
- Internal Timers/Event Counters
- 2-Level Interrupt Priority Structure
- 32 I/O Lines (Four 8-Bit Ports)
- 64K Program Memory Space
- Boolean Processor
- Bit-Addressable RAM
- Programmable Full Duplex Serial Channel
- 111 Instructions (64 Single-Cycle)
- 64K Data Memory Space

\author{

- Security Feature Protects EPROM Parts Against Software Piracy
}

The MCS"-51 products are optimized for control applications. Byte-processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The instruction set provides a convenient menu of 8 -bit arithmetic instructions, including multiply and divide in structions. Extensive on-chip support is provided for one-bit variables as a separate data type, allowing direct bit manipulation and testing in control and logic systems that require Boolean processing.

Device	Internal Memory		Timers/ Event Counters	Interrupts
	Program	Data		
8052AH	$8 \mathrm{~K} \times 8 \mathrm{ROM}$	256×8 RAM	3×16-Bit	6
8051AH	$4 \mathrm{~K} \times 8 \mathrm{ROM}$	128×8 RAM	2×16-Bit	5
8051	$4 \mathrm{~K} \times 8 \mathrm{ROM}$	128×8 RAM	2×16-Bit	5
8032AH	none	256×8 RAM	$3 \times 16-\mathrm{Bit}$	6
8031AH	none	128×8 RAM	$2 \times 16-B i t$	5
8031	none	128×8 RAM	2×16-Bit	5
8751H	$4 \mathrm{~K} \times 8 \mathrm{EPROM}$	128×8 RAM	2×16-Bit	5
$8751 \mathrm{H}-12$	$4 \mathrm{~K} \times 8$ EPROM	128×8 RAM	$2 \times 16-\mathrm{Bit}$	5

The 8751 H is an EPROM version of the 8051AH; that is, the on-chip Program Memory can be electrically programmed, and can be erased by exposure to ultraviolet light. It is fully compatible with its predecessor, the 8751-8, but incorporates two new features: a Program Memory Security bit that can be used to protect the EPROM against unauthorized read-out, and a programmable baud rate modification bit (SMOD). SMOD is not present in the $8751 \mathrm{H}-12$.

8031/8051 - 8031AH/8051AH

Flgure 1. MCS*-51 Block Diagram

PIN DESCRIPTIONS

VCC
Supply voltage.

VSS

Circuit ground.

Port 0

Port 0 is an 8 -bit open drain bidirectional VO port. As an output port each pin can sink 8 LS TTL inputs. Port 0 pins that have is written to them tooat, and in that state can be used as high-impedance inputs.

Port 0 is also the multiplexed low-order address and data bus during accesses to external Program and Data Memory. In this application it uses strong internal pullups when emitting is, and can source and sink 8 LS TTL inputs.

Port 0 also receives the code bytes during programming of the EPROM parts, and outputs the code bytes during program verification of the ROM and EPROM parts. External pullups are required during program verification.

Port 1

Port 1 is an 8 -blt bidirectional IVO port with internal pullups. The Port 1 output buffers can sink/source 4 LS TTL inputs. Port 1 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs. Port 1 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 1 also receives the low-order address bytes during programming of the EPROM parts and during program verification of the ROM and EPROM parts.

8031/2051 - 6031AH/3051AH
 8032AH/SO52AH - 8751M/8751H-12

Figure 2. MCS-51 PIn Connentions

In the 8032AH and 8052AH, Port 1 pins P1.0 and P1.1 also serve the T2 and T2EX functions, respectively.

Port 2

Port 2 is an 8 -bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source 4 LS TTL inputs. Port 2 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external Data Memory that use 16 -bit addresses. (MOVX @DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external Data Memory that use 8-bit addresses (MOVX@Ri), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also recelves the high-order address bits during programming of the EPROM parts and during program verification of the ROM and EPROM parts.

Port 3

Port 3 is an 8 -bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source 4 LS TTL inputs. Port 3 pins that have is written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL, on the data sheet) because of the pullups.

Port 3 also serves the functions of various special features of the MCS-51 Family, as listed below:

Port Pin	Alternative Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INTO (external interrupp 0)
P3.3	INT1 (external interrupt 1)
P3.4	TO (Timer O external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write
P3.7	strobe)
	RD (external data memory read
strobe)	

RST

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

ALE/PROG

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. ALE can drive 8 LS TTL inputs. This pin is also the program pulse input ($\overline{\mathrm{PROG}}$) during programming of the EPROM parts.

In normal operation ALE is emitted at a constant rate of $1 / 8$ the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.

PSEN

Program Store Enable is the read strobe to external Program Memory. $\overline{\text { PSEN }}$ can drive 8 LS TTL inpuis.

When the device is executing code from external Program Memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external Data Memory.

EAVPP

External Access enable $\overline{E A}$ must be externally held low in order to enable any MCS-51 device to fetch code from external Program Memory locations 0 to OFFFH (0 to 1FFFH, in the 8032AH and 8052AH).

Note, however, that if the Security Bit in the EPROM devices is programmed, the device will not fetch code from any location in external Program Memory.

This pin also receives the 21 V programming supply voluage (VPP) during programming of the EPROM parts.

XTAL1 Input to the inverting oscillator amplifier.

XTAL2

Output from the inverting oscillator amplifier.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be contigured for use as an on-chip oscillator, as shown in Figure 3. Either a quartz crystal or ceramic resonator may be used. More detailed information concerning the use of the on-chip oscillator is available in Application Note AP-155, "Oscillators for Microcontrollers."

To drive the deviee from an external clock source, XTAL1 should be grounded, while XTAL2 is driven, as shown in Figure 4. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum high and low times specified on the Data Sheet must be observed.

Figure 3. Oscillator Connections

Figure 4. External Drive Configuration

8052AH-BASIC

- Full BASIC Interpreter in ROM on a Single Chip
- BCD Floating Point Math
- Generates All Timing Necessary to Program EPROMS and E2PROMS
- Fast Tokenized Interpreter
- "Stand Alone" Software Development
- All Arithmetic and Utility Routines Can Be Called From Assembly Language
- Interrupts Can Be Handled By BASIC or Assembly Language
- Bulli-In Accurate REAL TIME CLOCK
- Multiple User Programs
- Programs May Reside in RAM, EPROM or E2PROM
- Bult in Radix Conversion - Hex to Decimal and Decimal to Hex

8052AH-BASIC is an 8052AH microcontroller with a complete full-featured BASIC interpreter, MCS* BASIC52, resident in the 8K of available ROM. This Software-On-Silicon product is specifically designed to address the needs of process control, measurement, and instrumentation applications. MCS BASIC-52 allows 8052AH users to write programs in the popular BASIC language, which is much simpler to write and easier to understand than assembly language.

In addition to the standard BASIC commands and functions, such as floating point arithmetic and transcendental operations, MCS BASIC-52 contains many unique features that allow the user to perform tasks that usually require assembly language. Bit-wise logical operators, such as AND, OR. and EXCLUSIVE-OR are supported as well as hexadecimal arithmetic.

A minimum amount of hardware is required to support MCS BASIC-52. Small systems can be constructed with only a latch, 1 K bytes of external memory, and the appropriate serial port drivers. With the addition of a transistor, a gate, and a couple of passive components, MCS BASIC-52 can program EPROM or E2PROM devices with the users application program. Both the standard and the inteligent Programming ${ }^{\text {™ }}$ algorithms are supported.

MCS BASIC-52 is an interpreted language. This allows the user to develop a program interactively without the cumbersome and repetitive process of editing, assembling, loading, and running which is required by assemblers and compilers. MCS BASIC-52 was designed to permit the programmer to develop resident high level language software using the high performance 8052AH device.

FEATURES

COMMAND SET

MCS BASIC-52 contains all standard BASIC commands, statements, and operators. Figure 1 list the software feature set of MCS BASIC-52.

DATA FORMAT

The range of numbers that can be represented in MCS BASIC- 52 is

$$
\pm 1 E-127 \text { to } \pm .99999999 E+127
$$

CONTROL ORIENTED FEATURES

MCS BASIC-52 contains many unique feitures to perform task that usually require assembly language programming. The XBY and DBY operators can read and/or write external and internal memory respectively. The CBY operator is' used to read program memory. Additionally, virtually all of the special function registers on the 8052AH can be accessed with MCS BASIC-52. This allows the user to set the timer or interrupt modes within the constructs of a BASIC program. An accurate interrupt driven REAL TIME CLOCK that has a 5 millisecond resolution is also implemented in MCS BASIC-52. This clock can be enabled, disabled, and used to generate interrupts. Finally, a CALL statement that allows the programmer to CALL assembly language routines is available in MCS BASIC-52. Parameters can be passed in a number of different ways.

EPROM/E2PROM FILE

Most Basic interpreters allow only one program to be resident in memory, and many require that the program reside in RAM. MCS BASIC- 52 allows programs to reside in both RAM and EPROM/ E2PROM. Additionally, up to 255 programs may reside in EPROM/E2PROM. Programs may also be transtered (XFER) from EPROM/E2PROM to RAM for editing purposes.

EPROM/E2PROM PROGRAMMING

A powerful feature of MCS BASIC-52 is that it generates all of the timing necessary to program any standard EPROM or E2PROM device with the users' program (PROG/FPROG). Additionally, very little external hardware is required to implement this feature. Saving programs in EPROM/E2PROM is much more attractive and reliable than other alternatives, such as cassette tape, especially in control and/or other noisy environments.

AUTOSTART

After the user programs an EPROM or E2PROM with the desired BASIC program. The PROG2 or FPROG2 commands may be used to enable the unique. AUTOSTART feature of MCS BASIC-52. When AUTOSTART is enabled, MCS BASIC-52 will execute the user program after RESET or a power-up condition. This permits the user to RUN a program without connecting the MCS BASIC-52 device to a console - a powerful feature for control environments.

USER ACCESSABLE FUNCTION LIBRARY

Another unique feature of MCS BASIC-52 is that it contains a complete library of functions that can be accessed with assembly language. All floating point, radix conversion, and I/O routines contained in MCS BASIC-52 can be accessed with assembly language CALL instructions. These complex arithmetic routines can be used by the programmer in applications requiring the speed of assembly language, but also the complex arithmetics offered by BASIC.

8052AH-BASIC PIN DESCRIPTION (FIGURE 2)

8052AH-BASIC is an 8052AH device, however, MCS BASIC-52 assumes a particular hardware configuration. The following pin description outlines the pin functions defined by MCS BASIC-52.

vSS

Circuit ground potential.
vce
Circuit supply voltage. 5 volts $\pm 10 \%$ relative to VSS.

Abstract

AD0-AD7 The multiplexed low-order address and data bus used during accesses to external memory. External pullup devices ($\sim 10 \mathrm{~K} \Omega$) are required on these pins if the MCS BASIC-52 EPROM/E2PROM programming feature is used.

\section*{A8-A15}

The high order address bus used during accesses to external memory.

Commands	Statements	Operators
RUN	BAUD	ADD (+)
LIST	CALL	DIVIDE (/)
LIST*	CLEAR	EXPONENTIATION (**)
NEW	CLEARS	MULTIPLY (*)
NULL	CLEARI	SUBTRACT (-)
RAM	CLOCKO	LOGICAL AND (.AND.)
ROM	CLOCK1	LOGICAL OR (.OR.)
XFER	DATA	LOGICAL X-OR (.XOR.)
PROG	READ	LOGICAL NOT
PROG1	RESTORE	ABS ()
PROG2	DIM	INT ()
FPROG	DO-WHILE	SGN()
FPROG1	DO-UNTIL	SQR ()
FPROG2	END	RND
	FOR-TO-STEP	LOG ()
	NEXT	EXP ()
	GOSUB	SIN()
	RETURN	COS ()
	GOTO	TAN ()
	ON-GOTO	ATN ()
	ON-GOSUB	$=,>,>=$,
		$<,<=,<>$
	IF-THEN-ELSE	ASC ()
	INPUT	CHR ()
	LET	CBY ()
	ONERR	D8Y ()
	ONEXT1	XBY ()
	ONTIME	GET
	PRINT	IE
	PRINT\#	1 P
	PHO.	PORT1
	PHO. \#	PCON
	PH1	HCAP2
	PH1.*	T2CON
	PUSH	TCON
	POP	TMOD
	PWM	TIME
	REM	TIMERO
	RET1	TIMER1
	STOP	TIMER2
	STRING	TIME
	Ulo	XTAL
	Ul1	MTOP
	U00	LEN
	UO1	FREE
		Pl

Figure 1. MCS* BASIC-52 Software Feature Set

PORT 1

A general purpose quasi-bidirectional 8 -bit input/ output port. The individual pins on PORT 1 all have alternate functions which may or may not be implemented by the user. The alternate functions are as follows:

PORT 1.0 (T2)

Can be used as the trigger input to TIMER/COUNTER 2. A one (1) must be written to this port pin output latch in order for this function to operate. Details of

Figure 2. Configuration
the T2 trigger function are covered in the Microcontrollers Handbook. Order Number 210918-. 002.

PORT 1.1 (T2EX)

Can be used as the external input to TIMER/ COUNTER 2. A one (1) must be written to this port pin output latch in order for this function to operate. Details of the T2 trigger function are covered in the Microcontroller Users Manual.

PORT 1.2 (PWM OUTPUT)

This pin is used as the PWM output port when the PWM statement is executed. PWM stands for Pulse Width Modulation and is used to generate pulses of varying duty cycle and frequency.

PORT 1.3 (ALE DISABLE)

This pin is used to disable the ALE signal to the external address latch when the EPROM/E2PROM programming feature is used. In a system, this pin is logically anded with ALE.

PORT 14 (PROGRANIWING PULSE)

When the EPROM/E2PROM programming feature is used, this pin provides the proper programming pulse width to program EPROM and INTELligent EPROM devices. MCS BASIC-52 actually calculates proper programming pulse width from the system crystal value (XTAL) to assure the proper timing of this pulse. When used to program E2PROM devices, the length of this pulse is not critical. This pin is active in the logical zero (0) state

PORT 1.5 (PROGRAMMING ENABLE)

When the EPROM/E2PROM programming feature is implemented, this pin is used to enable the EPROM programming voltage. This pin remains active (logically low (0)) during the entire EPROM programming process. On E2PROM devices that do not require any special programming voltage, this pin is not used.

PORT 1.6 (DMA ACKNOWLEDGE)

When the DNA teature is implemented as described in the MCS ${ }^{*}$ BASiC-52 users manual, this pin functions as an active low DMA ACKNOWLEDGE output.

PORT 1.7 (LINE PRINTER OUTPUT)

This pin functions as a serial output port when the LIST\# or PRINT* cornmand arid/or stalement is used. This enables the user to make a "hard copy" of a program or to print out results of a calculation.

RESET

A hign (2.5 volts) on this pin tor two macnine cycles while the oscillator is running resers the device. An external pulldown reststor ($\sim 8.2 \mathrm{~K}$) from RESET to VSS permits power-on reser when a capacitor (~ 10 $u t$) is connected from this pin to VCC.

Ale

ALE (address latcn enaoie) is an output pin that is used to latch the low oroer address byte during Read, Write, or program fetch operations to external memory.

PSEN

This pin (Program Store ENacie) is a control signal that is used to enable external program memory. In MCS* BASIC-52, this pin will always remain inactive (logically high (1)) uniess the user is running an assembly language program in external memory.

XTALI

Input to the inverting amplifier that forms the oscillator.

XTAL2

Output of the inverting amplifier that forms the oscillator, and input to the internal clock generator. Receives the external oscillator signal when an external oscillator is used.

$\overline{R D}$

A control signal that is used to enable READ operations to external data memory. This pin is active low (0).
$\bar{W} \bar{R}$
A control signal that is used to enable WRITE operations to external data memory: This pin is active low (0).

ri

This pin can be programmed to be an external input to TIMER/COUNTER 1.

T0

This pin can be programmed to be an external input to TIMER/COUNTER 0.

INT1

This pin is the external interrupt 1 pin. It is active low and interrupts on this pin may be handed in either BASIC or in assembiy language.

INTÖ/̈̆MA REQUESST

This is the external interrupt 0 pin. It is acive low and may be optionally programmed to function as a DMA request ir,put pin. The DMA REQUEST pin is used by EZ2PROM devices during programming.

CONSOLE SERIAL OUTPUT

This is the serial output pin to the console device. Standard ASCII codes are used as well as a standard asynchronous trame.

CONSOLE SERIAL INPUT

This is the serial input pin that receives data from the console device. Standard ASCII codes are assumed to be the input and the data is assumed to be transmitted using a standard asynchronous frame.

NOTES

If pin 31 is grounded the 8052AH-BASIC will operate as a standard 8032AH. The tolerances on this pin are described under DC characteristics.

For detailed information concerning this product please refer to the MCS BASIC-52 Users Manual (Order Number 210918-002).

8094/8095/8096/8097
 8394/8395/8396/8397 16-BIT MICROCONTROLLERS

- 839X: an 809X with 8K Bytes of On-chip ROM

\author{

- High Speed Pulse I/O
 - 232 Byte Register File
 - 10-bit ADD Converter
 - Memory-to-Memory Architecture
 - 8 Interrupt Sources
 - Pulse-Width Modulated Output
 - Four 16-bit Software Timers
 - Full Duplex Serial Port
 - Five 8-bit I/O Ports
 - Watchdog Timer
}

The MCSㅇㅇㅇ family of 16 -bit microcontrollers consists of 8 members. all of which are designed for high-speed control functions.

The CPU supports bit, byte, and word operations. 32-bit double-words are supported for a subset of the instruction set. With a 12 MHz input frequency the 8096 can do a 16 -bit addition in $1.0 \mu \mathrm{sec}$ and a 16×16-bit multiply or 32 16-bit divide in $6.5 \mu \mathrm{sec}$. Instruction execution times average 1 to $2 \mu \mathrm{sec}$ in typical applications.

Four high-speed trigger inputs are provided to record the times at which external events occur. Six high-speed pulse generator outputs are provided to trigger external events at preset times. The high-speed output unit can simultaneously perform timer functions. Up to four such 16 -bit Software Timers can be in operation at once.

An on-chip AD Converter converts up to 4 (in the 48 -pin version) or 8 (in the 68 -pin version) analog input channels to 10 -bit digital values. This feature is only available on the 8095, 8395, 8097 and 8397

Also provided on-chip are a serial port, a watchdog timer, and a pulse-width modulated output signal.

Figure 1. Block Diagram (For simplicity, lines connecting port registers to port buffers are not shown.)

RXD P2.1	15		P48	RESET
TXD P2.0	28		$ص^{47}$	EXTINT P2. 2
HSIO	3 -		ص46	vPD
HSI1	4 -		ص45	VREF
HS12 HSO4	5 -		ص44	ANGND
HSI3 HSO5	6 -		Q43	ACH4 P0. 4
HSOO	78		ص42	ACH5 P0. 5
HSO1	8 -		ص41	ACH7 P0. 7
HSO2	9 -		ص40	ACH6 PO 6
HSO3	10		ص39	EA
vss	11.	8094	¢38	vcc
v8B	12 B	8095	ص37	vss
PWM P2.5	13 -	8395	ص36	XTAL1
WR	14.		ص35	XTAL2
BHE	158		¢ 34	ALE
READY	16		\sum^{33}	RD
AD15 P4.7	175		¢ 32	ADO P3. 0
AD14 P4.6	18		ص31	AD1 P3 1
AD13 P4. 5	19 -		P30	AD2 P3. 2
AD12 P4.4	20.		ص29	AD3 P3 3
AD11 P4. 3	215		p^{28}	AD4 P3.4
AD10 P4.2	22 -		Q 27	AD5 P3.5
AD9 P4. 1	23.		Q 26	AD6 P3. 6
AD8 P4.0	24		ص25	AD7 P3. 7

Figure 2. 48-Pin Package

Figure 1 shows a block diagram of the MCS-96 parts, generally referred to as the 8096. The 8096 is available in 48 -pin and 68 -pin packages, with and without A/D, and with and without on-chip ROM. The MCS-96 numbering system is shown below:

OPTIONS		68 PIN	48 PIN
DIGITAL I/O	ROMLESS	8096	8094
	ROM	8.396	8.394
	ROMLESS	8097	8095
	ROM	8397	8395

Figures $2,3 \& 4$ show the pinouts for the 48 - and 68 -pin packages. The 48 -pin version is offered in Dual-In-Line package while the 68 -pin version comes in a Flat-pack and a Pin Grid Array.

Flgure 3. 68-Pin Package (Flat Pack-Top Viow)

8-BIT MICROPROCESSING UNIT (MPU)

The MC6800 is a monolithic 8-bit microprocessor forming the central control function for Motorola's M6800 family. Compatible with TTL, the MC6800, as with all M6800 system parts, requires only one +5.0 -volt power supply, and no external TTL devices for bus interface.
The MC6800 is capable of addressing 64 K bytes of memory with its 16 -bit address lines. The 8 -bit data bus is bidirectional as well as threestate, making direct memory addressing and multiprocessing applications realizable

- 8-Bit Parallel Processing
- Bidirectional Data Bus
- 16-Bit Address Bus - 64 K Bytes of Addressing
- 72 Instructions - Variable Length
- Seven Addressing Modes - Direct, Relative, Immediate, Indexed, Extended, Implied and Accumulator
- Variable Length Stack
- Vectored Restart
- Maskable Interrupt Vector
- Separate Non-Maskable Interrupt - Internal Registers Saved in Stack
- Six Internal Registers - Two Accumulators, Index Register, Program Counter, Stack Pointer and Condition Code Register
- Direct Memory Addressing (DMA) and Multiple Processor Capability
- Simplified Clocking Characteristics
- Clock Rates as High as 2.0 MHz
- Simple Bus Interface Without TTL
- Halt and Single Instruction Execution Capability

ORDERING INFORMATION

Package Type	Frequency (MHz)	Temperature	Order Number
Ceramic L Suffix	1.0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC6800L
	1.0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MC6800CL
	1.5	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC68A00L
	1.5	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MC68A00CL
	2.0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC68B00L
Cerdip S Suffix	1.0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC6800S
	1.0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MC6800CS
	1.5	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC68A00S
	1.5	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MC68A00CS
	2.0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC68B00S
Plastic P Suffix	1.0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC6800P
	1.0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MC6800CP
	1.5	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC68A00P
	1.5	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MC68A00CP
	2.0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	MC68B00P

MC6800

MOS

(N-CHANNEL, SILICON-GATE, DEPLETION LOAD

MICROPROCESSOR

The 6800 Instruction Set

Table B-1
Accumulator and Memory Instructions

Table B-2
Index Register and Stack Manipulation

Table B-3
Jump and Branch Instructions

OPERATIONS	MNEMONIC				BOOLEAN OPERATION	COND. CODE REG.					
		IMPLIED				5	4	3	2	1	0
		OP	\sim	\#		H	1	N	2	V	C
Clear Carry	CLC	OC	2	1	$0 \cdots \mathrm{C}$	-	\bullet	\bullet	-	-	R
Clear Interrupt, Mask	CLI	OE	2	1	$0 \rightarrow 1$	-	R	-	-	-	-
Clear Overflow	CLV	OA	2	1	$0 \rightarrow V$	-	-	-	-	R	-
Set Carry	SEC	00	2	1	$1 \rightarrow \mathrm{C}$	-	\bullet	-	-	-	S
Set Interrupt Mask	SEI	OF	2	1	1-1	\bullet	S	-	-	-	\bullet
Set Overflow	SEV	OB	21	1	$1 \cdot V$	\bullet	-	-	-	S	\bullet
Acmitr A \rightarrow CCR	TAP	06	2	1	$A \rightarrow C C R$			-			
CCR \rightarrow Acmltr A	TPA	07	2	1	CCR \rightarrow A	\bullet	\bullet	-	-	-	\bullet

Table of Cycle by Cycle Operation for Each 6800 Instruction

Table 8 provides a detailed description of the information present on the Address Bus, Data Bus, Valid Memory Address line (VMA), and the Read/Write line (R/W) during each cycle for each instruction.

This information is useful in comparing actual with expected results during debug of both software and hard-
ware as the control program is executed. The information is categorized in groups according to Addressing Mode and Number of Cycles per instruction. (In general. instructions with the same Addressing Mode and Number of Cycles execute in the same manner; exceptions are indicated in the table.)

TABLE 8 - OPERATION SUMMARY

Address Mode and Instructions	Cycies	Cycie \#	VMA Line	Address Bus	R / W Line	Data Bus
IMMEDIATE						
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Operand Data
$\begin{aligned} & \operatorname{CPX} \\ & \operatorname{LDS} \\ & \operatorname{LDX} \end{aligned}$	3	1 2 3	1 1 1	Op Code Address Op Code Address + 1 Op Code Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Operand Data (High Order Byte) Operand Data (Low Order Byte)

DIRECT

ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Address of Operand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address of Operand Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { LDS } \\ & \text { LDX } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Address of Operand Operand Address + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address of Operand Operand Data (High Order Byte) Operand Data (Low Order Byte)
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Destination Address Destination Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Destination Address Irrelevant Data (Note 1) Data from Accumulator
$\begin{array}{\|l\|} \hline \text { STS } \\ \text { SFX } \end{array}$	5	1 2 3 4 5	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Address of Operand Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address of Operand Irrelevant Data (Note 1) Register Data (High Orḍer Byte) Register Data (Low Order Byte)

JMP	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1)
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data
$\begin{aligned} & \text { CPX } \\ & \text { LDS } \\ & \text { LDX } \end{aligned}$	6	1 2 3 4 5 6.	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Ragister Plus Offset +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Offset Irrelevant Data (Note 11 Irrelevent Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)

TABLE OF CYCLE BY CYCLE OPERATION FOR EACH 6800 INSTRUCTION

Address Mode and Instructions	Cycles	$\begin{gathered} \text { Cycle } \\ \# \end{gathered}$	VMA Line	Address Bus	R/W Line	Data Bus
INDEXED (Continued)						
STA	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Register Plus Offset		Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data
ASL LSR ASR NEG CLR ROL COM ROR DEC TST INC	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	1 1 0 0 1 0 $1 / 0$ (Note 3 (1) 1	Op Code Address Op Code Address + 1 Index Register Index Register Plus Ofiset (w/o Carry) Index Register Plus Offset Index Register Plus Offset Index Register Plus Offset	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1) Current Operand Data Irrelevant Data (Note 1) New Operand Data (Note 3)
$\begin{aligned} & \hline \text { STS } \\ & \text { STX } \end{aligned}$	7	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Index Register Plus Offset (w/o Carry) Index Register Plus Offset Index Register Plus Offset Index Register Plus Offset + 1	1	Op Code Offset Irreievant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)
JSR	8	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register Stack Pointer Stack Pointer - 1 Stack Pointer - 2 Index Register Index Register Plus Oftset (w/o Carry)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Offset Irrelevant Data (Note 1) Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1)

EXTENDED						
JMP	3	1 2 3	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address Op Code Address +1 Op Code Address +2	1	Op Code Jump Address (High Order Byte) Jump Address (Low Order Byte)
 ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	1 2 3 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Address of Operand	1 1 1 1	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Operand Data
$\begin{aligned} & \hline \text { CPX } \\ & \text { LDS } \\ & \text { LDX } \end{aligned}$	5	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Address of Operand Address of Operand +1	1 1 1 1 1	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Operand Data (High Order Byte) Operand Data (Low Order Byte)
$\begin{aligned} & \text { STA A } \\ & \text { STA B } \end{aligned}$	5	1 2 3 4 5	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	- Op Code Address Op Code Address + 1 O Code Address + 2 Operand Destination Address Operand Destination Address	1 1 1 1 0	Op Code Destination Address (High Order Byte) Destination Address (Low Order Byte) Irrelevant Data (Note 1) Data from Accumulator
 ASL LSR ASR NEG CLR ROL COM ROR DEC TST INC	6	1 2 3 4 5 6	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 / 0 \\ \text { (Note } \\ \hline 3 \text {) } \end{gathered}$	Op Code Address Op Code Address + 1 Op Code Address + 2 Address of Operand Address of Operand Address of Operand	1 1 1 1 1 0	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) Current Operand Data Irrelevant Data (Note 1) New Operand Data (Note 3)

Address Mode and Instructions	Cycles	Cycle \#	VMA Line	Address Bus	R/W Line	Data Bus
EXTENDED (Continued)						
$\begin{aligned} & \text { STS } \\ & \text { STX } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Address of Operand Address of Operand Address of Operand +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Op Code Address of Operand (High Order Byte) Address of Operand (Low Order Byte) irrelevant Data (Note 1) Operand Data (High Order Byte) Operand Data (Low Order Byte)
JSR	9	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Subroutine Starting Address Stack Pointer Stack Pointer - 1 Stack Pointer - 2 Op Code Address + 2 Op Code Address + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address of Subroutine (High Order Byte) Address of Subroutine (Low Order Byta) Op Code of Next Instruction Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Address of Subroutine (Low Order Byte)

INHERENT							
ABA ASL ASR CBA CLC CLI CLR CLV COM	DAA SEC DEC SEI INC SEV LSR TAB NEG TAP NOP TBA ROL TPA ROR TST SBA	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction
DES DEX INS INX		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Previous Register Contents New Register Contents	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Date (Note 1) Irrelevant Data (Note 1)
PSH		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer - 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Accumulator Data Accumulator Data
PUL		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer +1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Operand Data from Stack
TSX		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer New Index Register	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data (Note 1) Irrelevant Data (Note 1)
TXS		4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Index Register New Stack Pointer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Op Code of Next Instruction Irrelevant Data Irrelevant Data
RTS		5	1 2 3 4 5	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer +1 Stack Pointer + 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Irrelevant Data (Note 2) Irrelevant Data (Note 1) Address of Next Instruction (High Order Byte) Address of Next Instruction (Low Order Byte)

Address Mode and Instructions		Cycles	Cycle \#	VMA Line	Address Bus	$\begin{aligned} & \text { R/W } \\ & \text { Line } \end{aligned}$	Data Bus
INHERENT (Continued)							
WAI		9	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer - 1 Stack Pointer - 2 Stack Pointer -- 3 Stack Pointer - 4 Stack Pointer - 5 Stack Pointer - 6 (Note 4)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	Op Code Op Code of Next instruction Return Address (Low Order Byte) Return Address (High Order Byte) Index Register (Low Order Byte) Index Register (High Order Byte) Contents of Accumulator A Contents of Accumulator B Contents of Cond. Code Register
RTI		10	1 2 3 4 5 6 7 8 9 10	1 1 0 1 1 1 1 1 i 1	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer +1 Stach Pcinter +2 Stack Pointer +3 Stack Pointer +4 Stack Pointer +5 Stack Pointer +6 Stack Pointer +7		Op Code Irrelevant Data (Note 2) Irrelevant Data (Note 1) Contents of Cond. Code Register from Stack Contents of Accumulator B from Stack Contents of Accumulator A from Stack Index Register from Stack (High Order Byte) Index Register from Stack (Low Order Byte) Next Instruction Address from Stack (High Order Byte) Next Instruction Address from Stack (Low Order Byte)
SWI		12	1 2 3 4 5 6 7 8 9 10 11 12	1 0 1 1	Op Code Address Op Code Address + 1 Stack Pointer Stack Pointer - 1 Stack Pointer 2 Stack Pointer ${ }^{-} 3$ Stack Pointer - 4 Stack Pointer 5 Stack Pointer -. 6 Stack Pointer - 7 Vector Address FFFA (Hex) Vector Address FFFB (Hex)	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	Op Code Irrelevant Data (Note 1) Return Address (Low Order Byte) Return Address (High Order Byte) Index Register (Low Order Byte) Index Register (High Order Byte) Contents of Accumulator A Contents of Accumulator B Contents of Cond Code Register Irrelevant Data (Note 1) Address of Subroutine (High Order Byte) Address of Subroutine (Low Order Byte)
RELATIVE							
BCC BCS BEQ BGE BGT	BHI BNE BLE BPL BLS BRA BLT BVC BMI BVS	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Op Code Address +2 Branch Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Branch Offset Irrelevant Data (Note 1) Irrelevant Data (Note 1)
BSR		8	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Op Code Address Op Code Address + 1 Return Address of Main Program Stack Pointer Stack Pointer - 1 Stack Pointer - 2 Return Address of Main Program Subroutine Address	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Op Code Branch Offset Irrelevant Data (Note 11 Return Address (Low Order Byte) Return Address (High Order Byte) Irrelevant Data (Note 1) Irrelevant Data (Note 1) Irrelevant Data (Note 1)

Note 1 If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition. Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus
Note 2. Data is ignored by the MPU
Note 3. For TST. VMA $=0$ and Operand data does not change
Note 4 While the MPU is waiting for the interrupt, Bus Avallable will go high indicating the following states of the control lines: VMA is low, Address Bus, R/W, and Data Bus are all in the high impedance state.

Advance Information

MICROCOMPUTER UNIT (MCU)

The MC6801 MCU is an 8-bit microcomputer system which is compatibie with the M6800 family of parts. The MC6801 MCU is object code compatible with the MC6800 with improved execution times of key instructions plus several new 16-bit and 8-bit instructions including an 8×8 unsigned multiply with 16 -bit reautt. The MC8801 MCU can operate ats a single chip microcomputer or be expanded to 65K words. The MC6801 MCU is TTL compatible and requires one $\mathbf{+ 5 . 0}$ volt power supply. The MC6801 MCU has 2K bytes of ROM and 128 bytes of RAM on chip, Serial Communications Interface (S.C.I.), and paraliel I/O as well asi, three unction 16-bit timer. Block diagram is shown in Figure 1. Features of the MC6801 include the following:

- Expanded M6800 Instruction Set
- 8×8 Multiply
- On-Chip Serial Communications Interface (S.C.I.)
- Object Code Compatible With The MC6e00 MPU
- 16-Bit Timer
- Single Chip Or Expandable To 65K Words
- 2K Bytes Of ROM
- 128 Bytes Of RAM (64 Bytes Retainable On Power Down)
- 31 Parallel 1/O Lines
- Internal Clock/Divided-By-Four
- TTL Competible Inputs And Outputs
- Interrupt Capability
- Externel Cloct/Dlvide-Sy-Une Meek Option (MCeno1E) And EPROM Veralons Mcesto1 And Mcespo1E Avelletio Soon.

FIGUNE 1 - SINOLE-CNIP MICNOCOMPUTER BLOCK DIAGRAM

This is advance information and apecincations ave athiect to change without notice.

Advance Information

MICROPROCESSOR WITH CLOCK AND RAM

The MC6802 is a monolithic 8 -bit microprocessor that contains all the registers and accumulators of the present MC6800 plus an internal clock oscillator and driver on the same chip. In addition, the MC6802 has 128 bytes of RAM on board located at hex addresses 0000 to 007 F . The first 32 bytes of RAM, at hex addresses 0000 to 001F. may be retained in a low power mode by utilizing V_{CC} standby, thus facilitating memory retention during a powerdown situation.

The MC6802 is completely software compatible with the MC6800 as well as the entire M6800 family of parts. Hence, the MC6802 is expandable to 65 K words.

- On-Chip Clock Circuit
- 128×8 Bit On-Chip RAM
- 32 Bytes of RAM Are Retainable
- Software Compatible with the MC6800
- Expandable to 65 K words
- Standard TTL-Compatible Inputs and Outputs
- 8 Bit Word Size
- 16 Bit Memory Addressing
- Interrupt Capability

MOS

INCHANNEL, SILICONGATE DEPLETION LOADI

MICROPROCESSOR WITH CLOCK AND RAM

This is advence information and apecifications are aubject to chenge without notice.

MC6809

8-BIT MICROPROCESSING UNIT

The MC6809 is a revolutionary high-performance 8 -bit microprocessor which supports modern programming techniques such as position independence, reentrancy, and modular programming.
This third-generation addition to the M6800 Family has major architectural improvements which include additional registers, instructions, and addressing modes.
The basic instructions of any computer are greatly enhanced by the presence of powerful addressing modes. The MC6809 has the most complete set of addressing modes available on any 8 -bit microprocessor today
The MC6809 has hardware and software features which make it an ideal processor for higher level language execution or standard controller applications.

MC6800 COMPATIBLE

- Hardware - Interfaces with All M6800 Peripherals
- Software - Upward Source Code Compatible Instruction Set and Addressing Modes

ARCHITECTURAL FEATURES

- Two 16-Bit Index Registers
- Two 16-Bit Indexable Stack Pointers
- Two 8-Bit Accumulators can be Concatenated to Form One 16-Bit Accumulator
- Direct Page Register Allows Direct Addressing Throughout Memory

HARDWARE FEATURES

- On-Chip Oscillator (Crystal Frequency $=4 \times \mathrm{E}$)
- DMA/BREX Allows DMA Operation on Memory Refresh
- Fast Interrupt Request Input Stacks Only Condition Code Register and Program Counter
- MRDY Input Extends Data Access Times for Use with Slow Memory
- Interrupt Acknowledge Output Allows Vectoring by Devices
- Sync Acknowledge Output Allows for Synchronization to External Event
- Single Bus-Cycle RESET
- Single 5-Volt Supply Operation
- NMI Inhibited After $\overline{\text { RESET Until After First Load of Stack Pointer }}$
- Early Address Valid Allows Use with Slower Memories
- Early Write Data for Dynamic Memories

SOFTWARE FEATURES

- 10 Addressing Modes
- 6800 Upward Compatible Addressing Modes
- Direct Addressing Anywhere in Memory Map
- Long Relative Branches
- Program Counter Relative
- True indirect Addressing
- Expanded Indexed Addressing:
$0,5-8$-, or 16 -Bit Constant Offsets
8 - or 16-Bit Accumulator Offsets
Auto Increment/Decrement by 1 or 2
- Improved Stack Manipulation
- 1464 Instructions with Unique Addressing Modes
- 8×8 Unsigned Multiply
- 16-Bit Arithmetic
- Transfer/Exchange All Registers
- Push/Pull Any Registers or Any Set of Registers
- Load Effective Address

HMOS
(HIGH DENSITY N-CHANNEL, SILICON-GATE)
$\stackrel{\text { 8-BIT }}{\text { MICROPROCESSING }}$
UNIT

MC6809

Figure 3 - bus timing test load

$C=30 \mathrm{pF}$ for BA, BS
130 pF for DO-D7. E, Q 90 DF for AO-A15, R/W
$\mathrm{R}=11.7 \mathrm{kR}$ for $\mathrm{DO}-\mathrm{D7}$
$16.5 \mathrm{k} \mathrm{\Omega}$ for AO-A15, E, Q. R/W $24 \mathrm{k} \Omega$ for BA, BS

PROGRAMMING MODEL

As shown in Figure 4, the MC6809 adds three registers to the set available in the MC6800. The added registers include a direct page register, the user stack pointer, and a second index register.

ACCUMULATORS (A, B, D)

The A and B registers are general purpose accumulators which are used for arithmetic calculations and manipulation of data.
Certain instructions concatenate the A and B registers to form a single 16 -bit accumulator. This is referred to as the D register, and is formed with the A register as the most significant byte.

DIRECT PAGE REGISTER (DP)

The direct page register of the MC6809 serves to enhance the direct addressing mode. The content of this register appears at the higher address outputs (A8-A15) during direct addressing instruction execution. This allows the direct mode to be used at any place in memory, under program control. To ensure M6800 compatibility, all bits of this register are cleared during processor reset.

MC6809

FIGURE 4 - PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

INDEX REGISTERS (X, Y)
The index registers are used in indexed mode of addressing. The 16 -bit address in this register takes part in the calculation of effective addresses. This address may be used to point to data directly or may be modified by an optional constant or register offset. During some indexed modes, the contents of the index register are incremented or decremented to point to the next item of tabular type data. All four pointer registers (X, Y, U, S) may be used as index registers.

STACK POINTER (U,S)

The hardware stack pointer (S) is used automatically by the processor during subroutine calls and interrupts. The stack pointers of the MC6809 point to the top of the stack, in contrast to the MC6800 stack pointer, which pointed to the next free location on the stack. The user stack pointer (U) is controlled exclusively by the programmer. This allows arguments to be passed to and from subroutines with ease. Both stack pointers have the same indexed mode addressing capabilities as the X and Y registers, but also support Push and Pull instructions. This allows the MC6809 to be used efficiently as a stack processor, greatly enhancing its ability to support higher level languages and modular programming.

PROGRAM COUNTER

The program counter is used by the processor to point to the address of the next instruction to be executed by the processor. Relative addressing is provided allowing the program counter to be used like an index register in some situations.

CONDITION CODE REGISTER

The condition code register defines the state of the processor at any given time. See Figure 5

FIGURE 5 - CONDITION CODE REGISTER FORMAT

CONDITION CODE REGISTER DESCRIPTION

BIT 0 (C
Bit 0 is the carry flag, and is usually the carry from the binary ALU. C is also used to represent a 'borrow' from subtract-like instructions (CMP, NEG, SUB, SBC) and is the complement of the carry from the binary ALU.

BIT 1 (V)
Bit 1 is the overflow flag, and is set to a one by an operation which causes a signed twos complement arithmetic overfiow. This overflow is detected in an operation in which the carry from the MSB in the ALU does not match the carry from the MSB-1

BIT 2 (Z)

Bit 2 is the zero flag, and is set to a one if the result of the previous operation was identically zero.

BIT 3 (N)
Bit 3 is the negative flag, which contans exactly the value of the MSB of the result of the preceding operation. Thus, a negative twos-complement result will leave N set to a one

BIT 4 (I)
Bit 4 is the $\overline{\mathrm{RQ}}$ mask bit. The processor will not recognize interrupts from the $\overline{\mathrm{RQ}}$ line if this bit is set to a one. $\overline{\mathrm{NM}}$, $\overline{F I R Q}, \overline{\mathrm{IRO}}, \overline{\mathrm{RESET}}$, and SWI all set i to a one. SWI2 and SWI3 do not affect I.

BIT 5 (H)

Bit 5 is the half-carry bit, and is used to indicate a carry from bit 3 in the ALU as a result of an 8 -bit addition only (ADC or ADD). This bit is used by the DAA instruction to perform a BCD decimal add adjust operation. The state of this flag is undefined in all subtract-like instructions.

BIT 6 (F)
Bit 6 is the FIRO mask bit. The processor will not recognize interrupts from the $\overline{F I R Q}$ line if this bit is a one. $\overline{\text { NMI, }} \overline{\mathrm{FIRQ}}$, SWI, and $\overline{\text { RESET }}$ all set F to a one. $\overline{\mathrm{IRO}}$, SWI2, and SWI3 do not affect F.

BIT 7 (E)

Bit 7 is the entire flag, and when set to a one indicates that the complete machine state lail the registers) was stacked, as opposed to the subset state (PC and CC). The E bit of the stacked CC is used on a return from interrupt (RTi) to determine the extent of the unstacking. Therefore, the current E left in the condition code register represents past action.

PIN DESCRIPTIONS

POWER (VSs, VCC)

Two pins are used to supply power to the part: $V_{S S}$ is ground or 0 volts, while $V_{C C}$ is $+5.0 \mathrm{~V} \pm 5 \%$.

ADDRESS BUS (AO-A15)

Sixteen pins are used to output address information from the MPU onto the address bus. When the processor does not require the bus for a data transfer, it will output address FFFF $16, \mathrm{R} / \overline{\mathrm{W}}=1$, and $\mathrm{BS}=0$; this is a "dummy access" or VMA cycle. Addresses are valid on the rising edge of Q . A.ii address bus drivers are made high impedance when output bus available (BA) is high. Each pin will drive one Schottky TTL load or four LSTTL loads, and 90 pF .

DATA BUS (DO-D7)

These eight pins provide communication with the system bidirectional data bus. Each pın will drive one Schottky TTL load or four LSTTL loads, and 130 pF .

READ/WRITE (R/ \bar{W})

This signal indicates the direction of data transfer on the data bus A low indicates that the MPU is writing data onto the data bus. R / \bar{W} is made high impedance when $B A$ is high. R / \bar{W} is valid on the rising edge of O

$\overline{\text { RESET }}$

A low level on this Schmitt-trigger input for greater than one bus cycle will reset the MPU, as shown in Figure 6 The reset vectors are fetched from locatıons FFFE $_{16}$ and FFFFF $_{16}$ (Table 1) when interrupt acknowledge is true, $(\overrightarrow{B A} \bullet B S=1)$ During initial power on, the $\overline{R E S E T}$ line should be held low until the clock oscillator is tully operational See Figure 7

Because the MC68C9 RESET pin has a Schmitt-trigger input with a threshold voltage higher than that of standard peripherals, a simple R/C network may be used to reset the entire system This higher threshold voltage ensures that all peripherais are out of the reset state before the processor

HALT

A low level on this input pin will cause the MPU to stop running at the end of the present instruction and remain halted indefinitely without loss of data When halted, the BA output is driven high indicating the buses are high impedance. BS is also high which indicates the processor is in the halt or bus grant state While halted, the MPU will not respond to external real-time requests ($\overline{\mathrm{FIRO}}, \overline{\mathrm{RQ}} /$ although $\overline{\mathrm{DMA}} / \overline{\mathrm{BREO}}$ will always be accepted, and $\overline{\mathrm{NMI}}$ or $\overline{\mathrm{RESET}}$ wil! be latched for later response. During the halt state, Q and E continue to run normally. If the MPU is not running ($\overline{\mathrm{RESET}}$, $\overline{\mathrm{DMA}} / \overline{\mathrm{BREQ}})$, a halted state $(\mathrm{BA} \bullet \mathrm{BS}=1)$ can be achieved by pulling HALT low while RESET is still low If DMA/BREO and $\overline{\text { HALT }}$ are both pulled low, the processor will reach the last cycle of the instruction (by reverse cycle stealing) where the machine will the become halted. See Figure 8.

BUIS AVAILABLE, BUS STATUS (BA, BS)

The bus available output is an indication of an internal control signal which makes the MOS buses of the MPU high impedance This signal does not imply that the bus will be available for more than one cycle When BA goes low, a dead cycle will elapse before the MPU acquires the bus

The bus status output signal, when decoded with BA, represents the MPU state (valid with leading edge of Q)

MPU State		MPU State Definition
BA	BS	
0	0	Normal (Running)
0	1	Interrupt or Reset Acknowledge
1	0	Sync Acknowiedge
1	1	Halt or Bus Grant Acknowledge

128×8-BIT STATIC RANDOM ACCESS MEMORY

The MCM6810 is a byte-organized memory designed for use in busorganized systems. It is fabricated with N -channel silicon-gate technology. For ease of use, the device operates from a single power supply, has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random storage in byte increments. Memory expansion is provided through multiple Chip Select inputs.

- Organized as 128 Bytes of 8 Bits
- Static Operation
- Bidirectional Three-State Data Input/Output
- Six Chip Select Inputs (Four Active Low. Two Active High)
- Single .5-Volt Power Supply
- TTL Compatible
- Maximum Access Time $=450$ ns - MCM6810

360 ns - MCM68A10
250 ns - MCM68B10

PIN ASSIGNMENT

$\text { Gnd } \sqrt{1}$	24
DOd 2	23
143	22
D2 44	21
D3 45	20
Dad 6	19
D507	18
0688	17
D749	16
Cso 10	15
Cs14	14
CS2412	13

PERIPHERAL INTERFACE ADAPTER (PIA)

The MC6821 Peripheral Interface Adapter provides the universal means of interfacing peripheral equipment to the MC6800 Microprocessing Unit (MPU). This device is capable of interfacing the MPU to peripherals through two 8 -bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.

The functional configuration of the PIA is programmed by the MPU during system initialization. Each of the peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the over-all operation of the interface.

- 8-Bit Bidirectional Data Bus for Communication with the MPU
- Two Bidirectional 8-Bit Buses for Interface to Peripherals
- Two Programmabie Control Registers
- Two Programmable Data Direction Registers
- Four Individually-Controlled Interrupt Input Lines; Two Usable as Peripheral Control Outputs
- Handshake Control Logic for Input and Output Peripheral Operation
- High-Impedence 3-State and Direct Transistor Drive Peripheral Lines
- Program Controlled Interrupt and Interrupt Disable Capability
- CMOS Drive Capability on Side A Peripheral Lines
- Two TTL Drive Cepability on All A and B Side Buffers
- TTL.Compatible
- Static Operation

ORDERING INFORMATION

Speed	Device	Temperature Rence
1.0 MHz	MC8821P.L	0 to $+70^{\circ} \mathrm{C}$
	MC8821CP.CL	-40 to $+85^{\circ} \mathrm{C}$
MIL-STD-8838	MC88218OCS	-55 to $+125^{\circ} \mathrm{C}$
MIL.STD-883C	MC8821COCS	
1.5 MHz	MC88A21P.L	0 to $+70^{\circ} \mathrm{C}$
	MC8BA21CP,CL	-40 to $+85^{\circ} \mathrm{C}$
2.0 MHz	MC88821P,L	0 to $+70^{\circ} \mathrm{C}$

MC6821
(1.0 MHz)
MC68A21
(1.6 MHz)
MC68B21
(2.0 MHz)

MOS

INCHANNEL, BILICON-GATE, DEPLETION LOADI

PERIPHERAL INTERFACE ADAPTER

PIN Assignment

0	CA1
-	CA2
Pal	IACA
Pa2	तबS
Pa3	30
Pa4	M81
Pas	Hewt
Pas	
Pa7	
P00	
Pal	
P82	
P83	
Pen	
pes	
PES	
Pay	${ }^{2} 1$
cal	C5
ces	c
vee	NTM

MC6843

Advance Information

FLOPPY DISK CONTROLLER (FDC)

The MC6843 Floppy Disk Controller performs the complex MPU/Floppy interface function. The FDC was designed to optimize the balance between the "Hardware/Software" in order to achieve integration of all key functions and maintain flexibility.

The FDC can interface a wide range of drives with a minimum of external hardware. Multiple drives can be controlled with the addition of external multiplexing rather than additional FDC's.

- Format compatible with IBM3740
- User Programmable read/write format
- Ten powerful macro commands
- Macro End Interrupt allows parallel processing of MPU and FDC
- Controls multiple Floppies with external multiplexing
- Direct interface with MC6800
- Programmable step and settling times enable operation with a wide range of Floppy drives
- Offers both Programmed Controlled I/O (PCIO) and DMA data transfer mode
- Free-Format read or write
- Single 5-volt power supply
- All registers directly accessible

This is advance informetion and specifications are eubject to change without notice

CRT CONTROLLER (CRTC)

The MC6845 CRT controller performs the interface between an MPU and a raster-scan CRT display. It is intended for use in MPU-based controllers for CRT terminals in stand-alone or cluster configurations.

The CRTC is optimized for the hardware/software balance required for maximum flexibility. All keyboard functions, reads, writes, cursor movements, and editing are under processor control. The CRTC provides video timing and refresh memory addressing

- Useful in Monochrome or Color CRT Applications
- Applicatıons Include "Glass-Teletype," Smart, Programmable, IntelIIgent CRT Terminals; Video Games; Information Displays
- Alphanumerıc, Semi-Graphic, and Full-Graphic Capability
- Fully Programmable Via Processor Data Bus. Timing May Be Generated for Almost Any Alphanumerıc Screen Format, e.g., 80×24, $72 \times 64,132 \times 20$
- Single $+5 \vee$ Supply
- M6800 Compatible Bus Interface
- TTL-Compatible Inputs and Outputs
- Start Address Register Provides Hardware Scroll (by Page or Character)
- Programmable Cursor Register Allows Control of Cursor Format and Blink Rate
- Light Pen Register
- Refresh (Screen) Memory May be Multiplexed Between the CRTC and the MPU Thus Removing the Requirements for Line Buffers or External DMA Devices
- Programmable Interlace or Non-Interlace Scan Modes
- 14-Bit Refresh Address Allows Up to 16K of Refresh Memory for Use in Character or Semi-Graphic Displays
- 5-Bit Row Address Allows Up to 32 Scan-Lıne Character Blocks
- By Utlizing Both the Refresh Addresses and the Row Addresses, a 512K Address Space is Available for Use in Graphics Systems
- Refresh Addresses are Provided During Retrace, Allowing the CRTC to Provide Row Addresses to Refresh Dynamic RAMs
- Pin Compatible with the MC6835

ORDERING INFORMATION			
Package Type	Frequency (MHz)	Temperature	Order Number
Ceramic L Suffix	$\begin{aligned} & 10 \\ & 1.0 \\ & 15 \\ & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \hline \end{gathered}$	MC6845L MC6845CL MC68A45L MC68A45CL MC68B45L
Cerdip S Suffix	$\begin{aligned} & \hline 10 \\ & 1.0 \\ & 15 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \hline \end{gathered}$	MC6845S MC6845CS MC68A45S MC68A45CS MC68B45S
Plastic P Suffix	$\begin{aligned} & 10 \\ & 1.0 \\ & 1.5 \\ & 15 \\ & 20 \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{gathered}$	MC6845P MC6845CP MC68A45P MC68A45CP MC68B45P

MC6845

FIGURE 1 - TYPICAL CRT CONTROLLER APPLICATION

Rating	Symbol	Value	Unit
Supply Voltage	$\checkmark \mathrm{CC}$	-0310-70	1
Input Voltage	$V_{\text {in }}$	-0310-76	\checkmark
```Operating Temperature Range MC6845, MC68A45, MC68B45 MC6845C, MC68A45C```	${ }^{*}$ A	$\begin{aligned} & T_{L} \text { to } T_{H} \\ & 0 \text { to } 70 \\ & 40 \text { to }-85 \end{aligned}$	$\bigcirc$
Storage Temperature Range	${ }_{\text {S SIg }}$	$-5510-150$	C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Ratıng
Tnermal Resıstance			
Plastıc Package	$H_{J A}$	100	C W
Cerdıp Package	60		
Ceramic Package		50	

The device contains circuitry to protect the inputs against damage due to high static voltages or electric frelds, however, it is ad vised that normal precautions be taken to avord application of any voltage higher than meximum rated voltages to this high impedance circuit for proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be con strained to the range $\mathrm{V}_{S S} \leq 1 \mathrm{~V}_{\text {in }}$ or $V_{\text {out }}{ }^{\prime} \leq V_{C C}$

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Typ $^{\prime}$	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	475	50	525	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-03	-	08	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	20	-	$\mathrm{V}_{\mathrm{CC}}$	V

## MC6847/MC6847Y VIDEO DISPLAY GENERATOR (VDG)

The video display generator (VDG) provides a means of interfacing the M6800 microprocessor family (or sımilar products) to a standard color or black and white NTSC television receiver. Applications of the VDG include video games, process control displays, home computers, education, communications, and graphics applications.
The VDG reads data from memory and produces a video signal which will allow the generation of alphanumeric or graphic displays. The generated video signal may be modulated to etther channel 3 or 4 by using the compatible MC1372 (TV chroma and video modulator). This modulated signal is suitabie for reception by a standard unmodified television receiver. A typical TV game is shown in Figure 1

- Compatible with the M6800 Family, the M68000 Family, and Other Microprocessor Families
- Generates Four Different Alphanumeric Display Modes, Two Semigraphic Modes, and Eight Graphic Display Modes
- The Alphanumeric Modes Display 32 Characters Per Line by 16 Lines Using Either the Internal ROM or an External Character Generator
- Alphanumeric and Semigraphic Modes May Be Mixed on a Char-acter-by-Character Basis
- Alphanumeric Modes Support Selectable Inverse on a Character-by-Character Basis
- Interna! ROM May Be Mask Programmed with a Custom Pattern
- Full Graphic Modes Offer $64 \times 64,128 \times 64,128 \times 96,128 \times 192$, or $256 \times 192$ Densities
- Full Graphic Modes Use One of Two 4-Color Sets or One of Two 2-Color Sets
- Compatible with the MC1372 and MC1373 Modulators Via Y, R-Y $(\phi A)$, and B-Y $(\phi B)$ Interface
- Compatible with the MC6883 (74LS783) Synchronous-Address Multiplexer
- Available in Either an Interlace (NTSC Standard) or Non-interlace Version


## MC6847 <br> Non-Interlace MC6847Y Interlace

MOS
(N-CHANNEL, SILICON-GATE)
VIDEO DISPLAY
GENERATOR



## MC6847 • MC6847Y

FIGURE 1 - BLOCK DIAGRAM OF A TV GAME USING THE VDG AND THE MC6809E MPU


ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.3 to +7.0	V
Input Voltage Any Pin	$\mathrm{V}_{\mathrm{In}}$	-0.3 to +7.0	V
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Value	Unit
Thermal Resıstance			
Ceramic	$\theta_{\text {JA }}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastıc		100	
Cerdip		60	

## MC6850

## ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER (ACIA)

The MC6850 Asynchronous Communications Interface Adapter provides the data formatting and control to interface serial asynchronous data communications information to bus organized systems such as the MC6800 Microprocessing Unit.

The bus interface of the MC6850 includes select, enable, read/write, interrupt and bus interface logic to allow data transfer over an 8-bit bidirectional data bus. The parallel data of the bus system is serially transmitted and received by the asynchronous data interface, with proper formatting and error checking. The functional configuration of the ACIA is programmed via the data bus during system initialization. A programmable Control Register provides variable word lengths, clock division ratios, transmit control, receive control, and interrupt control. For peripheral or modem operation, three control lines are provided. These lines allow the ACIA to interface directly with the MC6860 $0-600$ bps digital modem.

- 8- and 9-Bit Transmission
- Optional Even and Odd Parity
- Parity, Overrun and Framing Error Checking
- Programmable Control Register
- Optional +1, +16, and +64 Clock Modes
- Up to 1.0 Mbps Transmission
- False Start Bit Deletion
- Peripheral/Modem Control Functions
- Double Buffered
- One- or Two-Stop Bit Operation

- -PIN ASSIGNMENT

VSS 1	24
Rx Datal 2	23
RxCLK [-3	22
Tx CLK [ 4	21
$\overline{\text { RTS }} 5$	20
T× Data [6	19
$\overline{\text { IROD }}$	18
CSOL8	17
$\overline{\mathrm{CS} 2} 9$	16
CS1 10	15
RS 11	14
VCCD 12	13

## Specifications and Applications Information

## M6800 CLOCK GENERATOR

Intended to supply the non-overlapping $\phi 1$ and $\phi 2$ clock signals required by the microprocessor, this clock generator is compatible with $1.0,1.5$, and 2.0 MHz versions of the MC6800. Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion.

Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are required.



TABLE 1 - OSCILLATOR COMPONENTS

TANK CIRCUIT PARAMETERS		APPROXIMATE CRYSTAL PARAMETERS				CTS KNIGHTS 400 REIMANN AVE.   SANDWICH, IL 60548   (815) 786-8411	McCOY ELECT. CO. WATTS \& CHESTNUTS STS. MT. HOLLY SPRING, PA 17065 (717) 486-3411	```TYCO CRYSTAL PRODUCTS 3940 W. MONTECITO PHOENIX,AZ 85019 (602) 272.7945```
$\begin{aligned} & L_{T} \\ & \mu H \end{aligned}$	$\begin{aligned} & C_{T} \\ & \rho F \end{aligned}$	$\mathrm{H}_{\mathrm{S}}$ Ohms	$\begin{aligned} & \text { Co } \\ & \text { pF } \end{aligned}$	$\begin{gathered} C_{1} \\ \mathrm{mpF} \end{gathered}$	fo MHz			
10	150	15-75	3-6	12	4.0	$\begin{aligned} & \text { MP-04A } \\ & \cdot 390 \mathrm{pF} \end{aligned}$	113-31	150.3260
47	82	8.45	4.7	23	80	$\text { MP. } 080$ $\cdot 47 \mathrm{pF}$	113-32	150.3270

FIGURE 13


To precisely time a crystal to desired frequency, a variable trimmer capacitor in the range of 7 to 40 pF would typically be used. Note it is not a recommended practice to tune the crystal with a parallel load capacitance.

The table above shows typical values for $\mathrm{C}_{\mathrm{T}}$ and $\mathrm{L}_{\mathrm{T}}$, typical crystal characteristics, and manufacturers' part numbers for 4.0 and 8.0 megahertz operation.

The MC6875 will function as an R-C oscillator when connected as shown in Figure 13. The desired output frequency ( $\mathrm{M} \phi 1$ ) is approximately:

$$
\begin{aligned}
& \text { Formula } \\
& 4 \times \text { fo } \approx \frac{320}{\mathrm{C}(\mathrm{R}+.27)+23}
\end{aligned}
$$

C in picofarads
R in K ohms
$4 \times$ fo in Megahertz
(See Figure 11)
It would be desirable to select a capacitor greater than 15 pF to minimize the effects of stray capacitance. It is also desirable to keep the resistor in the 1 to $5 \mathrm{k} \Omega$ range. There is a nominal $270 \Omega$ resistor internally at $X_{1}$ which is in series with the external $R$. By keeping the external $R$ as large as possible, the effects due to process variations of the internal resistor on the frequency will be reduced. There will, however, still be some variation in frequency in a production lot both from the resistance variations, external and internal, and process variations of the input switching thresholds. Therefore, in a production system, it is recommended a potentiometer be placed in series with a fixed $R$ between $X_{1}$ and $X_{2}$.

## POWER-ON RESET

As the power to the MC6875 comes up, the Reset $\overline{\text { Output }}$ will be in a high impedance state and will not give
a solid $V_{O L}$ output level until $V_{C C}$ has reached 3.5 to 4.0 V . During this time transients may appear on the clock outputs as the oscillator begins to start. This happens at approximately $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$. At some $\mathrm{V}_{\mathrm{CC}}$ level above that, where Reset Output goes low, all the clock outputs will begin functioning normally. This phenomenon of the start-up sequence should not cause any problems except possibly in systems with battery back-up memory. The transients on the clock lines during the time the $\overline{\text { Reset Output }}$ is high impedance could initiate the system in some unknown mode and possibly write into the backup memory system. Therefore in battery backup systems, more elaborate reset circuitry will be required.

Please note that the Power-On Reset input pin of the MC6875 is not suitable for use with a manual MPU reset switch if the $\overline{\text { DMA/Ref Req or Memory Ready inputs are }}$ going to be used. The power on reset circuitry is used to initialize the internal control logic and whenever the input is switched low, the MC6875 is irresponsive to the $\overline{\text { DMA/Ref Req or Memory Ready inputs. This may }}$ result in the loss of dynamic memory and/or possibly a byte of slow static memory. The circuit of Figure 14 is recommended for applications which do not utilize the $\overline{\text { DMA/Ref Req or Memory Ready inputs. The circuit of }}$ Figure 15 is recommended for those applications that do. FIGURE 14 - MANUAL RESET FOR APPLICATIONS NOT USING DMA/REFRESH REQUEST OR MEMORY READY INPUTS


FIGURE 15 - MANUAL RESET FOR SYSTEMS USING DYNAMIC RAM OR SLOW STATIC RAM IN CONJUNCTION WITH MEMORY READY OR DMA/REFRESH REQUEST INPUTS


## QUAD THREE-STATE BUS TRANSCEIVER

This quad three state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high speed operation made possible by the use of Schottky diode clamping Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices The maximum input current of $200 \mu \mathrm{~A}$ at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages

The MC8T26A is identical to the NE8T26A and it operates from a single +5 V suppiy

- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three State Disers and Receivers
- Compatible with M6800 Family Microprocessor



## QUAD THREE-STATE BUS TRANSCEIVER

MONOLITHIC SCHOTTKY INTEGRATED CIRCUITS


## OCTAL THREE-STATE BUFFER/LATCH

This series of devices combines four features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows for high-speed operation; 4) 48 mA drive capability.

- Inverting and Non-Inverting Options of Data
- SN74S373 Function Pinouts
- Eight Transparent Latches/Buffers in a Single Package
- Full Parallel-Access for Loading and Reloading
- Buffered Control Inputs
- All Inputs Have Hysteresis to Improve Noise Rejection
- High Speed - 8.0 ns (Typ)
- Three-State Logıc Confıguratıon
- Single +5 V Power Supply Requirement
- Compatible with 74S Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minımal Loading of the Bus


OCTAL THREE-STATE BUFFER/LATCH


## MC6882A, MC6882B, MC3482A, MC3482B

## PIN CONNECTIONS AND TRUTH TABLES




## Advance Information

## SYNCHRONOUS ADDRESS MULTIPLEXER

The SN74LS783/MC6883 brings together the MC6809E (MPU), the MC6847 (Color Video Display Generator) and dynamic RAM to form a highly effective, compact and cost effective computer and display system.

- MC6809E, MC6800, MC6801E, MC68000 and MC6847 (VDG) Compatible
- Transparent MPU/VDG/Refresh
- RAM size - 4K, 8K, 16K, 32K or 64K Bytes (Dynamic or Static)
- Addressing Range - 96K Bytes
- Single Crystal Provides All Timing
- Register Programmable:

VDG Addressing Modes
VDG Offset ( 0 to 64 K )
RAM Size
Page Switch
MPU Rate (Crystal $\div 16$ or $\div 8$ )
MPU Rate (Address Dependent or Independent)

- System "Device Selects" Decoded 'On Chip'
- Timing is Optimized for Standard Dynamic RAMs
- +5.0 V Only Operation
- Easy Synchronization of Multiple SAM Systems
- DMA Mode


This document contains information on a new product Specifications and information herein
are subject to change without notice.

## HEX THREE-STATE BUFFER INVERTERS

This series of devices combines three features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2 ) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows high-speed operation.

The devices differ in that the non-inverting MC8T95/MC6885 and inverting MC8T96/MC6886 provide a two-input Enable which controls all six buffers, while the non-inverting MC8T97/MC6887 and inverting MC8T98/MC6888 provide two Enable inputs - one controlling four buffers and the other controlling the remaining two buffers.

The units are well-suited for Address buffers on the M6800 or similar microprocessor application.

- High Speed - 8.0 ns (Typ)
- Three-State Logic Configuration
- Single $+5 \vee$ Power Supply Requirement
- Compatible with 74LS Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus



ORDERING INFORMATION
(Temperature Range for the following devices = 0 to $+75^{\circ} \mathrm{C}$ )

DEVICE	ALTERNATE	PACKAGE
MC8T95L	MC6885L	Coramic DIP
MC8T96L	MC6886L	Ceramic DIP
MC8T97L	MC6887L	Ceramic DIP
MC8T98L	MC6888L	Ceramic DIP
MC8T95P	MC6885P	Plastic DIP
MC8T96P	MC6886P	Plastic DIP
MC8T97P	MC6887P	Plastic DIP
MC8T98P	MC6888P	Plastic DIP



MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	8.0	Vdc
Input Voltage	$\mathrm{V}_{\mathrm{I}}$	5.5	Vdc
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature   Plastic Package   Ceramic Package	$\mathrm{T}_{\mathrm{J}}$		150
${ }^{\circ} \mathrm{C}$			

## QUAD THREE-STATE BUS TRANSCEIVER

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of $200 \mu \mathrm{~A}$ at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns . The MC8T28 is identical to the NE8T28 and it operates from a single +5 V supply.

- High Impedance Inputs
- Single Power Supply
- Hıgh Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor
- Non-Inverting



## NONINVERTING BUS TRANSCEIVER

## MONOLITHIC SCHOTTKY INTEGRATED CIRCUITS



## Advance Information

## MPU-BUS-COMPATIBLE 8-BIT D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8 bit ( $\pm 0.19 \%$ accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.
Available in both commercial and military temperature ranges, this monolithic converter contaıns master/slave registers to prevent transparency to data transitions during active enable; a lasertrımmed, low-TC, 2.5 V precision bandgap reference; and high stability, laser-trımmed, thin-film resistors for both reference input and output span and bipolar offset control.
A reset pin provides for overriding stored data and forcing lout to zero.

- Direct Data Bus Link with All Popular TTL Level MPU's
- $\pm 1 / 2$ LSB Nonlınearity Over Temperature
- Fast Settlıng Time 200 ns Typ
- Internal 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Minimum Enable Pulse Width 70 ns
- Fast Enable: 10 ns Maximum Data Hold Tıme
- Reset Pin to Override Data
- Output Voltage Ranges: $+5,+10,+20$, or $\pm 2.5, \pm 5, \pm 10$ Volts
- Low Power: 90 mW Typ
- +5 V and -5 V to -15 V Supplies


This document contains information on a new product Specifications and information herein are subject to change without notice


ORDERING INFORMATION

Device	Temperature Range	Package
MC6890L	$0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Ceramic DIP
MC6890AL	$-55^{\circ}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP

# 2840 C <br> $280^{\circ}$ CPU Central <br> Processing Unit 

## Product <br> Specification

## FEATURES

- The instruction set contains 158 instructions. The 78 instructions of the 8080A are included as a subset; 8080A software compatibility is maintained.
- Eight $\mathrm{MHz}, 6 \mathrm{MHz}, 4 \mathrm{MHz}$, and 2.5 MHz clocks for the $\mathrm{Z80H}, \mathrm{Z80B}, \mathrm{Z80A}$, and $Z 80 \mathrm{CPU}$ result in rapid instruction execution with consequent high data throughput.
- The extensive instruction set includes string, bit, byte, and word operations. Block searches and block transters, together with indexed and relative addressing, result in the most powerful data handling capabiities in the microcomputer industry.
- The Z80 microprocessors and associated family of peripheral controllers are linked by a vectored interrupt
system. This system may be daisy-chained to allow implementation of a priority interrupt scheme. Little, if any, additional logic is required for daisy-chaining.
n Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of system software through single-context switching, background-foreground programming, and single-level interrupt processing. In addition, two 16-bit index registers facilitate program processing of tables and arrays.
- There are three modes of high speed interrupt processing: 8080 similar, non-Z80 peripheral device, and Z80 Farmily peripheral with or without daisy chain.
- On-chip dynamic memory refresh counter.


Figure 1. PIn Functions


Figure 2a. 40-Pin Dual-In-Line Package (DIP) Pin Aseignments


Zilog 280 CPU registers.

## Z80 Microprocessor Instruction Set

INSTRUCTION		OBJECT CODE	BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { PERIODS } \end{aligned}$
ADC	data	CE yy	2	7
ADC	(HL)	8E	1	7
ADC	HL,rp	ED $01 \times \times 1010$	2	15
ADC	(IX + disp)	DD 8E vy	3	19
ADC	(IY , disp)	FD 8E YV	3	19
ADC	reg	10001xxx	1	4
ADD	data	C6 yy	2	7
ADD	(HI.)	86	1	7
ADD	HL., rp	$00 \times 1001$	1	11
ADD	(IX + disp)	DD 86 yy	3	19
ADD	IX,pp	DD 00xx 1001	2	15
ADD	(IY+disp)	FD 88 yy	3	19
ADD	M, rr	FD 00xx 1001	2	15
ADD	reg	10000xxx	1	4
AND	data	E6 y	2	7
AND	(HL)	A6	1	7
AND	(IX , disp)	DD A6 yy	3	19
AND	(IY I disp)	FD A6 yy	3	19
AND	reg	10100xxx	1	4
BIT	b, (HL).	$\begin{gathered} \text { CB } \\ \text { 01bbb110 } \end{gathered}$	2	12
BIT	$b,(I X+$ disp $)$	DD CB yy 01 bbb 110	4	20
BIT	$b,(I Y+$ disp $)$	FD CB $w$ $01 b b b 110$	4	20
BIT	b,reg	$\begin{gathered} \text { CB } \\ \text { 01bbbxxx } \end{gathered}$	2	9
C.All	Intion	c.o mum	3	17
CALI	C,latiel	DC भハы	3	10/11
CALL	M, label	FC $\mu \mathrm{pqq}$	3	10/17
CALI	NC, label	D4 ppqq	3	10/17
CAIL	NZ.labol	C.4 prac	3	10/17
CALL	P, label	F4 ppoqu	3	10/17
CALL	PE,label	EC ppqq	3	10/17
CALL	PO,label	E4 ppqq	3	10/17
CAIL	Z,label	CC ppqq	3	10/17
CCF		3F	1	4
CP	data	FE $w$	2	7
CP	(HL)	BE	1	7
CP	(IX + disp)	DD BE yy	3	19
CP	(IY + disp)	FD BE yy	3	19
CP	reg	10111xxx	1	4
CPD		ED A9	2	16
CPDR		ED B9	2	21/16*
CPI		ED A1	2	16
CPIR		ED $\mathrm{B}_{1}$	2	21/16*
CPL		2 F	1	4
DAA		27	1	4
DEC	(HL)	35	1	11
DEC	IX	DD 28	2	10
DEC	(IX + disp)	DD 35 yy	3	23
DEC	IY	FD 2B	2	10
DEC	(IY , disp)	FD 35 yy	3	23
DEC	rp	$00 \times 1011$	1	6
DEC	reg	$00 \times \times 101$	1	4
DI		F3	1	4
DJNZ	disp	10 yy	2	8/13
EI		FB	1	4
EX	AF,AF	08	1	4
EX	DE,HL	EB	1	4
EX	(SP), HL	E3	1	19
EX	(SP), IX	DD E3	2	23


INSTRUCTION		OBJECT CODE	BYTES	$\begin{aligned} & \text { CLOCK } \\ & \text { PERIOOS } \end{aligned}$
EX	(SP),IY	FD E3	2	23
EXX		D9	1	4
HALT		76	1	4
IM	0	ED 46	2	8
IPM	1	ED 56	2	8
IM	2	ED 5E	2	8
IN	A.port	DB w	2	10
IN	reg.(C)	$\begin{gathered} \text { ED } \\ 01 \mathrm{ddd} 000 \end{gathered}$	2	11
INC	(HL)	34	1	11
INC	IX	DD 23	2	10
INC	(IX + disp)	DD 34 w	3	23
INC	IY	FD 23	2	10
INC	(IY + disp)	FD 34 yy	3	23
INC	rp	$00 \times x 0011$	1	6
INC	reg	$00 \times 0 \times 100$	1	4
IND		ED AA	2	15
INDR		ED BA	2	20/15
INI		ED A2	2	15
INIR		ED B2	2	20/15
JP	Label	C3 ppqq	3	10
JP	C,label	DA ppqq	3	10
JP	(HL)	E9	1	4
JP	(IX)	DD E9	2	8
$J P$.	(iY)	FD E9	2	8
JP	M, label	FA ppqq	3	10
JP	NC,label	D2 ppqq	3	10
JP	NZ, label	C2 ppaq	3	10
JP	P'Intol	F2 brom	3	10
JP	PE,label	EA ppqq	3	10
JP	PO,label	E2 ppqq	3	10
JP	Z.label	CA ppqa	3	10
JR	C,disp	38 yy	2	7/12
JR	disp	18 yy	2	12
JR	NC, disp	30 w	2	$7 / 12$
JR	NZ, disp	20 w	2	7/12
JR	Z,disp	28 yv	2	7/12
LD	A,(addr)	3A ppqq	3	13
LD	A, (BC)	OA	1	7
LD	A, (DE)	1A	1	7
LD	A, I	ED 57	2	9
LD	A,R	ED 5F	2	9
LD	(addr), A	32 ppuq	3	13
LD	(addr), BC	ED 43 ppqq	4	20
LD	(addr),DE	ED 53 ppqq	4	20
LD	(addr), HL	22 ppqq	3	16
LD	(addr), IX	DD 22 ppqq	4	20
LD	(addr), IY	FD 22 ppqq	4	20
II)	( madi).SP		4	20
LD	(BC), A	02	1	7
LD	(DE), A	12	1	7
LD	HL,(addr)	2A ppqq	3	16
LD	(HL) , data	-36 \%	2	10
LD	(HL),reg	01110sss	1	7
LD	I,A	ED 47	2	9
LD	IX,(addr)	DD 2A ppqq	4	20
LD	IX, data 16	DD 21 yyyy	4	14
LD	(IX+disp), data	DD 36 wy w	4	19
LD	( $1 \mathrm{X}+$ disp), reg	DD 01110sss	3	19
LD	IY,(addr)	FD 2A ppqq	4	20
LD	IY,data 16	FD 21 mm	4	14


INSTRUCTION		OB.JECT CODE	BYTES	CLOCK PERIODS
LD	( $1 Y+$ disp), data	FD 36 yyy	4	19
LD	(IY + disp).reg	FD 01110 sss	3	19
LD	R,A	yY ${ }_{\text {ED }}$	2	9
LD	reg,data	00dddito	2	7
LD	reg.(HL)	vy 01 ddd 110	1	7
LD	reg, (IX + disp)	$\begin{gathered} \text { DD } \\ \text { 01ddd110 } \end{gathered}$	3	19
LD	reg.(IY + disp)	$\begin{gathered} W \\ \text { FD } \\ \text { 01addi } 10 \end{gathered}$	3	19
LD	reg,reg	$\begin{gathered} y y \\ \text { 01adass } \end{gathered}$	1	4
LD	rp,(addr)	ED 01xx 1011 ppqa	4	20
LD	rp,data16	$00 \times 00001$	3	10
LD	SP.HL	FYy	1	6
LD	SP.IX	DD F9	2	10
LD	SP.IY	FD F9	2	10
LDD		ED A8	2	16
LDDR		ED 88	2	21/16*
LDI		ED A0	2	16
LDIR		ED Bo	2	21/16*
NEG		ED 44	2	8
NUP		00 *	1	4
OR	data	F6 w	2	7
OR	(HL)	BS	1	7
OR	( $\mathrm{X}+$ disp)	DD 86 yy	3	19
OR	(IY+disp)	FD 86 m	3	19
OR	reg	10110xxx	1	4
OTDR		ED E8	2	20/15*
OTIR		ED 63	2	20/15*
OUT	(c),reg	ED 0isssu01	2	12
OUT	port.A	D3 yy	2	11
OUTD		ED AB	2	15
OUTI		ED A3	2	15
POP	IX	DU E1	2	14
POP	IY	FD E1	2	14
POF	pr	$11 \times x 0001$	1	10
PUSH	IX	DO E5	2	15
PUSH	IY	FD E5	2	15
PUSH	pr	11×x0101	1	11
RES	b, (HL)	$\begin{gathered} \text { CB } \\ \text { 10bob110 } \end{gathered}$	2	15
RES	b, (lx + disp)	OU C8 w   10bbbilo	4	23
RES	b, (IY + disp)	FD CB yy   10bbbilo	4	23
RES	b,reg	$\mathrm{CB}$   10bbbxxx	2	8
RET		C9	1	10
RET	C	D8	i	5/11
RET	M	F8.	1	5/11
RET	NC	D0	1	5/11
RET	NZ	C0	1	5/11
RET	P	FO	1	5/11
RET	PE	E8	1	5/11
RET	PO	$E 0$	1	5/11
RET	Z	C8	1	5/11
RETI		ED 4D	2	14

* Execution time shown is for one iteration.

INSTRUCTION		OBJECT CODE	BYTES	$\begin{aligned} & \text { CLOCN } \\ & \text { PERIODS } \end{aligned}$
RETN		ED 45	2	14
RL	(HL)	CB 16	2	15
RL	(IX, disp)	DD CB y 16	4	23
RL	(IY + disp)	FD CB yy 16	4	23
RL	reg	$\begin{gathered} C B \\ 00010 \times \times \times \end{gathered}$	2	8
RLA		17	1	4
RLC	(HL)	CB 06	2	15
RLC	( X + disp)	DD CB w 06	4	23
RLC	(IY + disp)	FD CBy 06	4	23
RLC	reg	$\begin{gathered} \text { CB } \\ 00000 \times \times x \end{gathered}$	2	8
RLCA		07	1	4
HLD		ED 6 F	2	18
RR	(HL)	CB 1 E	2	15
RR	(IX \| disp)	DD CB W IE	4	23
RR	(iY + disp)	FD Ce yy 1E	4	23
RR	reg	$\begin{gathered} C B \\ 00011 \times \times x \end{gathered}$	2	8
RHA		$1 F$	1	4
RRC.	(HL)	CB OE	2	15
RHC.	(IX + (issp)	DU CE yy Of	4	23
AHC	(iY + disp)	FD CB yy OE	4	23
RRC	reg	$\begin{gathered} C B \\ 0000 i_{\times \times \times} \end{gathered}$	2	8
RRCA		OF	1	4
RRD		ED 67	2	18
RST	ก	$11 \mathrm{xxxl11}$	1	11
SBC	data	DE yy	2	7
SBC	(HL)	9E	1	7
SBC	HL,rp	ED 01xx0010	2	15
SBC	(IX+ disp)	DD 9E my	3	19
SBC	( $\mathrm{Y}+\mathrm{disp}$ )	FD 9E VV	3	19
SBC	reg	10011 xxx	1	4
SCF		37	1	4
SET	b.(HL)	$\begin{gathered} \text { CB } \\ 11 \mathrm{bbb} 110 \end{gathered}$	2	15
SET	b, ( $X+$ disp)	DD CB yy   11 bbb 110	4	23
SET ${ }_{\text {a }}$	b, (iY + disp)	FD CB $w$ 11 bbbl10	4	23
SET	b,reg	$\begin{gathered} \text { CB } \\ \text { 11bbbxox } \end{gathered}$	2	8
SLA	(HL)	CB 26	2	15
SLA	(IX + disp)	DD CB w 26	4	23
SLA	(IV+disp)	FD CB w 26	4	23
SLA	reg	CB 00100xxx	2	8
SRA	(HL)	CB 2E	$=$	15
SRA	(IX + disp)	DD CB $w 2 E$	4	23
SRA	(IY+disp)	FD CB $w$ 2E	4	23
SRA	reg	CB 00101xoxx	2	8
SRL	(HiL)	CB 3E	2	15
SRL.	(IX + aisp)	DD CB y 3E	4	23
SRL	(IY + disp)	FD CE w 3E	4	23
SRL	reg	CB 00111xxx	2	8
SUB	data	D6 y	2	7
SUB	(HL)	96	1	7
SUB	(IX + disp)	DD 96 m	3	19
SUB	(IY + disp)	FD 96 yy	3	19
SUB	reg	10010x00x	1	4
XOR	data	EE Y	2	7
XOR	(HL)	AE	1	7
XOR	(IX + disp)	DD AE $\%$	3	19
XOR	( $1 Y+$ disp)	FD AE W	3	19
XOR	reg	10101xxx	1	4



When two possible execution times are shown (i.e., 5/11). it indicates that the number pfock periods depends on condition flags.

# $28410280^{\circledR}$ DMA Direct Memory Access Controller 

## Product <br> Specification

April 1985

## FEATURES

- Transters, searches, and search/transters in Byte-at-aTime, Burst, or Continuous modes. Cycle length and edge timing can be programmed to match the speed of any port.
- Dual port adaresses (source and destination) generated for memory-to-I/O, memory-to-mernory, or I/O-to-I/O operations. Adaresses may be fixed or automatically incremented/aecremented.
- Next-operation loaaing without disturbing current operations via buftered starting-aadress registers. An entire previous sequence can oe repeated automatically.
- Extensive programmability of functions. CPU can read complete channel status.
- Standard Z80 Family bus-request and prioritzed interrupt-request daisy chains implemented without external logic. Sopnisticated, internally modifiable interrupt vectoring.
- Direct intertacing to system buses without external logic.


## GENERAL DESCRIPTION

The $\mathbf{Z 8 0}$ DMA (Direct Mernory Access) is a powertul and versatile device for controling and processing transters of data. Its basic function of managing CPU-independent


Figure 1. Pin Functions
transters belween two ports is augmented by an array of teatures that oprimize transier speed and control with little or no externai logic in systems using an 8 - or 16 -bit data bus and a 16-bit aadress bus.


Figure 2. 40-pin Dual-In-Line Package (DIP), Pin Assignments

# $28420280^{\circledR}$ P10 Parallel Input/Output Controller 

## Product <br> Specification

April 1985

## FEATURES

- Provides a direct interface between Z 80 microcomputer systems and peripheral devices.
- Two ports with interrupt-driven handshake for fast response.
- Four programmable operating modes: Output, Input, Bidirectional (Port A only), and Bit Control
- Programmable interrupts on peripheral status conditions.
- Standard Z80 Family bus-request and prioritizec interrupt-request daisy chains implemented withou external logic.
- The eight Port B outputs can drive Darlington transistors ( 1.5 mA at 1.5 V ).


## GENERAL DESCRIPTION

The Z80 PIO Parallel I/O Circuit is a programmable, dual-port device that provides a TTL-compatible interface between peripheral devices and the Z80 CPU (Figures 1 and 2). The CPU configures the Z80 PIO to interface with a

Flgure 1. Pin Functions

wide range of peripheral devices with no other externe logic. Typical peripheral devices that are compatible with th Z80 PIO include most keyboards, paper tape readers an punches, printers, and PROM programmers.


Figure 2a. 40-pin Duab-In-Line Package (DIP), Pin Acelgnments

## Product <br> Specification

April 1985

## FEATURES

- Four independently programmabie counter/timer channels, each with a readable downcounter and a selectable 16 or 256 prescaler. Downcounters are reloaded automatıcally at zero count.
- Selectable positive or negative trigger initiates timer operation.
- Three channels have Zero Count/Timeout outputs capable of drivıng Darington transistors.
- Interfaces directly to the 280 CPU or-for baud rate generation-to the Z80 SIO.
- Standard Z80 Family daisy-chain interrupt structure provides fully vectored, prioritized interrupts without external logic. The CTC may also be used as an interrupt controller.


## GENERAL DESCRIPTION

The 280 CTC four-channel counter/timer can ${ }^{\text {b }}$ be programmed by system software for a broad range of counting and timing applications. The four independently programmable channels of the Z80 CTC satisfy common microcomputer system requirements for event counting. interrupt and interval timing, and general clock rate generation.

System design is simplified because the CTC connects directily to both the Z80 CPU and the Z80 SIO with no additional logic. In larger systems, address decoders and buffers may be required.
Programming the CTC is straightforward: each channel is programmed with two bytes; a third is necessary when


Figure 1: Pin Functions


Figure 2a. 40-pin Dual-In-Line Package (DIP), Pin Assignments
2041.001. 002

# 28440/1/2/4 280® ${ }^{10}$ Serial Input/Output Controller 

## Product Specification

April 1985

## FEATURES

- Two independent full-duplex channels, with separate control and status lines for modems or other devices.
- Data rates of 0 to 500 K bits/second in the $\times 1$ clock mode with a 2.5 MHz clock ( Z 8 SIO ), or 0 to 800 K bits/second with a 4.0 MHz clock (Z80A SIO).
- Asynchronous protocols: everything necessary for complete messages in $5,6,7$, or 8 bits/character. Includes variable stop bits and several clock-rate multipliers; break generation and detection; parity; overrun and framing error detection.
- Synchronous protocols: everything necessary for complete bit- or byte-oriented messages in $5,6,7$, or 8 bits/character, incluaing IBM Bisync, SDLC, HDLC, CCITT-X. 25 and others. Automatic CRC generation/ checking, sync character and zero insertion/deletion, abort generation/detection, and flag insertion.
- Receiver data registers quadruply buffered, transmitter registers doubly buffered.
- Highly sophisticated and flexible daisy-chain interrupt vectoring for interrupts without external logic.


## GENERAL DESCRIPTION

The Z80 SIO Serial Input/Output Controller is a dual-channel data communication interface with extraordinary versatility and capability. Its basic functions as a serial-to-parallel, parallel-to-serial converter/controller can be programmed by a CPU for a broad range of serial communication applications.
The device supports all common asynctronous and synchronous protocols, byte- or bit-oriented, and performs all of the functions traditionally done by UARTs, USARTs, and synchronous communication controllers combined, plus additional functions traditionally performed by the CPU. Moreover, it does this on two fully-independent channels,
with an exceptionally sophisticated interrupt structure that allows very fast transfers.

Full interlacing is provided for CPU or DMA control. In addition to data communication, the circuit can handle virtually all types of serial I/O with fast, or slow, peripheral devices. While designed primarily as a member of the Z80 family, its versatility makes it well suited to many other CPUs.

The Z80 SIO is an n-channel silicon-gate depletion-load device packaged in a 40-pin plastic or ceramic DIP. It uses a single +5 V power supply and the standard Z 80 family single-phase clock. The Z8444 is packaged in a 44 -pin ceramic LCC.

## PIN DESCRIPTION

Figures 1 through 6 illustrate the three 40 -pin configurations (bonding options) available in the SIO. The constraints of a 40-pin package make it impossible to bring out the Receive Clock ( $\overline{\mathrm{RxC}}$ ), Transmit Clock ( $\overline{\mathrm{TxC}}$ ), Data Terminal Ready (DTR) and Sync ( $\overline{\mathrm{SYNC}}$ ) signals for both channels. Therefore, either Channel B lacks a signal or two signals are bonded together:

- 280 SIO/2 lacks $\overline{\text { STNCB }}$
- Z80 SIO/1 lacks $\overline{\text { DTRB }}$
- Z80 SIO/0 has all four signals, but $\overline{\mathrm{TxCB}}$ and $\overline{\mathrm{RxCB}}$ are bonded together

The 44-pin package, the $\mathrm{Z} 80 \mathrm{SIO} / 4$, has all options (Figure 7).

The first bonding option above ( $\mathrm{SIO} / 2$ ) is the preferred version for most applications. The pin descriptions are as follows:
B/Ā. Channel A or B Select (input, High selects Channel B). This input defines which channel is accessed during a data transier between the CPU and the SIO. Address bit A from the CPU is often used for the selection function.
$\mathbf{C / D}$. Control or Data Select (input, High selects Control). This input defines the type of information transfer performed

# 28470 280 ${ }^{\text {® }}$ DART <br> Dual Asynchronous Receiver/Transmitter 

## Product <br> Specification

April 1985

## FEATURES

- Two independent full-duplex channels with separate modem controls. Modem status can be monitored.
- In $\times 1$ clock mode, data rates are 0 to 500 K bits/second with a 2.5 MHz clock, or 0 to 800 K bits $/$ second with a 4.0 MHz clock.
- Receiver data registers are quadruply buffered; the transmitter is doubly buffered.
- Programmable options include $1,11 / 2$, or 2 stop bits; even, odd, or no parity; and $\times 1, \times 16, \times 32$, and $\times 64$ clock modes.


## GENERAL DESCRIPTION

The Z80 DART (Dual-Channel Asynchronous Receiver/ Transmitter) is a dual-channel multifunction peripheral component that satisfies a wide variety of asynchronous serial data communications requirements in microcomputer systems. The Z80 DART is used as a serial-to-parallel,
parallel-to-serial converter/controller in asynchronous applications. In addition, the device also provides modem controls for both channels. In applications where modem controls are not needed, these lines can be used for general-purpose $I / O$.


Figure 1. Pin Functions


Figure 2. 40-Pin Dual-In-Line Package (DIP), Pin Assignments

## 6502 Microprocessor Instruction Set

## 1 ALPHABETICAL ORDER

ADC	Add with carry	JSR	Jump to subroutine
AND	Logical AND	LDA	Load accumulator
ASL	Arithmetic shift left	LDX	Load X
BCC	Branch if carry clear	LDY	Load Y
BCS	Branch if carry set	LSR	Logical shift right
BEQ	Branch if result = 0	NOP	No operation
BIT	Test bit	ORA	Logical OR
BMI	Branch if minus	PHA	Push A
BNE	Branch if not equal to 0	PHP	Push P status
BPL	Branch if plus	PLA	Pull A
BRK	Break	PLP	Pull P status
BVC	Branch if overflow ciear	ROL	Rotate left
BVS	Branch if overflow set	ROR	Rotate right
CLC	Clear carry	RTI	Return from interrupt
CLD	Clear decimal flag	RTS	Return from subroutine
CLI	Clear interrupt disable	SBC	Subtract with carry
CLV	Clear overflow	SEC	Set carry
CMP	Compare to accumulator	SED	Set decimal
CPX	Compare to X	SEI	Set interrupt disable
CPY	Compare to Y	STA	Store accumulator
DEC	Decrement memory	STX	Store X
DEX	Decrement X	STY	Store Y
DEY	Decrement Y	TAX	Transfer A to X
EOR	Exclusive OR	TAY	Transfer A to Y
INC	Increment memory	TSX	Transfer SP to X
INX	Increment X	TXA	Transfer X to A
INY	Increment Y	TXS	Transfer X to SP
JMP	Jump	TYA	Transfer Y to A

( $\mathrm{n}=$ number of clock cycles

(1) Add 1 to $n$ II crossing pege boundery $\quad$ (2) Add 2 to $n$ if branch within page; Add 3 to $n$ if branch within another page

N.C. = NOT CONNECTED

## R6500 Microcomputer System DATA SHEET

## VERSATILE INTERFACE ADAPTER (VIA)

## SYSTEM ABSTRACT

The 8 bit R6500 microcomputer system is produced with $N$. channel, silicon-gate, depletion-load technology. its performance speeds are enhanced by advanced system architecture. Its innovative architecture results in smaller chips .- the semi. conductor threshoid to costeffectivity. System cosi-effectivity is further enhanced by providing a fainily of 10 sofiware-compatible microprocessor (CPU) devices, memory and I/O devices. as well as low cost design aids and documentation.

## DESCRIPTION

The R6522 VIA adds two powerful, flexible Interval Timers, a serial-to-paraliel/parallel-to-serial shift register and input latching on the peripheral ports to the capabilities of the R6520 Peripheral Interface Adapter (P|A) device. Handshaking capability is expanded to allow control of bidirectional data iransfers between VIAs in multiple processor systems and between perioherals.

Control of peripherals is primarily through two 8-bit bidirectional ports. Each of these ports can be programmed to act as an input or an output Peripheral $1 / O$ lines can be selectively controlled by the Interval Timers to generate programmable-frequency square waves and/or to count externally generated pulses. Positive control of VIA functions is gained through its internal register organization; Interrupt Flag Reqister. Interrupt Enable Register, and two Function Control Registers

Ordering Information

Order Number	Package Type	Frequency	Temperature Rance
R6522P	Plastic	1 MHz	$0{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
R6522ap	Plastic	2 MHz	$0^{\circ} \mathrm{C}$ to $+700^{\circ} \mathrm{C}$
R6522C	Ceramic	1 MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R6522AC	Ceramic	2. MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R6522PE	Plastic	1 MHz	$40^{\circ} \mathrm{C}$ to $+855^{\circ} \mathrm{C}$
R6522APE	Plastic	2 MHz	$40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
R6522CE	Ceramic	1 MHz	-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
R6522ACE	Ceramic	2 MHz	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
R6522CMT	Ceram:c	1 MHz	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$



Basic R6522 Interface Diagram

## FEATURES

- Organized for simplified software control of many functions
- Compatible with the R650X and R651X family of microprocessors (CPUs)
- Bi-directional. 8-bit data bus for communication with micro processor
- Two Bi-directional, 8-bit input/output ports for interface with peripheral devices
- CMOS and TTL compatible input/output peripheral ports
- Data Direction Registers allow each perigheral pin to act as either an input or an output
- Interrupt Flag Register allows the microprocessor to readily determine the source of an interrupt and provides convenient control of the interrupts within the chip
- Handshake control logic for input/output peripheral data transfer operations
- Data latching on peripheral input/output ports
- Two fully programmable interval timers/counters
- Eight-bit Shift Register for serial interface
- Fortv-pin plastic or ceramic DIP package.


Pin Configuration

## OPERATION SUMMARY

## Register Select Lines (RSO, RS1, RS2. RS3)

The four Register select lines are ncrmally connected to the processor address bus lines to allow the processor to select the internal R6522 register which is to be accessed The sixteen possible combinations access the registers as follows:

RS3	RS2	RS1	RSO	Register	Remarks	As3	RS2	RS1	RSO	Register	Remertas
L	L	$L$	L.	ORB		H	L	L	L	12L.L	Write Latch
L	L	L	H	ORA	Controls Handshake					72C.L	Read Counter
L	L	H	L	DDRB		H	$L$	$L$	H	T2C.H	Triggers T2L-L/T2C-L
L	L	,	$L$	DOAB							Transfer
L	$L$	H	H	DDRA			L	H		SR	
						H	$L$	H		SR	
L	H	1.	$L$	TILL	Write Latch	H	$L$	H	H	ACR	
				T1C.L	Read Counter	H	H	L	$L$	PGR	
$L$	H	$L$	H	T1C.H	Trigger TIL-L/TIC.L Transler	H	H	L	H	IFR	
$L$	H	H	$L$	TIL.L		4	H	H	$L$	IER	
$L$	H	H	H	TIL.H		H	H	H	H	ORA	No Effect on Handshake

Note $\mathrm{L}=04 \mathrm{~V}$ DC, $\mathrm{H}=2.4 \mathrm{~V}$ DC.

Timer 2 Control

RS3	RS2	RS1	RSO	R/W = L	R/W = H
$H$	$L$	$L$	$L$	Write T2L-L	Read T2C-L   Clear Interrupt flag
H Read T2C.H					

## Writing the Timer 1 Register

The operat ons which take place when writing to each of the four $T 1$ addresses are as follows:

RS3	RS2	RS1	RSO	Operation ( $\mathrm{R} / \mathrm{N}=\mathrm{L}$ )
L	H	L	1	Write into low order latch
				Write into high order latch
L	H	L	H	Write into high order counter
		$L$	H	Transfer low order latch into low order counter Reset T1 interrupt flag
1	H	H	$L$	Write low order latch
$x$	H	H	H	Write high order latch Reset TI interrupt flag

## Reading the Timer 1 Registers

For reading the $T$ inner 1 registers, the four addresses relate directly to the four registers as follows:

RS3	RS2	RS1	RSO	Operation (R/W= $\mathbf{H}$ )
L	H	L	L	Read TI low order counter Reset T1 interrupt flag
L	H	L	H	Read 11 high örder counter
$L$	H	H	$L$	Read 11 low order lateh
L	H	H	H	Read T1 high order latch

## R6500 Microcomputer System DATA SHEET

## CRT CONTROLLER (CRTC)

## DESCRIPTION

The R8545-1 CAT Controlver (CRTC) is deeigned to intertace en 8-bit microprocessor to CRT raster scen video dieplays. and adds an advanced CRT controlter to the established and expanding line of R6500 products.

The R6545-1 provides refresh memory addreseses and charecter generator row addreeses which allow up to 10K cheracters with 32 scan tines per character to be addreesed. A major advantage of the R6545-1 is that the refreeh memory may be addressed in either straight binary or by row/cokumn.

Other functions in the R6545-1 include an internal cursor regbeter which generates a cursor output when its comtents are equal to the current refresh address. Programmable cursor start and end registors allow a cursor of up to the full character scan in height to be placed on any scen lines of the charscter. Variable cursor display blink rates are provided. A light pen strobe input allows caplure of the current refresh address in an intemal light pen register. The refreeh address lines are configured to provide direct dynamic memory refresh.

All timing for the video refresh memory aignals in dertved from the character clock input. Shill regiever, latch, end mut Uliplex control signals (when needed) are provided by extemal high-epeed timing. The mode control regleter allows noninterteced video display modes al 50 or 00 Hz relreeth rate. The internal stanus regieter may be used to moritor the Resas-1 operation. The RES mput allows the CRTC-gencrated fiedd rate to be dynamically-synchronized with line froquency inter.

## FEATURES

- Competible with 8 -bit microprocessors
- Up to 2.5 MHz character clock operation
- Retresh RAM may be confligured in row/column or strigigh binary addressing
- Alphanumeric and limned graphics capabilly
- Up and down scrolling by pege. line, or character
- Programmablo Vertical Sync Width
- Fully programmable display (rows, columna, charactor matrix)
- Non-interteced scan
- $50 / 60 \mathrm{~Hz}$ operation
- Fully programmuble cursor
- Light pen register
- Addresees refresh RAM to 16 K charscters
- No extemal DMA required
- Internal status register
- 40-Pin ceramic or plastic DIP
- Pin-compratiole with MC68a5
- Single +5 $\pm 5 \%$ Voli Power Supply


Resas-1 Pin Confliguration

## INTERFACE SIGNAL DESCRIPTION

## CPU INTERFACE

## 12 (Phase 2 Clock)

The input clock is the system Phase 2 ( 2 ) clock and is used to trigger all data transfers between the system processor (CPU) and the R6545-1. Since there is no maximum limit to the allowable $\$ 2$ clock time, it is not necessary for it to be a continuous clock. This capability permits the R6545-1 to be easily interfaced to non-6500 compatible microprocessors.

## R/W (Read/Writo)

The R/W input signal generated by the processor is used to control the direction of data transfers. A high on the R/W pin allows the processor to read the data supplied by the R6545-1, a low on the R/W pin allows data on data lines DO-D7 to be written into the R6545-1.

## CS (Chip Solect)

The Chip Select input is normally connected to the processor address bus either directly or through a decoder. The R6545-1 is selected when CS is low.

## Rs (Register Select)

The Register Select input is used to access internal registers. A low on this pin permits writes ( $R / \mathbf{W}=l \mathbf{W}$ ) into the Address Register and reads (R/W = high) from the Status Register. The contents of the Address Register is the identity of the register accessed when RS is high.

## Do-D7 (Data Bus)

00-D7 are the eight data lines used to transfer data between the processor and the R6545-1. These lines are bidirectional and are normally high-impedance except during read cycles whien the chip is selected (CS $=$ low).

## VIDEO INTERFACE

## HSYNC (Horizontal Sync)

The HSYNC signal is an active-high output used to determine the horizontal position of displayed text. It may drive a CRT monitor directly or may be used for composite video generation. HSYNC time position and width are fully programmable.

## VSYNC (Vertical Sync)

The VSYNC signal is an active high output used to determine the vertical position of displayed text. Like HSYNC. VSYNC may be used to drive a CRT monitor or composite video generation carcuits. VSYNC time position and width are both programmable.

## Display enable (Display Enable)

The DISPLAY ENABLE signal is an active-high output used to indicate when the R6545-1 is generating active display information. The number of horizontal display characters per row and the number of vertical display rows are both fully programmable and together are used to generate the DISPLAY ENABLE signd. DISPLAY ENABLE can be delayed one character time by eating bit 4 of R8 equal to 1.

## CURSOR (Curser Coincidence)

The CURSOR signal is an active-high output used to indicate when the scan coincides with the programmed cursor position. The cursor position may be programmed to be any character in the address field. Furthermore, within the character, the cursor may be programmed, to be any block of scan lines, since the start scan line and the end scan line are both programmable. The cursor position may be delayed by one character time by setting Bit 5 of R8 to A " 1 ".

## LPEN (Light Pen Strobe)

The LPEN signal is an edge-sensitive input used to load the internal Light Pen Register with the contents of the Refresh Scan Counter at the time the active edge occurs. The active edge of LPEN is the low-to-high transition.

## CCLK (Clock)

The CCLK signal is the character timing clock input and is used as the time base for all intemal count/control functions.

## Rlas

The RES signal is an active-low input used to initialize alr internal scan counter circuits. When RES is low, all internal counters are stopped and cleared, all scan and video outputs are low, and control registers are unaffected. FES must stay low for at least one CCLK period. All scan timing is initiated when RES goes high. In this way, RES can be used to synchronize display frame timing with line frequency. RiES may also be used to synchronize multiple CRTC's in horizontal and/or vertical split screen operation.

## REFRESH RAM AND CHARACTER ROM INTERFACE

## MAO-MA13 (Refrech RAM Addrees Unes)

These 14 signals are active-high outputs used to address the Refresh RAM for character storage and display operations. The starting scan address is fully programmable and the ending scan address is determined by tie total number of characters displayed, which is also programmable, in termis of characters/ line and lines/frame.

There are two selectable address modes for MAO-MA13:
In the straight binary mode (RB, Mode Controf, bit $2=" 0 "$ ). characters are stored in successive memory locations. Thus, the software must be designed such that row and cotumn character coordinates are translated into sequentially-numbered addresses. In the row/column mode (R8, Mode Control, bit $2=$ "1"), MAO-MA7 become column addresses CC0-CC7 and MAQMA13 become row addresses CR0-CR5. In this case, the software can manipulate cheracters in terms of row and column 10 cations, but additional addrese compression circuits are needed to convert the CCO-CC7 and CRO-CR5 addresses into a men-ory-efficient binary address scheme.

## RAO-RA4 (Raster Addrees Lines)

These 5 signals are active-high outputs used to select each rester scan within an individual character row. The number of raster scan lines is programmable and determines the character height, including spaces between character rows.


R6551 Bluck Diagram

## Transmitter/Receiver

Bits 0.3 of the Control Register select the divisor used to generate the baud rate for the Transmitter. If the Receiver clock is to use the same baud rate as the Transmitter, then R×C becomes an output pin and can be used to slave other circuits to the R6551.


Transmitter/Receiver Clock Circuits

## Transmit and Receive Data Registers

These registers are used as temporary data storage for the 6551 Transmit and Receive circuits. The Transmit Data Register is characterized as follows:

- Bit 0 is the leading bit to be transmitted.
- Unused data bits are the high-order bits and are "don't care" for transmission.

The Receive Data Register is characterized in a similar fashion:

- Bit $\mathbf{O}$ is the leading bit received.
- Unused data bits are the high-order bits and are " 0 " for the receiver.
- Parity bits are not conteined in the Receive Data Register, but are stripped-off after being used for external parity checking. Parity and all unused high-order bits are "0"


## Control Register

The Control Register selects the desired baud rate, frequency source, word length, and the number of stop bits.



R6551 Control Register

## Command Register

The Command Register controls specific modes and functions.


R6551 Command Register

## R6500 Microcomputer System DATA SHEET

## Asynchronous Communication Interface Adapter（ACIA）

The R6551 Asynchronous Communication Interface Adapter （ACIA）provides a program－controlled interface between 8－bit microprocessor－based svstems and serial communication date sets and modems

W：An its on－chip baud rate generator，the R6551 is capable of transmitting at 15 different program－selectable rates between 50 boud and 19.200 baud，and receiving ot either the transmit rate or at 16 times an external clock rate．The R6551 has pro grammable word lengths of 5，6，7，or 8 bits；even，odd or no parity：1．1－1／2 or 2 stop bits．

With the R6551．a crystal is the only required external support component－eliminating the multiplecomponent support that is typically needed

In addition，the R6551 is designed for maximum programmed control from the CPU，$t 0$ simplify hardware implementation．A control register and a separate commend register permit the CPU to easily select the R6551＇s operating modes and check data， perameters and status．

Ordering Information				
Order Number	Package Type	Frequency		Temperatues Ranes
R6551P	Plastuc	1 MHz		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R6551AP	Plastic	2 MHz		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
R6551C	Ceramic	1 MHz		$0^{\circ} \mathrm{C}$＋0 $+70^{\circ} \mathrm{C}$
R6551AC	Ceramic	2 MHz		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	vss ${ }^{-1}$	28	P AN	
	cso ${ }^{2}$	27	2d2	
	C51－3	28	SİQ	
	HES E4	25	P07	
	AxC $\square^{5}$	24	己06	
	如し家	23	P05	
	$\times$ TLOS 7	22	P04	
	ETS $\square^{8}$	21	D3	
	CTS ${ }^{\text {c }}$	20	Po2	
	T×0 ${ }^{10}$	19	D01	
	OTA 든	18	Doo	
	AxD［12	17	PDSA	
	Aso Eis	16	DరC0	
	nsi 14	15	Pvcc	

## FEATURES

－Compatible with 8－bit microprocessors
－Full duplex or half duplex operation with buffered receiver and transmitter
－ 15 programmable Baud Rates（50 to 19，200）
－Receiver data rate may be identical to baud rate or may be 16 times the external clock input
－Data set／modem contiol functions
－Programmable word lengths，number of stop bits，and parity bit generstion and detection
－Programmable interrupt control
－Software reset
－Program－selectable serial echo mode
－Two chip selects
－ 2 MHz or 1 MHz clock rate
－Single $+5 \mathrm{~V} \pm 5 \%$ power supply
－28－pin plastic or ceramic DIP
－Full TTL compatibility


## CDP1802A, CDP1802AC



## CMOS 8-Blt Microprocessor

## Featuree:

- Minimum instruction fetcn-execute t/me of $5 \mu \mathrm{~s}$ or $7.5 \mu \mathrm{~s}$ at $V_{D D}=5 \mathrm{~V}: 2.5 \mu \mathrm{~s}$ or $3.75 \mu \mathrm{~s}$ at $V_{D D}=10 \mathrm{~V}$
- Any combination of standard RAM and ROM up to 65,536 bytos
- Operates with slow memories, up to $1 \mu$ access time at $\mathrm{f} C \mathrm{~L}=4 \mathrm{MHz}$
- 8-bit parallel orgenization with bidirectional data Dus and multiplexed addross bus
- $16 \times 16$ matrix of registers for use as multiple program counters, data pointers, or data registors
- On-chip DMA, interrupt, ana flag inputs
- Programrabie singlo-bit output port
- 91 easy-to-use instructions

The RCA-CDP1802A LSI CMOS 8-bit register-oriented central-processing unit (CPU) is designed for use as a generai-purpose computing or control eiement in a wide range of stored-program systems or products.
The CDP1802A inciudes all of the circuits required for fecthing, interpreting, and executing instructions which have been storea in standara types of memories. Extensive input/output ( $1 / O$ ) control features are also provided to facilitate system design.
The 1800 series architecture is designea with emphasis on the total microcomputer system as an integral entity so that systems having maximum flexibility and minimum cost can be realized. The 1800 series CPU also provides a syn-
chronous intertace to memories and external controilers for I/O devices, and minimizes the cost of interface controllers. Further, the I/O intertace is capable of supporting devices operating in polled, interrupt-driven, or direct memory-access modes.
The CDP1802A and CDP1862AC are functionaily identical. They ditter in that the CDP1802A has a recommended operating voltage range of 4 to 10.5 volts, and the CDP1802AC a recommended operating voltage range of 4 to 6.5 volts.
These types are supplied in 40 -lead oual-in-line sidebrazed ceramic packages ( $D$ suffix), and 40-lead duat-inline plastic packages ( $E$ suffix). The CDP1802AC is also availabre in chip form (H suffix).


Fig. 1 - Typical CDP1802A small microprocessor aystem.


## CDP1802A, CDP1802AC

## SIGNAL DESCRIPTIONS

## BUS 0 to BUS 7 (Data Bus):

8-bit bidirectional DATA BUS lines. These lines are used for transferring data between the memory, the microprocessor, and $1 / O$ devices.

## NO to $\mathbf{N} 2$ (I/O) Lines):

Activated by an I/O instruction to signal the I/O control logic of a data transfer between memory and I/O interface. These lines can be used to issue command codes or device selection codes to the 1/O devices (independently or combined with the memory byte on the data bus when an I/O instruction is being executed). The N bits are low at all times except when an $1 / O$ instruction is being executed. During this time their state is the same as the corresponding bits in the N register.
The direction of data flow is detined in the I/O instruction by bit N3 (internally) and is indicated by the level of the MRD signal.
MAD $=V_{C C}$ : Data from I/O to CPU ana Memory
MRD $=V_{\text {SS }}$ : Data from Memory to $/ / O$

## EF1 to EF4 (4 Flags):

These inputs enable the I/O contollers to transter status information to the processor. The levels can be tested by the conditional branch instructions. They can be used in conjunction with the INTERRUPT request line to establish interrupt priorities. These flags can also be used by 1/O devices to "call the attention" of the processor, in which case the program must routinely test the status of these flag(s). The fiag(s) are sampled at the beginning of every S1 cycle.

## INTERRUPT, DMA-IN, DMA-OUT (3 I/O Requests)

These inputs are sampled by the CDP1802A during the interval between the leading edge of TPB and the leading edge of TPA.
Interrupt Action: $X$ and $P$ are stored in $T$ atter executing current instruction; designator $X$ is set to 2 ; designator $P$ is set to 1 ; interrupt enabie is reset to 0 (inhibit); and instruction execution is resumed. The interrupt action requires one machine cycle (S3).
DBA Action: Finish executing current instruction; $\mathbf{R ( 0 )}$ points to memory area for data transter; data is loaded into or read out of memory; and increment $\mathbf{R ( 0 )}$.
Note: In the event of concurrent DMA and inferrupt requests, DMA-IN has priority followed by DMA-OUT and then Interrupt.

## SC0, SC1, (2 State Code LInes):

These outputs indicate that the CPU is: 1) fetching an instruction, or 2) executing an instruction, or 3) processing a DMA request, or 4) acknowledging an interrupt request. The levels of state code are tabulated below. All states are valid a TPA. $H=V_{C C}, L=V_{S S}$.

state Type	Stete Code Unes	
	SC1	SC0
S0 (Fetch)	L	L
S1 (Execute)	L	H
S2 (DMA)	H	L
S3 (Interrupt)	H	H

## TPA, TPB (2 TIming Pulses):

Positive pulses that occur once in each machine cycle (TPB follows TPA). They are used by I/O controllers to interpret codes and to time interaction with the data bus. The trailing edge of TPA is used by the memory system to latch the higher-order byte of the 16 -bit memory address. TPA is suppressed in IDLE when the CPU is in the load mode.

## MAO to MA7 (8 Memory Address LInes):

In each cycle, the higher-order byte of a 16-bit CPU memory address appears on the memory address lines MAO-7 first. Those bits required by the memory system can be strobed into external address latches by timing pulse TPA. The loworder byte of the 16 -bit address appears on the address ifines after the termination of TPA. Latching of all 8 higher-order address bits wouid permit a memory system of 64 K bytes.

## MWR (Wrte Pulse):

A negative pulse appearing in a memory-write cycle, after the address lines have stabilized.

## MRD (Read Lovel):

A low level on MRD indicates a memory read cycle. It can be used to control three-state outputs from the addressed memory which may have a common data input and output bus. If a memory does not have a three-state high-impedance output, MRD is useful for driving memory/bus separator gates. It is also used to indicate the direction of data transfer during an I/O instruction. For additional information see Table I.
a:
Single bit output from the CPU which can be set or reset under program control. During SEQ or REQ instruction execution, $Q$ is set or reset between the trailing edge of TPA and the leading edge of TPB.

## CLOCK:

Input for externally generated single-phase clock. A typical clock frequency is 6.4 MHz at $\mathrm{VCC=} \mathrm{VDD}_{\mathrm{C}}=10$ volts. The clock is counted down internally to 8 clock pulses per machine cycie.

## XTAL:

Connection to be used with ciock input terminal, for an external crystal, if the on-chip oscillator is utilized. The crystal is connected between terminals 1 and 39 (CLOCK and XTAL) in paraliel with a resistance ( 10 megohms typ.). Frequency trimming capacitors may be required at terminais 1 and 39. For additional information, see ICAN-6565.

## WAIT, CLEAR (2 Control Lines):

Provide four control modes as listed in the following truth table:

$\overline{\text { CLEAA }}$	$\overline{\text { WAIT }}$	MODE
L	L	LOAD
L	$H$	AESET
$H$	L	PAUSE
$H$	$H$	RUN

VDD, Vss, VCC (Power Levels):
The internal voltage supply VDD is isolated from the Input/Output voltage supply VCC so that the processor may operate at maximum speed while interfacing with peripheral devices operating at lower voltage. VCC must be less than or equal to VDD. All outputs swing from VSS to VCC. The recommended input voltage swing is $V_{S S}$ to VCC.

Terminal Assignment Diagrams		
CDP1802   COSMAC   Microprocessor	$\begin{aligned} & \text { CDP1822 } \\ & 256 \times 4 \text { RAM } \end{aligned}$	CDP1831   $512 \times 8$ ROM   NC = NO CONNECTION   92CS 275 HA
${ }^{\text {9225-29544 }}$	$\begin{aligned} & \text { CDP1823 } \\ & 128 \times 8 \text { RAM } \end{aligned}$	$\begin{aligned} & \text { CDP1832 } \\ & 512 \times 8 \text { ROM } \end{aligned}$
	$\begin{aligned} & \text { CDP1824 } \\ & 32 \times 8 \text { RAM } \end{aligned}$	$\begin{aligned} & \text { CDP1833 } \\ & 1024 \times 8 \text { ROM } \end{aligned}$
$\begin{aligned} & \text { CDP1821 } \\ & 1024 \times 1 \text { RAM } \end{aligned}$		NC = NO CONNECTION   92C5-20e89


CDP1834   $1024 \times 8$ ROM   $N C=$ NO CONNECTION $22 C 520727$	CDP1852   Byte I/O	CDP1855   8-Bit Programmable Multiply/Divide Unit
CDP1835   2048 X 8 ROM	CDP1853   N-Bit Decoder	CDP1856   Bus Buffer (Memory) Separator
CDP1851   Programmable I/O Interface	CDP1854A   UART   Mode O	CDP1857 I/O Bus Buffer   92C5-28097


CDP1858 4-Bit Latch	CDP1862 Color Generator Controller	CDP1866   4-Bit Latch and Decoder Memory Interface
CDP1859   4-Bit Latch  	CDP1863   Programmable Frequency Generator	CDP1867   4-Bit Latch and Decoder Memory Interface
CDP1861 Video Display Controller	CDP1864   PAL-Compatible TV Interface	CDP1868 4-Bit Latch and Decoder Memory Interface


CDP1869   Address and Sound Generator	CDP1872   Hi-Speed   8-Bit Address Latch	CDP18U43 $1 \mathrm{~K} \times 8$ UV EPROM
CDP1870   Color Video Generator	CDP1873   Hi-Speed   1 of 8 Decoder	CDP27C58 1K x 8 UV EROM
CDP1871   Keyboard Encoder	CDP18U42CD $256 \times 8$ UV EPROM	MWS5101, MWS5101A $256 \times 4$ RAM

## FEATURES

$\square$ N-channel Isoplanar MOS technology

- $2 \mu$ scycle time
- 64 byte RAM on the CPU chip
$\square$ Two bi-directional, 8 -bit I/O ports
$\square$ 8-bit arithmetic and logic unit, supporting both binary and decimal arithmetic
$\square$ Interrupt control logic
$\square$ Both external and crystal clock generating modes
[.] Over 70 instructions
- Low power dissipation-typically less than 330 mW


## GENERAL DESCRIPTION

The MK3850 is the Central Processing Unit (CPU) for the F8 Microprocessor family. It is used in conjunction with other F8 family devices to con figure the optimal microprocessor system for the amount of RAM, ROM/PROM, and I/O required in the users application. A minimum system may be configured with as few as two devices (CPU \& PSU) while larger systems may have up to 64 K bytes of memory, 128 I/O ports, direct memory acccess, and even multiple processors. Single chip micro computer systems are also possible using the MK3870

PIN NAME	DESCRIPTION	TYPE
DB0.DB7	Data Bus Lines	Bl-directional (3-State)
¢, Write	Clock Lines	Output
1/000-1/0 07	1/0 Port Zero	Input/Output
1/0 10-1/0 17	1/O Port One	Input/Output
RC	RC Network Pin	Input
ROMCO-ROMC4	Control Lines	Output
EXTRES	External Reset	Input
INT REQ	Interrupt Request	Input
ICB	Interrupt Control Bit	Output
XTLX	Crystal Clock Line	Output
XTLY	External Clock Line	Input
$\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {GG }}$	Power Lines	Input



# 8086 <br> 16-BIT HMOS MICROPROCESSOR 8086/8086-2/8086-1* 

- Direct Addressing Capability 1 MByte of Memory
- Architecture Designed for Powerful Assembly Language and Efficient High Level Languages
- 14 Word, by 16 -Blt Register Set with Symmetrical Operations
- 24 Operand Addressing Modes

■ Blt, Byte, Word, and Block Operations

- 8 and 16-Blt Signed and Unsigned Arithmetic in Binary or Decimal Including Multiply and Divide
- Range of Clock Rates: 5 MHz for 8086, 8 MHz for 8086-2, 10 MHz for 8086-1
- MULTIBUS® System Compatlble Interface
- Avallable in EXPRESS
-Standard Temperature Range
- Extended Temperature Range

Avallable In 40-Lead Cerdip and Plastic Package
(See Packaging Spec. Order *231369)

The Intel 8086 high performance 16 -bit CPU is available in three clock rates: 5,8 and 10 MHz . The CPU is implemented in N-Channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CERDIP or plastic package. The 8086 operates in both single processor and multiple processor configurations to achieve high performance levels.
*Changes from the 1985 handbook specification have been made for the 8086-1. See A.C. Characteristics TGVCH and TCLGL.



40 Lead
Figure 2. 8086 Pin
Configuration

Figure 1. 8086 CPU Block Diagram

## Table 1. Pin Description

The following pin function descriptions are for 8086 systems in either minimum or maximum mode. The "Local Bus' in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional bus buffers).

Symbol	Pln No.	Type	Name and Function		
$\mathrm{AD}_{15}-A D_{0}$	2-16, 39	I/O	ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address ( $T_{1}$ ), and data ( $T_{2}, T_{3}, T_{w}, T_{4}$ ) bus. $A_{0}$ is analogous to $\overline{B H E}$ for the lower byte of the data bus, pins $D_{7}-D_{0}$. It is LOW during $T_{1}$ when a byte is to be transferred on the lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the lower half would normally use $A_{0}$ to condition chip select functions. (See BHE.) These lines are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge".		
$\mathrm{A}_{19} / \mathrm{S}_{6}$, $\mathrm{A}_{18} / \mathrm{S}_{5}$, $\mathrm{A}_{17} / \mathrm{S}_{4}$, $\mathrm{A}_{16} / \mathrm{S}_{3}$	35-38	0	ADDRESS/STATUS: During $T_{1}$ these are the four most significant address lines for memory operations. During I/O operations these lines are LOW. During memory and I/O operations, status information is available on these lines during $T_{2}, T_{3}, T_{W}, T_{4}$. The status of the interrupt enable FLAG bit $\left(\mathrm{S}_{5}\right)$ is updated at the beginning of each CLK cycle. $A_{17} / S_{4}$ and $A_{16} / S_{3}$ are encoded as shown.   This information indicates which relocation register is presently being used for data accessing.   These lines float to 3-state OFF during local bus "hold acknowledge."		
			$\mathrm{A}_{17} / \mathrm{S}_{4}$	$\mathrm{A}_{16} / \mathrm{S}_{3}$	Characteristics
			$\begin{aligned} & 0 \text { (LOW) } \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \\ & \mathrm{~S}_{6} \text { is } 0 \\ & \text { (LOW) } \end{aligned}$	0 1 0 1	Alternate Data Stack   Code or None Data
BHE/S ${ }_{7}$	34	0	BUS HIGH ENABLE/STATUS: During $T_{1}$ the bus high enable signal (BHE) should be used to enable data onto the most significant half of the data bus, pins $\mathrm{D}_{15}-\mathrm{D}_{8}$. Eight-bit oriented devices tied to the upper half of the bus would normally use BHE to condition chip select functions. BHE is LOW during $T_{1}$ for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. The $\mathrm{S}_{7}$ status information is available during $\mathrm{T}_{2}$, $T_{3}$, and $T_{4}$. The signal is active LOW, and floats to 3-state OFF in "hold". It is LOW during $\mathrm{T}_{1}$ for the first interrupt acknowledge cycle.		
			BHE	$A_{0}$	Characteristics
			0 0 1 1	0 1 0 1	Whole word Upper byte from/to odd address Lower byte from/to even address None
$\overline{\text { B }}$	32	0	READ: Read strobe indicates that the processor is performing a memory of I/O read cycle, depending on the state of the $\mathrm{S}_{2}$ pin. This signal is used to read devices which reside on the 8086 local bus. RD is active LOW during $T_{2}, T_{3}$ and $T_{W}$ of any read cycle, and is guaranteed to remain HIGH in $\mathrm{T}_{2}$ until the 8086 local bus has floated. This signal floats to 3 -state OFF in "hold acknowledge".		

Table 1. Pin Description (Continued)

Symbol	Pln No.	Type	Name and Function
READY	22	I	READY: is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The READY signal from memory/IO is synchronized by the 8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not met.
INTR	18	1	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.
TEST	23	1	TEST: input is examined by the "Wait" instruction. If the TEST input is LOW execution continues, otherwise the processor waits in an "Idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
NMI	17	I	NON-MASKABLE INTERRUPT: an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.
RESET	21	I	RESET: causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.
CLK	19	I	CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a $33 \%$ duty cycle to provide optimized internal timing.
$\mathrm{V}_{\text {cc }}$	40		$V_{\text {cc: }}+5 \mathrm{~V}$ power supply pin.
GND	1,20		GROUND
MN/MX	33	I	MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. The two modes are discussed in the following sections.

The following pin function descriptions are for the 8086/8288 system in maximum mode (i.e., MN/MX $=V_{\text {SS }}$ ). Only the pin functions which are unique to maximum mode are described; all other pin functions are as described above.

$\overline{S_{2}}, \overline{S_{1}}, \bar{S}_{0}$	26-28	0	STATUS: active during $T_{4}, T_{1}$, and $T_{2}$ and is returned to the passive state   $(1,1,1)$ during $T_{3}$ or during $T_{W}$ when READY is HIGH. This status is used   by the 8288 Bus Controller to generate all memory and I/O access control   signals. Any change by $\bar{S}_{2}, \bar{S}_{1}$, or $\bar{S}_{0}$ during $T_{4}$ is used to indicate the   beginning of a bus cycle, and the return to the passive state in $T_{3}$ or $T_{W}$ is   used to indicate the end of a bus cycle.

Table 1. Pin Description (Continued)

Symbol	Pin No.	Type	Name and Function			
$\overline{\mathbf{S}_{2}}, \overline{\mathbf{S}_{1}}, \overline{\mathrm{~S}}_{0}$ (Continued)	26-28	0	These signais float to 3-state OFF in "hold acknowledge". These status lines are encoded as shown.			
			$\overline{S_{2}}$	$\overline{S_{1}}$	$\overline{S_{0}}$	Characteristics
			$\begin{aligned} & 0 \text { (LOW) } \\ & 0 \\ & 0 \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	1 0 0 1	0 1 0 1 0 1 0	Interrupt Acknowledge   Read I/O Port   Write I/O Port   Halt   Code Access   Read Memory   Write Memory   Passive
$\begin{aligned} & \overline{\mathrm{RQ} / \overline{\mathrm{GT}}_{0}}, \\ & \overline{\mathrm{RQ}} / \mathrm{GT}_{1} \end{aligned}$	30,31	1/0	REQUEST/GRANT: pins are used by other local bus masters to force the processor to release the local bus at the end of the processor's current bus cycle. Each pin is bidirectional with $\mathrm{RQ} / \mathrm{GT}_{0}$ having higher priority than $\overline{\mathrm{RQ}} / \mathrm{GT}_{1}$. $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ pins have internal pull-up resistors and may be left unconnected. The request/grant sequence is as follows (see Figure 9):   1. A pulse of 1 CLK wide from another local bus master indicates a local bus request ("hold") to the 8086 (pulse 1).   2. During a $T_{4}$ or $T_{1}$ clock cycle, a pulse 1 CLK wide from the 8086 to the requesting master (pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter the "hold acknowledge" state at the next CLK. The CPU's bus interface unit is disconnected logically from the local bus during "hold acknowledge".   3. A pulse 1 CLK wide from the requesting master indicates to the 8086 (pulse 3) that the "hold" request is about to end and that the 8086 can reclaim the local bus at the next CLK.   Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead CLK cycle after each bus exchange. Pulses are active LOW.   If the request is made while the CPU is performing a memory cycle, it will release the local bus during $\mathrm{T}_{4}$ of the cycle when all the following conditions are met:   1. Request occurs on or before $T_{2}$.   2. Current cycle is not the low byte of a word (on an odd address).   3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.   4. A locked instruction is not currently executing.   If the local bus is idle when the request is made the two possible events will follow:   1. Local bus will be released during the next clock.   2. A memory cycle will start within 3 clocks. Now the four rules for a currently active memory cycle apply with condition number 1 already satisfied.			
LOCK	29	$\bigcirc$	LOCK: output indicates that other system bus masters are not to gain control of the system bus while LOCK is active LOW. The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the next instruction. This signal is active LOW, and floats to 3 -state OFF in "hold acknowledge".			

Table 1. Pin Description (Continued)

Symbol	Pin No.	Type	Name and Function		
$\mathrm{QS}_{1}, \mathrm{QS}_{0}$	24, 25	0	QUEUE STATUS: The queue status is valid during the CLK cycle after which the queue operation is performed.   QS $1_{1}$ and $Q S_{0}$ provide status to allow external tracking of the internal 8086 instruction queue.		
			$\mathbf{Q S}_{1}$	QS ${ }_{0}$	Characteristics
			$\begin{aligned} & 0 \text { (LOW) } \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	No Operation   First Byte of Op Code from Queue   Empty the Queue   Subsequent Byte from Queue

The following pin function descriptions are for the 8086 in minimum mode (i.e., $M N / \overline{M X}=V_{c d}$. Only the pin functions which are unique to minimum mode are described; all other pin functions are as described above.

M/TO	28	0	STATUS LINE: logically equivalent to $\mathrm{S}_{2}$ in the maximum mode. It is used to distinguish a memory access from an I/O access. M/W becomes valid in the $T_{4}$ preceding a bus cycle and remains valid until the final $T_{4}$ of the cycle ( $M=$ HIGH, $10=$ LOW). M/IO floats to 3-state OFF in local bus "hold acknowledge".
WR	29	0	WRITE: indicates that the processor is performing a write memory or write I/O cycle, depending on the state of the $M / \bar{\Pi}$ signal. WR is active for $T_{2}, T_{3}$ and TW of any write cycle. It is active LOW, and floats to 3 -state OFF in local bus "hold acknowledge".
INTA	24	0	INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW during $T_{2}, T_{3}$ and $T_{W}$ of each interrupt acknowledge cycle.
ALE	25	0	ADDRESS LATCH ENABLE: provided by the processor to latch the address into the 8282/8283 address latch. It is a HIGH pulse active during $\mathrm{T}_{1}$ of any bus cycle. Note that ALE is never floated.
DT/R	27	0	DATA TRANSMIT/RECEIVE: needed in minimum system that desires to use an 8286/8287 data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically DT/R is equivalent to $\bar{S}_{1}$ in the maximum mode, and its timing is the same as for M/DV. ( $T=$ HIGH, R = LOW.) This signal floats to 3 -state OFF in local bus "hold acknowledge".
DEN	26	0	DATA ENABLE: provided as an output enable for the $8286 / 8287$ in a minimum system which uses the transceiver. DEN is active LOW during each memory and I/O access and for INTA cycles. For a read or INTA cycle it is active from the middle of $T_{2}$ until the middle of $T_{4}$, while for a write cycle it is active from the beginning of $T_{2}$ until the middle of $T_{4}$. $\overline{D E N}$ floats to 3state OFF in local bus "hold acknowledge".
$\begin{aligned} & \text { HOLD, } \\ & \text { HLDA } \end{aligned}$	31, 30	1/0	HOLD: indicates that another master is requesting a local bus "hold." To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledgement in the middle of a $T_{1}$ clock cycle. Simultaneous with the issuance of HLDA the processor will float the local bus and control lines. After HOLD is detected as being LOW, the processor will LOWer the HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines.   The same rules as for $\overline{R Q} / \overline{G T}$ apply regarding when the local bus will be released.   HOLD is not asynchronous input. External synchronization should be provided if the system cannot otherwise guarantee the setup time.

## FUNCTIONAL DESCRIPTION

## General Operation

The internal functions of the 8086 processor are partitioned logically into two processing units. The first is the Bus Interface Unit (BIU) and the second is the Execution Unit (EU) as shown in the block diagram of Figure 1.

These units can interact directly but for the most part perform as separate asynchronous operational processors. The bus interface unit provides the functions related to instruction fetching and queuing, operand fetch and store, and address relocation. This unit also provides the basic bus control. The overlap of instruction pre-fetching provided by this unit serves to increase processor performance through improved bus bandwidth utilization. Up to 6 bytes of the instruction stream can be queued while waiting for decoding and execution.

The instruction stream queuing mechanism allows the BIU to keep the memory utilized very efficiently. Whenever there is space for at least 2 bytes in the queue, the BIU will attempt a word fetch memory cycle. This greatly reduces "dead time" on the memory bus. The queue acts as a First-In-First-Out (FIFO) buffer, from which the EU extracts instruction bytes as required. If the queue is empty (following a branch instruction, for example), the first byte into the queue immediately becomes available to the EU.

The execution unit receives pre-fetched instructions from the BIU queue and provides un-relocated operand addresses to the BIU. Memory operands are passed through the BIU for processing by the EU, which passes results to the BIU for storage. See the Instruction Set description for further register set and architectural descriptions.

## MEMORY ORGANIZATION

The processor provides a 20 -bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million
bytes, addressed as $00000(\mathrm{H})$ to $\operatorname{FFFFF}(\mathrm{H})$. The memory is logically divided into code, data, extra data, and stack segments of up to 64 K bytes each, with each segment falling on 16-byte boundaries. (See Figure 3a.)

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to be selected is automatically chosen according to the rules of the following table. All information in one segment type share the same logical attributes (e.g. code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd address boundaries and are thus not constrained to even boundaries as is the case in many 16-bit computers. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU automatically performs the proper number of memory accesses, one if the word operand is on an even byte boundary and two if it is on an odd byte boundary. Except for the performance penalty, this double access is transparent to the software. This performance penalty does not occur for instruction fetches, only word operands.

Physically, the memory is organized as a high bank ( $\mathrm{D}_{15}-\mathrm{D}_{8}$ ) and a low bank ( $\mathrm{D}_{7}-\mathrm{D}_{0}$ ) of 512K 8-bit bytes addressed in parallel by the processor's address lines $A_{19}-A_{1}$. Byte data with even addresses is transferred on the $D_{7}-D_{0}$ bus lines while odd addressed byte data ( $A_{0} \mathrm{HIGH}$ ) is transferred on the $\mathrm{D}_{15}-\mathrm{D}_{8}$ bus lines. The processor provides two enable signals, $\overline{B H E}$ and $A_{0}$, to selectively allow reading from or writing into either an odd byte location, even byte location, or both. The instruction stream is fetched from memory as words and is addressed internally by the processor to the byte level as necessary.

Memory   Reference Need	Segment Reglster   Used	Segment   Selectlon Rule
Instructions	CODE (CS)	Automatic with all instruction prefetch.
Stack	STACK (SS)	All stack pushes and pops. Memory references relative to BP   base register except data references.
Local Data	DATA (DS)	Data references when: relative to stack, destination of string   operation, or explicitly overridden.
External (Global) Data	EXTRA (ES)	Destination of string operations: explicitly selected using a   segment override.



Figure 3a. Memory Organization
In referencing word data the BIU requires one or two memory cycles depending on whether or not the starting byte of the word is on an even or odd address, respectively. Consequently, in referencing word operands performance can be optimized by locating data on even address boundaries. This is an especially useful technique for using the stack, since odd address references to the stack may adversely affect the context switching time for interrupt processing or task multiplexing.


Figure 3b. Reserved Memory Locations
Certain locations in memory are reserved for specific CPU operations (see Figure 3b). Locations from
address FFFFOH through FFFFFH are reserved for operations including a jump to the initial program loading routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be. Locations 00000 H through 003FFH are reserved for interrupt operations. Each of the 256 possible interrupt types has its service routine pointed to by a 4 -byte pointer element consisting of a 16 -bit segment address and a 16 -bit offiset address. The pointer elements are assumed to have been stored at the respective places in reserved memory prior to occurrence of interrupts.

## MINIMUM AND MAXIMUM MODES

The requirements for supporting minimum and maximum 8086 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 8086 is equipped with a strap pin (MN/ $\overline{M X}$ ) which defines the system configuration. The definition of a certain subset of the pins changes dependent on the condition of the strap pin. When MN/ $\overline{M X}$ pin is strapped to GND, the 8086 treats pins 24 through 31 in maximum mode. An 8288 bus controlier interprets status information coded into $\overline{\mathbf{S}_{0}}, \overline{\mathbf{S}_{2}}, \overline{\mathbf{S}_{2}}$ to generate bus timing and control signals compatible with the MULTIBUS® architecture. When the $M N / \overline{M X}$ pin is strapped to $V_{C C}$, the $\mathbf{8 0 8 6}$ generates bus control signals itself on pins 24 through 31, as shown in parentheses in Figure 2. Examples of minimum mode and maximum mode systems are shown in Figure 4.

## BUS OPERATION

The 8086 has a combined address and data bus commonly referred to as a time multiplexed bus. This technique provides the most efficient use of pins on the processor while permitting the use of a standard 40-lead package. This "local bus" can be buffered directly and used throughout the system with address latching provided on memory and I/O modules. In addition, the bus can also be demultiplexed at the processor with a single set of address latches if a standard non-multiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as $T_{1}, T_{2}, T_{3}$ and $\mathrm{T}_{4}$ (see Figure 5). The address is emitted from the processor during $T_{1}$ and data transfer occurs on the bus during $T_{3}$ and $T_{4}$. $T_{2}$ is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "Wait" states (TW) are inserted between $T_{3}$ and $T_{4}$. Each inserted "Wait" state is of the same duration as a CLK cycle. Periods


Figure 4a. Minimum Mode $\mathbf{8 0 8 6}$ Typical Configuration


Figure 4b. Maximum Mode 8086 Tvpical Configuration
can occur between 8086 bus cycles. These are referred to as "Idie" states ( $T_{1}$ ) or inactive CLK cycles. The processor uses these cycles for internal housekeeping.

During $T_{1}$ of any bus cycle the ALE (Address Latch Enable) signal is emitted (by either the processor or the 8288 bus controller, depending on the MN/ $\overline{M X}$ strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}}_{1}^{-}$, and $\overline{\mathrm{S}_{2}}$ are used, in maximum mode, by the bus controller to identify the type of bus transaction according to the following table:


Figure 5. Bastc System Timing

Status bits $S_{3}$ through $S_{7}$ are multiplexed with highorder address bits and the BHE signal, and are therefore valid during $\mathrm{T}_{2}$ through $\mathrm{T}_{4} . \mathrm{S}_{3}$ and $\mathrm{S}_{4}$ indicate which segment register (see Instruction Set description) was used for this bus cycle in forming the address, according to the following table:

$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{3}}$	Characteristics
0 (LOW)	0	Alternate Data (extra segment)
0	1	Stack
1 (HIGH)	0	Code or None
1	1	Data

$S_{5}$ is a reflection of the PSW interrupt enable bit. $S_{6}=0$ and $S_{7}$ is a spare status bit.

## I/O ADDRESSING

In the 8086, I/O operations can address up to a maximum of 64 K I/O byte registers or 32 K I/O word registers. The I/O address appears in the same format as the memory address on bus lines $\mathrm{A}_{15}-\mathrm{A}_{0}$. The address lines $\mathrm{A}_{19}-\mathrm{A}_{16}$ are zero in I/O operations. The variable I/O instructions which use register DX as a pointer have full address capability while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the I/O address space.

I/O ports are addressed in the same manner as memory locations. Even addressed bytes are transferred on the $D_{7}-D_{0}$ bus lines and odd addressed bytes on $D_{15}-D_{8}$. Care must be taken to assure that each register within an 8 -bit peripheral located on the lower portion of the bus be addressed as even.

## External Interface

## PROCESSOR RESET AND INITIALIZATION

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 8086 RESET is required to be HIGH for greater than 4 CLK cycles. The 8086 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 10 CLK cycles. After this interval the 8086 operates normally beginning with the instruction in absolute location FFFFOH (see Figure 3b). The details of this operation are specified in the Instruction Set description of the MCS-86 Family User's Manual. The RESET input is internally synchronized to the processor clock. At initialization the HIGH-to-LOW transition of RESET must occur no sooner than $50 \mu \mathrm{~s}$ after power-up, to allow complete initialization of the 8086.

NMI asserted prior to the 2nd clock after the end of RESET will not be honored. If NMI is asserted after that point and during the internal reset sequence, the processor may execute one instruction before responding to the interrupt. A hold request active immediately after RESET will be honored before the first instruction fetch.

All 3-state outputs float to 3-state OFF during RESET. Status is active in the idle state for the first clock after RESET becomes active and then floats to 3-state OFF. ALE and HLDA are driven low.

## INTERRUPT OPERATIONS

Interrupt operations fall into two classes; software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the Instruction Set description. Hardware interrupts can be classified as non-maskable or maskable.

Interrupts result in a transfer of control to a new program location. A 256 -element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (see Figure 3b), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type". An interrupting device supplies an 8 -bit type number, during the interrupt acknowledge sequence, which is used to "vector" through the appropriate element to the new interrupt service program location.

## NON-MASKABLE INTERRUPT (NMI)

The processor provides a single non-maskable interrupt pin (NMI) which has higher priority than the maskable interrupt request pin (INTR). A typical use would be to activate a power failure routine. The NMI is edge-triggered on a LOW-to-HIGH transition. The activation of this pin causes a type 2 interrupt. (See Instruction Set description.)

NMI is required to have a duration in the HIGH state of greater than two CLK cycles, but is not required to be synchronized to the clock. Any high-going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves of a block-type instruction. Worst case response to NMI would be for multiply, divide, and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may occur before, during, or after the servicing of NMI. Another high-going edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be $\cdots$ free of bounces on the low-going edge to avoid triggering extraneous responses.

## 8086

## MASKABLE NTERRUPT (INTR)

The 8086 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable FLAG status bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction or the end of a whole move for a blocktype instruction. During the interrupt response sequence further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt or single-step), although the FLAGS register which is automatically pushed onto the stack reflects the state of the processor prior to the interrupt. Until the old FLAGS register is restored the enable bit will be zero unless specifically set by an instruction.

During the response sequence (Figure 6) the processor executes two successive (back-to-back) interrupt acknowledge cycles. The 8086 emits the LOCK signal from $T_{2}$ of the first bus cycle until $T_{2}$ of the second. A local bus "hold" request will not be honored until the end of the second bus cycle. In the second bus cycle a byte is fetched from the external interrupt system (e.g., 8259A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The INTERRUPT RETURN instruction includes a FLAGS pop which returns the status of the original interrupt enable bit when it restores the FLAGS.

## HALT

When a software "HALT" instruction is executed the processor indicates that it is entering the "HALT" state in one of two ways depending upon which mode is strapped. In minimum mode, the processor issues one ALE with no qualifying bus control signals. In maximum mode, the processor issues appropriate HALT status on $\bar{S}_{2}, \bar{S}_{1}$, and $\bar{S}_{0}$; and the 8288 bus controller issues one ALE. The 8086 will not leave the "HALT" state when a local bus "hold" is entered while in "HALT". In this case, the processor reissues the HALT indicator. An interrupt request or RESET will force the 8086 out of the "HALT" state.

## READ/MODIFY/WRITE (SEMAPHORE) OPERATIONS VIA LOCK

The $\overline{\text { LOCK }}$ status information is provided by the processor when directly consecutive bus cycles are required during the execution of an instruction. This provides the processor with the capability of performing read/modify/write operations on memory (via the Exchange Register With Memory instruction, for example) without the possibility of another system bus master receiving intervening memory cycles. This is useful in multi-processor system configurations to accomplish "test and set lock" operations. The LOCK signal is activated (forced LOW) in the clock cycle following the one in which the software "LOCK" prefix instruction is decoded by the EU. It is deactivated at the end of the last bus cycle of the instruction following the "LOCK" prefix instruction. While LOCK is active a request on a RQ/ GT pin will be recorded and then honored at the end of the LOCK.


Figure 6. Interrupt Acknowledge Sequence

## EXTERNAL SYNCHRONIZATION VIA TEST

As an alternative to the interrupts and general I/O capabilities, the 8086 provides a single softwaretestable input known as the TEST signal. At any time the program may execute a WAIT instruction. If at that time the TEST signal is inactive (HIGH), program execution becomes suspended while the processor waits for TEST to become active. It must remain active for at least 5 CLK cycles. The WAIT instruction is re-executed repeatedly until that time. This activity does not consume bus cycles. The processor remains in an idle state while waiting. All 8086 drivers go to 3 -state OFF if bus "Hold" is entered. If interrupts are enabled, they may occur while the processor is waiting. When this occurs the processor fetches the WAIT instruction one extra time, processes the interrupt, and then re-fetches and reexecutes the WAIT instruction upon returning from the interrupt.

## Basic System Timing

Typical system configurations for the processor operating in minimum mode and in maximum mode are shown in Figures 4a and 4b, respectively. In minimum mode, the MN/MX pin is strapped to $V_{C C}$ and the processor emits bus control signals in a manner similar to the 8085 . In maximum mode, the MN/ $\overline{M X}$ pin is strapped to $V_{S S}$ and the processor emits coded status information which the 8288 bus controller uses to generate MULTIBUS compatible bus control signals. Figure 5 illustrates the signal timing relationships.


Figure 7. 8086 Register Model

## SYSTEM TIMING-MINIMUM SYSTEM

The read cycle begins in $T_{1}$ with the assertion of the Address Latch Enable (ALE) signal. The trailing (lowgoing) edge of this signal is used to latch the address information, which is valid on the local bus at this time, into the address latch. The BHE and $\mathrm{A}_{0}$ signals address the low, high, or both bytes. From $\mathrm{T}_{1}$ to $T_{4}$ the $\mathrm{M} / \overline{\mathrm{O}}$ signal indicates a memory or I/O operation. At $T_{2}$ the address is removed from the local bus and the bus goes to a high impedance state. The read control signal is also asserted at $T_{2}$. The read ( $\overline{\mathrm{RD}}$ ) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again 3state its bus drivers. If a transceiver is required to buffer the 8086 local bus, signals DT/ $\bar{R}$ and $\overline{D E N}$ are provided by the 8086.

A write cycle also begins with the assertion of ALE and the emission of the address. The M/D signal is again asserted to indicate a memory or I/O write operation. In the $T_{2}$ immediately following the address emission the processor emits the data to be written into the addressed location. This data remains valid until the middle of $T_{4}$. During $T_{2}, T_{3}$, and $T_{W}$ the processor asserts the write control signal. The write (WR) signal becomes active at the beginning of $T_{2}$ as opposed to the read which is delayed somewhat into $\mathrm{T}_{2}$ to provide time for the bus to float.

The $\overline{B H E}$ and $A_{0}$ signals are used to select the proper byte(s) of the memory/IO word to be read or written according to the following table:

BHE	AO	Characteristics
0	0	Whole word   0
1	0	Upper byte from/to   odd address   Lower byte from/to   even address   None
1	1	

I/O ports are addressed in the same manner as memory location. Even addressed bytes are transferred on the $\mathrm{D}_{7}-\mathrm{D}_{0}$ bus lines and odd addressed bytes on $D_{15}-D_{8}$.

The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge signal (INTA) is asserted in place of the read ( $\overline{\mathrm{RD}}$ ) signal and the address bus is floated. (See Figure 6.) In the second of two successive INTA cycles, a byte of information is read from bus
lines $D_{7}-D_{0}$ as supplied by the inerrupt system logic (i.e., 8259A Priority Interrupt Controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into an interrupt vector lookup table, as described earlier.

## BUS TIMING-MEDIUM SIZE SYSTEMS

For medium size systems the $M N / \overline{M X}$ pin is connected to $V_{S S}$ and the 8288 Bus Controller is added to the system as well as a latch for latching the system address, and a transceiver to allow for bus loading greater than the 8086 is capable of handling. Signals ALE, DEN, and DT/R are generated by the 8288 instead of the processor in this configuration although their timing remains relatively the same. The 8086 status outputs ( $\bar{S}_{2}, \overline{\mathbf{S}_{1}}$, and $\overline{\mathrm{S}_{0}}$ ) provide type-of-cycle information and become 8288 inputs. This bus cycle information specifies read (code, data, or $1 / O$ ), write (data or $1 / O$ ), interrupt
acknowledge, or software halt. The 8288 thus issues control signals specifying memory read or write, I/O read or write, or interrupt acknowledge. The 8288 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence data isn't valid at the leading edge of write. The transceiver receives the usual DIR and $\bar{G}$ inputs from the 8288's DT/ $\bar{R}$ and DEN.

The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 8259A located on either the local bus or the system bus. If the master 8259A Priority Interrupt Controller is positioned on the local bus, a TTL gate is required to disable the transceiver when reading from the master 8259A during the interrupt acknowledge sequence and software "poll".

Table 2. Instruction Set Summary

Mnemonic and Description	Instruction Code			
DATA TRANSFER				
MOV = Move:	76543210	76543210	76543210	76543210
Register/Memory to/from Register	100010 dw	mod reg r/m		
Immediate to Register/Memory	1100011 w	mod $000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Register	1011 wreg	data	data if $w=1$	
Memory to Accumulatur	1010000 w	addr-low	addr-high	
Accumulator to Memory	1010001 w	addr-low	addr-high	
Register/Memory to Segment Register	10001110	mod $0 \mathrm{reg} \mathrm{r} / \mathrm{m}$		
Segment Register to Register/Memory	10001100	$\bmod 0 \mathrm{reg} \mathrm{r} / \mathrm{m}$		
PUSH = Push:				
Register/Memory	11111111	$\bmod 110 \mathrm{r} / \mathrm{m}$		
Register	01010 reg			
Segment Register	000 reg 110			
$\mathbf{P O P}=\mathbf{P o p}$ :				
Register/Memory	10001111	$\mathrm{mod} 000 \mathrm{r} / \mathrm{m}$		
Register	01011 reg			
Segment Register	000 reg 111			
XCHG = Exchange:				
Register/Memory with Register	1000011 w	mod reg r/m		
Register with Accumulator	10010 reg			
IN = Input from:				
Fixed Port	1110010 w	port		
Variable Port	1110110 w			
OUT = Output to:				
Fixed Port	1110011 w	port		
Variable Port	1110111 w			
XLAT $=$ Translate Byte to AL	11010111			
LEA $=$ Load EA to Register	10001101	mod reg r/m		
LDS = Load Pointer to DS	11000101	mod reg r/m		
LES = Load Pointer to ES	11000100	mod reg r/m		
LAHF = Load AH with Flags	10011111			
SAHF = Store AH into Flags	10011110			
PUSHF = Push Flags	10011100			
POPF = Pop Flags	10011101			

Mnemonics © Intel, 1978

Table 2. Instruction Set Summary (Continued)

Mnemonic and Description	Instruction Code			
ARITHMETIC	76543210	76543210	76543210	76543210
ADD = Add:				
Reg./Memory with Register to Either	000000 dw	mod reg r/m		
Immediate to Register/Memory	1000008 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if s: w = 01
Immediate to Accumulator	0000010 w	data	data if $w=1$	
ADC = Add with Carry:				
Reg./Memory with Register to Either	000100dw	mod reg r/m		
Immediate to Register/Memory	1000008 w	$\bmod 010 \mathrm{r} / \mathrm{m}$	data	data if s : $\mathbf{w}=01$
Immediate to Accumulator	0001010 w	data	data if $w=1$	
INC = Increment:				
Register/Memory	1111111 w	$\bmod 000 \mathrm{r} / \mathrm{m}$		
Register	01000 reg			
AAA $=$ ASCII Adjust for Add	00110111			
BAA $=$ Decimal Adjust for Add	00100111			
SUB = Subtract:				
Reg./Memory and Register to Either	001010 dw	mod reg r/m		
Immediate from Register/Memory	1000008 w	$\bmod 101 \mathrm{r} / \mathrm{m}$	data	data if s w = 01
Immediate from Accumulator	0010110 w	data	data if $w=1$	
SSB = Subtract with Borrow				
Reg./Memory and Register to Either	000110 dw	mod reg r/m		
Immediate from Register/Memory	1000008w	$\bmod 011 \mathrm{r} / \mathrm{m}$	data	data if $\mathbf{s w} \mathbf{w}=01$
Immediate from Accumulator	000111 w	data	data if $w=1$	
DEC $=$ Decrement:				
Register/memory	1111111 w	$\bmod 001 \mathrm{r} / \mathrm{m}$		
Register	01001 reg			
NEG = Change sign	1111011 w	$\bmod 011 \mathrm{r} / \mathrm{m}$		
CMP = Compare:				
Register/Memory and Register	001110 dw	mod reg r/m		
Immediate with Register/Memory	1000008 w	mod $111 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s} \mathbf{w}=01$
Immediate with Accumulator	0011110 w	data	data if $w=1$	
AAS = ASCII Adjust for Subtract	00111111			
DAS = Decimal Adjust for Subtract	00101111			
MUL = Multiply (Unsigned)	1111011 w	$\bmod 100 \mathrm{r} / \mathrm{m}$		
IMUL $=$ Integer Multiply (Signed)	1111011w	mod $101 \mathrm{r} / \mathrm{m}$		
AAM = ASCII Adjust for Multiply	11010100	00001010		
DIV = Divide (Unsigned)	1111011 w	$\bmod 110 \mathrm{r} / \mathrm{m}$		
IDIV $=$ Integer Divide (Signed)	1111011 w	mod $111 \mathrm{r} / \mathrm{m}$		
AAD = ASCII Adjust for Divide	11010101	00001010		
CBW = Convert Byte to Word	10011000			
CWD = Convert Word to Double Word	10011001			

Table 2. Instruction Set Summary (Continued)

Mnemonic and Description	Instruction Code			
LOGIC	76543210	76543210	76543210	76543210
NOT = Invert	1111011 w	$\bmod 010 \mathrm{r} / \mathrm{m}$		
SHL/SAL = Shift Logical/Arithmetic Left	110100 vw	$\bmod 100 \mathrm{r} / \mathrm{m}$		
SHP = Shift Logical Right	110100 vw	$\bmod 101 \mathrm{r} / \mathrm{m}$		
$\mathbf{S A R}=$ Shift Arithmetic Right	110100 vw	$\bmod 111 \mathrm{r} / \mathrm{m}$		
ROL $=$ Rotate Left	110100 vw	$\bmod 000 \mathrm{r} / \mathrm{m}$		
ROR $=$ Rotate Right	110100 vw	$\bmod 001 \mathrm{r} / \mathrm{m}$		
RCL $=$ Rotate Through Carry Flag Left	110100 vw	$\bmod 010 \mathrm{r} / \mathrm{m}$		
RCR $=$ Rotate Through Carry Right	110100 vw	$\bmod 011 \mathrm{f} / \mathrm{m}$		
AND = And:				
Reg./Memory and Register to Either	001000 dw	mod regr $\mathrm{r} / \mathrm{m}$		
Immediate to Register/Memory	1000000 w	$\bmod 100 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Accumulator	0010010 w	data	data if $w=1$	
TEST = And Function to Flags, No Result:				
Register/Memory and Register	1000010 w	mod regr $\mathrm{r} / \mathrm{m}$		
Immediate Data and Register/Memory	1111011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate Data and Accumulator	1010100 w	data	data if $w=1$	
$\mathbf{O R}=\mathbf{O r}$				
Reg./Memory and Register to Either	000010 dw	mod regr $\mathrm{r} / \mathrm{m}$		
Immediate to Register/Memory	1000000 w	$\bmod 001 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Accumulator	0000110 w	data	data if $w=1$	
XOR = Exclusive or:				
Reg./Memory and Register to Either	001100 dw	mod reg r/m		
Immediate to Register/Memory	1000000 w	$\bmod 110 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to Accumulator	0011010 w	data	data if $w=1$	
STRING MANIPULATION				
REP = Repeat	1111001 z			
MOVS = Move Byte/Word	1010010 w			
CMPS = Compare Byte/Word	1010011 w			
SCAS $=$ Scan Byte/Word	1010111 w			
LODS = Load Byte/Wd to AL/AX	1010110 w			
STOS = Stor Byte/Wd from AL/A	1010101 w			
CONTROL TRANSFER				
CALL = Call:				
Direct within Segment	11101000	disp-low	disp-high	
Indirect within Segment	11111111	$\bmod 010 \mathrm{r} / \mathrm{m}$		
Direct İntersegment	10011010	offset-low	offset-high	
		seg-low	seg-high	
Indirect Intersegment	11111111	$\bmod 011 \mathrm{r} / \mathrm{m}$		

[^11]Table 2. Instruction Set Summary (Continued)

Mnemonic and Description	Instruction Code		
JMP = Unconditional Jump:	76543210	76543210	76543210
Direct within Segment	11101001	disp-low	disp-high
Direct within Segment-Short	11101011	disp	
Indirect within Segment	11111111	$\bmod 100 \mathrm{r} / \mathrm{m}$	
Direct Intersegment	11101010	offset-low	offset-high
		seg-low	seg-high
Indirect Intersegment	11111111	$\bmod 101 \mathrm{r} / \mathrm{m}$	
RET $=$ Return from CALL:			
Within Segment	11000011		
Within Seg Adding Immed to SP	11000010	data-low	data-high
Intersegment	11001011		
Intersegment Adding Immediate to SP	11001010	data-low	data-high
JE/JZ = Jump on Equal/Zero	01110100	disp	
$\text { JL/JNGE }=\underset{\text { or Equal }}{ }$	01111100	disp	
$\begin{aligned} \text { JLE/JNG }= & \text { Jump on Less or Equal/ } \\ & \text { Not Greater }\end{aligned}$	01111110	disp	
$\begin{aligned} & \text { JB/JNAE }=\underset{\text { or Equal }}{\text { Jump on Below/Not Above }} \end{aligned}$	01110010	disp	
$\begin{aligned} & \text { JBE/JNA }= \text { Jump on Below or Equal/ } \\ & \\ & \text { Not Above }\end{aligned}$	01110110	disp	
JP/JPE = Jump on Parity/Parity Even	01111010	disp	
JO = Jump on Overflow	01110000	disp	
JS $=$ Jump on Sign	01111000	disp	
JNE/JNZ = Jump on Not Equal/Not Zero	01110101	disp	
$\text { JNL/JGE }=\underset{\text { or Equal }}{\text { Jump on Less/Greater }}$	01111101	disp	
JNLE/JG = Jump on Not Less or Equal/	01111111	disp	
$\begin{aligned} & \text { JNB/JAE }=\text { Jump on Not Below/Above } \\ & \text { or Equal } \end{aligned}$	01110011	disp	
JNBE/JA = Jump on Not Below or Equal/Above	01110111	disp	
JNP/JPO = Jump on Not Par/Par Odd	01111011	disp	
JNO = Jump on Not Overflow	01110001	disp	
JNS $=$ Jump on Not Sign	01111001	disp	
LOOP = Loop CX Times	11100010	disp	
LOOPZ/LOOPE = Loop While Zero/Equal	11100001	disp	
$\begin{aligned} \text { LOOPNZ/LOOPNE }= & \text { Loop While Not } \\ & \text { Zero/Equal } \end{aligned}$	11100000	disp	
JCXZ = Jump on CX Zero	11100011	disp	
INT $=\mathbf{l n t}$ (errupt			
Type Specified	11001101	type	
Type 3	11001100		
INTO = interrupt on Overfiow	11001110		
IRET $=$ Interrupt Return	11001111		

Table 2. Instruction Set Summary (Continued)

Mnemonic and Descrlption		
	76543210	76543210
PROCESSOR CONTROL		
CLC = Clear Carry	11111000	
CMC = Complement Carry	11110101	
STC = Set Carry	11111001	
CLD $=$ Clear Direction	11111100	
STD $=$ Set Direction	11111101	
CLI $=$ Clear Interrupt	11111010	
STI $=$ Set Interrupt	11111011	
HLT $=$ Halt	11110100	
WAIT = Wait	10011011	
ESC = Escape (to External Device)	$11011 \times \times x$	$\bmod \times \times \times r / m$
LOCK = Bus Lock Prefix	11110000	

## NOTES:

AL $=8$-bit accumulator
$A X=16$-bit accumulator
CX = Count register
DS = Data segment
ES = Extra segment
Above/below refers to unsigned value
Greater = more positive;
Less $=$ less positive (more negative) signed values
if $\mathrm{d}=1$ then "to" reg; if $\mathrm{d}=0$ then "from" reg
if $w=1$ then word instruction; if $w=0$ then byte instruction
if mod $=11$ then $\mathrm{r} / \mathrm{m}$ is treated as a REG field
if mod $=00$ then DISP $=0^{*}$, disp-low and disp-high are absent
if mod $=01$ then DISP $=$ disp-low sign-extended to 16 bits, disp-high is absent
If $\mathrm{mod}=10$ then DISP $=$ disp-high; disp-low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(B X)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=010$ then $E A=(B P)+(S I)+D I S P$
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D I)+$ DISP
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $\mathrm{EA}=(\mathrm{BP})+\mathrm{DISP}^{*}$
If $r / m=111$ then $E A=(B X)+D I S P$
DISP follows 2nd byte of instruction (before data if required)
*except if $\mathrm{mod}=00$ and $\mathrm{r} / \mathrm{m}=110$ then $\mathrm{EA}=$ disp-high; disp-low.

Mnemonics © Intel, 1978
if $\mathbf{s} \mathbf{w}=\mathbf{0 1}$ then $\mathbf{1 6}$ bits of immediate data form the operand
if $\mathbf{s} \mathbf{w}=11$ then an immediate data byte is sign extended to form the 16 -bit operand
if $v=0$ then "count" $=1$; if $v=1$ then "count" in (CL)
$x=$ don't care
$\mathbf{z}$ is used for string primitives for comparison with ZF FLAG
SEGMENT OVERRIDE PREFIX
001 reg 110
REG is assigned according to the following table:

16-Bit $(w=1)$		$8-$ Bit $(\mathbf{w}=\mathbf{0})$	Segment	
000	AX	000	AL	00
001	CX			
010	DX	001	CL	01
CS				
011	BX	010	DL	10
SS				
100	SP	100	BL	11
101	BP	101	CH	
110	SI	110	DH	
111	DI	111	BH	

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file: FLAGS = $\mathrm{X}: \mathrm{X}: \mathrm{X}: \mathrm{X}:(\mathrm{OF}):(\mathrm{DF}):(I F):(\mathrm{TF}):(\mathrm{SF}):(\mathrm{ZF}): \mathrm{X}:(\mathrm{AF}): \mathrm{X}:(\mathrm{PF}): \mathrm{X}:(\mathrm{CF})$

## 8088 <br> 8-BIT HMOS MICROPROCESSOR 8088/8088-2

\author{

- 8-Bit Data Bus Interface <br> - 16-Bit Internal Architecture <br> - Direct Addressing Capability to 1 Mbyte of Memory <br> - Direct Software Compatibility with $\mathbf{8 0 8 6}$ CPU <br> - 14-Word by 16-Bit Register Set with Symmetrical Operations <br> - 24 Operand Addressing Modes
}

The intel 8088 is a high performance microprocessor implemented in N-channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CERDIP package. The processor has attributes of both 8-and 16 -bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals.


Figure 1. 8088 CPU Functional Block Dlagram

## Table 1. Pin Description

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The 'local bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers).

Symbol	Pin No.	Type	Name and Function		
AD7-AD0	9-16	I/O	ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1) and data (T2, T3, Tw, T4) bus. These lines are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge".		
A15-A8	2-8, 39	0	ADDRESS BUS: These lines provide address bits 8 through 15 for the entire bus cycle (T1-T4). These lines do not have to be latched by ALE to remain valid. A15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold acknowledge".		
A19/S6, A18/S5, A17/S4, A16/S3	35-38	0	ADDRESS/STATUS: During T1, these are the four most significant address lines for memory operations. During I/O operations, these lines are LOW. During memory and I/O operations, status information is available on these lines during T2, T3, Tw, and T4. S6 is always low. The status of the interrupt enable flag bit (S5) is updated at the beginning of each clock cycle. S4 and S3 are encoded as shown.   This information indicates which segment register is presently being used for data accessing.   These lines float to 3 -state OFF during local bus "hold acknowledge".		
			S4	S3	Characteristics
			$\begin{array}{\|l\|} \hline 0 \text { (LOW) } \\ 0 \\ 1 \text { (HIGH) } \\ 1 \\ \text { S6 is } 0 \text { (LOW) } \\ \hline \end{array}$	0 1 0 1	Alternate Data Stack Code or None Data
$\overline{\mathrm{RD}}$	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the IO/M pin or S2. This signal is used to read devices which reside on the 8088 local bus. $\overline{\mathrm{RD}}$ is active LOW during T2, T3 and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088 local bus has floated. This signal floats to 3 -state OFF in "hold acknowledge".		
READY	22	1	READY: is the acknowledgement from the addressed memory or l/O device that it will complete the data transier. The RDY signal from memory or I/O is synchronized by the 8284 clock generator to form READY. This signal is active HIGH. The 8088 READY input is not synchronized. Correct operation is not guaranteed if the set up and hold times are not met.		
INTR	18	1	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.		
TEST	23	1	TEST: input is examined by the "wait for test" instruction. If the $\overline{T E} \overline{\mathrm{U}} \overline{\bar{T}}$ input is LOW, execution continues, otherwise the processor waits in an "idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.		

Table 1. Pin Description (Continued)

Symbol	Pin No.	Type	Name and Function
NMI	17	1	NON-MASKABLE INTERRUPT: is an edge triggered input which causes a   type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup   table located in system memory. NMl is not maskable internally by   software. A transition from a LOW to HIGH initiates the interrupt at the end   of the current instruction. This input is internally synchronized.
RESET	21	1	RESET: causes the processor to immediately terminate its present activity.   The signal must be active HIGH for at least four clock cycles. It restarts   execution, as described in the instruction set description, when RESET   returns LOW. RESET is internally synchronized.
CLK	19	1	CLOCK: provides the basic timing for the processor and bus controller. It is   asymmetric with a 33\% duty cycle to provide optimized internal timing.
VCC	40		VCC: is the + 5V $\pm 10 \%$ power supply pin.   GND   MN/MX   1,20
33	1	GND: are the ground pins.	

The following pin function descriptions are for the 8088 minimum mode (i.e., MN/ $\overline{M X}=V_{C d}$. Only the pin functions which are unique to minimum mode are described; all other pin functions are as described above.

Symbol	Pin No.	Type	Name and Function
10/M	28	0	STATUS LINE: is an inverted maximum mode $\overline{\text { S2 }}$. It is used to distinguish a memory access from an I/O access. $I O / \bar{M}$ becomes valid in the T4 preceding a bus cycle and remains valid until the final T4 of the cycle (I/O = HIGH, M = LOW). IO/M floats to 3 -state OFF in local bus "hold acknowledge".
$\overline{W R}$	29	0	WRITE: strobe indicates that the processor is performing a write memory or write I/O cycle, depending on the state of the IO/M signal. WR is active for $T 2, T 3$, and Tw of any write cycle. It is active LOW, and floats to 3 -state OFF in local bus "hold acknowledge".
$\overline{\text { INTA }}$	24	0	INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3, and Tw of each interrupt acknowledge cycle.
ALE	25	0	ADDRESS LATCH ENABLE: is provided by the processor to latch the address into an address latch. It is a HIGH pulse active during clock low of T1 of any bus cycle. Note that ALE is never floated.
DT/ $\bar{R}$	27	0	DATA TRANSMIT/RECEIVE: is needed in a minimum system that desires to use a data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically, DT/ $\overline{\mathrm{R}}$ is equivalent to $\overline{\mathrm{S}}$ in the maximum mode, and its timing is the same as for $10 / \bar{M}(T=H I G H, R=L O W)$. This signal floats to 3-state OFF in local "hold acknowiedge".
$\overline{\text { DEN }}$	26	0	DATA ENABLE: is provided as an output enable for the data bus transceiver in a minimum system which uses the transceiver. DEN is active LOW during each memory and I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the middle of T2 until the middle of T4, while for a write cycle, it is active from the beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus "hold acknowledge".

Table 1. Pin Description (Continued)


The following pin function descriptions are for the 8088/8288 system in maximum mode (i.e., MN/ $\overline{M X}=$ GND). Only the pin functions which are unique to maximum mode are described; all other pin functions are as described above.

Symbol	Pin No.	Type	Name and Function			
$\overline{\mathbf{S 2}}, \mathbf{S 1}, \overline{50}$	26-28	0	STATUS: is active during clock high of T4, T1, and T2, and is returned to the passive state $(1,1,1)$ during T3 or during Tw when READY is HIGH. This status is used by the 8288 bus controller to generate all memory and I/O access control signals. Any change by $\overline{\mathbf{S 2}}, \overline{\mathrm{S} 1}$, or $\overline{\mathrm{S} 0}$ during T4 is used to indicate the beginning of a bus cycle, and the return to the passive state in T3 and Tw is used to indicate the end of a bus cycle.   These signals float to 3 -state OFF during "hold acknowledge". During the first clock cycle after RESET becomes active, these signals are active HIGH. After this first clock, they float to 3 -state OFF.			
			S2	S1	So	Characte
			$\begin{array}{\|l\|} \hline 0(\mathrm{LOW}) \\ 0 \\ 0 \\ 0 \\ 1 \text { (HIGH) } \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Interrupt Acknowledge   Read I/O Port   Write I/O Port   Halt   Code Access   Read Memory   Write Memory   Passive

Table 1. Pin Description (Continued)

Symbol	Pin No.	Type	Name and Function		
$\overline{\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}},$	30, 31	1/O	REQUEST/GRANT: pins are used by other local bus masters to force the processor to release the local bus at the end of the processor's current bus cycle. Each pin is bidirectional with $\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}$ having higher priority than $\overline{\mathrm{RQ}} /$ $\overline{\mathrm{GT1}} . \overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ has an internal pull-up resistor, so may be left unconnected. The request/grant sequence is as follows (See Figure 8):   1. A pulse of one CLK wide from another local bus master indicates a local bus request ("hold") to the 8088 (pulse 1).   2. During a T4 or TI clock cycle, a pulse one clock wide from the 8088 to the requesting master (pulse 2), indicates that the 8088 has allowed the local bus to float and that it will enter the "hus.. acknowledge" state at the next CLK. The CPU's bus interface unit is disconnected logically from the local bus during "hold acknowledge". The same rules as for HOLD/HOLDA apply as for when the bus is released.   3. A pulse one CLK wide from the requesting master indicates to the 8088 (pulse 3) that the "hold" request is about to end and that the 8088 can reclaim the local bus at the next CLK. The CPU then enters T4.   Each master-master exchange of the local bus is a sequence of three pulses. There must be one idle CLK cycle after each bus exchange. Pulses are active LOW.   If the request is made while the CPU is performing a memory cycle, it will release the local bus during T4 of the cycle when all the following conditions are met:   1. Request occurs on or before T2.   2. Current cycle is not the low bit of a word.   3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.   4. A locked instruction is not currently executing.   If the local bus is idle when the request is made the two possible events will follow:   1. Local bus will be released during the next clock.   2. A memory cycle will start within 3 clocks. Now the four rules for a currently active memory cycle apply with condition number 1 already satisfied.		
LOCK	29	0	LOCK: indicates that other system bus masters are not to gain control of the system bus while $\overline{\text { LOCK }}$ is active (LOW). The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the next instruction. This signal is active LOW, and floats to 3-state off in "hold acknowledge".		
QS1, QS0	24, 25	0	QUEUE STATUS: provide status to allow external tracking of the internal 8088 instruction queue.   The queue status is valid during the CLK cycle after which the queue operation is performed.		
			QS1	QSO	Characteristics
			$\begin{aligned} & \hline 0 \text { (LOW) } \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \\ & \hline \end{aligned}$	0 1 0 1	No Operation   First Byte of Opcode from Queue   Empty the Queue   Subsequent Byte from Queue
-	34	0	Pin 34 is always high in the maximum mode.		



Figure 3. Memory Organization

## FUNCTIONAL DESCRIPTION

## Memory Organization

The processor provides a 20 -bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as $00000(\mathrm{H})$ to $\operatorname{FFFFF}(\mathrm{H})$. The memory is logically divided into code, data, extra data, and stack segments of up to 64 K bytes each, with each segment falling on 16-byte boundaries (See Figure 3).

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the ad-
dressing needs of programs. The segment register to be selected is automatically chosen according to the rules of the following table. All information in one segment type share the same logical attributes (e.g. code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd address boundaries. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU will automatically execute two fetch or write cycles for 16 -bit operands.

Memory   Reference Used	Segment   Register Used	Segment Selection Rule
Instructions	CODE (CS)	Automatic with all instruction prefetch.
Stack	STACK (SS)	All stack pushes and pops. Memory references   relative to BP base register except data references.
Local Data	DATA (DS)	Data references when: relative to stack, destination   of string operation, or explicity overridden.
External (Global) Data	EXTRA (ES)	Destination of string operations: Explicitly selected   using a segment override.

Certain locations in memory are reserved for specific CPU operations (See Figure 4). Locations from addresses FFFFOH through FFFFFH are reserved for operations including a jump to the initial system initialization routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be located. Locations 00000 H through $003 F F H$ are reserved for interrupt operations. Fourbyte pointers consisting of a 16 -bit segment address and a 16-bit offset address direct program flow to one of the 256 possible interrupt service routines. The pointer elements are assumed to have been stored at their respective places in reserved memory prior to the occurrence of interrupts.

## Minimum and Maximum Modes

The requirements for supporting minimum and maximum 8088 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 8088 is equipped with



Figure 4. Reserved Memory Locations
figuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the MN/ $\overline{M X}$ pin is strapped to GND, the 8088 defines pins 24 through 31 and 34 in maximum mode. When the MN/MX pin is strapped to $\mathrm{V}_{\mathrm{CC}}$, the 8088 generates bus control signals itself on pins 24 through 31 and 34.

The minimum mode 8088 can be used with either a multiplexed or demultiplexed bus. The multiplexed bus configuration is compatible with the MCS-85TM multiplexed bus peripherals. This configuration (See Figure 5) provides the user with a minimum chip count system. This architecture provides the 8088 processing power in a highly integrated form.

The demultiplexed mode requires one latch (for 64 K addressability) or two latches (for a full megabyte of addressing). A third latch can be used for buffering if the address bus loading requires it. A transceiver can also be used if data bus buffering is required (See Figure 6). The 8088 provides $\overline{D E N}$ and DT/ $\bar{R}$ to control the transceiver, and ALE to latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller (See Figure 7). The 8288 decodes status lines S0, S1, and S2, and provides the system with all bus control signals. Moving the bus control to the 8288 provides better source and sink current capability to the control lines, and frees the 8088 pins for extended large system features. Hardware lock, queue status, and two request/grant interfaces are provided by the 8088 in maximum mode. These features allow co-processors in local bus and remote bus configurations.


Figure 5. Multiplexed Bus Configuration


Figure 6. Demultiplexed Bus Configuration


231456-7
Figure 7. Fully Buffered System Using Bus Controller

## Bus Operation

The 8088 address/data bus is broken into three parts-the lower eight address/data bits (ADOAD7), the middle eight address bits (A8-A15), and the upper four address bits (A16-A19). The address/data bits and the highest four address bits are time multiplexed. This technique provides the most efficient use of pins on the processor, permitting the use of a standard 40 lead package. The middle eight address bits are not multiplexed, i.e. they remain val-
id throughout each bus cycle. In addition, the bus can be demultiplexed at the processor with a single address latch if a standard, non-multiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as T1, T2, T3, and T4 (See Figure 8). The address is emitted from the processor during T1 and data transfer occurs on the bus during T3 and T4. T2 is used primarily for chang-


Figure 8. Basic System Timing
ing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "wait" states (Tw) are inserted between T3 and T4. Each inserted "wait" state is of the same duration as a CLK cycle. Periods can occur between 8088 driven bus cycles. These are referred to as "idle" states (Ti), or inactive CLK cycles. The processor uses these cycles for internal housekeeping.

During T1 of any bus cycle, the ALE (address latch enable) signal is emitted (by either the processor or the 8288 bus controller, depending on the MN/MX strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{\mathbf{S 0}}, \overline{\mathbf{S 1}}$, and $\overline{\mathbf{S 2}}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to the following table:

$\overline{\mathbf{S 2}}$	$\overline{\mathbf{S 1}}$	$\overline{\mathbf{S 0}}$	Characteristics
O(LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
1 (HIGH)	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (No Bus Cycle)

Status bits S3 through S6 are multiplexed with high order address bits and are therefore valid during T2 through T4. S3 and S4 indicate which segment register was used for this bus cycle in forming the address according to the following table:

$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{3}}$	Characteristics
$\mathbf{O}(\mathrm{LOW})$	0	Alternate Data (Extra Segment)
0	1	Stack
$1(\mathrm{HIGH})$	0	Code or None
1	1	Data

S5 is a reflection of the PSW interrupt enable bit. S6 is always equal to 0 .

## I/O Addressing

In the 8088, I/O operations can address up to a maximum of 64 K I/O registers. The I/O address appears in the same format as the memory address on bus lines A15-A0. The address lines A19-A16 are zero in I/O operations. The variable I/O instructions,
which use register DX as a pointer, have full address capability, while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the I/O address space. I/O ports are addressed in the same manner as memory locations.

Designers familiar with the 8085 or upgrading an 8085 design should note that the 8085 addresses I/O with an 8 -bit address on both halves of the 16 bit address bus. The 8088 uses a full 16-bit address on its lower 16 address lines.

## EXTERNAL INTERFACE

## Processor Reset and Initialization

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 8088 RESET is required to be HIGH for greater than four clock cycles. The 8088 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 7 clock cycles. After this interval the 8088 operates normally, beginning with the instruction in absolute locations FFFFOH (See Figure 4). The RESET input is internally synchronized to the processor clock. At initialization, the HIGH to LOW transition of RESET must occur no sooner than $50 \mu \mathrm{~s}$ after power up, to allow complete initialization of the 8088.

NMI asserted prior to the 2nd clock after the end of RESET will not be honored. If NMI is asserted after that point and during the internal reset sequence, the processor may execute one instruction before responding to the interrupt. A hold request active immediately after RESET will be honored before the first instruction fetch.

All 3-state outputs float to 3 -state OFF during RESET. Status is active in the idle state for the first clock after RESET becomes active and then floats to 3-state OFF. ALE and HLDA are driven low.

## Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the instruction set description in the iAPX 88 book or the IAPX 86,88 User's Manual. Hardware interrupts can be classified as nonmaskable or maskable.

Interrupts result in a transfer of control to a new program location. A 256 element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (See Figure 4), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type." An interrupting device supplies an 8 -bit type number, during the interrupt acknowledge sequence, which is used to vector through the appropriate element to the new interrupt service program location.

## Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt (NMI) pin which has higher priority than the maskable interrupt request (INTR) pin. A typical use would be to activate a power failure routine. The NMI is edge-triggered on a LOW to HIGH transition. The activation of this pin causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of greater than two clock cycles, but is not required to be synchronized to the clock. Any higher going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves ( 2 bytes in the case of word moves) of a block type instruction. Worst case response to NMI would be for multiply, divide, and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may occur before, during, or after the servicing of NMI. Another highgoing edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

## Maskable Interrupt (INTR)

The 8088 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable (IF) flag bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction or the end of a whole move for a block type instruction. During interrupt response sequence, further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt, or single step), although the FLAGS register which is automatically pushed onto the stack reflects the state of the processor prior to the interrupt. Until the old FLAGS register is restored, the
enable bit will be zero unless specifically set by an instruction.

During the response sequence (See Figure 9), the processor executes two successive (back to back) interrupt acknowledge cycles. The 8088 emits the LOCK signal (maximum mode only) from T2 of the first bus cycle until T2 of the second. A local bus "hold" request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is fetched from the external interrupt system (e.g., 8259A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The interrupt return instruction includes a flags pop which returns the status of the original interrupt enable bit when it restores the flags.

## HALT

When a software HALT instruction is executed, the processor indicates that it is entering the HALT state in one of two ways, depending upon which mode is strapped. In minimum mode, the processor issues ALE, delayed by one clock cycle, to allow the system to latch the halt status. Halt status is available on $10 / \bar{M}, D T / \bar{R}$, and $\overline{S S O}$. In maximum mode, the processor issues appropriate HALT status on S2, $\overline{\mathrm{S} 1}$, and $\overline{\mathbf{S 0}}$, and the 8288 bus controlier issues one ALE. The 8088 will not leave the HALT state when a local bus hold is entered while in HALT. In this case, the processor reissues the HALT indicator at the end of the local bus hold. An interrupt request or RESET will force the 8088 out of the HALT state.

## Read/Modify/Write (Semaphore) Operations via LOCK

The LOCK status information is provided by the processor when consecutive bus cycles are required during the execution of an instruction. This allows the processor to perform read/modify/write operations on memory (via the "exchange register with memory" instruction), without another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish "test and set lock" operations. The LOCK signal is activated (LOW) in the clock cycle following decoding of the vated at the end of the last bus cycle of the instruction following the LOCK prefix. While LOCK is active, a request on a $\overline{R Q} / \overline{G T}$ pin will be recorded, and then honored at the end of the LOCK.


Figure 9. Interrupt Acknowledge Sequence

## External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a single software-testable input pin (TEST). This input is utilized by executing a WAIT instruction. The single WAIT instruction is repeatedly executed until the TEST input goes active (LOW). The execution of WAIT does not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the 8088 3-states all output drivers. If interrupts are enabled, the 8088 will recognize interrupts and process them. The WAIT instruction is then refetched, and reexecuted.

## Basic System Timing

In minimum mode, the $\mathrm{MN} / \overline{\mathrm{MX}}$ pin is strapped to $V_{C C}$ and the processor emits bus control signals compatible with the 8085 bus structure. In maximum mode, the MN/MX pin is strapped to GND and the processor emits coded status information which the 8288 bus controller uses to generate MULTIBUS compatible bus control signals.

## System Timing-Minimum System

## (See Figure 8)

The read cycle begins in T1 with the assertion of the address latch enable (ALE) signal. The trailing (low
going) edge of this signal is used to latch the address information, which is valid on the address/ data bus (ADO-AD7) at this time, into the 8282/8283 latch. Address lines A8 through A15 do not need to be latched because they remain valid throughout the bus cycle. From T1 to T4 the $I O / \bar{M}$ signal indicates a memory or I/O operation. At T2 the address is removed from the address/data bus and the bus goes to a high impedance state. The read control signal is also asserted at T 2 . The read ( $\overline{\mathrm{RD}}$ ) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later, valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again 3-state its bus drivers. If a transceiver is required to buffer the 8088 local bus, signals DT/R and DEN are provided by the 8088.

A write cycle also begins with the assertion of ALE and the emission of the address. The $I O / \bar{M}$ signal is again asserted to indicate a memory or I/O write operation. In T2, immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until at least the middle of T4. During T2, T3, and Tw, the processor asserts the write control signal. The write (WR) signal becomes active at the beginning of T2, as opposed to the read, which is delayed somewhat into T2 to provide time for the bus to float.

The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge (INTA) signal is asserted in place of the read ( $\overline{\mathrm{RD}}$ ) signal and the address bus is floated. (See Figure 9) In the second of two successive INTA cycles, a byte of information is read from the data bus, as supplied by the interrupt system logic (i.e. 8259A priority interrupt controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into the interrupt vector lookup table, as described earlier.

## Bus Timing-Medium Complexity Systems

## (See Figure 10)

For medium complexity systems, the MN/MX pin is connected to GND and the 8288 bus controller is added to the system, as well as a latch for latching the system address, and a transceiver to allow for bus loading greater than the 8088 is capable of handling. Signals ALE, $\overline{D E N}$, and DT/ $\bar{R}$ are generated by the 8288 instead of the processor in this configuration, although their timing remains relatively the same. The 8088 status outputs ( $\overline{\mathbf{S} 2,} \mathbf{S 1}$, and $\overline{\mathbf{S 0}}$ ) provide type of cycle information and become 8288 inputs. This bus cycle information specifies read (code, data, or I/O), write (data or I/O), interrupt acknowledge, or software halt. The 8288 thus issues control signals specifying memory read or write, I/O read or write, or interrupt acknowledge. The 8288 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence, data is not valid at the leading edge of write. The transceiver receives the usual $T$ and $\overline{O E}$ inputs from the 8288's $D T / \bar{R}$ and DEN outputs.

The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 8259A located on either the local bus or the system bus, If. the master 8289A priority interrupt controller is positioned on the local bus, a TTL gate is required to disable the transceiver when reading from the master 8259A during the interrupt acknowledge sequence and software "poll".

## The 8088 Compared to the 8086

The 8088 CPU is an 8 -bit processor designed around the 8086 internal structure. Most internal functions of the 8088 are identical to the equivalent 8086 functions. The 8088 handles the external bus
the same way the 8086 does with the distinction of handling only 8 bits at a time. Sixteen-bit operands are fetched or written in two consecutive bus cycles. Both processors will appear identical to the software engineer, with the exception of execution time. The internal register structure is identical and all instructions have the same end result. The differences between the 8088 and 8086 are outlined below. The engineer who is unfamiliar with the 8086 is referred to the iAPX 86, 88 User's Manual, Chapters 2 and 4, for function description and instruction set information. Internally, there are three differences between the 8088 and the 8086. All changes are related to the 8 -bit bus interface.

- The queue length is 4 bytes in the 8088, whereas the 8086 queue contains 6 bytes, or three words. The queue was shortened to prevent overuse of the bus by the BIU when prefetching instructions. This was required because of the additional time necessary to fetch instructions 8 bits at a time.
- To further optimize the queue, the prefetching algorithm was changed. The 8088 BIU will fetch a new instruction to load into the queue each time there is a 1 byte hole (space available) in the queue. The 8086 waits until a 2-byte space is available.
- The internal execution time of the instruction set is affected by the 8 -bit interface. All 16 -bit fetches and writes from/to memory take an additional four clock cycles. The CPU is also limited by the speed of instruction fetches. This latter problem only occurs when a series of simple operations occur. When the more sophisticated instructions of the 8088 are being used, the queue has time to fill and the execution proceeds as fast as the execution unit will allow.

The 8088 and 8086 are completely software compatible by virtue of their identical execution units. Software that is system dependent may not be completely transferable, but software that is not system dependent will operate equally as well on an 8088 and an 8086.

The hardware interface of the 8088 contains the major differences between the two CPUs. The pin assignments are nearly identical, however, with the following functional changes:

- A8-A15-These pins are only address outputs on the 8088. These address lines are latched internally and remain valid throughout a bus cycle in a manner similar to the 8085 upper address lines.
- BHE has no meaning on the 8088 and has been eliminated.

SSO provides the $\overline{\text { SO }}$ status information in the minimum mode. This output occurs on pin 34 in minimum mode only. DT/ $\bar{R}, 1 O / \bar{M}$, and $\overline{S S O}$ provide the complete bus status in minimum mode.

- $10 / \bar{M}$ has been inverted to be compatible with the MCS-85 bus structure.
- ALE is delayed by one clock cycle in the minimum mode when entering HALT, to allow the status to be latched with ALE.


Figure 10. Medium Complexity System Timipe

## IAPX 186 HIGH INTEGRATION 16-BIT MICROPROCESSOR

- Integrated Feature Set
-Enhanced 8086-2 CPU
-Clock Generator
-2 Independent, High-Speed DMA Channels
—Programmable Interrupt Controller
-3 Programmable 16-blt Timers
- Programmable Memory and Peripheral Chip-Select Logic
-Programmable Walt State Generator
-Local Bus Cuntroller
Avallable in 8 MHz (80186) and cost
effective 6 MHz (80186-6) versions.
High-Performance Processor
-2 Times the Performance of the Standard IAPX 86
-4 MByte/Sec Bus Bandwidth Interface
- Direct Addressing Capability to 1 MByte of Memory
- Completely Object Code Compatible with All Existing IAPX 86, 88 Software -10 New Instruction Types
- Complete System Development Support
-Development Software: Assembler, PL/M, Pascal, Fortran, and Syetem Utilities
-In-CIrcult-Emulator ( $\mathbf{I}^{2} \mid C E^{T M}$-186)
—IRMX ${ }^{\text {TM }}$ 86, 88 Compatible (80130 OSF)
- High Performance Numerical Coprocessing Capabillty Through 8087 Interface


Figure 1. LAPX 186 Block Diagram

[^12]OWTEL CORPOAATION, 1823

The Intel iAPX 186 (80186 part number) is a highly integrated 16-bit microprocessor. The iAPX 186 effectively combines 15-20 of the most common IAPX 86 system components onto one. The 80186 provides two times greater throughput than the standard 5 MHz IAPX 86. The iAPX 186 is upward compatible with iAPX 86 and 88 software and adds 10 new instruction types to the existing set.


Figure 2. 80186 Pinout Diagram

Table 1. 80186 Pin Deacription

Symbol	Pin No.	Type	Name and Function
$V_{C C}, V_{\text {cc }}$	9, 43	1	System Power: +5 volt power supply.
$\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {SS }}$	26,60	1	System Ground.
RESET	57	0	Reset Output indicates that the 80186 CPU is: being reset, and can be used as a system reset. It is active HIGH, synchronized with the processor clock, and lasts an integer number of clock periods corresponding to the length of the RES signal.
X1, X2	59,58	1	Crystal inputs, X1 and X2, provide an external connection for a fundamental mode paraliel resonant crystal for the internal crystal 'oscillator. X1 can interface to an external clock instead of a crystal. In this case, minimize the capacitance on X2 or drive X2 with complemented X1. The input or oscillator frequency is internally divided by two to generate the clock signal (CLKOUT).
CLKOUT	56	0	Clock Output provides the system with a $50 \%$ duty cycle waveform. All device pin timings are specified relative to CLKOUT. CLKOUT has sufficient MOS drive capabilities for the 8087 Numeric Processor Extension.
RES	24	1	System Reset causes the 80186 to immediately terminate its present activity, clear the internal logic, and enter a dormant state. This signal may be asynchronous to the 80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles after RES is returned HHGH. RES is required to be LOW for greater than 4 clock cycles and is internally syrichronized. For proper initialization, the LOW-to-HIGH transition of RiES'must occur no sooner than 50 microseconds after power up. This input is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC network. When RES occurs, the 80186 will drive the status lines to an inactive level for one clock, and then tri-state them.

Table 1. $\mathbf{8 0 1 8 6}$ PIn Description (Continued)

Symbol	Pin No.	Type	Name and Function			
TEST	47	1	TEST is examined by the WAIT instruction. If the TEST input is HIGH when "WAIT" execution begins, instruction execution will suspend. TEST will be resampled until it goes LOW, at which time execution will resume. If interrupts are enabled while the 80186 is waiting for TEST, interrupts will be serviced. This input is synchronized internally.			
TMR IN 0 . TMR IN 1	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	I	Timer Inputs are used either as clock or control signals, depending upon the programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH transitions are counted) and internally synchronized.			
TMR OUT 0 TMR OUT 1	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Timer outputs are used to provide single pulse or continuous waveform generation, depending upon the timer mode selected.			
DRQ0 DRQ1	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	I	DMA Request is driven HIGH by an external device when it desires that a DMA channel (Channel 0 or 1) perform a transfer. These signals are active HIGH, level-triggered, and internally synchronized.			
NMI	46	1	Non-Maskable Interrupt is an edge-triggered input which causes a type 2 interrupt. NMI is not maskable internally. A transition from a LOW to HIGH initiates the interrupt at the next instruction boundary. NMI is latched internally. An NMI duration of one clock or more will guarantee service. This input is internally synchronized.			
INTO, INT1. INT2/INTAO INT3/NTA1	$\begin{gathered} 45,44 \\ 42 \\ 41 \end{gathered}$	$\begin{gathered} 1 \\ 1 / 0 \\ 1 / 0 \end{gathered}$	Maskable Interrupt Requests can be requested by strobing one of these pins. When configured as inputs, these pins are active HIGH. Interrupt Requests are synchronized internally. INT2 and INT3 may be configured via software to provide active-LOW interrupt-acknowledge output signals. All interrupt inputs may be configured via software to be either edge- or level-triggered. To ensure recognition, all interrupt requests must remain active until the interrupt is acknowleged. When iRMX mode is selected, the function of these pins changes (see Interrupt Controller section of this data sheet).			
A19/S6, A18/S5. A17/S4. A16/S3	$\begin{aligned} & 65 \\ & 66 \\ & 67 \\ & 68 \end{aligned}$	0 0 0 0 0	Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most significant address bits during $T_{1}$. These signals are active HIGH. During $T_{2}$, $T_{3}$. $T_{W}$. and $T_{4}$, status information is available on these lines as encoded below:			
					Low	High
			S6		Processor Cycle	DMA Cycle
			S3,S4, and S5 are defined as LOW during $\mathrm{T}_{\mathbf{2}}-\mathrm{T}_{4}$			
AD15-ADO	$\begin{gathered} 10-17 \\ 1-8 \end{gathered}$	1/0	Address/Data Bus (0-15) signals constitute the time mutiplexed memory or I/O address ( $T_{1}$ ) and data ( $T_{2}, T_{3}, T_{w}$, and $T_{4}$ ) bus. The bus is active HIGH. $A_{0}$ is analogous to $\overline{B H E}$ for the lower byte of the data bus, pins $\mathrm{D}_{7}$ through $\mathrm{D}_{0}$. It is LOW during $T_{1}$ when a byte is to be transferred onto the lower portion of the bus in memory or $I / O$ operations.			
BHE/S7	64	0	During $T_{1}$ the Bus High Enable signal should be used to determine if data is to be enabled onto the most significant half of the data bus, pins $\mathrm{D}_{15}-\mathrm{D}_{8}$. BHE is LOW during $T_{1}$ for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the higher half of the bus. The $\mathrm{S}_{7}$ status information is available during $T_{2}, T_{3}$. and $T_{4}$. $S_{7}$ is logically equivalent to $\overline{B H E}$. The signal is active LOW, and is tristated OFF during bus HOLD.			
			$\overline{\text { BHE ard AO Encodings }}$			
			BHE Value	AO Value	Function	
			0 0 1 1	0 1 0 1	Word Transfer   Byte Transfer on upper half of data bus (D15-D8) Byte Transfer on lower half of data bus ( $D_{7}-D_{0}$ ) Reserved	

Table 1. 80186 Pin Description (Continued)

Symbol	Pin   No.	Type	Name and Function
ALE/QSO	61	. 0	Address Latch Enable/Queue Status 0 is provided by the 80186 to latch the address into the 8282/8283 address latches. ALE is active HIGH. Addresses are guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is generated off the rising edge of the CLKOUT immediately preceding $T_{1}$ of the associated bus cycle, effectively one-half clock cycle earlier than in the standard 8086. The trailing edge is generated off the CLKOUT rising edge in $T_{1}$ as in the 8086. Note that ALE is never floated.
WR/QS1	63	0	Write Strobe/Queue Status 1 indicates that the data ori the bus is to De written into a memory or an $I / O$ device. $\bar{W}$ is active for $T_{2}, T_{3}$, and $T_{W}$ of any write cycle. It is active LOW, and floats during "HOLD." it is driven HIGH for one clock during Reset, and then floated. When the 80186 is in queue status mode, the ALE/QS0 and WR/QS1 pins provide information about processor/instruction queue interaction.
			QS1 QS0 Queue Operation   0
			0 0 No queue operation   0 1 First opcode byte fetched from the queue   1 1 Subsequent byte fetched trom the queve   1 0 Empty the queue
$\overline{\text { RD/ }}$ ( ${ }^{\text {SMD }}$	.62	0	Read Strobe indicates that the $\mathbf{8 0 1 8 6}$ is performing a memory of I/O read cycle. $\overline{R D}$ is active LOW for $T_{2}, T_{3}$, and $T_{w}$ ot any read cycle. It is guaranteed not to go LOW in $T_{2}$ until after the Address Bus is floated. $\overline{R D}$ is active LOW, arid floats during "HOLD." $\overline{R D}$ is driven HIGH tor one clock during Reset, and theri the output driver is floated. A weak internat pull-up mechanism on the $\overline{R D}$ line holds it $\begin{gathered}i / G H\end{gathered}$ when the iine is not driven. During RESET the pin is sampled to determine whether the 80186 should provide $A L E, \overline{W R}$ and $\overline{R D}$, or if the Queue-Status should be provided. $\overline{R D}$ should be connected to GND to provide Queue-Statús data.
ARDY	55	1	Asynchronous Ready informs the 80186 that the addressed memory space or $1 / 0$ device will complete a data transter. The ARDY input pin wili accept an asynchronous input, and is active HIGH. Oniy the nising edge is internally synchronized by the 80186. This means that the falling edge of ARDY must be synchronized to the 80186 ciock. It conriected to $V_{C C}$, no WAIT states are inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active to terminate a bus cycle. If unused, this line should be tied LOW.
SRDY	49	1	Synchronous Ready must be'synchronized externally to the 80186. Thie use of SRDY provides a relaxed system-turning specification on the Ready input. This is accomplished by eliminating the one-half clock cycle which is required for internally resolving the signal level when using the ARDY input. This hne is active HIGH. If this ine is connected to $\mathrm{V}_{\mathrm{CC}}$, no WAIT states are inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active before a bus cycle is terminated. If unused, this line should be tied LOW.
$\overline{\text { LOCK }}$	48	0	LOCK output indicates that other system bus masters are not to gain control of the system bus while LOCK is active LOW. The LOCK signal is requested by the LOCK prefix instruction and is activated at the beginning of the first data cycle associated with the instruction following the LOCK prefix. It remains active until the completion of the instruction following the LOCK prefix. No prefetches will occur while LOCK is asserted. LOCR is active LOW, is driven HIGH for one clock during RESET, and then floated.

## IAPX 186

Table 1. $\mathbf{8 0 1 8 6}$ Pin Description (Continued)

Symbol	Pin   No.	Type	Name and Function
$\overline{\mathbf{S O}} \mathbf{S 1 , 5 1}$	52-54	0	Bus cycle status $\overline{\mathbf{S O}}-\overline{\mathbf{S 2}}$ are encoded to provide bus-transaction information:
			80186 Bus Cycle Status Information
			$\overline{\text { S2 }}$
			0 0 0 Interrupt Acknowledge   0 0 1 Read I/O   0 1 0 Write V/O   0 1 1 Halt   1 0 0 Instruction Fetch   1 0 1 Read Data from Memory   1 1 0 Write Data to Memory   1 1 1 Passive (no bus cycle)
			The status pins float during "HOLD."   $\overline{S 2}$ may be used as a logical $M / / \bar{O}$ indicator, and $\overline{S 1}$ as a $D T / \bar{R}$ indicator.   The status lines are driven HIGH for one clock during Reset. and then floated ntil a bus cycle begins.
HOLD (input) HLDA (output)	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	HOLD indicates that another bus master is requesting the loca! bus. The HOLD input is active HIGH. HOLD may be asynchronous with respect to the 80186 clock. The 80186 will issue a HLDA (HIGH) in response to a HOLD request at the end of $T_{4}$ or $T_{1}$. Simultaneous with the issuance of HLDA, the 80186 will float the local bus and control lines. After HOLD is detected as being LOW, the 80186 will lower HLDA. When the 80186 needs to run another bus cycle, it will again drive the local bus and control lines.
UCS	34	0	Upper Memory Chip Select is an active LOW output whenever a memory reference is made to the defined upper portion ( $1 \mathrm{~K}-256 \mathrm{~K}$ block) of memory. This line is not floated during bus HOLD. The address range activating UCS is software programmable.
LCS	33	0	Lower Memory Chip Select is active LOW whenever a memory reference is made to the defined lower portion (1K-256K) of memory. This line is not floated during bus HOLD. The address range activating $\overline{L C S}$ is software programmable.
MCSO-3	38,37,36,35	0	Mid-Range Memory Chip Select signals are active LOW when a memory reference is made to the defined mid-range portion of memory ( $8 \mathrm{~K}-512 \mathrm{~K}$ ). These lines are not floated during bus HOLD. The address ranges activating MCSO-3 are software programmable.
$\begin{aligned} & \overline{\text { PCSO }} \\ & \text { PCST-4 } \end{aligned}$	$\begin{gathered} 25 \\ 27,28,29,30 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Peripheral Chip Select signals $0-4$ are active LOW when a reference is made to the defined peripheral area ( 64 K byte I/O space). These lines are not floated during bus HOLD. The address ranges activating $\overline{\text { PCSO}}-4$ are software programmable.
PCS5/A1	31	0	Peripheral Chip Select 5 or Latched A1 may be programmed to provide a sixth peripheral chip select, or to provide an internally latched A1 signal. The address range activating PCS5 is software programmable. When programmed to provide latched A1, rather than PCS5, this pin will retain the previously latched value of A1 during a bus HOLD. A1 is active HIGH.
PCS6/A2	32	0	Peripheral Chip Select 6 or Latched A2 may be programmed to provide a seventh peripheral chip select, or to provide an internally latched A2 signal. The address range activating PCS6 is software programmable. When programmed to provide latched A2, rather than $\overline{\mathrm{PCS}}$, this pin wil! retain the previously latched value of A2 during a bus HOLD. A2 is active HIGH.
DT/R	40	0	Data Transmit/Receive controls the direction of data flow through the external 8286/8287 data bus transceiver. When LOW, data is transferred to the 80186. When HiGH the 80186 places write data on the data bus.
$\overline{\text { DEN }}$	39	0	Data Enable is provided as an 8286/8287 data bus transceiver output enable. DEN is active LOW during each memory and I/O access. DEN is HIGH whenever DT/R changes state.

## IAPX 186

## FUNCTIONAL DESCRIPTION

## Introduction

The following Functional Description describes the base architecture of the iAPX 186. This architecture is common to the IAPX 86, 88, and 286 microprocessor families as well. The iAPX 186 is a very high integration 16-bit microprocessor. It combines 15-20 of the most common microprocessor system components onto one chip while providing twice the performance of the standard iAPX 86. The 80186 is object code compatible. with the iAPX 86, 88 microprocessors and adds 10 new instruction types to the existing iAPX 86, 88 instruction set.

## IAPX 186 BASE ARCHITECTURE

The iAPX 86, 88, 186, and 286 family all contain the same basic set of registers, instructions, and addressing modes. The 80186 processor is upward compatible with the 8086,8088 , and 80286 CPUs.

## Register Set

The 80186 base architecture has fourteen registers as shown in Figures 3a and 3b. These registers are grouped into the following categories.

## General Registers

Eight 16 -bit general purpose registers may be used to contain arithmetic and logical operands. Four of these ( $A X, B X, C X$, and $D X$ ) can be used as 16-bit registers or split into pairs of separate 8 -bit registers.

## Segment Registers

Four 16-bit special purpose registers select, at any given time, the segments of memory that are immediately addressable for code, stack, and data. (For usage, refer to Memory Organization.)

## Base and Index Reglaters

Four of the general purpose registers may also be used to determine offset addresses of operands in memory. These registers may contain base addresses or indexes to particular locations within a segment. The addressing mode selects the specific registers for operand and address calculations.

## Status and Control Reglsters

Two 16-bit special purpose registers record or alter certain aspects of the 80186 processor state. These are the Instruction Pointer Register, which contains the offset address of the next sequential instruction to be executed, and the Status Word Register, which contains status and control flag bits (see Figures 3a and 3 b ).

## Status Word Description

The Status Word records specific characteristics of the result of logical and arithmetic instructions (bits $0,2,4,6,7$, and 11) and controls the operation of the 80186 within a given operating mode (bits 8, 9, and 10). The Status Word Register is 16 -bits wide. The function of the Status Word bits is shown in Table 2.


Figure 3a. $\mathbf{8 0 1 8 6}$ General Purpose Reglater Set

## iAPX 286/10 HIGH PERFORMANCE MICROPROCESSOR WITH MEMORY MANAGEMENT AND PROTECTION

(80286-8, 80286-6, 80286-4)

- High Performance Processor (Up to six times IAPX 86)
- Large Address Space:
- 16 Megabytes Physical
-1 Gigabyte Virtual per Task
- Integrated Memory Management, FourLevel Memory Protection and Support for Virtual Memory and Operating Systems
- Two IAPX 86 Upward Compatible Operating Modes:
-iAPX 86 Real Address Mode —Protected Virtual Address Mode
- Range of clock rates
- 8 MHz for 80286-8
-6 MHz for 80286-6
- 4 MHz for 80286-4


# - Optional Processor Extension: -iAPX 286/20 High Performance 80-bit Numeric Data Processor 

- Complete System Development Support:
-Development Software: Assemblor, PL/M, Pascal, FORTRAN, and System Utilities
-In-Circult-Emulator (ICE "-286)
- High Bandwidth Bus Interface (8 Megabyte/Sec)
- Avallable in EXPRESS:
-Standard Temperature Range

The IAPX 286/10 (80286 part number) is an advanced, high-performance microprocessor with specially optimized capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory proiection that supports operating system and task isolation as well as program and data privacy within tasks. An $8 \mathrm{MHz} \mathrm{IAPX} 286 / 10$ provides up to six times greater throughout than the standard 5 MHz IAPX 86/10. The 80286 includes memory management capabilities that map up to $2^{30}$ (one gigabyte) of virtual address space per task into $2^{24}$ bytes ( 16 megabytes) of physical memory

The IAPX 286 is upward compatible with IAPX 86 and 88 software. Using IAPX 86 real address mode, the 80286 is object code compatible with existing IAPX 86, 88 software. In protected virtual address mode, the 80286 is source code compatible with IAPX 86, 88 software and may require upgrading to use virtual addresses supported by the 80286 's integrated memory management and protection mechanism. Both modes operate at full 80286 performance and execute a superset of the iAPX 86 and 88 's instructions.

The 80286 provides special operations to support the efficient implementation and execution of operating systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present exception and restartable instructions.


Figure 1. 80286 Internal Block Diagram

[^13]Component Pad View-As viewed from underside of component when mounted on the board.


NOTE: N.C. pads must not be connected.

Figure 2. $\mathbf{8 0 2 8 6}$ Pin Configuration

Table 1. Pin Description
The following pin'function descriptions are for the 80286 microprocessor:

Symbol	Type	Name and Function		
CLK	1	System Clock provides the fundamental timing for IAPX 286 systems. It is divided by two inside the 80286 to generate the processor clock. The internal divide-by-two circuitry can be synchronized to an external clock generator by a LOW to HIGH transition on the RESET input.		
$\mathrm{D}_{15}-\mathrm{D}_{0}$	I/O	Data Bus inputs data during memory, $1 / 0$, and interrupt acknowledge read cycles; outputs data during memory and I/O write cycles. The data bus is active HIGH and floats to 3 -state OFF during bus hold acknowledge.		
$A_{23}-A_{0}$	0	Addrese Bus outputs physical memory and $1 / O$ port addresses. A0 is LOW when data is to be transferred on pins $\mathrm{D}_{7}-0 . \mathrm{A}_{23} \cdot \mathrm{~A}_{16}$ are LOW during I/O transfers. The address bus is active HIGH and floats to 3 -state OFF during bus hold acknowledge.		
$\overline{\text { BHE }}$	0	Bus High Enable indicates transfer of data on the upper byte of the data bus, $\mathrm{D}_{15}$-8. Eight-bit oriented devices assigned to the upper byte of the data bus would normally use BHE to condition chip select functions. BHE is active LOW and fidats to 3 -state OFF during bus hold acknowledge.		
		BHE and AO Encodings		
		EHE Value	Ao value	Function
		0 0 1 1	0 1 0 1	Word transfer   Byie transier on upper half of data bus ( $\mathrm{D}_{15-8}$ ) Byte transter on lower half of data bus ( $\mathrm{D}_{7-0}$ ) Reserved

Table 1. Pin Description (Cont.)


## Table 1. Pin Description (Cont.)

Symbol	Type	Name and Function
$\begin{aligned} & \text { PEREQ } \\ & \hline \text { PEACK } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Processor Extension Operand Request and Acknowledge extend the memory management and pro،ection capabilities of the 80286 to processor extensions. The PEREQ input requests the 80286 to perform a data: operand transfer for a processor extension. The PEACR output signals the processor extension when the: requested operand is being transterred. PEREQ is active HIGH and floats to 3-state OFF during bus holdi acknowledge. PEACR may be asynchronous to the system clock. PEACR is active LOW.
$\frac{\overline{\text { BUSY }}}{\text { ERROR }}$	$1$	Processor Extension Busy and Error indicate the operating condition of a processor extension to the 80286. An active BUSP input stops 80286 program execution on WAIT and some ESC instructions until BUSY becomes inactive (HIGH). The 80286 may be interrupted while waiting for BUSY to become inactive. An active ERROR input causes the 80286 to perform a processor extension interrupt when executing WAIT or some ESC instructions. These inputs are active LOW and may be asynchronous to the system clock.
RESET	1	System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be reinitialized at any time with a LOW to HIGH transition on RESET which remains active for more than 16 system clock cycles. During RESET active, the output pins of the 80286 enter the state shown below:   Operation of the 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transition of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are required by the 80286 for internal initializations before the first bus cycie to fetch code from the power-on execution address is performed.   A LOW to HIGH transition of RESET synchronous to the system clock will end a processor cycle at the second HIGH to LOW transition of the system clock. The LOW to HIGH transition of RESET may be asynchronous to the system clock; however, in this case it cannot be predetermined which phase of the processor clock will occur during the next system clock period. Synchronous LOW to HIGH transitions of RESET are required only for systems where the processor clock must be phase synchronous to another clock.
$V_{\text {SS }}$	1	System Ground: 0 Volts.
$\mathrm{V}_{\text {CC }}$	1	System Power: +5 Volt Power Supply.
CAP	I	Substrate Filter Capacitor: a $0.047 \mu \mathrm{f} \pm 20 \% 12 \mathrm{~V}$ capacitor must be connected between this pin and ground. This capacitor fiters the output of the internal substrate bias generator. A maximum DC leakage current of $1 \mu$ a is allowed through the capacitor.   For correct operation of the 80286, the substrate bias generator must charge this capacitor to its operating voltage. The capacitor chargeup time is 5 milliseconds (max.) after $V_{C C}$ and CLK reach their specified AC and CC parameters. RESET may be applied to prevent spurious activity by the CPU during this time. Attel this time, the 80286 processor clock can be phase synchronized to another clock by pulsing RESET LOW synchronous to the system clock.

## HIGH PERFORMANCE 32-BIT CHMOS MICROPROCESSOR

 WITH INTEGRATED MEMORY MANAGEMENT■ Flexible 32-Bit Microprocessor
-8, 16, 32-Blt Data Types

- 8 General Purpose 32-Bit Reglsters
- Very Large Address Space
-4 Gigabyte Physical
- 64 Terabyte Virtual
- 4 Gigabyte Maximum Segment Size
- Integrated Memory Management Unit
- Virtual Memory Support
- Optional On-Chip Paging
- 4 Levels of Protection
- Fully Compatlble with 80286
- Object Code Compatible with All 8086 Family Microprocessors
- Virtual $\mathbf{8 0 8 6}$ Mode Allows Running of 8086 Software in a Protected and Paged System
- Hardware Debugging Support
- Optimized for System Performance
- Pipelined Instruction Execution
- On-Chip Address Translation Caches
- 16 and 20 MHz Clock
- 32 and 40 Megabytes/Sec Bus Bandwidth
- High Speed Numerics Support via 80387 Coprocessor
- Complete System Development Support
- Software: C, PL/M, Assembler System Generation Tools
- Debuggers: PSCOPE, ICETM-386
- High Speed CHMOS III Technology
- 132 Pin Grid Array Package
(See Packaging Specification, Order \#231369)

The 80386 is an advanced 32 -bit microprocessor designed for applications needing very high performance and optimized for multitasking operating systems. The 32-bit registers and data paths support 32-bit addresses and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes (2**46) of virtual memory. The integrated memory management and protection architecture includes address translation registers, advanced multitasking hardware and a protection mechanism to support operating systems. In addition, the 80386 allows the simultaneous running of multiple operating systems. Instruction pipelining, onchip address translation, and high bus bandwidth ensure short average instruction execution times and high system throughput.
The 80386 offers new testability and debugging features. Testability features include a self-test and direct access to the page translation cache. Four new breakpoint registers provide breakpoint traps on code execution or data accesses, for powerful debugging of even ROM-based systems.
Object-code compatibility with all 8086 family members ( $8086,8088,80186,80188,80286$ ) means the 80386 offers immediate access to the world's largest microprocessor software base.


231630-40
Figure 1-1. 80386 Plpelined 32-Bit Microarchitecture
UNIXTM is a Trademark of AT\&T Bell Labs.
MS-DOS is a Trademark of MICROSOFT Corporation.

## 2. BASE ARCHITECTURE

### 2.1 INTRODUCTIOA

The 80386 consists of a central processing unit, a memory management unit and a bus interface.

The central processing unit consists of the execution unit and instruction unit. The execution unit contains the eight 32-bit general purpose registers which are used for both address calculation, data operations and a 64-bit barrel shifter used to speed shift, rotate, multiply, and divide operations. The multiply and divide logic uses a 1-bit per cycle algorithm. The multiply algorithm stops the iteration when the most significant bits of the multiplier are all zero. This allows typical 32 -bit multiplies to be executed in under one microsecond. The instruction unit decodes the instruction opcodes and stores them in the decoded instruction queue for immediate use by the execution unit.

The memory management unit (MMU) consists of a eegmentation unit and a paging unit. Segmentation allows the managing of the logical address space by providing an extra addressing component, one that allows easy code and data relocatability, and efficient sharing. The paging mechanism operates beneath and is transparent to the segmentation process, to allow management of the physical address space. Each segment is divided into one or more 4 K byte pages. To implement a virtual memory system, the 80386 supports full restartability for all page and segment faults.

Memory is organized into one or more variable length segments, each up to four gigabytes in size. A given region of the linear address space, a segment, can have attributes associated with it. These attributes include its location, size, type (i.e. stack, code or data), and protection characteristics. Each task on an 80386 can have a maximum of 16,381 segments of up to four gigabytes each, thus providing 64 terabytes (trillion bytes) of virtual memory to each task.

The segmentation unit provides four-levels of protection for isolating and protecting applications and the operating system from each other. The hardware enforced protection allows the design of systems with a high degree of integrity.

The 80386 has two modes of operation: Real Address Mode (Real Mode), and Protected Virtual Address Mode (Protected Mode). In Real Mode the 80386 operates as a very fast 8086 , but with 32 -bit extensions if desired. Real Mode is required primari-
ly to setup the processor for Protected Mode operation. Protected Mode provides access to the sophisticated memory management, paging and privilege cacabilities of the processor.

Within Protected Mode, software can perform a task switch to enter into tasks designated as Virtual 8086 Mode tasks. Each such task behaves with 8086 semantics, thus allowing 8086 software (an application program, or an entire operating system) to execute. The Virtual 8086 tasks can be isolated and protected from one another and the host 80386 operating system, by the use of paging, and the 1/O Permission Bitmap.

Finally, to facilitate high performance system hardware designs, the 80386 bus interface offers address pipelining, dynamic data bus sizing, and direct Byte Enable signals for each byte of the data bus. These hardware features are described fully beginning in Section 5.

### 2.2 REGISTER OVERVIEW

The 80386 has 32 register resources in the following categories:

- Generai Purpose Registers
- Segment Registers
- Instruction Pointer and Flags
- Control Registers
- System Address Registers
- Deburg Registers
- Test Registers.

The registers are a superset of the 8086, 80186 and 80286 registers, so all 16 -bit 8086,80186 and 80286 registers are contained within the 32-bit 80385.

Figure 2-1 shows all of 80386 base architecture registers, which include the general address and data registers, the instruction pointer, and the flags register. The contents of these registers are task-specific, so these registers are automatically loaded with a new context upon a task switch operation.

The base architecture also includes six directly accessible segments, each up to 4 Gbytes in size. The segments are indicated by the selector values placed in 80386 segment registers of Figure 2-1. Various selector values can be loaded as a program executes, if desired.


Figure 2-1.80386 Aase Arcritecture Registers
This seieciors are arso task-specific, so thie segment registers are autoriaticaily loaoed with new context upon a task switch operation.

Thie oftier types of regisiars, Control, Systern Adcrese, Leblig, and Tesi, are primarily used by systern soltware.

### 2.3 REGISTER DESCRIPTIONS

### 2.3.1 General Purpose Registers

General Purpose Registers: The eight general purpose registers of 32 bits hold data or address quantities. The general registers, Figure 2-2, support data operands of 1,8,16, 32 and 64 bits, and bit fields of 1 to 32 bits. They support address operands of 16 and 32 bits. The 32 -bit registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be accessed separately. This is done by using the 16bit names of the registers $A X, B X, C X, D X, S I, D I$,

BP, and SP. When accessed as a 16 -bit operand, the upper 16 bits of the register are neither used nor changed.

Finally 8 -bit operations can individually access the lowest byte (bits $0-7$ ) and the higher byte (bits 815) of general purpose registers $A X, B X, C X$ and $D X$. The lowest bytes are named AL, BL, CL and DL, respectively. The higher bytes are named $\mathrm{AH}, \mathrm{BH}$, CH and DH , respectively. The individual byte accessibility ofters additional flexibility for data operations, but is not useci for effective address calculation.

31	16		8		EAX
		$A H$ A $\times$ AL			
		BH	B $\times$	BL	EBX
		CH	$\mathrm{C} \times$	CL	ECX
		DH	D $X$	DL	EDX
		Sl			ESI
		DI			EDI
		BP			EBP
		SP			ESP
31	16	15			EIP

Figure $2-2$. Getreral hegisters and Instruction Polnter

### 2.3.2 instruction Puinter

The insiruciun pointer, Figure 2-2, is a 32-bit register nained ElP. EIP holds the offset of the next instruction to be executed. The offset is aiways relative to the base of the code segment (CS). The lower 16 bits (bits $0-15$ ) of EIP contain the 16 -bit instruction pointer named IP, which is used by 16 -bit adaressing.

### 2.3.3 Flags Register

The Flags Register is a 32-bit register named EFLAGS. The defined bits and bit fields within EFLAGS, shown in Figure 2-3, control certain operations and indicate status of the 80386. The lower 16 bits (bit $0-15$ ) of EFLAGS contain the 16 -bit flag register named FLAGS, which is most useful when executing 8086 and 80286 code.


Figure 2-3. Flags Register

VM (Virtual 8086 Mode, bit 17)
The VM bit provides Virtual 8086 Mode within Protected Mode. If set while the 80386 is in Protected Mode, the 80386 will switch to Virtual 8086 operation, handling segment loads as the 8086 does, but generating exception 13 faults on privileged opcodes. The VM bit can be set only in Protected Mode, by the IRET instruction (if current privilege level $=$ 0 ) and by task switches at any privilege level. The VM bit is unaffected by POPF. PUSHF always pushes a 0 in this bit, even if executing in virtual 8086 Mode. The EFLAGS image pushed during interrupt processing or saved during task switches will contain a 1 in this bit if the interrupted code was executing as a Virtual 8086 Task.
RF (Resume Flag, bit 16)
The RF flag is used in conjunction with the debug register breakpoints. It is checked at instruction boundaries before breakpoint processing. When RF is set, it causes any debug fault to be ignored on the next instruction. RF is then automatically reset at the successful completion of every instruction (no faults are signalled) except the IRET instruction, the POPF instruction, (and JMP, CALL, and INT instructions causing a task switch). These instructions set RF to the value specified by the memory image. For example, at the end of the breakpoint service routine, the IRET
instruction can pop an EFLAG image having the RF bit set and resume the program's execution at the breakpoint address without generating another breakpoint fault on the same location.

## NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set to indicate that the execution of this task is nested within another task. If set, it indicates that the current nested task's Task State Segment (TSS) has a valid back link to the previous task's TSS. This bit is set or reset by control transfers to other tasks. The value of NT in EFLAGS is tested by the IRET instruction to determine whether to do an inter-task return or an intra-task return. A POPF or an IRET instruction will affect the setting of this bit according to the image popped, at any privilege level.
IOPL (Input/Output Privilege Level, bits 12-13)
This two-bit field applies to Protected Mode. IOPL indicates the numerically maximum CPL (current privilege level) value permitted to execute I/O instructions without generating an exception 13 fault or consulting the I/O Permission Bitmap. It also indicates the maximum CPL value allowing alteration of the IF (INTR Enable Flag) bit when new values are popped into the EFLAG register. POPF and IRET instruction can alter the IOPL field when executed at CPL $=0$. Task switches can always alter the IOPL field, when the new flag image is loaded from the incoming task's TSS.

OF (Overflow Flag, bit 11)
OF is set if the operation resulted in a signed overflow. Signed overflow occurs when the operation resulted in carry/borrow into the sign bit (high-order bit) of the result but did not result in a carry/borrow out of the highorder bit, or vice-versa. For 8/16/32 bit operations, OF is set according to overflow at bit 7/15/31, respectively.
DF (Direction Flag, bit 10)
DF defines whether ESI and/or EDI registers postdecrement or postincrement during the string instructions. Postincrement occurs if DF is reset. Postdecrement occurs if DF is set.
IF (INTR Enable Flag, bit 9)
The IF flag, when set, allows recognition of external interrupts signalled on the INTR pin. When IF is reset, external interrupts signalled on the INTR are not recognized. IOPL indicates the maximum CPL value allowing alteration of the IF bit when new values are popped into EFLAGS or FLAGS.
TF (Trap Enable Flag, bit 8)
TF controls the generation of exception 1 trap when single-stepping through code. When TF is set, the 80386 generates an exception 1 trap after the next instruction is executed. When TF is reset, exception 1 traps occur only as a function of the breakpoint addresses loaded into debug registers DR0DR3.
SF (Sign Flag, bit 7)
SF is set if the high-order bit of the result is set, it is reset otherwise. For 8 -, 16-, 32-bit operations, SF reflects the state of bit 7,15 , 31 respectively.

ZF (Zero Flag, bit 6)
ZF is set if all bits of the result are 0 . Otherwise it is reset.
AF (Auxiliary Carry Flag, bit 4)
The Auxiliary Flag is used to simplify the addition and subtraction of packed BCD quantities. AF is set if the operation resulted in a carry out of bit 3 (addition) or a borrow into bit 3 (subtraction). Otherwise AF is reset. AF is affected by carry out of, or borrow into bit 3 only, regardiess of overall operand length: 8 , 16 or 32 bits.
PF (Parity Flags, bit 2)
PF is set if the low-order eight bits of the operation contains an even number of " 1 ' $s$ " (even parity). PF is reset if the low-order eight bits have odd parity. PF is a function of only the low-order eight bits, regardless of operand size.
CF (Carry Flag, bit 0)
CF is set if the operation resulted in a carry out of (addition), or a borrow into (subtraction) the high-order bit. Otherwise CF is reset. For 8 -, 16- or 32-bit operations, CF is set according to carry/borrow at bit 7, 15 or 31, respectively.

Note in these descriptions, "set" means "set to 1," and "reset" means "reset to 0."

### 2.3.4 Segment Registers

Six 16-bit segment registers hold segment selector values identifying the currently addressable memory segments. Segment registers are shown in Figure 24. In Protected Mode, each segment may range in size from one byte up to the entire linear and physi-


Figure 2-4. 80386 Segment Registers, and Assoclated Descriptor Registers
cal space of the machine, 4 Gbytes ( $2^{32}$ bytes). In Real Address Mode, the maximum segment size is fixed at 64 Kbytes ( $2^{16}$ bytes).

The six segments addressable at any given moment are defined by the segment registers CS, SS, DS, ES, FS and GS. The selector in CS indicates the current code segment; the selector in SS indicates the current stack segment; the selectors in DS, ES, FS and GS indicate the current data segments.

### 2.3.5 Segment Descriptor Registers

The segment descriptor registers are not programmer visible, yet it is very useful to understand their content. Inside the 80386, a descriptor register (programmer invisible) is associated with each program-mer-visible segment register, as shown by Figure 24. Each descriptor register holds a 32-bit segmient base address, a 32 -bit segment limit, and the other necessary segment attributes.

When a selector value is loaded into a segment register, the associated descriptor register is automatically updated with the correct information. In Real Address Mode, only the base address is updated directly (by shifting the selector vaiue four bits to the left), since the segment maximum iimit and attributes are fixed in Real Mode. In Protected Mode, the tase address, the limit, and the attributes are all updated per the contents of the segment descriptor incexed by the selector.

Whenever a memory refocence occurs, the segment descriptor register assoriated with the segment being used is automatically involved pith the memory reference. The 32-bit segment base address becomes a component of the linear adoress carculation, the 32-bit limit is used for the limit-check operation, and the attributes are checked against the type of memory reference requested.

### 2.3.6 Control Registers

The 80386 has three control registers of 32 bits, CRO, CR2 and CR3, to hold machine state of a global nature (not specific to an individual task). Thees registers, along with System Address Registers described in the next section, hold machine state that affects all tasks in the system. To access the Control Registers, load and store instructions are defined.

## CRO: Machine Controi Register (includes 80286 Machine Status Word)

CRO, shown in Figure 2-5, contans 6 defined bits for control and status purposes. The low-order 16 bits of CRO are also known as the Machine Status Word, MSW, for compatibility with 80286 Protected Mode. LMSW and SMSW instructions are taken as special aliases of the load and store CRO operations, where only the low-order 16 bits of CRO are involved. For compatibility with 80286 operating systems the 80386's LMSW instructions work in an identical fashion to the LMSW instruction on the 80286. (i.e. It only operates on the low-order 16-bits of CRO and it ignores the new bits in CRO.) New 80386 operating systems should use the MOV CR0, Reg instruction.

The defined CR0 bits are described below.
PG (Paging Enable, bit 31)
the PG bit is set to enable the on-chip paging unit. It is reset to disable the on-chip paging unit.
ET (Processor Extension Type, bit 4)
ET indicates the processor extension type (either 80287 or 80387 ) as detected by the level of the ERROR * input following 80386 reset. The ET bit may also be set or reset by loading CRO under program control if desired. If ET is set, the 80387 -compatible 32 -bit protocol is used. If ET is reset, 80287-compatible 16-bit protocol is used.
Note that for strict 80286 compatibility, ET is not affected by the LMSW instruction. When the MSW or CRO is stored, bit 4 accurately reflects the current state of the ET bit.


Figure 2-5. Control Reglater 0

TS (Task Switched, bit 3)
TS is automatically set whenever a task switch operation is performed. If TS is set, a coprocessor ESCape opcode will cause a Coprocessor Not Available trap (exception 7). The trap handier typically saves the 80287/80387 context belonging to a previous task, loads the 80287/80387 state belonging to the current task, and clears the TS bit before returning to the faulting coprocessor opcode.
EM (Emulate Coprocessor, bit 2)
The EMulate coprocessor bit is set to cause all coprocessor opcodes to generate a Coprocessor Not Available fault (exception 7). It is reset to allow coprocessor opcodes to be executed on an actual 80287 or 80387 coprocessor (this the default case after reset). Note that the WAIT opcode is not affected by the EM bit setting.
MP (Monitor Coprocessor, bit 1)
The MP bit is used in conjunction with the TS bit to determine if the WAIT opcode will generate a Coprocessor Not Available fault (exception 7) when $\mathrm{TS}=1$. When both MP = 1 and TS $=1$, the WAIT opcode generates a trap. Otherwise, the WAIT opcode does not generate a trap. Note that TS is automatically set whenever a task switch operation is performed.
PE (Protection Enable, bit 0)
The PE bit is set to enable the Protected Mode. If $P E$ is reset, the processor operates again in Real Mode. PE may be set by loading MSW or CRO. PE can be reset only by a load into CRO. Resetting the PE bit is typically part of a longer instruction sequence needed for proper transition from Protected Mode to Real Mode. Note that for strict 80286 compatibility, PE cannot be reset by the LMSW instruction.

## CR1: reserved

CR1 is reserved for use in future Intel processors.
CR2: Page Fault Linear Address
CR2, shown in Figure 2-6, holds the 32-bit linear address that caused the last page fault detected. The
error code pushed onto the page fault handler's stack when it is invoked provides additional status information on this page fault.

## CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical base address of the page directory table. The 80386 page directory table is always page-aligned (4 Kbyte-aligned). Therefore the lowest twelve bits of CR3 are ignored when written and they store as undefined.

A task switch through a TSS which changes the value in CR3, or an explicit load into CR3 with any value, will invalidate all cached page table entries in the paging unit cache. Note that if the value in CR3 does not change during the task switch, the cached page table entries are not flushed.

### 2.3.7 System Address Registers

Four special registers are defined to reference the tables or segments supported by the 80286/80386 protection model. These tables or segments are:

GDT (Global Descriptor Table),
IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Table),
TSS (Task State Segment).
The addresses of these tables and segments are stored in special registers, the System Address and System Segment Registers illustrated in Figure 2-7 These registers are named GDTR, IDTR, LDTR and TR, respectively. Section 4 Protected Mode Architecture describes the use of these registers.

## GDTR and IDTR

These registers hold the 32-bit linear base addres\$ and 16 -bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to all tasks in the system, are defined by 32-bit linear addresses (subject to page translation if paging is enabled) and 16-bit limit values.


NOTE: ©0. indicates Intel reserved: Do not define; SEE SECTION 2.3.10
Figure 2-6. Control Registers 2 and 3


Figure 2-7. System Address and System Segment Registers

## LDTR and TR

These registers hold the 16 -bit selector for the LDT descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are taskspecific segments, are defined by selector values stored in the system segment registers. Note that a segment descriptor register (programmer-invisible) is associated with each system segment register.

### 2.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible debug registers provide on-chip support for debugging. Debug Registers DRO-3 specify the four linear breakpoints. The Debug Control Register DR7 is used to set the breakpoints and the Debug Status Register DR6, displays the current state of the breakpoints. The use of the debug registers is described in section 2.12 Debugging support.


Test Registers: Two registers are used to control the testing of the RAM/CAM (Content Addressable Memories) in the Translation Lookaside Buffer portion of the 80386. TR6 is the command test register, and TR7 is the data register which contains the data of the Translation Lookaside buffer test. Their use is discussed in section 2.11 Testabllity.

Figure 2-8 shows the Debug and Test registers.

### 2.3.9 Register Accessibility

There are a few differences regarding the accessibility of the registers in Real and Protected Mode. Table 2-1 summarizes these differences. See Section 4 Protected Mode Architecture for further details.

### 2.3.10 CompatIbility

## VERY IMPORTANT NOTE:

 COMPATIBILITY WITH FUTURE PROCESSORSIn the preceding register descriptions, note certain 80386 register bits are intel reserved. When reserved blts are called out, treat them as fully undefined. This is essent'sl for your software compatibility with future pro:essorsi Follow the guldellines below:

1) Do not depend on the states of any undefined bits when testing the values of defined register bits. Mask them out when testing.
2) Do not depend on the states of any undefined bits when storing them to memory or another register.
3) Do not depend on the ablity to retain information written into any undefined blts.
4) When loading registers always load the undofined bits as zeros.

Figure 2-8. Debug and Test Registers

Table 2-1. Reglater Usage

Register	Use In   Real Mode		Use In   Protected Mode		Use In   Virtual 8086 Mode	
	Loed	Store	Load	Store	Load	Store
General Registers	Yes	Yes	Yes	Yes	Yes	Yes
Segment Registers	Yes	Yes	Yes	Yes	Yes	Yes
Flag Register	Yes	Yes	Yes	Yes	IOPL	IOPL*
Control Registers	Yes	Yes	PL $=0$	PL $=0$	No	Yes
GDTR	Yes	Yes	PL $=0$	Yes	No	Yes
IDTR	Yes	Yes	PL $=0$	Yes	No	Yes
LDTR	No	No	PL $=0$	Yes	No	No
TR	No	No	PL $=0$	Yes	No	No
Debug Control	Yes	Yes	PL $=0$	PL $=0$	No	No
Test Registers	Yes	Yes	PL $=0$	PL $=0$	No	No

MOTES:
$\mathrm{PL}=0$ : The registers can be accessed only when the current privilege level is zero.
${ }^{-1}$ IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 8086 Mode.
5) However, registers which have been previously stored may be reloaded without masking.

Depending upon the values of undefined register blts will make your software dependent upon the unspecifled 80386 handling of these blts. Depending on undefined values risks making your software Incompatible with future processors that define usages for the 80386-undefined bits. AVOID ANY SOFTWARE DEPENDENCE UPON THE STATE OF UNDEFINED 80386 REGISTER BITS.

### 2.4 INSTRUCTION SET

### 2.4.1 Instruction Set Overview

The instruction set is divided into nine categories of operations:

## Data Transfer

Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control
These 80386 instructions are listed in Table 2-2.

All 80386 instructions operate on either $0,1,2$, or 3 operands; where an operand resides in a register, in the instruction itself, or in memory. Most zero operand instructions (e.g. CLI, STI) take only one byte. One operand instructions generally are two bytes long. The average instruction is 3.2 bytes long. Since the 80386 has a 16-byte instruction queue, an average of 5 instructions will be prefetched. The use of two operands permits the following types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory.
The operands can be either 8, 16, or 32 bits long. As a general rule, when executing code written for the 80386 (32-bit code), operands are 8 or 32 bits; when executing existing 80286 or 8086 code (16-bit code), operands are 8 or 16 bits. Prefixes can be added to all instructions which override the default length of the operands, (i.e. use 32-bit operands for 16-bit code, or 16 -bit operands for 32-bit code).

### 2.4.2 80386 Instructions

Table 2-2a. Data Transfer

GENERAL PURPOSE	
MOV	Move operand
PUSH	Push operand onto stack
POP	Pop operand off stack
PUSHA	Push all registers on stack
POPA	Pop all registers off stack
XCHG	Exchange Operand, Register
XLAT	Transiate
CONVERSION	
MOVZX	Move byte or Word, Dword, with zero   extension
MOVSX	Move byte or Word, Dword, sign   extended
CBW	Convert byte to Word, or Word to Dword
CWD	Convert Word to DWORD
CWDE	Convert Word to DWORD extended
CDQ	Convert DWORD to QWORD
INPUT/OUTPUT	
IN	Input operand from I/O space
OUT	Output operand to I/O space
ADDRESS OBJECT	
LEA	Load effective address
LDS	Load pointer into D segment register
LES	Load pointer into E segment register
LFS	Load pointer into F segment register
LGS	Load pointer into G segment register
LSS	Load pointer into S (Stack) segment   register
LAHF	Load A register from Flags
SAHF	Store A register in Flags
PUSHF	Push flags onto stack
POPF	Pop flags off stack
PUSHFD	Push EFlags onto stack
POPFD	Pop EFlags off stack
CLC	Clear Carry Flag
CLD	Clear Direction Flag
CMC	Complement Carry Fiag
Set Carry Flag	
Set Dion Flag	

Table 2-2b. Arithmetic Instructions

ADDITION	
ADD	Add operands
ADC	Add with carry
INC	Increment operand by 1
AAA	ASCII adjust for addition
DAA	Decimal adjust for addition
SUBTRACTION	
SUB	Subtract operands
SBB	Subtract with borrow
DEC	Decrement operand by 1
NEG	Negate operand
CMP	Compare operands
DAS	Decimal adjust for subtraction
AAS	ASCII Adjust for subtraction
MULTIPLICATION	
MUL	Multiply Double/Single Precision
IMUL	Integer multiply
AAM	ASCII adjust after multiply
DIVISION	
DIV	Divide unsigned
IDIV	Integer Divide
AAD	ASCII adjust before division

Table 2-2c. String Instructions

MOVS	Move byte or Word, Dword string
INS	Input string from I/O space
OUTS	Output string to I/O space
CMPS	Compare byte or Word, Dword string
SCAS	Scan Byte or Word, Dword string
LODS	Load byte or Word, Dword string
STOS	Store byte or Word, Dword string
REP	Repeat
REPE/   REPZ	Repeat while equal/zero
RENE/	
REPNZ	Repeat while not equal/not zero

Table 2-2d. Logical Instructions

LOGICALS	
NOT	"NOT" operands
AND	"AND" operands.
OR	"Inclusive OR" operands
XOR	"Exclusive OR" operands
TEST	"Test" operands

80386

Table 2-2d. Logical Instructions (Continued)

SHIFTS	
SHL/SHR	Shift logical left or right
SAL/SAR	Shift arithmetic left or right
SHLD/	
SHRD	Double shift left or right
ROTATES	
ROL/ROR	Rotate left/right
RCL/RCR	Rotate through carry left/right

Table 2-2e. Bit Manipulation Instructions

SINGLE BIT INSTRUCTIONS	
BT	Bit Test
BTS	Bit Test and Set
BTR	Bit Test and Reset
BTC	Bit Test and Complement
BSF	Bit Scan Forward
BSR	Bit Scan Reverse

Table 2-2f. Program Control Instructions
CONDITIONAL TRANSFERS

SETCC	Set byte equal to condition code
JA/JNBE	Jump if above/not below nor equal
JAE/JNB	Jump if above or equal/not below
JB/JNAE	Jump if below/not above nor equal
JBE/JNA	Jump if below or equal/not above
JC	Jump if carry
JE/JZ	Jump if equal/zero
JG/JNLE	Jump if greater/not less nor equal
JGE/JNL	Jump if greater or equal/not less
JL/JNGE	Jump if less/not greater nor equal
JLE/JNG	Jump if less or equal/not greater
JNC	Jump if not carry
JNE/JNZ	Jump if not equal/not zero
JNO	Jump if not overflow
JNP/JPO	Jump if not parity/parity odd
JNS	Jump if not sign
JO	Jump if overflow
JP/JPE	Jump if parity/parity even
JS	Jump if Sign

Table 2-2f. Program Control Instructions
(Continued)

UNCONDITIONAL TRANSFERS	
CALL	Call procedure/task
RET	Return from procedure
JMP	Jump
ITERATION CONTROLS	
LOOP	Loop
LOOPE/	
LOOPZ	Loop if equal/zero
LOOPNE/	
LOOPNZ	Loop if not equal/not zero
JCXZ	JUMP if register CX $=0$
INTERRUPTS	
INT	Interrupt
INTO	Interrupt if overflow
IRET	Return from Interrupt/Task
CLI	Clear interrupt Enable
STI	Set Interrupt Enable

Table 2-2g. High Level Language Instructions

BOUND	Check Array Bounds
ENTER	Setup Parameter Block for Entering   Procedure
LEAVE	Leave Procedure

Table 2-2h. Protection Model

SGDT	Store Global Descriptor Table
SIDT	Store Interrupt Descriptor Table
STR	Store Task Register
SLDT	Store Local Descriptor Table
LGDT	Load Global Descriptor Table
LIDT	Load Interrupt Descriptor Table
LTR	Load Task Register
LLDT	Load Local Descriptor Table
ARPL	Adjust Requested Privilege Level
LAR	Load Access Rights
LSL	Load Segment Limit
VERR/   VERW	Verify Segment for Reading or Writing
LMSW	Load Machine Status Word (lower   16 bits of CR0)
SMSW	Store Machine Status Word

Table 2-2I. Processor Control Instructions

HLT	Halt
WAIT	Wait until BUSY* negated
ESC	Escape
LOCK	Lock Bus

### 2.5 ADDRESSING MODES

### 2.5.1 Addressing Modes Overview

The 80386 provides a total of 11 addressing modes for instructions to specify operands. The addressing modes are optimized to allow the efficient execution of high level languages such as C and FORTRAN, and they cover the vast majority of data references needed by high-level languages.

### 2.5.2 Register and Immediate Modes

Two of the addressing modes provide for instructions that operate on register or immediate operands:

Register Operand Mode: The operand is located in one of the 8 -, 16 - or 32 -bit general registers.

Immediate Operand Mode: The operand is included in the instruction as part of the opcode.

### 2.5.3 32-Bit Memory Addressing Modes

The remaining 9 modes provide a mechanism for specifying the effective address of an operand. The linear address consists of two components: the segment base address and an effective address. The effective address is calculated by using combinations of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value, following the instruction.

BASE: The contents of any general purpose register. The base registers are generally used by compilers to point to the start of the local variable area.

INDEX: The contents of any general purpose register except for ESP. The index registers are used to access the elements of an array, or a string of characters.

SCALE: The index register's value can be multiplied by a scale factor, either 1, 2, 4 or 8 . Scaled index mode is especially useful for accessing arrays or structures.

Combinations of these 4 components make up the 9 additional addressing modes. There is no performance penalty for using any of these addressing combinations, since the effective address calculation is pipelined with the execution of other instructions.

The one exception is the simultaneous use of Base and Index components which requires one additional clock.

As shown in Figure 2-9, the effective address (EA) of an operand is calculated according to the following formula.
$E A=$ Base Reg + (Index Reg * Scaling) + Displacement
Direct Mode: The operand's offset is contained as part of the instruction as an 8-, 16- or 32-bit displacement.
EXAMPLE: INC Word PTR [500]
Register Indirect Mode: A BASE register contains the address of the operand.
EXAMPLE: MOV [ECX], EDX
Based Mode: A BASE register's contents is added to a DISPLACEMENT to form the operands offset. EXAMPLE: MOV ECX, [EAX + 24]

Index Mode: An INDEX register's contents is added to a DISPLACEMENT to form the operands offset. EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register's contents is multiplied by a scaling factor which is added to a DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7
Based Index Mode: The contents of a BASE register is added to the contents of an INDEX register to form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]
Based Scaled Index Mode: The contents of an INDEX register is multiplied by a SCALING factor and the result is added to the contents of a BASE register to obtain the operands offset.
EXAMPLE: MOV ECX, [EDX*8] [EAX]
Based Index Mode with Displacement: The contents of an INDEX Register and a BASE register's contents and a DISPLACEMENT are all summed together to form the operand offset.
EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]
Based Scaled Index Mode with Displacement: The contents of an INDEX register are multiplied by a SCALING factor, the result is added to the contents of a BASE register and a DISPLACEMENT to form the operand's offset.
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4] [ $E B P+80]$

## 6. MECHANICAL DATA

### 6.1 INTRODUCTION

In this section, the physical packaging and its connections are described in detail.

### 6.2 PIN ASSIGNMENT

The 80386 pinout as viewed from the top side of the component is shown by Figure 6-1. Its pinout as viewed from the Pin side of the component is Figure 6-2.
$V_{C C}$ and GND connections must be made to multiple $V_{C C}$ and $V_{S S}$ (GND) pins. Each $V_{C C}$ and $V_{S S}$ must be connected to the appropriate voltage level. The circuit board should include $V_{C C}$ and GND planes for power distribution and all $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{SS}}$ pins must be connected to the appropriate plane.

NOTE:
Pins identified as "N.C." should remain completely unconnected.


Figure 6-1. 80386 PGA Pinout-View from Top Side

Table 6-1. 80386 PGA Pinout-Functional Grouping

Pin / Signal		Pin / Signal		Pin / Signal		Pin / Signal	
N2	A31	M5	D31	A1	$V_{C c}$	A2	$V_{\text {SS }}$
P1	A30	P3	D30	A5	$\mathrm{V}_{\mathrm{Cc}}$	A6	$V_{S S}$
M2	A29	P4	D29	A7	$\mathrm{V}_{\mathrm{CC}}$	A9	$V_{S S}$
L3	A28	M6	D28	A10	$\mathrm{V}_{\mathrm{Cc}}$	B1	$V_{S S}$
N1	A27	N5	D27	A14	$\mathrm{V}_{\mathrm{Cc}}$	B5	$V_{\text {SS }}$
M1	A26	P5	D26	C5	$\mathrm{V}_{\mathrm{CC}}$	B11	$V_{S S}$
K3	A25	N6	D25	C12	$V_{C C}$	B14	$V_{S S}$
L2	A24	P7	D24	D12	$\mathrm{V}_{\mathrm{CC}}$	C11	$V_{S S}$
L1	A23	N8	D23	G2	$\mathrm{V}_{\mathrm{CC}}$	F2	$V_{\text {SS }}$
K2	A22	P9	D22	G3	$V_{C C}$	F3	$V_{\text {SS }}$
K1	A21	N9	D21	G12	$\mathrm{V}_{\mathrm{CC}}$	F14	$V_{S S}$
J1	A20	M9	D20	G14	$\mathrm{V}_{\mathrm{CC}}$	J2	$V_{S S}$
H3	A19	P+0	D19	L12	$\mathrm{V}_{\mathrm{CC}}$	J3	$V_{\text {Ss }}$
H2	A18	P11	D18	M3	$\mathrm{V}_{\mathrm{Cc}}$	$J 12$	$V_{S S}$
H1	A17	N10	D17	M7	$\mathrm{V}_{\mathrm{Cc}}$	$J 13$	$V_{S S}$
G1	A16	N11	D16	M13	$\mathrm{V}_{\mathrm{CC}}$	M4	$V_{S S}$
F1	A15	M11	D15	N4	$\mathrm{V}_{\mathrm{CC}}$	M8	$V_{S S}$
E1	A14	P12	D14	N7	$\mathrm{V}_{\mathrm{CC}}$	M10	Vss
E2	A13	P13	D13	P2	$V_{C C}$	N3	$V_{\text {SS }}$
E3	A12	N12	D12	P8	$\mathrm{V}_{\mathrm{CC}}$	P6	$V_{S S}$
D1	A11	N13	D11			P14	$V_{S S}$
D2	A10	M12	D10				
D3	A9	N14	D9	F12	CLK2	A4	N.C.
C1	A8	L13	D8			B4	N.C.
C2	A7	K12	D7	E14	ADS*	B6	N.C.
C3	A6	L14	D6			B12	N.C.
B2	A5	K13	D5	B10	W/R*	C6	N.C.
B3	A4	K14	D4	A11	D/C*	C7	N.C.
A3	A3	$J 14$	D3	A12.	M/IO*	E13	N.C.
C4	A2	H14	D2	C10	LOCK*	F13	N.C.
A13	BE3*	H13	D1				
B13	BE2*	H12	DO	D13	NA*	C8	PEREQ
C13	BE1*			C14	BS16*	B9	BUSY*
E12	BEO*			G13	READY*	A8	ERROR*
C9	RESET	D14 M14	HOLD HLDA	B7	INTR	B8	NMI

Table 8-1. 80386 Instruction Set Clock Count Summary


- If CPL $\leq$ IOPL
- ${ }^{\text {If CPL }}$ > IOPL

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

Instruection	format		clock count		Notes			
				Protected Addreses Mode	$\qquad$	Prototiod Notrueal Adter		
SEGMENT CONTROL								
LDS $=$ Lood Pointer to os	11000101	modrea $\mathrm{r} / \mathrm{m}$	7	22	-	n, i, ${ }^{\text {a }}$		
LES $=$ Lood Pointer to ES	11000100	modrea $\mathrm{r} / \mathrm{m}$	7	22	b	n, in		
LFS = Lood Pointer to FS	00001111	$10110100{ }_{\text {modrog }} \mathrm{t} / \mathrm{m}$	7	25	b	n, i, ij		
Las = Lood Pointer to as	00001111	10110101 modrag $\mathrm{t/m}$	7	25	b	n.i.i,		
L.ss $=$ Lood Pominer to ss	00001111	10110010 ${ }_{\text {modrag }} \mathrm{r} / \mathrm{m}$	7	22	b	n., i, i		
flag control								
cLC $=$ cliore Carry fing	11111000		2	2				
CLD $=$ Claer Dircection Fime	11111100		2	2				
CL = Cloar Interupt Enebio Fiog	11111010		8	8		m		
CLTS $=$ Cloar Taek Switheod Flag	00001111	00000110	5	5	-	1		
cuc = Complement Carry Fiog	11110101		2	2				
LLAF = Lod A A Into fiog	10011111		2	2				
POPF $=$ Pop Flige	10011101		5	5	b	n, $n$		
PUSHF = Pueh Flage	10011100		4	4	b	n		
SAMF [-: Store AH Into fioge	10011110		3	3				
STC = Set Carry fiog	11111001		2	2				
STD $=$ Sat Dircetion Fiog	11111001		2	2				
$\mathbf{S T V}=$ Sot Interrup Enabio Flig	11111011		${ }^{8}$	8		m		
$\begin{aligned} & \text { ARITHMETIC } \\ & \text { ADD }=\text { Add } \end{aligned}$								
Rogister to Register	000000 dw	modreg $\mathrm{t} / \mathrm{m}$	2	2				
Register to Memory	0000000 w	modrog $\mathrm{r} / \mathrm{m}$	7	7	b	n		
Memor to Register	0000001 w	modrog $\mathrm{r} / \mathrm{m}$	6	6	b	$n$		
1 mmodiatat to Aegisiter/Memory	100000sw	mod000 r/m immediato data	277	217	b	$\underline{n}$		
Immediat to Accumulato (shor form)	0000010 w	immediate data	2	2				
AOC = Add with Carry								
Register to Register	000100 dw	modreg $\mathrm{r} / \mathrm{m}$	2	2				
Register to Memary	0001000 m	modrog $\mathrm{t} / \mathrm{m}$	7	7	b	n		
Memor to Register	0001001 m	modras $\mathrm{t} / \mathrm{m}$	6	6	$\bigcirc$	$n$		
1 mmediatat to Regisiter/Memory	10.0000 sw	modo $10 \mathrm{t/m}$ immediate data	217	217	b	n		
INC = increment								
Regisiter Memory	01000 rea	mod000 r/m	2	$2 / 6$ 2	b	$n$		
sus = subtract								
Hegister fom Register	001010 dw	modrieg $\mathrm{t} / \mathrm{m}$	2	2				

## 80386

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

INSTRUCTION	FORMAT		CLOCK COUNT		NOTES	
			Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode	Real Address Mode or Virtual 8086 Mode	Protected Virtual Addrest Mode
ARITHMETIC (Continued)						
Register from Memory	0010100 w	modreg $\mathrm{r} / \mathrm{m}$	7	7	$b$	n
Memory from Register	0010101 w	modreg $\mathrm{r} / \mathrm{m}$	6	6	b	h
Immediate from Register/Memory	100000 sw	mod $101 \mathrm{r} / \mathrm{m}$ immediate data	$2 / 7$	2/7	$b$	h
Immediate from Accumulator (short form)	0010110 w	immediate data	2	2		
SBB = Subtract with Borrow						
Register from Register	000110 dw	modreg r/m	2	2		
Register from Memory	0001100 w	modreg $\mathrm{r} / \mathrm{m}$	7	7	$b$	$n$
Memory from Register	0001101 w	modreg $\mathrm{f} / \mathrm{m}$	6	6	$b$	h
immediate from Register/Memory	100000 sw	mod $011 \mathrm{r} / \mathrm{m}$ immediate data	$2 / 7$	2/7	b	h
Immediate from Accumulator (short form)	0001110 w	immediate data	2	2		
DEC = Decrement						
Register/Memory	1111111 w	reg $001 \mathrm{r} / \mathrm{m}$	$2 / 6$	2/6	b	h
Register (short form)	01001 reg		2	2		
CMP = Compare						
Register with Register	001110 dw	modreg $\mathrm{r} / \mathrm{m}$	2	2		
Memory with Register	0011100 w	mod reg r/m	5	5	b	h
Register with Memory	0011101 w	modreg r/m	6	6	b	h
Immediate with Register/Memory	100000 sw	mod $111 \mathrm{r} / \mathrm{m}$ immeciate data	2/5	2/5	b	h
Immediate with Accumulator (short form)	0011110 w	immediate data	2	2		
NEG = Change Sign	1111011 w	$\bmod 011 \mathrm{r} / \mathrm{m}$	$2 / 6$	2/6	$b$	h
AAA = ASCII Adjust for Add	00110111		4	4		
AAS = ASCII Adjust for Subtract	00111111		4	4		
DAA = Decimal Adjust for Add	00100111		4	4		
$\begin{aligned} & \text { DAS }=\text { Decimal Adjust for Subtract } \\ & \text { MUL }=\text { Murtiply (unsigned) } \end{aligned}$	00101111		4	4		
Accumulator with Register/Memory	1111011 w	$\bmod 100 \mathrm{r} / \mathrm{m}$				
Multiplier-Byte			12-17/15-20	12-17/15-20	b. d	d, h
-Word			12-25/15-28	12-25/15-28	b, d	d, h
-Doubleword			12-41/15-44	12-41/15-44	b, d	d, n
IMUL = Integer Multiply (signed)						
Accumulator with Register/Memory	1111011 w	$\bmod 101 \mathrm{r} / \mathrm{m}$				
Multiplier-Byte			12-17/15-20	12-17/15-20	b, d	d, h
-Word			12-25/15-28	12-25/15-28	b, d	d, h
-Doubleword			12-41/15-44	12-41/15-44	b, d	d, $n$
Register with Register/Mernory	00001111	10101111 modreg				
Multiplier-Byte			12-17/15-20	12-17/15-20	b, d	d, h
-Word			12-25/15-28	12-25/15-28	b, a	d, h
-Doubleword			12-41/15-44	12-41/15-44	b, d	d, h
Register/Memory with Immediate to Register	011010 s 1	mod reg r/m immediate data				1
-Word			13-26/14-27	13-26/14-27	b, d	d. h
-Doubleword			13-42/14-43	13-42/14-43	b, d	d, h

## 80386

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

INSTRUCTION	FORMAT			CLOCK COUNT		NOTES			
				Real   Addrese   Moode or   Virtual   soes   Mode	Protected Virtual Addrese Mode		Protected Virtual Addrese Mode		
ARITHMETIC (Continued) DIV $=$ Divide (Uneigned)									
Accumulator by Register/Memory	1111011 w	$\bmod 110 \mathrm{r} / \mathrm{m}$							
Divisor-Byte				14/17	14/17	b,e	-, $n$		
-Word				22/25	22/25	b,e	e, $n$		
-Doubleword				38/41	38/41	b, e	e, h		
MDIV $=$ Integer Divide (signed)									
Accumulator By Register/Memory	1111011 w	$\operatorname{modit11~} \mathrm{r} / \mathrm{m}$							
Divisor-Byte				19/22	19:22	b, 0	o,n		
-Word				27/30	27/30	b, e	e,n		
-Doubleword				43/46	43/46	b, e	e, ${ }^{\text {n }}$		
AAD = AsCll Adjuat for Divide	11010101	00001010		19	18				
AAM = ASCII Adjust for Multiply	11010100	00001010		17	17				
CBW = Convert Byte to Word	10011000			3	3				
cwd $=$ Convert Word to Double Word	10011001			2	2				
LOMC									
Shift Rotate Instructions Not Through Carty (ROL, ROR, 8AL, SAR, SHL, and SHR)									
Register/Mernory by 1	1101000 w	mod $11 T \mathrm{r} / \mathrm{m}$		$3 / 7$	$3 / 7$	$b$	n		
Register/Memory by CL	1101001 w	mod TTT $\mathrm{r} / \mathrm{m}$		3/7	3/7	b	$n$		
Register/Memory by immediate Count	1100000 w	$\bmod T \mathrm{~T}$ r $/ \mathrm{m}$	immed 8-bit data	3/7	$3 / 7$	b	h		
Through Carry (RCL and RCR)									
Register/Memory by 1	1101000 w	$\bmod \pi T \mathrm{r} / \mathrm{m}$		9/10	9/10	$b$	n		
Register/Memory by CL	1101001 w	$\bmod T 1 T \mathrm{r} / \mathrm{m}$		9/10	9/10	$b$	n		
Register/Memory by Immediate Count	1100000 w	mod 171	immed 8-bit data	9/10	9/10	$b$	$n$		
	$\begin{aligned} & T \pi T \\ & 000 \end{aligned}$	Instruction ROL							
	001	ROR							
	010	RCL							
	011	RCA							
	100	SHL/SAL							
	101	SHR							
	111	SAR							
3aLD $=$ Shift Left Double									
Regiater/Memory by immediate	00001111	10100100	mod reg r/mimmed 8 -bit data	3/7	3/7				
Reginter/Memory by CL	00001111	10100101	modreg r/m	3/7	3/7				
Janno = enith Right Double									
Regleter/Memory by immediate	00001111	10101100	mod reg r/mimmed 8 -bit data	3/7	3/7				
Regiter/Memory by CL	00001111	10101101	mod reg $\mathrm{r} / \mathrm{m}$	3/7	3/7				
AND = And									
Regiater to Reginter	001000 dw	modreg $\mathrm{r} / \mathrm{m}$		2	2				

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

INSTRUCTION	FORMAT				CLOCK COUNT		NOTES	
					Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode	Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode
LOGIC (Continued)								
Register to Memory	0010000 w	modreg r/m			7	7	b	h
Memory to Fiegister	0010001 w	modreg r/m			6	6	$b$	h
Iimmeciate to Fiegister/Memory	1000000 w	mod $100 \mathrm{r} / \mathrm{m}$	immediate data		$2 / 7$	$2 / 7$	$b$	h
Irmmeciate to Accumulator (Short Form)	0010010 w	immediate data			2	2		
TEST $=$ And Function to Flags, No Result								
Register/Memory and Register	1000010 w	modreg r/m			2/5	2/5	b	h
Immediate Data and Register/Memory	1111011 w	$\underline{\bmod 000} \mathrm{r} / \mathrm{m}$	immediate data		$2 / 5$	2/5	$b$	h
Immediate Data and Accumulator (Snort Forri)	1010100 w	immediate data			2	2		
$\mathrm{OH}=\mathrm{Or}$								
Hegister to Hegister	000010 dw	modreg r/m			2	2		
Register to Memory	0000100 w	modreg r/m			7	7	b	h
Memory to Fugistor	0000101 w	modreg r/m			6	6	$b$	h
immedate to Hegister/Memory	1000000 w	$\bmod 001 \mathrm{r} / \mathrm{m}$	immediate data		2/7	217	$b$	h
Immediate to Accui, vilator (Sthort Form)	0000110 w	immediate data			2	2		
XCR = Exclusive $\mathbf{O r}$								
Register to hegister	001100 dw	mod reg r/m			2	2		
Register to Memory	0011000 w	modreg r/m			7	7	$b$	$n$
Memory to Fieg, iter	0011001 w	modreg r/m			6	6	$b$	n
Immediate to Reyisitr/Memory	1000000 w	mod $110 \mathrm{r} / \mathrm{m}$	immediate data		2/7	2/7	$b$	h
Immediate to Accumulator (Short Form)	0011010 w	immediate data			2	2		
NOT = Invert Hegister/Mernory	1111011 w	mod $010 \mathrm{r} / \mathrm{m}$			2/6	$2 / 6$	b	h
STRING MANIPULATION				Count Virtual				
CMFe - Compare Byte Wurd	1010011 w			8086 Mode	10	10	b	$n$
INS = Input Syte/Word from DX Port	0110110 w			+29	15	9*/29**	$b$	h, m
LODS = Load Byte/Word to AL/AX/EAX	1010110 w				5	5	b	n
MOVS = Move Byte Word	1010010 w				7	7	$b$	h
OUTS = Output Byte/Wora to Dx Port	0110111 w			+28	14	$8^{*} / 28^{* *}$	$b$	h, m
SCAS $=$ Scan Byte Word	1010111 w				7	7	b	h
STOS = Store Byte/Word from								
AL/AX/EX	1010101 w				4	. 4	b	h
XLAT $=$ Translate String	11010111				5	5		h
REPEATED STRING MANIPULATION Repeated by Count in CX or ECX								
REPE CMPS = Compare String								
(Find Non-Match)	11110011	1010011 w			$5+9 n$	$5+9 n$	b	h

* If CPL $\leq$ IOPL $\quad$ * If CPL > IOPL

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)


## Notes:

$\dagger$ Clock count shown applies if I/O permission allows I/O to the port in virtual 8086 mode. If I/O bit map denies permission exception 13 fault occurs; refer to clock counts for INT 3 instruction.

- If CPL $\leq$ IOPL $\quad$ ** If CPL $>$ IOPL

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)


Table 8-1.80386 Instruction Set Clock Count Summary (Continued)

INSTRUCTION	FOAMAT			CLOCK COUNT		MOTES			
				Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode	Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode		
CONTROL TRANSFER (Continued) RET $=$ Return from CALL:									
Within Segment	11000011			$10+m$	$10+m$	b	g. h, r		
Within Segment Adding Immediate to SP	11000010	16-bit displ		$10+m$	$10+m$	$b$	g. h. $r$		
intersegment	11001011			$18+m$	$32+m$	$b$	g. h, i, k, r		
Intersegment Adding Immediate to SP	11001010	16-bit displ		$18+m$	$32+m$	$b$	g. $\mathrm{h}, \mathrm{j}, \mathrm{k}, \mathrm{r}$		
Protected Mode Only (RET):   to Different Privilege Level   Intersegment   68   h, f, k, r   Intersegment Adding immediate to SP   CONDITIONAL JUMPS   NOTE: Times Are Jump "Taken or Not Taken"   $10=$ Jump on Overflow									
8-Bit Displacement	01110000	8-bit displ		$7+\operatorname{mor} 3$	$7+m$ or 3		r		
Full Displacement	00001111	10000000	full displacement	$7+m$ or 3	$7+$ mor 3		r		
NNO = Jump on Not Overtiow									
--Bit Displacement	01110001	8-bit displ		$7+$ mor 3	$7+$ mor 3		$r$		
Full Displacement	00001111	10000001	full displacement	$7+$ mor 3	$7+\mathrm{mor} 3$		I		
JB/JNAE = Jump on Below/Not Above or Equed									
8-Bit Displacement	01110010	Q-bit displ		$7+m$ or 3	$7+$ mor 3		r		
Full Diaplacement	00001111	10000010	full displacement	$7+\mathrm{mor} 3$	$7+m$ or 3		r		
NWB/JAE = Jump on Not Below/Above or Equal									
8-Bik Diaptucement	01110011	8-bit displ		$7+$ mor 3	$7+\operatorname{mor} 3$		r		
Full Displacernent	00001111	10000011	full displacement	$7+\mathrm{mor} 3$	$7+$ mor 3		r		
JE/J2 $=$ Jump on Equal/Zero									
8-Bit Displacement	01110100	8-bit displ		$7+$ mor 3	$7+\operatorname{mor} 3$		$r$		
Full Displacement	00001111	10000100	full displacement	$7+$ mor 3	$7+$ mor 3		r		
JNE/JNZ = Jump on Mot Equal/Mot Zero									
e-Bit Displacement	01110101	8-bit displ		$7+$ mor 3	$7+\mathrm{mor} 3$		r		
Full Displacement	00001111	10000101	full displacement	$7+$ mor 3	$7+$ mor 3		r		
JeE/JNA = Jump on Below or Equal/Mot Above									
8-Bit Displacement	01110110	8-bit displ		$7+$ mor 3	$7+\mathrm{mor} 3$		r		
Full Displacement	00001111	10000110	full displacement	$7+$ mor 3	$7+m$ or 3		1		
JNEE/JA = Jump on Not Below or Equal/above									
B-Bit Displacement	01110111	8-bit diepl		$7+$ mor 3	$7+$ mor 3		r		
Full Displacement	00001111	10000111	full displacement	$7+$ mor 3	$7+$ mor 3		r		
$J s=$ Jump on sign									
8-Bit Displacement	01111000	8-bit displ		$7+m$ or 3	$7+$ mor 3		r		
Full Displacernent	00001111	10001000	full displacement	$7+$ mor 3	$7+\mathrm{mor} 3$		$r$		

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

INSTRUCTION	FORMAT			CLOCK COUNT		NOTES	
				Real Address Mode or Virtual 8086 Mode	Protected Jirtual Address Mode	Real Address Mode or Virtual 8086 Mode	Protected Virtual Addrees Mode
CONDITIONAL JUMPS (Continued)							
JNS = Jump on Not Sign							
8-Bit Displacement	01111001	8-bit displ		$7+\mathrm{mor} 3$	$7+\mathrm{mor} 3$		r
Full Displacement	00001111	10001001	full displacement	$7+m$ or 3	$7+\mathrm{mor} 3$		r
JP/JPE = Jump on Parity/Party Even							
8-Bit Displacement	01111010	8-bit displ		$7+$ mor 3	$7+$ mor 3		r
Full Displacement	00001111	10001010	full displacement	$7+$ mor 3	$7+m$ or 3		1
JNP/JPO = Jump on Not Party/Parity Odd							
8-Bit Displacement	01111011	8-bit displ		$7+$ mor 3	$7+m$ or 3		$r$
Full Displacement	00001111	1000101.1	full displacement	$7+$ mor 3	$7+$ mor 3		$r$
JL/JNGE = Jump on Less/Not Greater or Equal							
8-Bit Displacement	01111100	8-bit displ		$7+\mathrm{mor} 3$	$7+$ mor 3		$r$
Full Displacement	00001111	10001100	full displacement	$7+$ mor 3	$7+$ mor 3		$r$
JNL/JGE = Jump on Not Less/Greater or Equal							
8-Bit Displacement	01111101	8-bit displ		$7+$ mor 3	$7+m$ or 3		$\boldsymbol{r}$
Full Displacernent	00001111	10001101	full displacement	$7+$ mor 3	$7+\mathrm{mor} 3$		r
JLE/JNG $=$ Jump on Lese or Equal/Not Greater							
8-8it Displacement	01111110	8-bit displ		$7+$ mor 3	$7+\operatorname{mor} 3$		r
Full Displacement	00001111	10001110	full displacement	$7+m$ or 3	$7+\operatorname{mor} 3$		1
JNLE/JG = Jump on Not Less or Equal/Greater							
8-Bit Displacement	01111111	8-bit displ		$7+\mathrm{mor} 3$	$7+\mathrm{mor} 3$		r
Full Displacement	00001111	10001111	full displacement	$7+m$ or 3	$7+m$ or 3		$r$
JCXZ $=$ Jump on CX Zero	11100011	8-bit displ		$9+\mathrm{mor} 5$	$9+\mathrm{mor} 5$		r
JECXZ $=$ Jump on ECX Zero	11100011	8-bit displ		$9+\mathrm{mor} 5$	$9+\mathrm{mor} 5$		r
(Address Size Prefix Differentiates JCXZ from JECXZ)							
LOOP = Loop CX Times	11100010	8-bit displ		$11+m$	$11+m$		r
LOOPZ/LOOPE = Loop with							
LOOPNZ/LOOPNE = Loop While $\quad 1110000$							
CONDITIONAL BYTE SET							
SETO = Set Byte on Overflow							
To Register/Memory	00001111	10010000	$\bmod 000 \mathrm{r} / \mathrm{m}$	4/5	4/5		h
SETNO $=$ Set Byte on Not Overfiow							
To Register/Memory	00001111	10010001	$\bmod 000 \mathrm{r} / \mathrm{m}$	4/5	4/5		h
SETB/SETNAE = Set Byte on Below/Not Above or Equal							
To Register/Memory	00001111	10010010	$\bmod 000 \mathrm{r} / \mathrm{m}$	4/5	4/5		h

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)


Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)


Table 8-1. 80386 Instruction Set Clock Count Summary (Gontinued)


Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

INSTRUCTION	FORMAT				CLOCK COUNT		NOTES				
					Real Addrees Mode or Virtual 8086 Mode	Protected Virtual Addrese Mode	Real Addreses Mode or Virtual 6086 Mode	Protected Virtual Addroses Mode			
PROCESSOR EXTENSION INSTRUCTIONS											
Processor Extension Escape	11011 TTT	$\bmod L \underline{L} \mathrm{r} / \mathrm{m}$						n			
	TTT and LLLL bits information for	are opcode processor.			80287/80387 data sheets for clock counts						
PREFIX BYTES											
Addrees Stze Proflx	01100111				0	0					
LOCK = Bue Lock Preflx	11110000				0	0		m			
Operand Stze Prefix	01100110				0	0					
Segment Override Preffx											
cs:	00101110				0	0					
D8:	00111110				0	0					
ES:	00100110				0	0					
F3:	01100100				0	0					
as:	01100101				0	0					
88:	00110110				0	0					
PAOTECTION CONTROL											
ARPL = Adjust Requeeted Priviloge Levol											
From Register/Memory	01100011	modreg r/m			N/A	20/21	a	n			
LAR = Load Accese Righta											
From Register/Memory	00001111	00000010	mod reg	r/m	N/A	15/16	a	g. h, i. p			
LCDT = Lond alobel Descriptor											
Table Register	00001111	00000001	$\bmod 010$	$\mathrm{r} / \mathrm{m}$	11	11	b, c	h. 1			
LIDT = Lond Interrupt Descriptor											
Table Register	00001111	00000001	$\bmod 011$	$\mathrm{r} / \mathrm{m}$	11	11	b. c	h, 1			
LDT = Lond Locw Deecriptor								-			
Table Register to Register/Memory	00001111	00000000	$\bmod 010$	r/m	N/A	20/24	a	g. h, j, l			
Lusw = Lond Machine Status Word											
From Register/Memory	00001111	00000001	$\bmod 110$	r/m	10/13	10/13	b, c	h, 1			
Byte-Granular Limit					N/A	20/21	2	g. h, j, p			
Page-Granular Limit					N/A	25/28	a	g. h. i. p			
LTR = Load Task Reglater											
From Register/Memory	00001111	00000000	$\bmod 001$	$\mathrm{r} / \mathrm{m}$	N/A	23/27	a	g. h, j, 1			
SCDT $=$ Store Globel Descriptor											
Table Reglator	00001111	00000001	$\bmod 000$	r/m	9	9	b, c	n			
SIDT $=$ store Interrupt Descriptor											
Table Reglater	00001111	00000001	mod 001	$\mathrm{r} / \mathrm{m}$	9	9	b, c	n			
SLDT $=$ store Local Deceriptor Tablo Regleter											
To Register/Memory	00001111	00000000	$\bmod 000$	r/m	N/A	$2 / 2$	a	n			

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

	FORMAT				CLOCK COUNT		NOTES	
INSTRUCTION					Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode	Real Address Mode or Virtual 8086 Mode	Protected Virtual Address Mode
SMSW $\quad$$=$ Store Machine    Status Word	00001111	00000001	$\bmod 100$	1/m	$2 / 2$	$2 / 2$	b, c	h, I
$\begin{array}{r} \text { STR } \quad \text { Store Task Register } \\ \text { To Register/Memory } \end{array}$	00001111	00000000	$\bmod 001$	r/m	N/A	$2 / 2$	a	h
VERR = Verify Read Accoses   Register/Memory	00001111	00000000	mod 100	r/m	$N / A$	10/11	a	$g, h, j, p$
VERW $\quad$ Verity Write Accesas	00001111	00000000	mod 101		N/A	15/16	a	g, h, j, p

## INSTRUCTION NOTES FOR TABLE 8-1

## Notes a through c apply to 80386 Real Address Mode only:

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

## Notes d through g apply to $\mathbf{8 0 3 8 6}$ Real Address Mode and $\mathbf{8 0 3 8 6}$ Protected Virtual Address Mode:

d. The 80386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock $=$ if $m<>0$ then $\max \left(\left[\log _{2}|\mathrm{~m}|\right], 3\right)+b$ clocks:

$$
\text { if } m=0 \text { then } 3+b \text { clocks }
$$

In this formula, $m$ is the multiplier, and
$\mathrm{b}=9$ for register to register,
$b=12$ for memory to register,
$b=10$ for register with immediate to register,
$b=11$ for memory with immediate to register.
e. An exception may occur, depending on the value of the operand.
f. LOCK* is automatically asserted, regardless of the presence or absence of the LOCK * prefix.
g. LOCK\# is asserted during descriptor table accesses.

## Notes $\boldsymbol{h}$ through $\mathbf{r}$ apply to $\mathbf{8 0 3 8 6}$ Protected Virtual Address Mode only:

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment limit violation or not present) occurs.
i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault (general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit violation or not present) occurs.
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK \# to maintain descriptor integrity in multiprocessor systems.
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general protection violation) if an applicable privilege rule is violated.
I. An exception 13 fault occurs if CPL is greater than 0 ( 0 is the most privileged level).
m . An exception 13 fault occurs if CPL is greater than IOPL.
n . The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL $=0$.
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero flag is cleared.
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation or not present) will occur if the stack limit is violated by the operand's starting address.
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 faritt (general protection violation) will occur.

## 80387 <br> 80-BIT CHMOS III NUMERIC PROCESSOR EXTENSION

- High Performance 80 -Bit Internal Architecture
- Implements ANSI/IEEE Standard 7541985 for Binary Floating-Point Arlthmetic
- Five to Seven Times 8087/80287 Performance
- Upward Object-Code Compatible from 8087 and 80287
- Expands 80386 Data Types to Include 32-, $64-$, 80-Bit Floating Point, 32-, $64-$ Bit Integers and 18-Digit BCD Operands
- Full-Range Transcendental Operations for SINE, COSINE, TANGENT, ARCTANGENT and LOGARITHM
- Built-In Exception Handiling
- Operates Independently of Real, Protected and Virtual-8086 Modes of the 80386
- Eight 80-Bit Numeric Registers, Usable as Individually Addressable General Registers or as a Register Stack
- Avallable in 68-Pin PGA Package (See Packaging Spec: Order *231369)
- Directly Extends 80386 Instruction Set to Include Trigonometric, Logarithmic, Exponential and Arithmetic Instructions for All Data Types

The Intel 80387 is a high-performance numerics processor extension that extends the 80386 architecture with floating point, extended integer and BCD data types. The 80386/80387 computing system fully conforms to the ANSI/IEEE floating-point standard. Using a numerics oriented architecture, the 80387 adds over seventy mnemonics to the 80386/80387 instruction set, making the 80386/80387 a complete solution for high-performance numerics processing. The 80387 is implemented with 1.5 micron, high-speed CHMOS III technology and packaged in a 68-pin ceramic pin grid array (PGA) package. The 80386/80387 is upward object-code compatible from the 80386/80287, 80286/80287 and 8086/8087 computing systems.


Figure 0.1. 80387 Block Diagram

80387


Figure 1.1. 80386/80387 Reglster Set

### 1.0 FUNCTIONAL DESCRIPTION

The 80387 Numeric Processor Extension (NPX) provides arithmetic instructions for a variety of numeric data types in 80386/80387 systems. It also executes numerous built-in transcendental functions (e.g. tangent, sine, cosine, and log functions). The 80387 effectively extends the register and instruction set of an 80386 system for existing data types and adds several new data types as well. Figure 1.1 shows the model of registers visible to 80386/80387 programs. Essentially, the 80387 can be treated as an additional resource or an extension to the 80386. The 80386 together with an 80387 can be used as a single unified system, the 80386/80387.

The 80387 works the same whether the 80386 is executing in real-address mode, protected mode, or virtual-8086 mode. All memory access is handled by the 80386; the 80387 merely operates on instructions and values passed to it by the 80386. Therefore, the 80387 is not sensitive to the processing mode of the 80386.

In real-address mode and virtual-8086 mode, the 80386/80387 is completely upward compatible with software for 8086/8087, 80286/80287 real-address mode, and 80386/80287 real-address mude systems.

In protected mode, the 80386/80387 is completely upward compatible with software for 80286/80287 protected mode, and 80386/80287 protected mode systems.

The only differences of operation that may appear when 8086/8087 programs are ported to a protect-ed-mode 80386/80387 system (not using virtual8086 mode), is in the format of operands for the administrative instructions FLDENV, FSTENV, FRSTOR and FSAVE. These instructions are normally used only by exception handlers and operating systems, not by applications programs.

The 80387 contains three functional units that can operate in parallel to increase system performance. The 80386 can be transferring commands and data to the 80387 bus control logic for the next instruction while the 80387 floating-point unit is performing the current numeric instruction.

## 82380 <br> HIGH PERFORMANCE 32-BIT DMA CONTROLLER WITH INTEGRATED SYSTEM SUPPORT PERIPHERALS

\author{

- High Performance 32-Bit DMA Controller <br> - 40 MBytes/sec Maximum Data Transfer Rate at 20 MHz <br> - 8 Independently Programmable Channels <br> - 20-Source Interrupt Controller - Individually Programmable Interrupt Vectors <br> - 15 External, 5 Internal Interrupts <br> - 82C59A Superset <br> - Four 16-Bit Programmable Interval Timers <br> - 82C54 Compatible
}
- Programmable Walt State Generator - 0 to 15 Walt States
- DRAM Refresh Controller
- 80386 Shutdown Detect and Reset Control -Software/Hardware Reset
- IBM PC Compatlble*
- High Speed CHMOS III Technology
- 132-Pin PGA Package
- Optimized for use with the 80386 Microprocessor
- Resides on Local Bus for Maximum Bus Bandwidth

The 82380 is a multi-function support peripheral that integrates system functions necessary in an 80386 environment. It has eight channels of high performance 32-bit DMA with the most efficient transfer rates possible on the 80386 bus. System support peripherals integrated into the 82380 provide Interrupt Control, Timers, Wait State generation, DRAM Refresh Control, and System Reset logic.

The 82380's DMA Controller can transfer data between devices of different data path widths using a single channel. Each DMA channel operates independently in any of several modes. Each channel has a temporary data storage register for handling non-aligned data without the need for external alignment logic.
*IBM and PC-DOS are registered trademarks of International Business Machines, Inc.


### 12.2 Pin Assignment

The 82380 pinout as viewed from the top side of the component is shown in Figure 12.1. Its pinout as viewed from the pin side of the component is shown in Figure 12.2.
$V_{C C}$ and GND connections must be made to multiple $V_{C C}$ and $V_{S S}$ (GND) pins. Each $V_{C C}$ and $V_{S S}$ MUST be connected to the appropriate voltage level. The circuit board should include $\mathrm{V}_{\mathrm{Cc}}$ and GND planes for power distribution and all $\mathrm{V}_{\mathrm{Cc}}$ pins must be connected to the appropriate plane.


Figure 12.2. 82380 PGA Pinout-Viow from PIN side

Table 12-1. 82380 PGA Pinout-Functional Grouping

Pin/Signal		Pih/Signal		Pin/Signal		Pin/Signal	
A7	A31	A8	D31	P12	$\mathrm{V}_{\text {cc }}$	L14	$V_{\text {SS }}$
C7	A30	B9	D30	M14	$V_{C C}$	A1	$V_{S S}$
B7	A29	A11	D29	P1	$V_{C C}$	P13	$V_{S S}$
A6	A28	C11	D28	P2	$V_{C C}$	N1	$V_{S S}$
B6	A27	D12	D27	P14	$V_{C C}$	N2	$V_{\text {SS }}$
C6	A26	E13	D26	D1	$V_{C C}$	C1	$V_{\text {SS }}$
A5	A25	F14	D25	C14	$V_{\text {cc }}$	A3	$V_{S S}$
B5	A24	J13	D24	B1	$V_{C C}$	B14	$V_{S S}$
C5	A23	B8	D23	A2	$V_{C C}$	A13	$V_{\text {SS }}$
B4	A22	C9	D22	A4	$V_{C C}$	N14	$V_{\text {SS }}$
B3	A21	B11	D21	A12	$V_{C C}$		
C4	A20	813	D20	A14	$\mathrm{V}_{\mathrm{CC}}$	P6	IRQ23*
B2	A19	D13	D19			N6	IRQ22*
C3	A18	E14	D18	G14	CLK2	M7	IRQ21*
C2	A17	G12	D17	L12	D/C*	N7	IRQ20*
D3	A16	H13	D16	K12	W/R*	P7	IRQ19*
D2	A15	C8	D15	L. 13	M/IO*	P8	IRQ18*
E3	A14	A10	D14	K2	ADS*	M8	IRQ17*
E2	A13	C10	D13	N4	NA*	N8	IRQ16*
E1	A12	C12	D12	J12	HOLD	P9	IRQ15*
F3	A11	D14	D11	M3	HLDA	N9.	IRQ14*
F2	A10	F12	D10	M6	DREQ0	M9	IRQ13*
F1	A9	G13	D9	P5	DREQ1	N10	IRQ12*
G1	A8	K14	D8	N5	DREQ2	P10	IRQ11*
G2	A7	A9	D7	P4	DREQ3	M2	INT
G3	A6	B10	D6	M5	DREQ4/IRQ9*		
H1	A5	B12	D5	P3	DREQ5	N11	CLKIN
H2	A4	C13	D4	M4	DREQ6	K13	TOUT1/REF*
J1	A3	E12	D3	N3	DREQ7	N13	TOUT2*/IRQ3*
H3	A2	F13	D2			M13	TOUT3*
J2	BE3*	H14	D1	K3	EOP*	M11	READY*
J3	BE2*	J14	DO	L3	EDACKO	H12	READYO*
K1	BE1 *			M1	EDACK1	P11	WSCO
L1	BEO*	$\begin{aligned} & \mathrm{N} 12 \\ & \text { M12 } \end{aligned}$	RESET CPURST	L2	EDACK2	M10	WSC1

## 82385 <br> HIGH PERFORMANCE 32-BIT CACHE CONTROLLER

```
 Improves 80386 System Performance
 - Reduces Average CPU Wait States to
 Nearly Zero
 - Zero Wait State Read Hit
 - Zero Wait State Posted Writes
 - Allows Other Masters to Access the
 System Bus More Readily
| Hit Rates up to 99%
 Optimized as 80386 Companion
 - Simple }80386\mathrm{ Interface
 - Part of 386-Based Compute Engine
 Including 80387 Numerics
 Coprocessor and 82380 Integrated
 System Peripheral
 -16 MHz and 20 MHz Operation
 Software Transparent
Improves 80386 System Performance
- Reduces Average CPU Wait States to Nearly Zero
Hit
- Zero Wait State Posted Writes
- Allows Other Masters to Access the System Bus More Readily
- Hit Rates up to \(99 \%\)
Optimized as 80386 Companion
- Part of 386-Based Compute Engine Including 80387 Numerics Coprocessor and 82380 Integrated System Peripheral
- 16 MHz and 20 MHz Operation
Software Transparent
```

- Synchronous Dual Bus Architecture - Bus Watching Maintains Cache Coherency
- Maps Full 80386 Address Space (4 Gigabytes)
- Flexible Cache Mapping Policies - Direct Mapped or 2-Way Set Associatlve Cache Organization - Supports Non-Cacheable Memory Space - Unified Cache for Code and Data
- Integrates Cache Directory and Cache Management Logic
- High Speed CHMOS III Technology
- 132-Pin PGA Package

The 82385 Cache Controller is a high performance 32-bit peripheral for Intel's 80386 Microprocessor. It stores a copy of frequently accessed code and data from main memory in a zero wait state local cache memory. The 82385 enables the 80386 to run at its full potential by reducing the average number of CPU wait states to nearly zero. The dual bus architecture of the 82385 allows other masters to access system resources while the 80386 operates locally out of its cache. In this situation, the 82385's "bus watching" mechanism preserves cache coherency by monitoring the system bus address lines at no cost to system or local throughput.

The 82385 is completely software transparent, protecting the integrity of system software. High performance and board savings are achieved because the 82385 integrates a cache directory and all cache management logic on one chip.


290143-1
82385 Internal Block Dlagram

### 1.082385 FUNCTIONAL OVERVIEW

The 82385 Cache Controller is a high performance 32-bit peripheral for Intel's 80386 microprocessor. This chapter provides an overview of the 82385, and of the basic architecture and operation of an 80386/ 82385 system.

### 1.1 82385 OVERVIEW

The main function of a cache memory system is to provide fast local storage for frequently accessed code and data. Tine cache system intercepts 80386 memory references to see if the required data resides in the cache. If the data resides in the cache (a hit), it is returned to the 80386 without incurring wait states. If the data is not cached (a miss), the reference is forwarded to the system and the data retrieved from main memory. An efficient cache will yield a high "hit rate" (the ratio of cache hits to total 80386 accesses), such that the majority of accesses are serviced with zeıo wait states. The net effect is that the wait states incurred in a relatively infrequent miss are averaged over a large number of accesses, resulting in an average of nearly zero wait states per access. Since cache hits are serviced locally, a processor operating out of its local cache has a much lower "bus uilization" which reduces system bus bandwidth requirements, making more bandwidth available to other bus masters.

The 82385 Cache Controller integrates a cache directory and all cache management logic required to support an external 32 Kbyte cache. The cache di-
rectory structure is such that the entire physical address range of the 80386 (4 Gigabytes) is mapped into the cache. Provision is made to allow areas of memory to be set aside a non-cacheable. The user has two cache organization options: direct mapped and 2-way set associative. Both provide the high hit rates necessary to make a large, relatively slow main memory array look like a fast, zero wait state memory to the 80386.

A good hit rate is an essential ingredient of a successful cache implementation. Hit rate is the measure of how efficient a cache is in maintaining a copy of the most frequently requested code and data. However, efficiency is not the only factor for performance consideration. Just as essential are sound cache management policies. These policies refer to the handling of 80386 writes, preservation of cache coherency, and ease of system design. The 82385's "posted write" capability allows the majority of 80386 writes, including non-cacheable and I/O writes, to run with zero wait states, and the 82385's "bus watching" mechanism preserves cache coherency with no impact on system performance. Physically, the 82385 ties directly to the 80386 with virtually no external logic.

### 1.2 SYSTEM OVERVIEW I: BUS STRUCTURE

A good grasp of the bus structure of an 80386/ 82385 system is essential in understanding both the 82385 and its role in an 80386 system. The following is a description of this structure.


Figure 1-1. 80386 System Bus Structure

### 1.2.1 80386 Local Bus/82385 Local Bus/System Bus

Figure $1-1$ depicts the bus structure of a typical 80386 system. The "80386 Local Bus" consists of the physical 80386 address, data, and control busses. The local address and data busses are buffered and/or latched to become the "system" address and data busses. The local control bus is decoded by bus control logic to generate the various system bus read and write commands.

The addition of an 82385 Cache Controller causes a separation of the 80386 bus into two distinct busses: the actual 80386 local bus and the " 82385 Local Bus" (Figure 1-2). The 82385 local bus is designed to look like the front end of an 80386 by providing 82385 local bus equivalents to all appropriate 80386 signals. The system ties to this "80386-like" front end just as it would to an actual 80386. The 80386 simply sees a fast system bus, and the system sees an 80386 front end with low bus bandwidth requirements. The cache subsystem is transparent to both. Note that the 82385 local bus is not simply a buffered version of the 80386 bus, but rather is distinct from, and able to operate in parallel with the 80386 bus. Other masters residing on either the 82385 local bus or system bus are free to manage system resources while the 80386 operates out of its cache.

### 1.2.2 Bus Arbitration

The 82385 presents the " 80386 -like" interface which is called the 82385 local bus. Whereas the 80386 provides a Hold Request/Hold Acknowledge bus arbitration mechanism via its HOLD and HLDA pins, the 82385 provides an equivalent mechanism via its BHOLD and BHLDA pins. (These signals are described in section 3.7.) When another master requests the 82385 local bus, it issues the request to the 82385 via BHOLD. Typically, at the end of the current 82385 local bus cycle, the 82385 will release the 82385 local bus and acknowledge the request via BHLDA. The 80386 is of course free to continue operating on the 80386 local bus while another master owns the 82385 local bus.

### 1.2.3 Master/Slave Operation

The above 82385 local bus arbitration discussion is strictly true only when the 82385 is programmed for "Master" mode operation. The user can, however, configure the 82385 for "Slave" mode operation. (Programming is done via a hardware strap option.) The roles of BHOLD and BHLDA are reversed for an 82385 in slave mode; BHOLD is now an output indicating a request to control the bus, and BHLDA is an input indicating that a request has been granted. An 82385 programmed in slave mode drives the 82385 local bus only when it has requested and subsequently been granted bus control. This allows multiple 80386/82385 subsystems to reside on the same 82385 local bus (Figure 1-3).


Figure 1-2. 80386/82385 System Bus Structure


Figure 1-3. Multi-Master/Multi-Cache Environment

### 1.2.4 Cache Coherency

Ideally, a cache contains a copy of the most heavily used portions of main memory. To maintain cache "coherency" is to make sure that this local copy is identical to main memory. In a system where multiple masters can access the same memory, there is always a risk that one master will alter the contents of a memory location that is duplicated in the local cache of another master. (The cache is said to contain "stale" data.) One rather restrictive solution is to not allow cache subsystems to cache shared memory. Another simple solution is to flush the cache anytime another master writes to system memory. However, this can seriously degrade system performance as excessive cache flushing will reduce the hit
rate of what may otherwise be a highly efficient cache.

The 82385 preserves cache coherency via "bus watching" (also called snooping), a technique that neither impacts performance nor restricts memory mapping. An 82385 that is not currently bus master monitors system bus cycles, and when a write cycle by another master is detected (a snoop), the system address is sampled and used to see if the referenced location is duplicated in the cache. If so (a snoop hit), the corresponding cache entry is invalidated, which will force the 80386 to fetch the up-todate data from main memory the next time it accesses this modified location. Figure 1-4 depicts the general form of bus watching.


Figure 1-4. 82385 Bus Watching-Monitor System Bus Write Cycles


290143-42
Figure 8-1. 82385 PGA Pinout-View from TOP SIde

## 82062 <br> WINCHESTER DISK CONTROLLER

## ■ Controls SA1000/ST506 Interface Winchester Drives

\author{

- 5 MBit/Sec Transfer Rate
}
- 128, 256, 512, and 1024 Byte Sector Lengths
- Six High-Level Commands: Restore, Seek, Read Sector, Write Sector, Scan ID, and Write Format
- Multiple Sector Transfer Capability
- Implied Seek With Read/Write Commands
- 7 Byte Sector Length Extension For External Error Correction Code

Single +5 Volt Power Supply

The 82062 Winchester Disk Controller chip interfaces microprocessor systems to Winchester disks that use the Shugart Associates SA1000 or Seagate Technology ST506 interface. Examples include Seagate ST506 and ST512. Shugart SA1000, SA1100, and SA600, Tandon 600, Texas Instruments 506, RMS 500, and Quantum Q2000. The device translates parallel data from the microprocessor to a $5 \mathrm{mbit} / \mathrm{sec}$, MFM-encoded serial bit stream. It provides all the drive control logic and, in addition, control signals which simplify the design of an external phase locked loop and write precompensation circuitry. The 82062 is designed to interface to the host controller through an external sector buffer.


Figure 1. 82062 Internal Block Diagram


Figure 2. Pin Configuration

[^14]
## FUNCTIONAL DESCRIPTION

The 82062 Winchester Disk Controller integrates much of the logic needed to implement Winchester disk controller subsystems. It provides MFM-encoded data and all the control lines required by hard disks using the Seagate Technology ST506 or Shugart Associates SA1000 interface standard. Currently, most 5-1/4 inch and many 8 inch Winchester drives use this interface.

Due to the higher data rates required by these drives- 1 byte every 1.6 usec-the 82062 is designed to interface with the host CPU or I/O controller through an external buffer RAM. The 82062 WDC has four pins that minimize the logic required to design a buffer interface.

Figure 3 shows a block diagram of an 82062 subsystem. The WDC is controlled by the host CPU through six commands:

## Restore

Seek
Read Sector
Write Sector
Scan ID
Write Format
These commands use information stored by six task registers. Command execution starts immediately
after the command register is loaded-therefore commands require only one byte from the CPU after the WDC has been initialized.

The 82062 adds all the required track formatting to the data field, including two bytes of CRC. Optionally, these two bytes can be replaced by seven bytes of ECC information for external error correction

## PROCESSOR INTERFACE

Figure 4 shows one possible hardware interface between the WDC and the host CPU or I/O controller. For initializing the 82062, the host uses the standard peripheral interface lines: $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}$, and $\mathrm{A}_{0-2}$. For read and write cycles, the host and the WDC exchange data through an external RAM buffer. The WDC has four pins, $\overline{B C R}, \overline{B C S}$, BRDY, and BDRQ, that facilitate the design of the buffer interface.
The processor starts disk operations by initializing the WDC. It first writes the appropriate parameters into the task register file. The task information includes the drive number, cylinder, head, and sector numbers, sector size, number of sectors to be transferred, and the track number for write precompensation to start. After the task information, the command is written to the command register. See the 82062 Register-CPU Interface section for more details.


Figure 3. System Block Diagram

## CHMOS WINCHESTER DISK CONTROLLER WITH ON-CHIP ERROR DETECTION AND CORRECTION

- Controls ST506/ST412 Interface Winchester Disk Drives
- 5 Mbit/sec Data Transfer. Rate
- Compatible with All Intel and Most Other Microprocessors
- High Speed Operation
- "Zero Wait State" Operation with 8 MHz 80286 and 10 MHz 80186/188
- "One Wait State" Operation with 10 MHz 80286
- Eight High-Level Commands: Restore, Seek, Read Sector, Write Sector, Scan ID, Write Format, Compute Correction, Set Parameter
- Low Power CHMOS III
- On-Chip ECC Unit Automatically Corrects Errors
- 5 or 11-Bit Correctlon-Span Software Selectable
- Implied Seeks with Read/Write Commands
- Multiple Sector Transfer Capability
- 128, 256, 512 and 1024 Byte Sector Lengths
- Avallable in 40-Lead Ceramic Dual InLine, 40-Lead Plastic Dual In-Line, and 44-Lead Plastic Chip Carrier Packages (See Packaging Spec., Order *231369)

The 82064 Winchester Disk Controler (WDC) with on-chip error detection and correction circuitry interfaces microprocessor systems to $51 / 4^{" 1}$ Winchester disk drives. The 82064 is a CHMOS version of the Western Digital WD2010, It is an upgrade to the Western Digital WD1010A-05 Winchester Disk Controller, and includes on-chip ECC, support for drives with up to $2 k$ tracks, and has an additional control signal which eliminates an external decoder.

The 82064 is fabricated on Intel's advanced CHMOS III technology and is available in 40 -lead CERDIP, plastic DIP, and 44-lead plastic leaded chip carrier packages.


Figure 2. 82064 Pinouts

Table 1. Pin Description

Symbol	Pin No.		Type	Name and Function
	DIP	PLCC		
$\overline{B C S}$	1	1	0	BUFFER CHIP SELECT: Output used to enable reading or writing of the external sector buffer by the 82064. When low, the host should not be able to drive the 82064 data bus, $\overline{\mathrm{RD}}$, or $\overline{W R}$ lines.
$\overline{B C R}$	2	2	0	BUFFER COUNTER RESET: Output that is asserted by the 82064 prior to read/write operation. This pin is asserted whenever $\overline{\mathrm{BCS}}$ changes state. Used to reset the address counter of the buffer memory.
INTRQ	3	3	0	INTERRUPT REQUEST: Interrupt generated by the 82064 upon command termination. It is reset when the STATUS register is read, or a new command is written to the COMMAND register. Optionally signifies when a data transier is required on Read Sector commands.
SOHLE	4	4	0	SDHLE is asserted when the SDH register is written by the host.
RESET	5	7	1	RESET: Initializes the controller and clears all status flags. Does not clear the Task Register File.
$\overline{\mathrm{RD}}$	6	8	1/0	READ: Tri-state, bi-directional signal. As an input, $\overline{\mathrm{RD}}$ controls the transfer of information from the 82064 registers to the host. $\overline{R D}$ is an output when the 82064 is reading data from the sector buffer (BCS low).
WR	7	9	1/0	WRITE: Tri-state, bi-directional signal. As an input, $\overline{\text { WR }}$ controls the transfer of command or task information into the 82064 registers. WR is an output when the 82064 is writing data to the sector buffer ( $\overline{\mathrm{BCS}}$ low).
CS	8	10	1	CHIP SELECT: Enables $\overline{\operatorname{RD}}$ and $\overline{W R}$ as inputs for access to the Task Registers. It has no effect once a disk command starts.
$A_{0-2}$	9-11	11-13	1	ADDRESS: Used to select a register from the task register file.
$\mathrm{DB}_{0-7}$	12-19	$\begin{aligned} & 14-16 \\ & 18-22 \end{aligned}$	1/0	DATA BUS: Tri-state, bi-directional 8-bit Data Bus with control determined by BCS. When BCS is high the microprocessor has full control of the data bus for reading and writing the Task Register File. When BCS is low the 82064 controls the data bus to transfer to or from the buffer.
$\mathrm{V}_{\text {ss }}$	20	23		Ground
WR DATA	21	24	0	WRITE DATA: Output that shifts out MFM data at a rate determined by Write Clock. Requires an external D flip-flop clocked at 10 MHz . The output has an active pullup and pulldown that can sink 4.8 mA .
LATE	22	25	0	LATE: Output used to derive a delay value for write precompensation. Valid when WR GATE is high. Active on all cylinders.
EARLY	23	26	0	EARLY: Output used to derive a delay value for write precompensation. Valid when WR GATE is high. Active on all cylinders.

## 82716/VSDD VIDEO STORAGE AND DISPLAY DEVICE

- Low Cost Graphics and Text Capability
- Minimum Chip Count Display Controller
- Displays Up to 16 Blt Map and Character Objects of Any Size
- On-Chip 16/4096 Color Palette
- On-Chip DRAM Controller
- On-Chip D/A Converters
- Arbitration of Processor RAM Requests
- NAPLPS and CEPT Compatible
- Objects Allow Windowing or Animation
- Resolution Up to $640 \times 512$ Pixels
- Up to 512K Bytes of Display Memory
- Compatible with 8 and 16 Bit Processors/Micro Controllers
- Twin Mode Operation for Higher Throughput
- Powerful External Sync and Overlay Capabilities

82716/VSDD is a low cost, highly integrated video controller. It displays graphics and textual information using a minimum of chips. It allows the management of up to 16 display objects on the screen at any one time. These objects may be formatted as bit map or character arrays and can be used for windowing or animation.

An on-chip color palette allows the selection of up to 16 colors, from a range of 4096. The palette can be programmed to drive a set of on-chip D/A converters. The VSDD also provides DRAM controller functions.


231680-1
Figure 1. VSDD Block Diagram

## GENERAL DESCRIPTION

The $82716 /$ VSDD is a low cost, highly integrated VLSI CRT controller offering advanced display capabilities for Videotex and color graphics displays. Its internal architecture allows it to be connected to any Intel compatible processor. The screen image is constructed from various user-specified objects residing in the VSDD memory (mapped into the processor's address space). Pixels are taken directly from the memory for display on the screen. Characters are constructed employing user-defined RAMbased character generators. The VSDD takes the object data from its memory, buffers it, and runs it through a color palette and D/A converters to produce a video signal. The VSDD also supports overlapped objects and transparent pixels.

In conjunction with appropriate software, the VSDD can be compatible with such video standards as NAPLPS, CEPT or custom configurations. Its multiwindow features and resoluticn make the VSDD ideal for:

- Home Information Systems, TV's, VCR's, Games and Home Computers
- Alphanumeric Color/Monochrome Terminals
- Real-Time Process Control Monitoring Equipment
- Videotex Terminals of the Alphageometric, Alphanumeric and Alphaphotographic Type
- Automotive Displays
- Medical Electronics


## FUNCTIONAL DESCRIPTION

Bus Interface Unit (BIU): BIU is the interface between the CPU and the VSDD. CPU accesses the DRAM through the BIU.

Memory Interface Unit (MIU): It is the interface between the VSDD and the DRAM. MIU generates the control signals and the row and column addresses for DRAM.

Tlming Unit: It consists of oscillator and clock generators. The Video and internal clocks are generated by timing unit.

Sync Generator: The sync generator controls the horizontal and vertical timings for raster generation (HSYNC and VSYNC).

Plxel Unit: The pixel unit contains pixel formatting unit as well as scan line buffers in which display information is placed for each scan line. It also contains the color lookup table (color palette) and D/A converters (DACs). DACs convert the digital color specifications to analog RGB signals for the monitor.

Task Scheduler: This unit is the control circuit of the VSDD. It provides the control signals for internal logic.

Address Computing Unit: It computes the DRAM addresses.

Figure 1 shows the block diagram of the VSDD.


Figure 2. Simple System Configuration

## 82720 GRAPHICS DISPLAY CONTROLLER

## - High-Performance Graphics for Siggraph Core-, N.A.P.L.P.S.- and ANSI VDI-Compatible or Custom Systems

- Displays Low-to-High Resolution Images
- Draws Characters, Points, Lines, Arcs and Rectangles
- Supports Monochrome, Greyscale or Color Displays
- Zooms, Pans and Windows Through a 1/2-Mbyte Display Memory


## - Extremely Flexible Programmable Screen Display, Blanking and Sync Formats

- Compatible with Intel's MCS ${ }^{\circledR}$-51 and iAPX 88/86/186 Microprocessor Families
- High-Level Commands Off Load the Master Processor from Bit Map Loading and Screen Refresh Tasks
- Supports Graphics, Character, and Mixed Display Modes


## FUNCTIONAL DESCRIPTION

The 82720 Graphics Display Controller (GDC) is an intelligent microprocessor peripheral designed to drive high-performance raster-scan computer graphics and character CRT displays. Positioned between the video display memory and an Intel microprocessor bus, the GDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the GDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capabilities. The display memory supported by the GDC can be configured in any number of formats and sizes up to 256 K 16 -bit words. The display can be zoomed while partitioned screen areas can be independently scrolled and panned. With its light pen input and multiple controller capability, the GDC is ideal for most computer graphics applications. Systems implemented with the GDC can be designed to be compatible with standards such as Siggraph Core, N.A.P.L.P.S., and ANSI VDI or custom implementations.


Figure 1. Block Diagram


Figure 2. Pin Configuration

## 82786 CHMOS GRAPHICS COPROCESSOR

- High Performance Graphics
- Fast Polygon and Line Drawing
- High Speed Character Drawing
- Advanced DRAM/VRAM Controller for Graphics Memory up to 4 Mbytes
- Supports up to 200 MHz CRTs - up to 640 by 480 by 8 Bits (DRAMs) or 1400 by 1400 by 1 Bit (DRAMs) or 2048 by 2048 by 8 Bits (VRAMs)
- Up to 256 Simultaneous Colors
- Integral DRAM/VRAM Controller, Shift Registers and DMA Channel
- International Character Support

■ Interface Designed for DeviceIndependent Standards

- Hardware Windows
- Fast Bit-Block Copies Between System and Bltmap Memories
- Third-Party Software Support
- Multi-tasking Support
- Provides Support for Rapid Filling with Patterns
- Programmable Video Timing
- Advanced CHMOS Technology
- Supports Dual Port Video DRAMs \& Sequential Access DRAMs
- 88 Pin Grid Array and Leadless Chip Carrier
(See Intel Packaging; Order Number: 231369)

The 82786 is a powerful, yet simple component designed for microcomputer graphics applications including personal computers, engineering workstations, terminals, and laser printers. Its advanced software interface makes applications and systems level programming efficient and straight-forward. Its performance and high-integration make it a cost-effective component while improving the performance of nearly any design. Hardware windows provide instantaneous changes of display contents and support multiple graphics applications from multiple graphics bitmaps. Applications programs written for the IBM Personal Computer can be run within one or more windows of the display when used with Intel CPUs.

The 82786 works with all Intel microprocessors, and is a high-performance replacement for sub-systems and boards which have traditionally used discrete components and/or software for graphics functions. The 82786 requires minimal support circuitry for most system configurations, and thus reduces the cost and board space requirements of many applications. The 82786 is based on Intel's advanced CHMOS III process.


Flgure 1. 82786 Pinout-Bottom View

# i486TM MICROPROCESSOR 

- Binary Compatible with Large Software Base
— MS-DOS*, OS/2**, WIndows
- UNIX*** System V/386
— IRMX ${ }^{\text {© }}$, IRMKTM Kernels
- High Integration Enables On-Chip - 8 Kbyte Code and Data Cache
- Fioating Point Unit
- Paged, VIrtual Memory Management
- Easy To Use
- Built-In Self Test
- Hardware Debugging Support
- Intel Software Support
-Extensive Third Party Software Support

\author{

- High Performance Design -Frequent Instructions Execute in One Clock <br> - 25 MHz and 33 MHz Clock Frequencles <br> - 106 Mbyte/Sec Burst Bus <br> - CHMOS IV Process Technology <br> - Complete 32-Bit Architecture <br> - Address and Data Busses <br> - Registers <br> - Multiprocessor Support <br> - Multiprocessor Instructions <br> - Cache Consistency Protocols <br> - Support for Second Level Cache
}

The i486TM CPU offers the highest performance for DOS, OS/2, Windows and UNIX System V/386 applications. It is $100 \%$ binary compatible with the 386TM CPU. One million transistors integrate cache memory, floating point hardware and memory management on-chip while retaining binary compatibility with previous members of the 86 architectural family. Frequently used instructions execute in one cycle resulting in RISC performance levels. An 8 Kbyte unified code and data cache combined with a 106 Mbyte/Sec burst bus at 33.3 MHz ensure high system throughput even with inexpensive DRAMs.

New features enhance multiprocessing systems. New instructions speed manipulation of memory based semaphores. On-chip hardware ensures cache consistency and provides hooks for multilevel caches.

The built in self test extensively tests on-chip logic, cache memory and the on-chip paging translation cache. Debug features include breakpoint traps on code execution and data accesses.

iRMX, iRMK, 386, 387, 486, i486 are trademarks of Intel Corporation

- MS-DOS ${ }^{\text {® }}$ is a registered trademark of Microsoft Corporation
${ }^{-}{ }^{\circ} \mathrm{OS} / \mathbf{2 r M}^{\mathrm{TM}}$ is a trademark of Microsoft Corporation.
**UNIXTM is a trademark of AT\&T.

[^15]

Figure 1.1

## QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signal descriptions refer to Section 6.

Symbol	Type	Name and Function
CLK	1	Clock provides the fundamental timing and the internal operating frequency for the 486 microprocessor. All external timing parameters are specified with respect to the rising edge of CLK.
ADDRESS BUS		
$\begin{array}{\|l\|} \mathrm{A} 31-\mathrm{A} 4 \\ \mathrm{~A} 2-\mathrm{A} 3 \end{array}$	$\begin{gathered} 1 / 0 \\ 0 \end{gathered}$	A31-A2 are the address lines of the microprocessor. A31-A2 together with the byte enables, BEO * - BE3 *, define the physical area of memory or input/output space accessed. Address lines A31-A4 are used to drive addresses into the microprocessor to perform cache line invalidations. Input signals must meet setup and hold times $\mathrm{t}_{22}$ and $\mathrm{t}_{23}$. A31-A2 are active HIGH and are not driven during bus or address hold.
BE3*   BE2*   BE1*   BEO *	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	The byte enable signals indicate active bytes during read and write cycles. During the first cycle of a cache fill, the external system should assume that all byte enables are active. BE3 \# applies to D24-D31, BE2 \# applies to D16-D23, BE1 \# applies to D8D15 and BE0 \# applies to D0-D7. BEO *-BE3 * are active LOW and are not driven during bus hold.
DATA BUS		
D31-D0	I/O	These are the data lines for the 486 microprocessor. Lines D0-D7 define the least significant byte of the data bus while lines D24-D31 define the most significant byte of the data bus. These signals must meet setup and hold times $\mathrm{t}_{22}$ and $\mathrm{t}_{23}$ for proper operation on reads. These pins are active HIGH and are driven during the second and subsequent clocks of write cycles.
DATA PARITY		
DP0-DP3	1/0	There is one data parity pin for each byte of the data bus. Data parity is generated on all write data cycles with the same timing as the data driven by the 486 microprocessor. Even parity information must be driven back into the microprocessor on the data parity pins with the same timing as read information to insure that the correct parity check status is indicated by the 486 microprocessor. The signals read on these pins do not affect program execution.   Input signals must meet setup and hold times $\mathrm{t}_{22}$ and $\mathrm{t}_{23}$. DPO-DP3 should be connected to $\mathrm{V}_{\mathrm{Cc}}$ through a pullup resistor in systems which do not use parity. DP0-DP3 are active HIGH and are driven during the second and subsequent clocks of write cycles.
PCHK*	0	Parity Status is driven on the PCHK * pin the clock after ready for read operations. The parity status is for data sampled at the end of the previous clock. A parity error is indicated by PCHK \# being LOW. Parity status is only checked for enabled bytes as indicated by the byte enable and bus size signals. PCHK \# is valid only in the clock immediately after read data is returned to the microprocessor. At all other times PCHK * is inactive (HIGH). PCHK \# is never floated.
BUS CYCLE DEFINITION		
M/IO*   D/C *   W/R*	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	The memory/input-output, dataicontrol and write/read lines are the primary bus definition signals. These signals are driven valid as the ADS\# signal is asserted.
		M/IO* D/C* W/R \# Bus Cycle Initiated
		0 0 0 Interrupt Acknowledge   0 0 1 Halt/Special Cycle   0 1 0 I/O Read   0 1 1 I/O Write   1 0 0 Code Read   1 0 1 Reserved   1 1 0 Memory Read   1 1 1 Memry Write
		The bus definition signals are no: driven during bus hold and follow the timing of the address bus. Refer to Section $7.2: 1$ for a description of the special bus cycles.

## 1486TM MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol	Type	Name and Function
BUS CYCLE DEFINITION (Continued)		
LOCK*	$\bigcirc$	The bus lock pin indicates that the current bus cycle is locked. The 486 microprocessor will not allow a bus hold when LOCK * is asserted (but address holds are allowed). LOCK \# goes active in the first clock of the first locked bus cycle and goes inactive after the last clock of the last locked bus cycle. The last locked cycle ends when ready is returned. LOCK \# is active LOW and is not driven during bus hold. Locked read cycles will not be transformed into cache fill cycles if KEN is returned active.
PLOCK*	0	The pseudo-lock pin indicates that the current bus transaction requires more than one bus cycle to complete. Examples of such operations are floating point long reads and writes ( 64 bits), segment table descriptor reads ( 64 bits), in addition to cache line fills ( 128 bits). The 486 microprocessor will drive PLOCK \# active until the addresses for the last bus cycle of the transaction have been driven regardless of whether RDY \# or BRDY * have been returned.   Normally PLOCK * and BLAST \# are inverse of each other. However during the first bus cycle of a 64 -bit floating point write, both PLOCK \# and BLAST * will be asserted. PLOCK \# is a function of the BS8 *, BS16 \# and KEN \# inputs. PLOCK \# should be sampled only in the clock ready is returned. PLOCK * is active LOW and is not driven during bus hold.
BUS CONTROL		
ADS \#	$\bigcirc$	The address status output indicates that a valid bus cycle definition and address are available on the cycle definition lines and address bus. ADS \# is driven active in the same clock as the addresses are driven. ADS* is active LOW and is not driven during bus hold.
RDY *	1	The non-burst ready input indicates that the current bus cycle is complete. RDY * indicates that the external system has presented valid data on the data pins in response to a read or that the external system has accepted data from the 486 microprocessor in response to a write. RDY * is ignored when the bus is idle and at the end of the first clock of the bus cycle.   RDY \# is active during address hold. Data can be returned to the processor while AHOLD is active.   RDY \# is active LOW, and is not provided with an internal pullup resistor. RDY \# must satisfy setup and hold times $\mathrm{t}_{16}$ and $\mathrm{t}_{17}$ for proper chip operation.
BURST CONTROL		
BRDY *	1	The burst ready input performs the same function during a burst cycle that RDY * performs during a non-burst cycle. BRDY \# indicates that the external system has presented valid data in response to a read or that the external system has accepted data in response to a write. BRDY * is ignored when the bus is idle and at the end of the first clock in a bus cycle.   BRDY \# is sampled in the second and subsequent clocks of a burst cycle. The data presented on the data bus will be strobed into the microprocessor when BRDY \# is sampled active. If RDY \# is returned simultaneously with BRDY \#, BRDY \# is ignored and the burst cycle is prematurely aborted.   BRDY \# is active LOW and is provided with a small pullup resistor. BRDY \# must satisfy the setup and hold times $\mathrm{t}_{16}$ and $\mathrm{t}_{17}$.
BLAST *	0	The burst last signal indicates that the next time BRDY \# is returned the burst bus cycle is complete. BLAST \# is active for both burst and non-burst bus cycles. BLAST \# is active LOW and is not driven during bus hold.

## 1486TM MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol	Type	Name and Function
INTERRUPTS		
RESET	1	The reset input forces the 486 microprocessor to begin execution at a known state. The microprocessor cannot begin execution of instructions until at least 1 ms after $\mathrm{V}_{\mathrm{CC}}$ and CLK have reached their proper DC and AC specifications. The RESET pin should remain active during this time to insure proper microprocessor operation. RESET is active HIGH. RESET is asynchronous but must meet setup and hold times $\mathrm{t}_{20}$ and $\mathrm{t}_{21}$ for recognition in any specific clock.
INTR	1	The maskable interrupt indicates that an external interrupt has been generated. If the internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The 486 microprocessor will generate two locked interrupt acknowledge bus cycles in response to the INTR pin going active. INTR must remain active until the interrupt acknowledges have been performed to assure that the interrupt is recognized. INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is asynchronous, but must meet setup and hold times $\mathrm{t}_{20}$ and $\mathrm{t}_{21}$ for recognition in any specific clock.
NMI	1	The non-maskable interrupt request signal indicates that an external non-maskable interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at least four CLK periods before this rising edge. NMI is not provided with an internal pulldown resistor. NMI is asynchronous, but must meet setup and hold times $\mathrm{t}_{20}$ and $\mathrm{t}_{21}$ for recognition in any specific clock.
BUS ARBITRATION		
BREQ	0	The internal cycle pending signal indicates that the 486 microprocessor has internally generated a bus request. BREQ is generated whether or not the 486 microprocessor is driving the bus. BREQ is active HIGH and is never floated.
HOLD	1	The bus hold request allows another bus master complete control of the 486 microprocessor bus. In response to HOLD going active the 486 microprocessor will float most of its output and input/output pins. HLDA will be asserted after completing the current bus cycle, burst cycle or sequence of locked cycles. The 486 microprocessor will remain in this state until HOLD is deasserted. HOLD is active high and is not provided with an internal pulldown resistor. HOLD must satisfy setup and hold times $\mathrm{t}_{18}$ and $\mathrm{t}_{19}$ for proper operation.
HLDA	0	Hold acknowledge goes active in response to a hold request presented on the HOLD pin. HLDA indicates that the 486 microprocessor has given the bus to another local bus master. HLDA is driven active in the same clock that the 486 microprocessor floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and remains driven during bus hold.
BOFF *	1	The backoff input forces the 486 microprocessor to float its bus in the next clock. The microprocessor will float all pins normally floated during bus hold but HLDA will not be asserted in response to BOFF \#. BOFF \# has higher priority than RDY \# or BRDY \#; if both are returned in the same clock, BOFF \# takes effect. The microprocessor remains in bus hold until BOFF * is negated. If a bus cycle was in progress when BOFF \# was asserted the cycle will be restarted. BOFF \# is active LOW and must meet setup and hold times $\mathrm{t}_{18}$ and $\mathrm{t}_{19}$ for proper operation.
CACHE INVALIDATION		
AHOLD	1	The address hold request allows another bus master access to the 486 microprocessor's address bus for a cache invalidation cycle. The 486 microprocessor will stop driving its address bus in the clock following AHOLD going active. Only the address bus will be floated during address hold, the remainder of the bus will remain active. AHOLD is active HIGH and is provided with a small internal pulldown resistor. For proper operation AHOLD must meet setup and hold times $\mathrm{t}_{18}$ and $\mathrm{t}_{19}$.

## i486Tm MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol	Type	Name and Function
CACHE INVALIDATION (Continued)		
EADS	1	This signal indicates that a valid external address has been driven onto the 486 microprocessor address pins. This address will be used to perform an internal cache invalidation cycle. EADS\# is active LOW and is provided with an internal pullup resistor. EADS \# must satisty setup and hold times $\mathrm{t}_{12}$ and $\mathrm{t}_{13}$ for proper operation.
CACHE CONTROL		
KEN *	1	The cache enable pin is used to determine whether the current cycle is cacheable. When the 486 microprocessor generates a cycle that can be cached and KEN \# is active, the cycle will become a cache line fill cycle. Returning KEN \# active one clock before ready during the last read in the cache line fill will cause the line to be placed in the on-chip cache. KEN* is active LOW and is provided with a small internal pullup resistor. KEN * must satisfy setup and hold times $\mathrm{t}_{14}$ and $\mathrm{t}_{15}$ for proper operation.
FLUSH*	1	The cache flush input forces the 486 microprocessor to flush its entire internal cache. FLUSH* is active low and need only be asserted for one clock. FLUSH \# is asynchronous but setup and hold times $\mathrm{t}_{20}$ and $\mathrm{t}_{21}$ must be met for recognition in any specific clock.
PAGE CACHEABILITY		
$\begin{aligned} & \text { PWT } \\ & \text { PCD } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	The page write-through and page cache disable pins reflect the state of the page attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition pins (M/IO*, D/C\# and W/R \#). PWT and PCD are active HIGH and are not driven during bus hold. PCD is masked by the cache enable bit (CE) in Control Register 0.
NUMERIC ERROR REPORTING		
FERR *	0	The floating point error pin is driven active when a floating point error occurs. FERR \# is similar to the ERPOR \# pin on the 387TM math coprocessor. FERR\# is included for compatibility with systems using DOS type floating point error reporting. FERR \# is active LOW, and is not floated during bus hold.
IGNNE*	1	When the ignore numeric error pin is asserted the 486 microprocessor will ignore a numeric error and continue executing non-control floating point instructions. When IGNNE \# is deasserted the 486 microprocessor will freeze on a non-control floating point instruction, if a previous floating point instruction caused an error. IGNNE \# has no effect when the NE bit in control register 0 is set. IGNNE * is active LOW and is provided with a small internal pullup resistor. IGNNE \# is asynchronous but setup and hold times $\mathrm{t}_{20}$ and $t_{21}$ must be met to insure recognition on any specific clock.
BUS SIZE CONTROL		
$\begin{aligned} & \text { BS16 * } \\ & \text { BS8 \# } \end{aligned}$	$1$	The bus size 16 and bus size 8 pins (bus sizing pins) cause the 486 microprocessor to run multiple bus cyctes to complete a request from devices that cannot provide or accept 32 bits of data in a single cycle. The bus sizing pins are sampled every clock. The state of these pins in the clock before ready is used by the 486 microprocessor to determine the bus size. These signals are active LOW and are provided with internal pullup resistors. These inputs must satisfy setup and hold times $\mathrm{t}_{14}$ and $\mathrm{t}_{15}$ for proper operation.
ADDRESS MASK		
A20M *	1	When the address bit 20 mask pin is asserted, the 486 microprocessor masks physical address bit 20 (A20) before performing a lookup to the internal cache or driving a memory, cycle on the bus. A20M \# emulates the address wraparound at one Mbyte which occurs on the 8086. A2OM \# is active LOW and should be asserted only when the processor is in real mode. This pin is asynchronous but should meet setup and hold times $\mathrm{t}_{20}$ and $\mathrm{t}_{21}$ for recognition in any specific clock.

1486TM MICROPROCESSOR

Table 1.1. Output Pins

Name	Active   Level	When   Floated
BREQ	HIGH	
HLDA	HIGH	
BEO\#-BE3\#	LOW	Bus Hold
PWT, PCD	HIGH	Bus Hold
W/R\#, D/C\#, M/IO\#	HIGH	Bus Hold
LOCK\#	LOW	Bus Hold
PLOCK\#	LOW	Bus Hold
ADS\#	LOW	Bus Hold
BLAST\#	LOW	Bus Hold
PCHK\#	LOW	
FERR*	LOW	
A2-A3	HIGH	Bus, Address Hold

Table 1.2. Input Pins

Name	Active   Level	Synchronous/   Asynchronous
CLK		
RESET	HIGH	Asynchronous
HOLD	HIGH	Synchronous
AHOLD	HIGH	Synchronous
EADS*	LOW	Synchronous
BOFF*	LOW	Synchronous
FLUSH*	LOW	Asynchronous
AROM*	LOW	Asynchronous
BS16\#, BS8*	LOW	Synchronous
KEN*	LOW	Synchronous
RDY*	LOW	Synchronous
BRDY*	LOW	Synchronous
INTR	HIGH	Asynchronous
NMI	HIGH	Asynchronous
IGNNE*	LOW	Asynchronous

Table 1.3. Input/Output Pins

Name	Active   Level	When   Floated
D0-D31	HIGH	Bus Hold   DPO-DP3   A4-A31
HIGH	HIGH	Busld
Bus, Address Hold		

## 1486TM MICROPROCESSOR

### 2.0 ARCHITECTURAL OVERVIEW

The 486 microprocessor is a 32 -bit architecture with on-chip memory management, floating point and cache memory units.

The 486 microprocessor contains all the features of the 386 TM microprocessor with enhancements to increase performance. The instruction set includes the complete 386 microprocessor instruction set along with extensions to serve new applications. The onchip memory management unit (MMU) is completely compatible with the 386 microprocessor MMU. The 486 microprocessor brings the 387 TM math coprocessor on-chip. All software written for the 386 microprocessor, 387 math coprocessor and previous members of the 86/87 architectural family will run on the 486 microprocessor without any modifications.

Several enhancements have been added to the 486 microprocessor to increase performance. On-chip cache memory allows frequently used data and code to be stored on-chip reducing accesses to the external bus. RISC design techniques have been used to reduce instruction cycle times. A burst bus feature enables fast cache fills. All of these features combined, lead to performance greater than twice that of a 386 microprocessor.

The memory management unit (MMU) consists of a segmentation unit and a paging unit. Segmentation allows management of the logical address space by providing easy data and code relocatibility and efficient sharing of global resources. The paging mechanism operates beneath segmentation and is transparent to the segmentation process. Paging is optional and can be disabled by system software. Each segment can be divided into one or more 4 Kbyte segments. To implement a virtual memory system, the 486 microprocessor supports full restartability for all page and segment faults.

Memory is organized into one or more variable length segments, each up to four gigabytes ( $2^{32}$ bytes) in size. A segment can have attributes associated whith which include its location, size, type (i.e., stack, code or data), and protection characteristics. Each task on a 486 microprocessor can have a maximum of 16,381 segments each up to four gigabytes in size. Thus each task has a maximum of 64 terabytes (nillion bytes) of virtual memory.

The segmentation unit provides four-levels of protection for isolating and protecting applications and the operating system from each other. The hardware enforced protection allows the design of systems with a righ degree of integrity.

The 406 microprocessor has two modes of operation: Preel Address Mode (Real Mode) and Protected

Mode Virtual Address Mode (Protected Mode). In Real Mode the 486 microprocessor operates as a very fast 8086. Real Mode is required primarily to setup the processor for Protected Mode operation. Protected Mode provides access to the sophisticated memory management paging and privilege capabilities of the processor.

Within Protected Mode, software can perform a task switch to enter into tasks designated as Virtual 8086 Mode tasks. Each virtual 8086 task behaves with 8086 semantics, allowing 8086 software (an application program or an entire operating system) to execute.

The on-chip floating point unit operates in parallel with the arithmetic and logic unit and provides arithmetic instructions for a variety of numeric data types. It executes numerous built-in transcendental functions (e.g., tangent, sine, cosine, and log functions). The floating point unit fully conforms to the ANSI/ IEEE standard 754-1985 for floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4 -way set associative and follows a write-through policy. The on-chip cache includes features to provide flexibility in external memory system design. Individual pages can be designated as cacheable or non-cacheable by software or hardware. The cache can also be enabled and disabled by software or hardware.

Finally the 486 microprocessor has features to facilitate high performance hardware designs. The 1X clock eases high frequency board level designs. The burst bus feature enables fast cache fills. These features are described beginning in Section 6.

### 2.1 Register Set

The 486 microprocessor register set includes all the registers contained in the 386 microprocessor and the 387 math coprocessor. The register set can be split into the following categories:

Base Architecture Registers
General Purpose Registers
Instruction Pointer
Flags Register
Segment Registers

Systems Level Registers<br>Control Registers<br>System Address Registers

## 1486TM MICROPROCESSOR

Floating Point Registers<br>Data Registers<br>Tag Word<br>Status Word<br>Instruction and Data Pointers<br>Control Word

## Debug and Test Registers

The base architecture and floating point registers are accessible by the applications program. The system level registers are only accessible at privilege level 0 and are used by the systems level program. The debug and test registers are also only accessible at privilege level 0 .

### 2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the 486 microprocessor base architecture registers. The contents of these registers are task-specific and are automatically loaded with a new context upon a task switch operation.


Figure 2.1. Base Architecture Registers

The base architecture includes six directly accessible descriptors, each specifying a segment up to 4 Gbytes in size. The descriptors are indicated by the selector values placed in the 186 microprocessor segment registers. Various selector values can be loaded as a program executes.

The selectors are atso task-specilic, so the segment registers are automatically loadod with new context upon a task switch operation:

### 2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are shown in Figure 2.t. These registers hold data or address quantities. The general purpose registers can support data operands of $1,8,16$ and 32 bits, and bit fields of 1 to 32 bits. Address operands of 16 and 32 bits are supported. The 32-bit registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP

The loast significant 16 bits of the general purpose registers can be accessed separately by using the 16 -bit names of the registers $A X, B X, C X, D X, S I, D I$, BP and SP. The upper 16 bits of the register are not changed when the lower 16 bits are accessed separately

Finally 8 -bit operations can individually access the lowest byte (bits 0-7) and the higher byte (bits 815) of the general purpose registors $A X, B X, C X$ and DX. The lowest bytes are named AL, BL, CL and DL respectively. The nigher bytes are named $A H, B H$, CH and DH respectively. The individual byte accessibility offers additional flexibility for data operations but is not used for effective address calculation.

### 2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a $32-$ bit register named EIP. EIP holds the offset of the next instruction to be executed. The offset is always relative to the base of the code segment (CS). The lower 16 bits (bits 0 -15) of the EIP contain the 16 -bit instruction pointer named $\mathbb{P}$, which is used for 16 -bit addressing.

### 2.1.1.3 Flags Register

The llags register is a 32 -bit register named EFLAŪS. The defined bits and bit fields within EFLAUS control certain operations and indicate status of the 486 microprocessor. The lower 16 bits (bit $0-15$ ) of ERLAGS contain the 16 -bit register named FLAGS, which is most useful when executing 8086 and 80286 code. EFLAGS is shown in Figure 2.2 .

## i486TM MICROPROCESSOR



Figure 2.2. Flags Register

EFLAGS bits 1, 3, 5, 15 and 19-31 are "undefined". When these bits are stored during interrupt processing or with a PUSHF instruction (push flags onto stack), a one is stored in bit 1 and zeros in bits 3, 5, 15 and 19-31.

The EFLAGS register in the 486 microprocessor contains a new bit not available in the 386 microprocessor. The new bit, AC, is defined in the upper 16 bits of the register and it enables faults on accesses to misaligned data.
AC (Alignment Check, bit 18)
The AC bit enables the generation of faults if a memory reference is to a misaligned address. Alignment faults are enabled when AC is set to 1. A mis-aligned address is a word access
to an odd address, a dword access to an address that is not on a dword boundary, or an 8 -byte reference to an address that is not on a 64 -bit word boundary. See Section 7.1.6 for more information on operand alignment.
Alignment faults are only generated by programs running at privilege level 3. The AC bit setting is ignored at privilege levels 0,1 and 2 . Note that references to the descriptor tables (for selector loads), or the task state segment (TSS), are implicitly level 0 references even if the instructions causing the references are executed at level 3. Alignment faults are reported through interrupt 17, with an error code of 0 . Table 2.1 gives the alignment required for the 486 microprocessor data types.

Table 2.1. Data Type Alignment Requirements

Memory Access	Alignment (Byte Boundary)
Word	2
Dword	4
Single Precision Real	4
Double Precision Real	8
Extended Precision Real	8
Selector	2
48-Bit Segmented Pointer	4
32-Bit Fiat Pointer	4
32-Bit Segmented Pointer	2
48-Bit "Pseudo-Descriptor"	4
FSTENV/FLDENV Save Area	$4 / 2$ (On Operand Size)
FSAVE/FRSTOR Save Area	$4 / 2$ (On Operand Size)
Bit String	4



## 16-BIT MICROPROCESSING UNIT

Advances in semiconductor technology have provided the capability to place on a single silicon chip a microprocessor at least an order of magnitude higher in performance and circuit complexity than has been previously available. The MC68000 is the first of a family of such VI.SI microprocessors from Motorola. It combines state-of-the-art technology and advanced circuit design techniques with computer sciences to achieve an architecturally advanced 16 -bit microprocessor

The resources available to the MC68000 user consist of the following

- 32-Bit Data and Address Registers
- 16 Megabyte Direct Addressing Range
- 56 Powerful Instruction Types
- Operations on Five Main Data Types
- Memory Mapped I/O
- 14 Addressing Modes

As shown in the programming model, the MC68000 offers seventeen 32 -bit registers in addition to the 32 -bit program counter and a 16 -bit status register. The first eight registers (D0-D7) are used as data registers for byte (8-bit), word (16-bit), and long word (32-bit) data operations. The second set of seven registers (AO-A6) and the system stack pointer may be used as soitware stack pointers and base address registers. In addition, these registers may be used for word and long word address operations. All 17 registers may be used as index registers.


This is advence informetion and apecifications are subject to chenge without notice.

MC68000L4
( 4 mHz ) MC68000L6 ( 6 mHz ) MC68000L ( 8 mHz )



OMOTOROLA INC . 1960

A 23-bit address bus provides a memory addressing range of greater than 16 megabytes. This large range of addressing capability, coupled with a memory management unit, allows large, moduiar programs to be developed and operated without resorting to cumbersorre and time consuming software bookkeeping and paging techniques.

The status register contains the interrupt mask (eight leveis available) as well as the condition codes; extend ( X ), negative ( $N$ ), zero (Z), overflow (V), and carry (C). Additional status bits indicate that the processor is in a trace ( $T$ ) mode and/or in a supervisor (S) state

STATUS REGISTER


Five basic data types are supported. These data types are:

- Bits
- BCD Digits (4-bits)
- Bytes (8-bits)
- Word (16-bits)
- Long Words (32-bits)

In addition, operations on other data types such as memory addresses, status word data, etc., are provided for in the instruction set
The 14 addressing modes, shown in Table 1, include six basic types:

- Register Direct
- Register Indirect
- Absolute
- Immediate
- Program Counter Relative
- implied

Included in the register indirect addressing modes is the capability to do postincrementing, predecrementing, offsetting and indexing. Program counter relative mode can also be modified via indexing and offsetting

TABLE 1 - DATA ADDRESSING MODES

Mode	Generation
Register Direct Addressing   Data Register Direct   Address Register Direct	$\begin{aligned} & \mathrm{EA}=\mathrm{Dn} \\ & \mathrm{EA}=\mathrm{An} \end{aligned}$
Absolute Data Addressing   Absolute Short   Absolute Long	$\begin{aligned} & E A=(\text { Next Word }) \\ & E A=(\text { Nex! Two Words }) \end{aligned}$
Program Counter Relative Addressing   Relative with Offset   Relative with Index and Offset	$\begin{aligned} & E A=(P C)+d_{16} \\ & E A=(P C)+(X n)+d_{8} \end{aligned}$
Register Indirect Addressing   Register Indirect   Postincrement Register Indirect   Predecrement Register Indirect   Register Indirect with Offset   Indexed Register Indirect with Offset	$\begin{aligned} & E A=(A n) \\ & E A=(A n), A n \leftarrow A n+N \\ & A n \leftarrow A n-N, E A=(A n) \\ & E A=(A n)+d_{16} \\ & E A=(A n)+(X n)^{\prime}+d_{8} \end{aligned}$
Immediate Data Addressing immediate Quick Immediate	DATA = Next Word(s) Inherent Data
Implied Addressing Implied Register	$E A=S R, U S P, S P, P C$

## NOTES:

$E A=$ Effective Address
$\mathrm{A}_{\mathrm{n}}=$ Address Register
Dn= Data Register
$\mathrm{X}_{\mathrm{n}}=$ Address or. Data Register used
as Index Register
$S R=$ Status Register
PC $=$ Program Counter
() = Contents of
$d_{8}=$ Eight-bit Offset (dispiacement)
$\mathrm{d}_{16}=$ Sixteen-bit Offset (displacement)
$N=1$ for Byte, 2 for
Words and 4 for Long
Words
$-=$ Replaces

The MC68000 instruction set is shown in Table 2. Some additional instructions are variations, or subsets, of these and they appear ín Table 3. Special emphasis has been given to the instruction set's support of structured high-level languages to facilitate ease of programming. Each instruction, with few exceptions, operates on bytes, words, and
long words and most instructions can use any of the 14 addressing modes. Combining instruction types, data types, and addressing modes, over 1000 useful instructions are provided. These instructions include signed and unsigned multiply and divide, "quick" arithmetic operations, BCD arithmetic and expanded operations (through traps).

TABLE 2 - INSTRUCTION SET

Mnemonic	Deecription	Mnemonic	Deecription	Mnemonic	Deecription
ABCDADDANDASLASR	Add Decimal with Extend Add Logical And Arithmetic Shift Left Arithmetic-Shift Right	$\begin{array}{\|l} \hline \text { EOR } \\ \text { EXG } \\ \text { EXT } \\ \hline \end{array}$	Exclusive Or Exchange Registers Sign Extend	PEA   RESET   ROL   ROR   ROXL   ROXR   RTE   RTR   RTS	Push Effective Address   Reset External Devices   Rotate Left without Extend   Rotate Right without Extend   Rotate Left with Exiend   Rotate Right with Extend   Return from Exception   Return and Restore   Return from Subroutine
		$\begin{aligned} & \text { JMP } \\ & \text { JSR } \end{aligned}$	Jump Jump to Subroutine		
BC BCHG BCLR BRA	Branch Conditionally Bit Test and Change Bit Test and Clear Branch Always	$\begin{array}{\|l\|} \hline \text { LEA } \\ \text { LINK } \\ \text { LSL } \\ \text { LSR } \\ \hline \end{array}$	Load Effective Address   Link Stack   Logical Shift Left   Logical Shift Right		
$\begin{array}{\|l} \text { BSET } \\ \text { BSR } \\ \text { BTST } \end{array}$	Bit Test and Set Branch to Subroutine Bit Test	$\begin{array}{\|l\|} \hline \text { MOVE } \\ \text { MOVEM } \\ \text { MOVEP } \end{array}$	Move   Move Multiple Registers Move Peripheral Data	$\begin{aligned} & \text { SBCD } \\ & \text { SCC } \\ & \text { STOP } \end{aligned}$	Subtract Decimal with Extend Set Conditional Stop
CHK	Check Register Against Bounds Clear Operand	$\begin{aligned} & \text { MULS } \\ & \text { MULU } \end{aligned}$	Signed Multiply Unsigned Multiply	$\begin{aligned} & \text { SUB } \\ & \text { SWAP } \\ & \hline \end{aligned}$	Subtract   Swap Data Register Halves
CMP	Compere	NBCD	Negate Decimal with Extend	TAS	Test and Set Operand
D8CC	Test Condition, Decrement and Branch Signed Divide	$\begin{aligned} & \text { NEG } \\ & \text { NOP } \\ & \text { NOT } \end{aligned}$	Negate   No Operation   One's Complement	TRAP   TRAPV   TST	$\begin{array}{\|l} \text { Trap } \\ \text { Trap on Overflow } \\ \text { Test } \\ \hline \end{array}$
Divu	Unsigned Divide	OR	Logical Or	UNLK	Unlink

TABLE 3 - VARIATIONS OF INSTRUCTION TYPES

Mretruction   Type	Verietion	Description
ADD	ADD   ADDA   ADDO   ADDI   ADDX	Add   Add Address   Add Quick   Add Immediate   Add with Extend
AND	AND   ANDI	Logical And   And Immediate
CMP	CMP   CMPA   CMPM   CMPI	Compere   Compere Address   Compare Mernory   Compare Immediate
EOR	EOA   EORI	Excusive Or   Exclusive Or Immediate


Inecruction Type	Variation	Description
MOVE	MOVE MOVEA MOVEQ MOVE from SR MOVE to SR MOVE to CCR MOVE USP	Move   Move Address   Move Quick   Move from Status Register   Move to Status Register   Move to Condition Codes   Move User Stack Pointer
NEG	$\begin{array}{\|l\|} \hline \text { NEG } \\ \text { NEGX } \end{array}$	Negate Negate with Extend
OR	$\begin{aligned} & \hline \text { OR } \\ & \text { ORI } \end{aligned}$	Logical Or Or Immediate
SUE	$\begin{aligned} & \hline \text { SUB } \\ & \text { SUBA } \\ & \text { SUBI } \\ & \text { SUBQ } \\ & \text { SUBX } \\ & \hline \end{aligned}$	Subtract   Subtract Address   Subtrect Immediate   Subtract Quick   Subtract with Extend

## DATA ORGANIZATION AND ADDRESSING CAPABILITIES

The following paragraphs describe the data organization and addressing capabilities of the MC68000

## OPERAND SIZE

Operand sizes are defined as tollows: a byte equals 8 bits, a word equals 16 bits, and a long word equais 32 bits The operand size for each instruction is either explicitly encoded in the instruction or implicitiy defined by the instruction operation. All explicit instructions support byte, word or long word operands. Implicit instructions support some subset of tall three sizes.

## DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers together with the active stack pointer support address operands of 32 bits.

DATA REGISTERS. Each data register is 32 bits wide. Byte operands occupy the low orcier 8 bits, word operands the low order 16 bits, and long word operands the entire 32 bits. The least significant bit is addressed as bit zeio; the most significant bit is addressed as bit 31

When a data register is used as either a source or destination operand, only the appropriate low-order portion is changed; the remaining high-order portion is neither used nor changed

ADDRESS REGISTERS. Each address register and the stack pointer is 32 bits wide and holds a full 32 bit address Address registers do nol support byte sized operands. Therefore, when an address register is used as a source operand, either the low order word or the entire long word operand is used depending upon the operation size. When an address register is used as the destination operand, the
entire register is affected regardless of the operation size. If the operation size is word, any other operands are sign extended to 32 bits before the operation is performed.

## DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address the same as the word, as shown in Figure 1. The low order byte has an odd address that is one count higher than the word address Instructions and multibyte data are accessed only on word (even byte) boundaries. If a long word datum is located at address $n$ (n even), then the second word of that datum is located at address $n+2$.
The data types supported by the MC68000 are: bit data, integer data of 8,16 , or 32 bits, 32 -bit addresses and binary coded decimal data Each of these data types is put in memory, as shown in Figure 2.

## ADDRESSING

Instructions for the MC68000 contain two kinds of information: the type of function to be periormed, and the location of the operand(s) on which to perform that function. The methods used to locate (address) the operand(s) are explained in the following paragraphs.

Instructions specify an operand location in one of theee ways:

Register Specification - the number of the register is given in the register field of the instruction.
Effective Address - use of the different effective address modes
Implicit Reference - the definition of certain instructions implies the use of specific registers.

FIGURE 1 - WORD ORGANIZATION IN MEMORY



Integer Data
1 Byte =8 Bits

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
MSB		Byte 0			LSB				Byte 1					
		Byte 2							Byte 3					

1 Word = 16 Bits



Addresses
1 Address $=32$ Bits


MSB = Most Significant Bit LSB = Least Significant Bit

Decimal Data
2 Binary Coded Decimal Digits $=1$ Byte

15	$14 \quad 13$	12	11	109	8	7	65	4	3	21	0
MSD	BCD 0			BCO 1	LSD		BCD 2			BCD 3	
	BCD 4			BCD 5			BCD 6			BCD 7	

MSD $=$ Most Significant Digit
LSD = Leest Significent Digit

## INSTRUCTION FORMAT

Instructions are from one to five words in length, as shown in Figure 3. The length of the instruction and the operation to be performed is specified by the first word of the instruction which is called the operation word The remaining words further specify the operands. These words are either immediate operands or extensions to the effective address mode specified in the operation word.

## PROGRAM/DATA REFERENCES

The MC68000 separates memory references into two classes: program references, and data references. Program references, as the name implies, are references to that section of memory that contains the program being executed Data references refer to that section of memory that contains data. Generally, operand reads are from the data space. All operand writes are to the data space.

## REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the instruction specify whether the register selected is an address or data register and how the register is to be used.

## EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field in the operation word. For ex ample, Figure 4 shows the general format of the single effective address instruction operation word. The effective address is composed of two 3-bit fields: the mode field, and the register field. The value in the mode field selects the different address modes. The register field contains the number of a register.
The effective address field may require additional information to fully specify the operand. This additional information, called the effective address extension, is contained in the following word or words and is considered part of the instruction, as shown in Figure 3. The effective address modes are grouped into three categories: register direct, memory addressing, and special.

REGISTER DIRECT MODES. These effective addressing modes specify that the operand is in one of the 16 multifunction registers.

Data Register Direct. The operand is in the data register specified by the effective address register field.

Address Register Direct. The operand is in the address register specified by the effective address register field.

MEMORY ADDRESS MODES. These effective addressing modes specify that the operand is in memory and provide the specific address of the operand.

Address Register Indirect. The address of the operand is in the address register specified by the register field. The reference is classified as a data reference with the exception of the jump and jump to subroutine instructions.

Address Register Indirect With Postincrement. The address of the operand is in the address register specified by the register field. After the operand address is used, it is incremented by one, two, or four depending upon whether the size of the operand is byte, word, or long word. If the address register is the stack pointer and the operand size is byte, the address is incremented by two rather than one to keep the stack pointer on a word boundary. The reference is classified as a data reference.

Address Register Indirect With Predecrement. The address of the operand is in the address register specified by the register field. Before the operand address is used, it is decremented by one, two, or four depending upon whether the operand size is byte, word, or long word. If the address register is the stack pointer and the operand size is byte, the address is decremented by two rather than one to keep the stack pointer on a word boundary. The reference is classified as a data reference.

Address Register Indirect With Displacement. This address mode requires one word of extension. The address of the operand is the sum of the address in the address register and the sign-extended 16-bit displacement integer in the extension word. The reference is classified as a data reference with the exception of the jump and jump to subroutine instructions.

Address Register Indirect With Index. This address mode requires one word of extension. The address of the operand

FIGURE 3 - INSTRUCTION FORMAT


FIGURE 4 - SINGLE-EFFECTIVE-ADDRESS
INSTRUCTION OPERATION WORD GENERAL FORMAT

is the sum of the address in the address register, the signextended displacement integer in the low order eight bits of the extension word, and the contents of the index register. The reference is classified as a data reference with the exception of the jump and jump to subroutine instructions.

SPECIAL ADDRESS MODES. The special address modes use the effective address register field to specify the special addressing mode instead of a register number.

Abeolute Short Addrees. This address mode requires one word of extension. The address of the operand is the extension word. The 16 -bit address is sign extended before it is used. The reference is classified as a data reference with the exception of the jump and jump to subroutine instructions.

Abeolute Long Addreas. This address mode requires two words of extension. The address of the operand is developed by the concatenation of the extension words. The high-order part of the address is the first extension word; the low-order part of the address is the second extension word. The reference is classified as a data reference with the exception of the jump and jump to subroutine instructions.

Program Counter With Displacement. This address mode requires one word of extension. The address of the operand is the sum of the address in the program counter and the sign-extended 16 -bit displacement integer in the extension word. The value in the program counter is the address of the extension word. The reference is classified as a program reference.

Program Counter With Index. This address mode requires one word of extension. The address is the sum of the address in the program counter, the sign-extended displacement integer in the lower eight bits of the extension word, and the contents of the index register. The value in the program counter is the address of the extension word. This reference is classified as a program reference.

Immediate Data. This address mode requires either one or two words of extension depending on the size of the operation.

Byte operation - operand is low order byte of extension word
Word operation - operand is extension word
Long word operation - operand is in the two extension words, high-order 16 bits are in the first extension word, low-order 16 bits are in the second extension word.
Condition Codes or Status Register. A selected set of instructions may reference the status register by means of the effective address field. These are:

> ANDI to CCR
> ANDI to SR
> EORI to CCR
> EORI to SR
> ORI to CCR
> ORI to SR

## EFFECTIVE ADDRESS ENCODING SUMMARY

Table 4 is a summary of the effective addressing modes discussed in the previous paragraphs.

## IMPLICIT REFERENCE

Some instructions make implicit reference to the program counter (PC), the system stack pointer (SP), the supervisor
stack pointer (SSP), the user stack pointer (USP), or the status register (SR). Table 5 provides a list of these instructions and the registers implied.

SYSTEM STACK. The system stack is used implicitly by many instructions; user. stacks and queues may be created and maintained through the addressing modes. Address register seven (A7) is the system stack pointer (SP). The system stack pointer is either the supervisor stack pointer (SSP) or the user stack pointer (USP), depending on the state of the S-bit in the status register. If the S-bit indicates supervisor state, SSP is the active system stack pointer, and the USP cannot be referenced as an address register. If the S-bit indicates user state, the USP is the active system stack pointer, and the SSP cannot be referenced. Each system stack fills from high memory to low memory.

TABLE 4 - EFFECTIVE ADDRESS ENCODING SUMMARY

Addreseing Mode	Mode	Regieter
Data Register Direct	000	register number
Address Register Direct	001	register number
Address Register Indirect	010	register number
Address Register Indirect with   Postincrement	011	register number
Address Register Indirect with   Predecrement	100	register number
Address Register Indirect with   Displacement	101	register number
Address Register Indirect with   Index	110	register number.
Absolute Short	111	000
Absolute Long	111	001
Program Counter with   Displacernent	010	
Program Counter with Index	111	011
Immediate or Status Register	111	100

TABLE 5 - IMPLICIT INSTRUCTION REFERENCE SUMMARY

Instruction	Implied   Regleter(s)
Branch Conditional (BCC), Branch Always (BRA)	PC
Branch to Subroutine (BSR)	PC, SP
Check Register against Bounds (CHK)	SSP, SR
Test Condition, Decrement and Branch (DBCC)	PC
Signed Divide (DIVS)	SSP, SR
Unsigned Divide (DIVU)	SSP, SR
Jump (JMP)	PC
Jump to Subroutine (JSR)	PC, SP
Link and Allocate (LINK)	SP
Move Condition Codes (MOVE CCR)	SR
Move Status Register (MOVE SR)	SR
Move User Stack Pointer (MOVE USP)	USP
Push Effective Address (PEA)	SP
Return from Exception (RTE)	PC, SP, SR
Return and Restore Condition Codes (RTR)	PC, SP, SR
Return from Subroutine (RTS)	PC, SP
Trap (TRAP)	SSP, SR
Trap on Overflow (TRAPV)	SSP, SR
Unlink (UNLK)	SP

## INSTRUCTION SET SUMMARY

The following paragraphs contain an overview of the form and structure of the MC68000 instruction set The instructions form a set of tools that include all the machine func tions to perform the following operations:

Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manıpulation
Binary Coded Decimal
Program Control
System Control
The complete range of instruction capabilities combined with the flexible addressing modes described previously provide a very flexible base for program development.

## DATA MOVEMENT OPERATIONS

The basic method of data acquisition ftransfer and storage) is provided by the move (MOVE) instruction. The move instruction and the effective addressing modes allow both address and data manipulation. Data move instructions allow byte, word, and long word operands to be transferred from memory to memory, memory to register, register to memory, and register to register. Address move instructions allow word and long word operand transfers and ensure that only legal address manipulations are executed In addition to the general move instruction there are several special data movement instructions: move multiple registers (MOVEM). move peripheral data (MOVEP), exchange registers (EXG) load effective address (LEA), push effective address (PEA) link stack (LINK), unlink stack (UNLK), and move quick (MOVEQ). Table 6 is a summary of the data movement operations

TAGLE 6 - DATA MOVEMENT OPERATIONS

Instruction	Operand Size	Operation
EXG	32	$\mathrm{R} x \rightarrow \mathrm{Ry}$
LEA	32	$E A \rightarrow A n$
LINK	-	$\begin{gathered} A n \rightarrow S P @- \\ S P \rightarrow A n \\ S P+d \rightarrow S P \end{gathered}$
MOVE	8, 16, 32	$(E A)=$ EAd
MOVEM	16. 32	$\begin{gathered} (E A) \rightarrow A n . O_{n} \\ A n, D_{n} \rightarrow E A \end{gathered}$
MOVEP	16, 32	$\begin{gathered} (E A) \rightarrow D_{n} \\ D_{n} \rightarrow E A \end{gathered}$
MOVEO	8	$f$ xx $\rightarrow$ Dn
PEA	32	EA $\rightarrow$ SP@ -
SWAP	32	Dn[31:16] $\rightarrow$ Dn[15:0]
UNLK	-	$\begin{gathered} A n \rightarrow S p \\ S P Q+\rightarrow A_{n} \end{gathered}$

NOTES:
$\mathrm{s}=$ source
$d=$ destination
[ $1=$ bit numbers
@ - = indirect with predecrement
$@+=$ indirect with postdecremen

## INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operathons of add (ADD), subtract (SUB), multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP), clear (CLR), and negate (NEG). The add and subtract instructions are available for both address and data operations, with data operations accepting all operand sizes. Address operations are limited to legal address size operands ( 16 or 32 bits). Data, address, and memory compare operations are also available. The clear and negate instructions may be used on all sizes of data operands.
The multiply and divide operations are available for signed and unsigned operands using word multiply to produce a long word product, and a long word dividend with word divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions. These instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition codes as a result of a compare of the operand with zero is aiso available. Test and set (TAS) is a synchronization instruction useful in multiprocessor systems Table 7 is a summary of the integer arithmetic operations

TABLE 7 - INTEGER ARITHMETIC OPERATIONS

Instruction	Operand Size	Operation
ADD	$8,16,32$ $16,32$	$\begin{gathered} \mathrm{D} n+(E A) \rightarrow \mathrm{Dn} \\ (E A)+\mathrm{Dn} \rightarrow E A \\ (E A)+(x \times x \rightarrow E A \\ A n+(E A) \rightarrow A n \end{gathered}$
ADDX	$\begin{gathered} 8,16,32 \\ 16,32 \end{gathered}$	$\begin{gathered} D x+D y+X \rightarrow D x \\ A x @-A y P-+X \rightarrow A x P \end{gathered}$
CLR	8, 16, 32	$0 \rightarrow E A$
CMP	$8,16,32$ $16,32$	$\begin{gathered} D n-(E A) \\ (E A)-/ x x x \\ A x @+-A y P+ \\ A n-(E A) \end{gathered}$
DIVS	$32+16$	$\mathrm{On} /(E A) \rightarrow$ Dn
DIVU	32+16	$\mathrm{Dn}_{n} /(E A) \rightarrow \mathrm{Dn}^{\prime}$
EXT	$\begin{gathered} 8 \rightarrow 16 \\ 16 \rightarrow 32 \end{gathered}$	$\begin{aligned} & (\mathrm{Dn})_{8} \rightarrow \mathrm{Dn}_{16} \\ & (\mathrm{Dn})_{16} \rightarrow \mathrm{Dn}_{32} \end{aligned}$
MULS	$16^{\cdot 16} \rightarrow 32$	$D n^{*}(E A) \rightarrow$ Dn
MULU	$16^{*} 16 \rightarrow 32$	$D n^{*}(E A) \rightarrow$ Dn
NEG	8, 16, 32	$0-(E A) \rightarrow E A$
NEGX	8, 16, 32	0-(EA) - X-EA
SUB	$\begin{gathered} 8,16,32 \\ 16,32 \\ \hline \end{gathered}$	$\begin{gathered} D n-(E A) \rightarrow D n \\ (E A)-D n \rightarrow E A \\ (E A)-f \times x x \rightarrow E A \\ A n-(E A) \rightarrow A n \end{gathered}$
SUBX	8, 16, 32	$\begin{gathered} D x-D y-x \rightarrow D x \\ A x P-A y P--X \rightarrow A x P \end{gathered}$
TAS	8	$(E A)-0,1 \rightarrow E A[7]$
TST	8, 16, 32	(EA) - 0

[^16]
## LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI, and EORI) provide these logical operations with all sizes of immediate data Table 8 is a summary of the logical operations.

TABLE 8 - LOGICAL OPERATIONS

Iratruction	Operand Size	Operation
AND	$8,16,32$	DnA(EA) $\rightarrow \mathrm{Dn}$   $(E A) A D n \rightarrow E A$   $(E A) A / \times x \rightarrow E A$
OR	$8,16,32$	Dn $v(E A) \rightarrow D n$   $(E A) \vee D n \rightarrow E A$   $(E A) \vee \neq \times x \rightarrow E A$
EOR	$8,16,32$	$(E A) \bullet D y \rightarrow E A$   $(E A) \bullet f \times x \rightarrow E A$
NOT	$8,16,32$	$\sim(E A) \rightarrow E A$

NOTE: ~ $=$ invert

## SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the erithmetic instructions ASR and ASL and logical shift instructions LSR and LSL. The rotate instructions (with and without extend) available are ROXR, ROXL, ROR, and ROL All shift and rotate operations can be performed in either registers or memory. Register shifts and rotates support all operand sizes and allow a shift count specified in the instruction of one to eight bits, or 0 to 63 specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or rotates.

Table $\mathbf{9}$ is a summary of the shift and rotate operations.

TABLE 9 - SHIFT AND ROTATE OPERATIONS

$\begin{array}{\|c\|} \hline \text { matruc- } \\ \text { tion } \\ \hline \end{array}$	$\begin{gathered} \text { Operand } \\ \text { Sise } \end{gathered}$	Operation
ASL	8. 16.32	$x / C \leqslant \leftarrow \leqslant 0$
ASR	8. 16, 32	$\longrightarrow \longrightarrow x / C$
LSL	8, 16, 32	$x / C \leftarrow \leftarrow$
LSR	8. 16, 32	$0 \rightarrow \longrightarrow x / C$
ROL	8, 16, 32	$[\mathrm{c}], 4$
ROR	8, 16, 32	
ROXL	8, 16, 32	$\mathrm{c} \sqrt[4]{4}$
ROXR	8, 16, 32]	$\longrightarrow \mathrm{x} \rightarrow \square \mathrm{C}$

## BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG). Table 10 is a summary of the bit manipulation operations. ( $\mathrm{Bit}_{\mathrm{t}} 2$ of the status register is Z .)

TABLE 10 - BIT MANIPULATION OPERATIONS

Instruction	Operand Size	Operation
BTST	8,32	- bit of $(E A) \rightarrow Z$
BSET	8,32	$\sim$ bit of $(E A) \rightarrow Z$   $1 \rightarrow$ bit of EA
BCLR	8,32	$\sim$ bit of $(E A) \rightarrow Z$   $0 \rightarrow$ bit of $E A$
BCHG	8,32	$\sim$ bit of $(E A) \rightarrow Z$   $\sim$ bit of $(E A) \rightarrow$ bit of $E A$

## BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplished using the following instructions: add decimal with extend (ABCD), subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). Table 11 is a summary of the binary coded decimal operations.

TABLE 11 - BINARY CODED DECIMAL OPERATIONS

Instruction	Operand   Size	Operation
$A B C D$	8	$D \times 10+D y_{10}+X \rightarrow D x$   $A x @-10+A y @-10+X \rightarrow A x @$
$S B C D$	8	$D \times 10-D y 10-X \rightarrow D x$   $A x @-10-A y @-10-X \rightarrow A x @$
NBCD	8	$0-(E A)_{10}-X \rightarrow E A$

## PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional branch instructions and return instructions. These instructions are summarized in Table 12.

The conditional instructions provide setting and branching for the following conditions:

CC - carry clear	LS - low or same
CS - carry set	LT - less than
EQ - equal	MI - minus
F	- never true
GE - greater or equal	NE

TABLE 12 - PROGRAM CONTROL OPERATIONS
TABLE 13 - SYSTEM CONTROL OPERATIONS

instruction	Operation
Conditional	
BCC	Branch conditionally ( 14 conditions) 8 - and 16 -bit displacement
$\mathrm{DBCC}^{\text {c }}$	Test condition, decrement, and branch 16-bit displacement
$S_{\text {CC }}$	Set byte conditionally (16 conditions)
Unconditional	
BRA	Branch always   3- and 16-bit displacement
BSR	Branch to subroutine   8 - and 16-bit displacement
JMP	Jimp
JSR	Jump to subroutine
Returns	
RTA	Return and restore condition codes
RTS	Retum from subroutine

## SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating instructions, and instructions that use or modify the status register. These instructions are summarized in Table 13.

Instruction	Operation
Priviliged	
RESET	Reset external devices
RTE	Return from exception
STOP	Stop program execution
ORI to SR	Logical OR to status register
MOVE USP	Move user stack pointer
ANDI to SR	Logical AND to status register
EORI to SR	Logical EOR to status register
MOVE EA to SR	Load new status register
Trap Generating	
TRAP	Trap
TRAPV	Trap on overtow
CHK	Check register against bounds
Stetus Reginter	
ANDI to CCR	Logical AND to condition codes
EORI to CCR	Logical EOR to condition codes
MOVE EA to CCR	Load new condition codes
ORI to CCR	Logical OR to condition codes
MOVE SR to EA	Store status register

## SIGNALAND BUS OPERATION DESCRIPTION

The following paragraphs contain a brief description of the input and output signals. A discussion of bus operation during the various machine cycles and operations is also given.

## SIGNAL DESCRIPTION

The input and output signals can be functionally organized into the groups shown in figure 5. The following paragraphs provide a brief description of the signals and also a reference (if applicable) to other paragraphs that contain more detail about the function being performed.

ADDRESS BUS (A1 THROUGH A23): This 23-bit, unidirectional, three-state bus is capable of addressing 8 megawords of data. It provides the address for bus operation during all cycles except interrupt cycles. During interrupt cycles, address lines A1, A2, and A3 provide information about what level interrupt is being serviced while address lines A4 through A23 are all set to a logic high:

DATA BUS (DO THROUGH-D15). This 16-bit, bidirectional, three-state bus is the general purpose data path. It can transfer and accept date in either word or byte length. During an interrupt acknowledge cycle, the external device supplies the vactor number on data lines D0-D7.

- ASYNCHRONOUS BUS CONTROL. Asynchronous data transfers are handled using the following control signals: address strobe, read/write, upper and lower data strobes, and deta transfer acknowledge. These signals are explained in the following paragraphs.

FIGURE 5 - INPUT AND OUTPUT SIGNALS


Addrees Strobe ( $\overline{\mathbf{A S}}$ ). This signal indicates that there is a valid address on the address bus.

Read/Write ( $R / \bar{W}$ ). This signal defines the data bus transfer as a read or write cycle. The R/W signal also works in conjunction with the upper and lower data strobes as explained in the following paregraph.

Upper And-Lower Data Strobes (UDS, $\overline{\mathrm{LDS}}$ ). These signals control the data on the data bus, as shown in Table 14. When the $R / \bar{W}$ line is high, the processor will read from the data bus as indicated. When the R/W line is low, the processor will write to the data bus as shown.

TABLE 14 - DATA STROBE CONTROL OF DATA BUS

UDS	LDS	R/ $/ \overline{\mathbf{W}}$	De-D15	D0-D7
High	High	-	No valid data	No valid data
Low	Low	High	Valid data brts 8.15	Valid data bits 0-7
High	Low	High	No valid data	Valld data bits $0-7$
Low	High	High	Valid data bits $8-15$	No valıd data
Low	Low	Low	Valid data bits 8 8-15	Valid data bits 0.7
High	Low	Low	Valid data bits $0-7$	Valid data bits 0-7
Low	High	Low	Valid data bits B-15	Valid data bits 8-15*

- These conditions are a result of current implementation and may not appear on.future devices.

Data Transfer Acknowledge ( $\overline{\mathrm{DTACK}}$ ). This input indicates that the data transfer is completed. When the processor recognizes DTACK during a read cycle, data is latched and the bus cycle terminated. When DTACK is recognized during a write cycle, the bus cycle is terminated.

BUS ARBITRATION CONTROL. These three signals form a bus arbitration circuit to determine which device will be the bus master device.

Bus Request ( $\bar{B} \bar{R}$ ). This input is wire ORed with all other devices that could be bus masters. This input indicates to the processor that some other device desires to become the bus master

Bus Grant ( $\overline{\mathbf{B}} \overline{\mathrm{G}}$ ). This output indicates to all other potential bus master devices that the processor will release bus control at the end of the current bus cycle.

Bus Grant Acknowledge ( $\overline{\text { BGACK }}$ ). This input indicates that some other device has become the bus master. This signal cannot be asserted until the following four conditions are met:

1. a bus grant has been received
2. address strobe is inactive which indicates that the microprocessor is not using the bus
3. data transfer acknowledge is inactive which indicates that either memory or the peripherals are not using the bus
4 bus grant acknowiedge is mactive which indicates that no other device is still claiming bus mastership.

INTERRUPT CONTROL ( $\overline{\mathbf{P L O}}, \overline{\mathrm{IPL}}, \overline{\mathbf{I P L}})$. These mput pins indicate the encoded priority level of the device requesting an interrupt. Level seven is the highest priority while level zero indicates that no interrupts are requested. The least significant bit is given in IPLO and the most significant bit is contained in $\overline{\mathrm{PLL}}$.

SYSTEM CONTROL. The system control inputs are used to either reset or halt the processor and to indicate to the processor that bus errors have occurred. The three system control inputs are explained in the following paragraphs.

Bus Error ( ("ERR). This input informs the processor that there is a problem with the cycle currently being executed. Problems may be a result of:

1 nonresponding devices
2. interrupt vector number acquisition failure
3. illegal access request as determined by a memory management unit
4. other application dependent errors.

The bus error signal interacts with the halt signal to determine if exception processing should be performed or the current bus cycle should be retried
Refer to BUS ERROR AND HALT OPERATION paragraph for additional information about the interaction of the bus error and halt signals.

Reset (RESET). This bidirectional signal line acts to reset (initiate a system initialization sequence) the processor in response to an external reset signal. An internally generated reset (result of a RESET instruction) causes all external devices to be reset and the internal state of the processor is not affected. A total system reset (processor and external devices) is the result of external halt and reset signals applied at the same time. Refer to RESET OPERATION paragraph for additional information about reset operation.

Hatt (HALT). When this bidirectional line is driven by an external device, it will cause the processor to stop at the completion of the current bus cycle. When the processor has been halted using this input, all control signals are inactive and all three-state lines are put in their high-impedance state. Refer to BUS ERROR AND HALT OPERATION paragraph for additional information about the interaction between the halt and bus error signats.

When the processor has stopped executing instructions, such as in a double bus fault condition, the halt line is driven by the processor to indicate to external devices that the processor has stopped.

M6800 PERIPHERAL CONTROL. These control signals are used to allow the interfacing of synchronous M6800 peripheral devices with the asynchronous MC68000 These signals are explained in the foliowing paragraphs

Enable (E). This signal is the standard enatle signal common to all M6800 type peripheral devices. The period for this output is ten MC68000 clock periods (six clocks low, four clocks high)

Valid Peripheral Address ( $\overline{\mathrm{VPA}}$ ). This input indicates that the device or region addressed is a M6800 family device and that data transfer should be synchronized with the enable ( $E$ ) signal. This input also indicates that the processor should use automatic vectoring tor an interrupt Refer to INTERFACE WITH M6800 PERIPHERALS.

Valid Memory Address (VMA). This output is used to in. dicate to M6800 peripheral devices that there is a valid address on the address bus and the processor is synchronized to enable. This signal only responds to a valid peripheral address (VPA) input which indicates that the peripheral is a M6800 family device.

PROCESSOR STATUS (FC0, FC1, FC2). These function code outputs indicate the state (user or supervisor) and the
cycle type currently being executed, as shown in Table 15. The information indicated by the function code outputs is valid whenever address strobe ( $\overline{\mathrm{AS}}$ ) is active.

TABLE 15 - FUNCTION CODE OUTPUTS

FC2	FC1	FCO	Cycle Type
Low	Low	Low	(Undefined, Reserved)
Low	Low	High	User Data
Low	High	Low	User Program
Low	High	High	(Undefined, Reserved)
High	Low	Low	(Undeined, Reserved)
High	Low	High	Supervisor Data
High	High	Low	Supervisor Program
High	High	High	Interrupt Acknowledge

CLOCK (CLK). The clock input is a TTL compatible signal that is internally buffered for development of the internal clocks needed by the processor The ciock input shall be a constant frequency.

SIGNAL SUMMARY. Table 16 is a summary of all the signals discussed in the previous paragraphs.

TABLE 16 - SIGNAL SUMMARY

Signal Name	Mnemonic	Input/Output	Active State	Three State
Address Bus	A1.A23	output	high	yes
Data Bus	D0-D15	input/output	high	yes
Address Strobe	$\overline{\text { AS }}$	output	low	yes
Read/Write	R/W	output	read-high write-low	yes
Upper and Lower Data Strobes	UDS, LDS	output	low	yes
Data Transfer Acknowledge	DTACR	input	low	no
Bus Request	BR	input	low	no
Bus Grant	BG	output	low	no
Bus Grant Acknowledge	BGACR	input	low	no
Interrupt Priority Level	IPLO, IPL, IPL2	input	low	no
Bus Error	BERR'	input	low	no
Reset	RESET	input/output	low	no*
Halt	$\overline{\text { HALT }}$	input/output	low	no ${ }^{\circ}$
Enable	E	output	high	no
Valid Memory Address	$\overline{\text { VMA }}$	output	low	yes
Valid Peripheral Address	$\overline{\text { VPA }}$	input	low	no
Function Code Output	FC0, FC1, FC2	output	high	yes
Clock	CLK	input	high	no
Power Input	$\mathrm{V}_{\text {CC }}$	input	-	-
Ground	GND	input	-	-

${ }^{\circ}$ open dran

## BUS OPERATION

The following paragraphs explain control signal and bus operation during data transfer operations, bus arbitration. bus error and halt conditions, and reset operation.

DATA TRANSFER OPERATIONS. Transfer of data between devices involves the following leads:

- Address Bus A1 through A23
- Data Bus D0 through D15
- Control Signals

The address and data buses are separate parailel buses used to transfer data using an asynchronous bus structure. In all cycles, the bus master assumes responsibility for deskewing all signals it issues at both the start and end of a cycle. In addition, the bus master is responsible for deskewing the acknowledge and data signals from the slave device.

The following paragraphs explain the read, write, and read-modify-write cycles. The indivisible read-modify-write cycle is the method used by the MC68000 for interlocked multiprocessor communications.

FIGURE 6 - WORD READ CYCLE FLOW CHART


## NOTE

The terms aseertion and negetion will be used extensively. This is done to avoid confusion when dealing with a mixture of "active-low" and "active-high" signals. The term assert or assertion is used to indicate that a signal is active or true independent of whether that voltage is low or high. The term negate or negation is used to indicate that a signal is inactive or faise.

Read Cycle. During a read cycle, the processor receives data fróm memory or a peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word (or double word) operation, the processor reads both bytes. When the instruction specifies byte operation, the processor uses an internal AO bit to determine which byte to read and then issues the data strobe required for that byte. For byte operations, when the AO bit equals zero, the upper data strobe is issued. When the AO bit equals one, the lower data strobe is issued. When the data is received, the processor correctly positions it internally.

A word read cycle flow chart is given in Figure 6. A byte read cycle flow chart is given in Figure 7. Read cycle timing is given in Figure 8 and Figure 9 details word and byte read cycle operation.

## FIGURE 7 - BYTE READ CYCLE FLOW CHART

BUS MASTER
slave

## Addrees Device

1) Set $R / \bar{W}$ to Reed
2) Place Address on A1-A23
.3) Place Function Code on FCO-FC2
3) Assert Address Strobe ( $\overline{\mathrm{AS}}$ )
4) Assert Upper Data Strobe ( $\overline{\mathrm{USS}}$ ) or Lower Data Strobe (는) (based on AO)


Decode Address
2) Place Data on D0-D7 or D8-D15 (based on UDS or LDS)
3) Assert Data Transfer Acknowledge (DTACK)


1) Latch Data
2) Negate $\overline{U D S}$ or $\overline{L D S}$
3) Negate $\overparen{A S}$

4) Remove Data from DO-D7 or DQ-D16 2) Negate $\overline{\text { DTACK }}$

Start Next Cycle

MC68000L40MC68000L60MC68000L


FIGURE 9 - WORD AND BYTE READ CYCLE TIMING DIAGRAM


Write Cycle. During a write cycle, the processor sends data to memory or a peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word operation, the processor writes both bytes When the instruction specifies a byte operation, the processor uses an internal $A O$ bit to determine which byte to write and then issues the data strobe required for that byte For byte opera-
tions, when the $A 0$ bit equals zero, the upper data strobe is issued. When the AO bit equals one, the lower data strobe is issued. A word write cycle flow chart is given in Figure 10. A byte write cycle flow chart is given in Figure 11. Write cycle timing is given in Figure 8 and Figure 12 details word and byte write cycle operation.

MC68000L40MC68000L60MC68000L


## MC68000L40MC68000L60MC68000L

Read-Modify-Write Cycle. The read-modify-write cycle performs a read, modifies the data in the arithmetic-logic unit, and writes the data back to the same address. In the MC68000 this cycle is indivisible in that the address strobe is asserted throughout the entire cycle. The test and set (TAS) instruction uses this cycle to provide meaningful com-
munication between processors in a multiple processor environment. This instruction is the only instruction that uses the read-modify-write cycles and since the test and set instruction only operates on bytes, all read-modify-write cycles are byte operations. A read-modify-write cycle flow chart is given in Figure 13 and a timing diagram is given in Figure 14.

FIGURE 13 - READ-MODIFY-WRITE CYCLE FLOW CHART

## BUS MASTER

Address Device

1) Place Address on A1-A23
2) Set $R / \bar{W}$ to Read
3) Assert Address Strobe ( $\overline{\mathrm{AS}}$ )
4) Assert Upper Data Strobe ( $\overline{\mathrm{USS}}$ ) or Lower

Data Strobe ( $\overline{\mathrm{LDS}}$ )


1) Decode Address
2) Place Data on D0-D7 or D8-D15
3) Assert Data Transfer Acknowledge ( $\overline{\text { DTACK }}$ )
$\qquad$

4) Latch Data
5) Negate UDS or LDS
6) Start Data Modification

1


1) Remove Data from DO-D7 or D8-D 15
2) Negate DTACK
$\qquad$
Ut Transfer
Start Out
R/W to Write
3) Place Data on DO-D7 or D8-D15
4) Assert Upper Data Strobe (UDS) or Lower Data Strobe ( $\overline{\mathrm{DS}}$ ) $\qquad$

Input Data

1) Store Data on D0-D7 or D8-D15
2) Assert Data Transfer Acknowiedge (DTACK)

3) Negate $\overline{\mathrm{UDS}}$ or $\overline{\mathrm{LDS}}$
4) Negate $\overline{A S}$
5) Remove Data from DO-D7 or D8-D15
6) Set $R / \bar{W}$ to Read


Terminate Cycle

1) Negate $\overline{\text { DTACK }}$

Start Next Cycle

FIGURE 14 - READ-MODIFY-WRITE CYCLE TIMING DIAGRAM


BUS ARBITRATION. Bus arbitration is a technique used by master-type devices to request, be granted, and acknowledge bus mastership. In its simplest form, it consists of:

1. Asserting a bus mastership request.
2. Receiving a grant that the bus is available at the end of the current cycle.
3. Acknowledging that mastership has been assumed.

Figure 15 is a flow chart showing the detail involved in a request from a single device. Figure 16 is a timing diagram for the same operations. This technique allows processing of bus requests during data transfer ćycles.

The timing diagram shows that the bus request is negated at the time that an acknowledge is asserted. This type of operation would be true for a system consisting of the processor and one device capable of bus mastership. In systems having a number of devices capable of bus mastership, the bus request line from each device is wire ORed to the processor. In this system, it is easy to see that there could be more than one bus request being made. The timing diagram shows that the bus grant signal is negated a few clock cycles after the transition of the acknowledge ( $\overline{\text { BGACK }}$ ) signal.

However, if the bus requests are still pending, the procassor will assert another bus grant within a few clock cycles after it was negated. This additionà assertion of bus grant allows external arbitration circuitry to select the next bus master before the current bus master has completed its requirements. The following paragraphs provide additional information about the three steps in the arbitration process.

FIGURE 15 - BUS ARBITRATION CYCLE FLOW-CHART


## FIGURE 16 - BUS ARBITRATION CYCLE TIMING DIAGRAM



Requesting the Bus. External devices capable of becoming bus masters request the bus by asserting the bus request (BR) signal. This is a wire ORed signal lalthough it need not be constructed from open collector devices) that indicates to the processor that some external device requires control of the external bus. The processor is effectively at a lower bus priority level than the external device and will relinquish the bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request signal goes inactive, the processor will continue processing when it detects that the bus request is inactive. This allows ordinary processing to continue if the arbitration circuitry responded to noise inadvertently.

Receiving the Bus Grant. The processor asserts bus grant $(\overline{\mathrm{BG}})$ as soon as possible. Normally this is immediately after internal synchronization. The only exception to this occurs when the processor has made an internal decision to execute the next bus cycle but has not progressed far enough into the cycle to have asserted the address strobe ( $\overline{\mathrm{AS}}$ ) signal. In this case, bus grant will not be asserted until one clock after address strobe is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisychained network or through a specific priority-encoded network. The processor is not affected by the external method of arbitration as long as the protocol is obeyed.

Acknowledgement of Mastership. Upon receiving a bus grant, the requesting device waits until address strobe, data transfer acknowledge, and bus grant acknowledge are negated before issuing its own BGACK. The negation of the address strobe indicates that the previous master has com-
pleted its cycle, the negation of bus grant acknowiedge indicates that the previous master has released the bus. (While address strobe is asserted no device is allowed to "break into" a cycle.) The negation of data transfer acknowledge indicates the previous slave has terminated its connection to the previous master. Note that in some applications data transfer acknowledge might not enter into this function. General purpose devices would then be connected such that they were only dependent on address strobe. When bus grant acknowledge is issued the device is bus master until it negates bus grant acknowledge. Bus grant acknowledge should not be negated until after the bus cycle(s) is (are) completed. Bus mastership is terminated at the negation of bus grant acknowledge.

The bus request from the granted device should be dropped when bus grant acknowiedge is asserted. If bus request is still asserted after bus grant acknowledge is negated, the processor performs another arbitration sequence and issues another bus grant. Note that the processor does not perform any external bus cycles before it re-asserts bus grant.

BUS ERROR AND HALT OPERATION. In a bus architecture that requires a handshake from an external device, the possibility exists that the handshake might not occur. Since different systems will require a different maximum response time, a bus error input is provided. External circuitry must be used to determine the duration between address strobe and data transfer acknowledge before issuing a bus error signal. When a bus error signal is received, the processor has two options: initiate a bus error exception sequence or try running the bus cycle again.

Exception Sequence. The bus error exception sequence is entered when the processor receives a bus error signal and the halt pin is inactive. Figure 17 is a timing diagram for the exception sequence. The sequence is composed of the following eiements:

## 1 Stacking the program counter and status register

2 Stacking the error information
3 Reading the bus error vector table entry
4 Executing the bus error handler routine
The stacking of the program counter and the status register is the same as if an interrupt had occurred. Several additional items are stacked when a bus error occurs These tems are used to determine the nature of the error and correct it, if possible. The bus error vector is vector number two located at address $\$ 000008$ The processor loads the new program counter from this location. A software bus error
handier routine is then executed by the processor Refer to EXCEPTION PROCESSING for additional information

Re-Running the Bus Cycle. When the processor recerves a bus error signai and the hatt pin is being driven by an external device, the processor enters the re-run sequence Figure 18 is a timing diagram for re-running the bus cycle
The processor completes the bus cycle, then puts the ad dress, data and function code output lines in the high impedance state The processor remains "hatted," and will not run another bus cycle untit the hatt signal is removed by external logic Then the processor will re-run the previcus bus cycle using the same address, the same function codes. the same data (for a write operation), and the same conitols The bus error signal should be removed betore the halt signal is removed


FIGURE 18 - RE-RUN BUS CYCLE TIMING INFORMATION


## NOTE

The processor will not re-run a read-modify-write cycle This restriction is made to guarantee that the entire cycle runs correctly and that the write uperation of a Test-and-Set operation is pérformed without ever releasing $\overline{A S}$

Halt Operation with No Bus Error. The halt input signal to the MC68000 performs a Halt/Run/Single-Step function in a similar fashion to the M6800 halt function The halt and run modes are somewhat self explanatory in that when the halt signal is constantly active the processor "halts" (does nothing) and when the halt signal is constantly inactive the processor "runs" (does something)

The single-step mode is derived from correctly timed transitions on the halt signal input it torces the processor to execute a single bus cycle by entering the "run" mode until the processor starts a bus cycle then changing to the "halt" mode. Thus, the single-step mode allows the user to proceed through land therefore debugl processor operations one bus cycle at a tume.
Figure 19 details the timing required for correct single-step operations Some care must be exercised to avoid harmful interactions between the bus error signal and the halt pin when using the single cycle mode as a debugging tool. This is also true of interactions between the halt and reset lines since these can, reset the machine

When the processor completes a bus cycie after recognizing that the halt signal is active, most three-state signals are put in the high-impedance state These include-

1 address lines
2 data lines
3. function code lines

This is required for correct performance of the re-run bus cycle operation

Note that when the processor honors a request to halt, the function codes are put in the high-impedance state their buffer characteristics are the same as the address buffers) Wrile the processor is honoring the halt request, bus arbitration performs as usual. That is, halting has no effect on bus arbitration it is the bus arbitration function that removes the control signals from the bus
The halt function and the hardware trace capability allow the hardware debugger to trace single bus cycles or single instructions at a time. These processor capabilities, along with a software debugging package, give total debugging flexibility.

Double Bus Faults. When a bus error exception occurs, the processor will attempt to stack several words containing information about the state of the machine. If a bus error exception occurs during the stacking operation, there have been two bus errors in a row. This is commonly referred to as a double bus fault. When a double bus fault occurs, the processor will halt. Once a bus error exception has occurred, any bus error exception occurring before the execution of the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception, and does not contribute to a double bus fault. Note also that this means that as iong as the external hardware requests it, the processor will continue to re-run the same bus cycle.
The bus error pin also has an effect on processor operation after the processor receives an external reset input. The processor reads the vector table after a reset to determine the address to start program execution. If a bus error occurs while reading the vector table lor at any time before the first instruction is executed), the processor reacts as if a double bus fault has occurred and it halts. Only an external reset will start a halted processor

FIGURE 19 - HALT SIGNAL TIMING CHARACTERISTICS


RESET OPERATION. The reset signal is a bidirectional signal that allows either the processor or an external signal to reset the system Figure 20 is a timing diagram for reset operations. Both the halt and the reset lines must be applied to ensure total reset of the processor

When the reset and halt lines are driven by an external device. it is recognized as an entire system reset, including the processor The processor responds by reading the reset vector table entry (vector number zero, address $\$ 000000$ ) and loads it into the supervisor stack pointer (SSP) Vector table entry number one at address $\$ 000004$ is read next and loaded into the program counter The processor initializes
the status register to an interrupt level of seven No other registers are affected by the reset sequence
When a RESET sequence is executed, the processor drives the reset pin for 124 clock pulses In this case, the processor is trying to reset the rest of the system Therefore there is no effect on the interrial state of the processo: All of the processor's internal registers and the status register are unaffected by the execution of a RESET instruction All ex ternal devices connected to the reset line should be reset at the completion of the RESET instruction
When $V_{C C}$ is initially applied to the processor, an externa reset must be applied to the reset pin for 100 milliseconds

FIGURE 20 - RESET OPERATION TIMING DIAGRAM


## EXCEPTION PROCESSING

The following paragraphs describe the actions of the MC68000 which are outside the normal processing associated with the execution of instructions. The functions of the bits in the supervisor portion of the status register are covered the supervisor/user bit, the trace enable bit, and the processor interrupt prority mask. Finally, the sequence of memory references and actions taken by the processor on exception conditions is detailed

## PROCESSING STATES

The MC68000 is always one of three processing states normal, exception, or halted The normal processing state is that associated with instruction execution; the memory references are to feich instructions and operands, and to store results $A$ special case of the normal state is the stopped state which the processor enters when a STOP instruction is executed. In this state, no further memory references are made

The exception processing state is associated with inter rupts, trap instructions, tracing and other exceptional conditions. The exception may be internally generated by an instruction or by an unusual condition arising during the execution of an instruction. Externally. exception processing can be forced by an interrupt, by a bus error, or by a reset Exception processing is designed io provide an efficient context switch so that the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware fallure For example, if during the exception pro. cessing of a bus error another bus error occurs, the processor assumes that the system is unusable and halts Only an external reset can restart a halted processor Note that a processor in the stopped state is not in the halted state, nor vice versa

## PRIVILEGE STATES

The processor operates in one of two siates of privilege the "user" state or the "supervisor" state The privilege state determines which operations are legal. is used by the exter nal memory management device to control and translate accesses, and is used to choose between the supervisor stack pointer and the user stack pointer in instruction references

The privilege state is a mechanism for providing securty in a computer system Programs should access only their own code and data areas, end ought to be restricted from accessing information which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user state in this state, the accesses are controlled, and the effects on other parts of the system are limited. The operating system executes in the supervisor state, has access to all resources, and performs the overhead tasks for the user state programs.

SUPERVISOR STATE. The supervisor state is the higher state of privilege for instruction execution, the supervisor state is determined by the S-bit of the status register; if the S-bit is asserted (high), the processor is in the supervisor state All instructions can be executed in the supervisor state The bus cycles generated by instructions executed in the supervisor state are classified as supervisor references While the processor is in the supervisor privilege state, those instructions which use either the system stack pointer implicitly or address register seven explicitly access the supervisor stack pointer
All exception processing is done in the supervisor state, regardless of the setting of the S-bit The bus cycles generated during exception processing are classified as supervisor references All stacking operations during exception processing use the supervisor stack pointer

USER STATE. The user state is the lower state of privilege For instruction execution, the user state is determined by the S -bit of the status register, if the S -bit is negated (low), the processor is executing instructions in the user state.
Most instructions execute the same in user state as in the supervisor state. However, some instructions which have important system effects are made privileged. User programs are not permitted to execute the STOP instruction, or the RESET instruction. To ensure that a user program cannot enter the supervisor state except in a controlied manner, the. instructions which modify the whole status register are privileged. To aid in debugging programs which are to be used as operating systems, the move to user stack pointer (MOVE USP) and move from user stack pointer (MOVE from USP) instructions are also privileged.

The bus cycles generated by an instruction executed in user state are classified as user state references. This allows an external memory management device to translate the address and to control access to protected portions of the address space. While the processor is in the user privilege state, those instructions which use either the system stack pointer implicitly, or address register seven explicitly, access the user stack pointer

PRIVILEGE STATE CHANGES. Once the processor is in the user state and executing instructions, only exception processing can change the privilege state. During exception
processing, the current setting of the S-bit of the status register is saved and the S-bit is asserted, putting the processing in the supervisor state. Therefore, when instruction execution resumes at the address specified to process the exception, the processor is in the supervisor privilege state.

REFERENCE CLASSIFICATION. When the processor makes a reference, it classifies the kind of reference being made, using the encoding on the three function code output lines. This allows external translation of addresses, control of access, and differentiation of special processor states, such as interrupt acknowledge. Table 17 lists the classification of references.

TABLE 17 - REFERENCE CLASSIFICATION

Function Code Output			Reference Class
FC2	FC1	FC0	
0	0	0	(Unassigned)
0	0	1	User Data
0	1	0	User Program
0	1	1	(Unassigned)
1	0	0	(Unassigned)
1	0	1	Supervisor Data
1	1	0	Supervisor Program
1	1	1	Interrupt Acknowledge

## EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of exception processing is in order. The processing of an exception occurs in four steps, with variations for different exception causes. During the first step, a temporary copy of the status register is made, and the status register is set for exception processing. In the second step the exception vector is determined, and the third step is the saving of the current processor context. In the fourth step a new context is obtained, and the processor switches to instruction processing.

EXCEPTION VECTORS. Exception vectors are memory locations from which the processor fetches the address of a routine which will handie that exception. All exception vectors are two words in length (Figure 21), except for the reset

FIGURE 21 - EXCEPTION VECTOR FORMAT


FIGURE 22 - PERIPHERAL VECTOR NUMBER FORMAT

vector, which is four words. All exception vectors lie in the supervisor data space, except for the reset vector which is in the supervisor program space. A vector number is an eightbit number which, when muitiplied by four, gives the address of an exception vector Vector numbers are generated internally or externally, depending on the cause of the exception. In the case of interrupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8 -bit vector number (Figure 22) to the processor on data bus lines DO through D7. The processor translates the vector number into a full 24-bit address, as shown in Figure 23. The memory layout for exception vectors is given in Table 18.

As shown in Table 18, the memory layout is 512 words long (1024 bytes). It starts at address 0 and proceeds
through address 1023 This provides 255 unique vectors: some of these are reserved for TRAPS and other system functions Of the 255, there are 192 reserved for user interrupt vectors H , wever, there is no protection on the first 64 entries, so uset interrupt vectors may overlap at the discretion of the systems designei

KINDS OF EXCEPTIONS. Exceptions can be generated by either internal or external causes The externaliy generated exceptions are the interrupts and the bus error and reset requests The interrupts are requests from peripheral devices for processor action while the bus error and reset inputs are used 'or access control and processor restart The internallv generated exceptions come thom instiuctions, or from ad-

FI jURE 23 - ADDRESS TRANSLATED FROM 8-BIT
VECTOR NUMBER


TABLE 18 - EXCEPTION VECTOR ASSIGNMENT

Vector   Number(s)	Address			Assignment
	Dec	Hex	Space	
0	0	000	SP	Reset Intial SSP
-	4	004	SP	Reset Initial PC
2	8	008	SD	Bus Error
3	12	00C	SD	Address Error
4	16	010	SD	lliegal Instruction
5	20	014	SD	Zero Divide
6	24	018	SD	CHK Instruction
7	28	01 C	SD	TRAPV Instruction
8	32	020	SD	Privilege Vioiation
9	36	024	SD	Trace
10	40	028	SD	Line 1010 Emulator
11	44	02C	SD	Line 1111 Emulator
12*	48	030	SD	(Unassigned, reserved)
$13^{*}$	52	034	SD	(Unassıgned, reserved)
$14^{*}$	56	038	SD	(Unassigned, reserved)
15	60	03 C	SD	Unitialized interrupt Vector
16-23*	64	04C	SD	(Unassigned, reserved)
	95	05F		
24	96	060	SD	Spurious Interrupt
25	100	064	SD	Level 1 Interrupt Autovector
26	104	068	SD	Level 2 Interrupt Autovector
27	108	06C	SD	Level 3 Interrupt Autovector
28	112	070	SD	Level 4 Interrupt Autovector
29	116	074	SD	Levei 5 Interrupt Autovector
30	120	078	SD	Level 6 Interrupt Autovector
31	124	07C	SD	Level 7 Interrupt Autovector
32-47	128	080	SD	TRAP Instruction Vectors
	191	OBF		-
48-63*	192	OCO	SD	(Unassigned, reserved)
	255	OFF		-
64-255	256	100	SD	User Interrupt Vectors
	1023	3FF		-

-Vector numbers $12,13,14,16$ through 23 and 48 through 63 are reserved for future enhancements by Motorola No user peripheral devices should be assigned these numbers.
dress errors or tracing The trap (TRAP), trap on overflow (TRAPV), check register against bounds (CHK) and divide (DIV) instructions all can generate exceptions as part of their instruction execution in addition, illegal instructions, word fetches from odd addresses and privilege violations cause exceptions Tracing behaves like a very high priority, internally generated interrupt after each instruction execution.

EXCEPTION PROCESSING SEQUENCE. Exception processing occurs in four identifiable steps. In the first step, an internal coDy is made of the status register. After the copy is made, the S -bit is asserted, putting the processor into the supervisor privilege state Also, the $T$-bit is negated which will allow the exception handler to execute unhindered by tracing For the reset and interrupt exceptions, the interrupt priority mask is also updated

In the second step, the vector number of the exception is determined For interrupts, the vector number is obtained by a processor fetch, classified as an interrupt acknowledge For all other exceptions, internal logic provides the vector number This vector number is then used to generate the address of the exception vector

The third step is to save the current processor status, except for the reset exception The current program counter value and the saved copy of the status register are stacked using the supervisor stack pointer The program counter value stacked usually points to the next unexecuted instruction, however for bus error and address error, the value stacked for the program counter is unpredictable, and may be incremented from the address of the instruction which caused the error Additional information defining the current context is stacked for the bus error and address error excepthons

The iast step is the same for all exceptions The new program counter value is fetched from the exception vector The processor then resumes instruction execution The instruction at the address given in the exception vector is fetched, and normal instruction decoding and exécution is started

MULTIPLE EXCEPTIONS. These paragraphs describe the processing which occurs when multple exceptions arise simultaneously. Exceptions can be grouped according to their occurrence and priority The Group 0 -exceptions are reset, bus error, and address error These exceptions cause the instruction currently being executed to be aborted, and the excedtion processing to commence at the next minor cycle of the processor The Group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instructions. These exceptions allow the current instruction to execute to completion, bui preempt the execution of the next instruction by forcing exception processing to occur (privilege violations and illegal instructions are detected when they are the next instruction to be executed). The Group 2 exceptions occur as part of the normal processing of instructions. The TRAP, TRAPV, CHK, and zero divide exceptions are in this group For these exceptions, the normal execution of an instruction may lead to exception processing

Group 0 exceptions have highest priority, while Group 2 exceptions have lowest priority Within Group 0 , reset has highest prority, foliowed by bus error and then address error Within Group 1, trace has priority over external interrupts, which in turn takes priority over illegal instruction and
privilege violation Since only one instruction can be executed at a time, there is no prionity relation within Group 2.

The priority relation between two exceptions determines which is taken, or taken first, if the conditions for both arise simultaneously Therefore, if a bus error occurs during a TRAP instruction, the bus error takes precedence. and the TRAP instruction processing is aborted. In another example. if an interrupt request occurs during the execution of an instruction while the $T$-bit is asserted, the trace exception has priority, and is processed first Before instruction processing resumes, however, the interrupt exception is also processed, and instruction processing commences finally in the interrupt handler routine. A summary of exception grouping and prionty is given in Table 19.

TABLE 19 - EXCEPTION GROUPING AND PRIORITY

Group	Exception	Processing
0	Reset   Bus Error   Address Error	Exception processing begins at   the next minor cycle
1	Trace   Interrupt   Illegal   Privilege	Exception processing begins before   the next instruction
2	TRAP, TRAPV,   CHK.   Zero Divide	Exception processing is started by   normal instruction execution

## EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources, and each exception has processing which is peculiar to it The following paragraphs detall the sources of exceptions, how each arises, and how each is processed

RESET. The reset input provides the highest exception level. The processing of the reset signal is designed for system initation, and recovery from catastrophic failure. Any processing in progress at the time of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state, and the trace state is forced off. The processor interrupt priority mask is set at level seven. The vector number is internally generated to reference the reset exception vector at location 0 in the supervisor program space. Because no assumptions can be made about the validity of register contents, in particular the supervisor stack pointer, neither the program counter nor the status register is saved. The address contained in the first two words of the reset exception vector is fetched as the initial supervisor stack pointer, and the address in the last two words of the reset exception vector is fetched as the initial program counter Finally, instruction execution is started at the address in the program counter. The power-up/restart code should be pointed to by the initial program counter.

The RESET instruction does not cause loading of the reset vector, but does assert the reset line to reset external devices. This allows the software to reset the system to a known state and then continue processing with the next instruction.

INTERRUPTS. Seven levels of interrupt priorties are provided. Devices may be chained externally within interrupt priority levels, allowing an unlimited number of peripheral devices to interrupt the precessor Interrupt priority levels

## MC68000L4•MC68000L6•MC68000L

are numbered from one to seven, level seven being the highest priority. The status register contains a three-bit mask which indicates the current processor priority, and interrupts are inhibited for all priority levels less than or equal to the current processor priority.
An interrupt request is made to the processor by encoding the interrupt request level on the interrupt request lines; a zero indicates no interrupt request. Interrupt requests arriving at the processor do not force immediate exception processing, but are made pending. Pending interrupts are detected between instruction executions. If the priority of the pending interrupt is lower than or equal to the current processor prority, execution continues with the next instruction and the interrupt exception processing is postponed (The recognition of level seven is slightly different, as explained in a following paragraph.)

If the priority of the pending interrupt is greater than the current processor priority, the exception processing sequence is started. First a copy of the status register is saved. and the priviege state is set to supervisor, trecing is suppressed, and the processor priority level is set to the level of the interrupt being acknowledged. The processor fetches the vector number from the interrupting device, classifying the reference as an interrupt acknowledge and displaying the level number of the interrupt being acknowledged on the address bus. If external logic requests an automatic vectoring, the processor internally generates a vector number which is determined by the interrupt level number. If external logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector number references the spurious interrupt vector. The processor then proceeds with the usual exception processing, saving the program counter and status register on the supervisor stack. The saved value of the program counter is the address of the instruction which would have been executed had the interrupt not been present. The content of the interrupt vector whose vector number was previously obtained is fetched and loaded into the program counter, and normal instruction execution commences in the interrupt handling routine. A flow chart for the interrupt acknowledge sequence is given in Figure 24; a timing diagram is given in Figure 25.

## FIGURE 24 - INTERRUPT ACKNOWLEDGE SEQUENCE FLOW CHART PROCESSOR INTERRUPTING DEVICE



1) Compare interrupt level in status register
and watt for current instruction to compleis
Place interrupt level on A1, A2, A3
Set R/W to read
Set function code to interrupt acknowiedge
Assert address strobe ( $\overline{\mathrm{AS}})$
2) Assert lower data strobe ( $\overline{\mathrm{LDS}}$ )


Provide Vector Number
Place vector number of [O-D7 2) Assert data transfer acknowledge ( $\overline{\text { DTACK }}$

Acquire Vector Number
Latch vector number
Negate $\overline{\overline{D S}}$


FIGURE 25 - INTERRUPT ACKNOWLEDGE SEQUENCE TIMING DIAGRAM

$1 \leftarrow$ - Read Crcle - $\rightarrow$ - Vector Number Acquisition - $\rightarrow$ -

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the interrupt proority mask, thus providing a "non-maskable interrupt" capability. An interrupt is generated each time the interrupt request level changes from some lower level to level seven Note that a level seven interrupt may still be caused by the level comparison if the request level is a seven and the processor priority is set to a lower level by an instruction

INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise either from processor recognition of abnormal conditions during instruction execution, or from use of instructions whose normal behavior is trapping.

Some instructions are used specifically to generate traps. The TRAP instruction always forces an exception, and is useful for implementing system calls for user programs. The TRAPV and CHK instructions force an exception if the user program detects a runtime error, which may be an arithmetic overflow or a subscript out of bounds

The signed divide (DIVS) and unsigned divide (DIVU) instructions will force an exception if a division operation is attempted with a divisor of zero.

ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. IIlegal instruction is the term used to refer to any of the word bit patterns which are not the bit pattern of the first word of a legal instruction. During instruction execution, if such an instruction is fetched, an illegal instruction exception occurs.

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as unimplemented instructions and separate exception vectors are given to these pattern's to permit efficient emulation This facility allows the operating system to detect program errors, or to emulate unimplemented instructions in software.

PRIVILEGE VIOLATIONS. In order to provide system security, various instructions are privileged. An attempt to execute one of the privileged instructions while in the user state will cause an exception. The privileged instructions are:

STOP	AND (word) Immediate to SR
RESET	EOR (word) Immediate to SR
RTE	OR (word) Immediate to SR
MOVE to SR	MOVE USP

TRACING. To aid in program development, the MC68000 includes a facility to allow instruction by instruction tracing. In the trace state, after each instruction is executed an exception is forced, allowing a debugging program to monitor the execution of the program under test.
The trace facility uses the $T$-bit in the supervisor portion of the status register. If the $T$-bit is negated (off), tracing is disabled, and instruction execution proceeds from instruction to instruction as normal. If the $T$-bit is asserted (on) at the beginning of the execution of an instruction, a trace exception will be generated after the execution of that instruction is completed. If the instruction is not executed, either because an interrupt is taken, or the instruction is illegal or privileged, the trace exception does not occur. The trace exception also does not occur if the instruction is aborted by a reset, bus error, or address error exception. If the instruction is indeed executed and an interrupt is pending on completion, the trace exception is processed before the interrupt exception If, during the execution of the instruction, an exception is forced by that instruction, the forced exception is processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execution of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the trace exception, and finally the interrupt exception. Instruction execution resumes in the interrupt handler routine.

BUS ERROR. Bus error exceptions occur when the external logic requests that a bus error be processed by an exception. The current bus cycle which the processor is making is then aborted. Whether the processor was doing instruction or exception processing, that processing is terminated, and the processor immediately begins exception processing.

Exception processing for bus error follows the usual sequence of steps. The status register is copied, the supervisor state is entered, and the trace state is turned off. The vector number is generated to refer to the bus error vector. Since the processor was not between instructions when the bus error exception request was made, the context of the processor is more detailed. To save more of this context, additional information is saved on the supervisor stack. The program counter and the copy of the status register are of course saved. The value saved for the program counter is advanced by some amount, two to ten bytes beyond the ad-

FIGURE 26 - SUPERVISOR STACK ORDER


R/W (read/write) write $=0$, read $=1 . \quad$ I/N (instruction/not): instruction $=0$, not $=1$
dress of the first word of the instruction which made the reference causing the bus error. If the bus error occurred during the fetch of the next instruction, the saved program counter has a value in the vicinity of the current instruction, even if the current instruction is a branch, a jump, or a return instruction. Besides the usual information, the processor saves its internal copy of the first word of the instruction being processed, and the address which was being accessed by the aborted bus cycle. Specific information about the access is also saved: whether it was a read or a write, whether the processor was processing an instruction or not, and the classification displayed on the function code outputs when the bus error occurred. The processor is processing an instruction if it is in the normal state or processing a Group 2 exception; the processor is not processing an instruction if it is processing a Group 0 or a Group 1 exception. Figure 26 illustrates how this information is organized on the supervisor stack. Although this information is not sufficient in general to effect full recovery from the bus error, it does allow software diagnosis. Finally, the processor commences instruction processing at the address contained in the vector. It is
the responsibility of the error handler routine to clean up the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, address error, or reset, the processor is halted, and all processing ceases. This simplifies the detection of catastrophic system failure, since the processor removes itself from the system rather than destroy all memory contents. Only the RESET pin can restart a halted processor

ADDRESS ERROR. Address error exceptions occur when the processor attempts to access a word or a long word operand or an instruction at an odd address. The effect is much like an internally generated bus error, so that the bus cycle is aborted, and the processor ceases whatever processing it is currently doing and begins exception processing. After exception processing commences, the sequence is the same as that for bus error including the information that is stacked, except that the vector number refers to the address error vector instead. Likewise, if an address error occurs during the exception processing for a bus error, address error, or reset, the processor is halted

INTERFACE WITH M6800 PERIPHERALS

Motorola's extensive line of M6800 peripherals are directly compatible with the MC68000. Some of these devices that are particularly useful are:

MC6821 Peripheral Interface Adapter
MC6840 Programmable Timer Module
MC6843 Floppy Disk Controller
MC6845 CRT Controller
MC6850 Asynchronous Communication Interface Adapter
MC6852 Synchronous Serial Data Adapter
MC6854 Advanced Data Link Controller
MC68488 General Purpose Interface Adapter
To interface the synchronous M6800 peripherals with the asynchronous MC68000, the processor modifies its bus cycle to meet the M6800 cycle requirements whenever an M6800 device address is detected. This is possible since both processors use memory mapped I/O. Figure 27 is a flow chart of the interface operation between the processor and M6800 devices.

## DATA TRANSFER OPERATION

Three signals on the processor provide the M6800 interface. They are: enable (E), valid memory address (VMA), and valid peripheral address (VPA). Enable corresponds to the E or $\phi 2$ signal in existing M6800 systems. It is the bus clock used by the frequency clock that is one tenth of the incoming MC68000 clock frequency. The timing of E allows 1 MHz peripherals to be used with an 8 MHz MC68000. Enable has a 60/40 duty cycle; that is, it is low for six input clocks and high for four input clocks. This duty cycle allows the processor to do successive VPA accesses on successive E pulses.

M6800 cycle timing is given in Figure 28. At state zero (SO) in the cycle, the address bus and function codes are in the high-impedance state. One half clock later, in state 1, the address bus and function code outputs are released from the high-impedance state.

During state 2, the address strobe ( $\overline{\mathrm{AS}}$ ) is asserted to indicate that there is a valid address on the address bus. If the bus cycle is a read cycle, the upper and/or lower data strobes are also asserted in state 2 . If the bus cycle is a write cycle, the read/write (R/炗) signal is switched to low (write)


## MC68000L40MC68000L60MC6:000L

during state 2 . One half clock later, in state 3 , the write data is placed on the data bus, and in state 4 the data strobes are issued to indicate valid data on the data bus.

The processor now inserts watt states until it recognizes the assertion of VPA. The VPA input signals the processor that the address on the bus is the address of an M6800 device (or an area reserved for M6800 devices) and that the bus should conform to the $\phi 2$ transfer characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus, conditioned by address strobe

After the recognition of VPA, the processor assures that the Enable (E) is low, by wating if necessary, and subsequently asserts $\overline{V M A}$ Vaild memory address is then used as part of the chip select equation of the peripheral This ensures that the M6800 peripherals are selected and deselected at the correct time. The peripheral now runs its cycle during the high portion of the E signal.

During a read cycle, the processor latches the peripheral data in state 6 . For all cycles, the processor negates the address and data strobes one half clock cycle later in state 7. and the Enable signal goes low at this time. Another half clock later, the address bus is put in the high-mpedance state. During a write cycle, the data bus is put in the highimpedance state and the read/write signal is switched high at this time. The peripheral logic must remove VPA within one clock after address strobe is negated.
Figure 29 shows the timing required by M 6800 peripherals, the timing specified for the M6800, and the corresponding timing for the MC68000. For further details on peripheral timing, consult the current data sheet for the peripheral of interest. Notice that the MC68000 VMA is active low, contrasted with the active high M6800 VMA. This allows the processor to put its buses in the high-impedance state on DMA requests without inadvertently selecting peripherals.



MC68000L 40MC68000L6•MC68000L

## INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, if VPA is asserted, the MC68000 will assert VMA and complete a normal M6800 read cycle as shown in Figure 30. The processor will then use an internally generated vector that is a function of the interrupt being serviced. This process is known as autovectoring The seven autovectors are vector numbers 25 through 31 (decimal).

This operates in the same fashion (but is not restricted to) the M6800 interrupt sequence. The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with both the M6800 and the MC68000's normal vectored interrupt, the interrupt service routine can be located anywhere in the address space. This is due to the fact that while the vector numbers are fixed, the contents of the vector table entries are assigned by the user

Since $\overline{V M A}$ is asserted during autovectoring, the M6800 peripheral address decoding should prevent unintended accesses.

FIGURE 30 - AUTOVECTOR OPERATION TIMING DIAGRAM


## INSTRUCTION SET

The following paragraphs provide information about the addressing categories and instruction set of the MC68000.

## ADQRESSING CATEGORIES

Effective address modes may be categorized by the ways in which they may be used. The following classifications will be used in the instruction definitions.
Data
If an effective address mode may be used to refer to data operands, it is considered a data addressing effective address mode.
Memory
If an effective address mode may be used to refer to memory operands, it is considered a memory addressing effective address mode.
Alterable
If an effective address mode may be used to refer to alterable (writeable) operands, it is considered an alterable addressing effective address mode.

Control
If an effective address mode may be used to reter to memory operands without an associated size, it is considered a control addressing effective address mode.

Table 20 shows the various categories to which each of the effective address modes belong. Table 21 is the instruction set summary.

The status register addressing mode is not permitted unless it is explicitly mentioned as a legal addressing mode.

These categories may be combined, so that additional, more restrictive, classifications may be defined. For example, the instruction descriptions use such classifications as alterable memory or data alterable. The former refers to those addressing modes which are both alterable and memory addresses, and the latter refers to addressing modes which are both data and alterable.

TABLE 20 - effective addressing mode Categories

Effective Address Modes	Mode	Register	Data	Addreasing Categories		
				Memory	Control	Alterable
Dn	000	register number	X	-	-	$x$
An	001	register number	-	-	-	$x$
An9	010	register number	$x$	$x$	X	$x$
Ane +	011	register number	$x$	$x$	-	$x$
An¢ -	100	register number	$x$	$x$	-	$x$
An@ (d)	101	register number	X	$x$	$x$	$x$
AnP(d, ix)	110	register number	X	X	X	X
xxx.W	111	000	x	$x$	$x$	$x$
xxx.L	111	001	X	$x$	$x$	X
PCep (d)	111	010	X	X	$x$	-
PCeid, ix)	111	011	$x$	$x$	$x$	-
fxxx	111	100	X	$x$	-	-

MC68000L4॰MC68000L6•MC68000L

TABLE 21 - NSTRUCTION SET

Mnemonic	Deecription	Operation	Condition Codes				
			X	N	2	$v$	C
ABCD	Add Decimal with Extend	(Destination) $10+$ (Source $)_{10} \rightarrow$ Destination	-	$U$	-	U	-
ADD	Add Binary	$($ Destination) $+($ Source $) \rightarrow$ Destination	-	-	-	$\bigcirc$	-
ADDA	Add Address	(Destination) + (Source) $\rightarrow$ Destination	-	-	-	-	-
ADDI	Add immediate	(Destination) + Immediate Data $\rightarrow$ Destination	-	-	-	$\bullet$	-
ADDQ	Add Quick	(Destination) + Immediate Data $\rightarrow$ Destination	-	-	-	-	-
ADDX	Add Extended	$($ Destination $)+($ Source $)+X \rightarrow$ Destination	-	-	-	-	-
AND	AND Logical	$($ Destination) A (Source) $\rightarrow$ Destination	-	-	-	0	0
ANDI	AND Immediate	(Destunation) A Immediate Data $\rightarrow$ Destination	-	-	-	0	0
ASL, ASR	Arithmetic Shift	(Destination) Shifted by <count> $\rightarrow$ Destination	-	-	-	*	-
BCC	Branch Conditonally	If CC then $P C+d \rightarrow P C$	-	-	-	-	-
BC.HG	Test a Bit and Change	$\sim i<$ bit number $>$ ) OF Destination $\rightarrow \bar{Z}$   $\sim$ < bit number > ) OF Destination $\rightarrow$   <bit number> OF Destunation	-	-	-	-	-
BCLR	Test a Bit and Clear	- (<bit number>) OF Destination $\rightarrow Z$ $0 \rightarrow<$ bit number $>\rightarrow$ OF Destination	-	-	-	-	-
BRA	Branch Always	$P C+d \rightarrow P C$	--	-	-	-	-
BSET	Test a Bit and Set	$\sim(<$ bit number $>$ ) OF Destination $\rightarrow Z$   $1 \rightarrow$ <bit number $>$ OF Destination	-	-	-	-	-
BSR	Branch to Subroutine	$P C \rightarrow S P @-; P C+d \rightarrow P C$	-	-	-	-	-
BTST	Test a Bit	$\sim(<$ bit number $>$ ) Of Destination $\rightarrow Z$	-	-	-	-	-
CHK	Check Regıster against Bounds	If $\mathrm{D} n<0$ or $\mathrm{D} \times>$ (<ea>) then TRAP	-	-	U	U	U
CLR	Clear an Operand	$0 \rightarrow$ Destination	-	0	1	0	0
CMP	Compare	(Destination) - (Source)	-	-	-	-	-
CMPA	Compare Address	(Destination)- (Source)	-	-	-	-	-
CMPI	Compare Immediate	(Destination) - Immediate Data	-	-	-	-	-
CMPM	Compare Memory	(Destination) - (Source)	-	-	-	-	-
$\mathrm{DBCC}^{\text {c }}$	Test Condition, Decrement and Branch		-	-	-	-	-
DIVS	Signed Divide	$($ Destination)/ $($ Source $) \rightarrow$ Destination	-	-	-	-	0
DIVU	Unsigned Divide	(Destination)/(Source) $\rightarrow$ Destination	-	-	-	-	0
EOR	Exclusive OR Logical	(Destination) © (Source) $\rightarrow$ Destination	-	-	-	0	0
EORI	Exclusive OR Immediate	(Destination) © immediate Data $\rightarrow$ Destination	-	-	-	0	0
EXG	Exchange Register	$\mathrm{Rx} \rightarrow \mathrm{Ry}$	-	-	-	-	-
EXT	Sign Extend	(Destination) Sign-extended $\rightarrow$ Destimation	-	-	-	0	$n$
JMP	Jump	Destination $\rightarrow P C$	-	-	-	-	-
JSR	Jump to Subroutine	$\mathrm{PC} \rightarrow$ SPP - , Destination $\rightarrow \mathrm{PC}$	-	-	-	-	-
LEA	Load Effective Address	Destination $\rightarrow$ An	-	-	-	-	-
LINK	Link and AHocate	$A_{n} \rightarrow$ SPP-: SP $\rightarrow A n ; S P+d \rightarrow S P$	-	-	-	-	-
LSL, LSR	Logical Shift	(Destination) Shifted by <count> $\rightarrow$ Destination	-	-	-	0	$\bullet$
MOVE	Move Data from Source to Destination	$($ Source $) \rightarrow$ Destination	-	-	-	0	0
MOVE to CCR	Move to Condition Code	(Source) $\rightarrow$ CCR	-	-	-	-	-
MOVE to SR	Move to the Status Register	(Source) $\rightarrow$ SR	-	-	-	-	-
- affected   - unaffected	0 cleared    1 set $U$ defined						

MC68000L40MC68000L6•MC68000L

TABLE 21 - INSTRUCTION SET (CONTINUED)

Mnemonic	Description	Operation	Condition Codes				
			x	N	2	V	C
MOVE from SR	Move from the Status Register	$S R \rightarrow$ Destination	-	-	-	-	-
MOVE USP	Move User Stack Pointer	USP $\rightarrow$ An; An $\rightarrow$ USP	-	--	-	-	-
MOVEA	Move Address	(Source) $\rightarrow$ Destination	-	-	-	-	-
MOVEM	Move Multiple Registers	$\begin{aligned} & \text { Registers } \rightarrow \text { Desunation } \\ & \text { (Source) } \rightarrow \text { Registers } \end{aligned}$	-	-	-	-	-
MOVEP	Move Peripheral Data	(Source) $\rightarrow$ Destination	-	-	-	-	-
MOVEQ	Move Quick	Immediate Data $\rightarrow$ Destination	-	-	-	0	0
MULS	Signed Multiply	(Destination)* ${ }^{\text {Source }} \rightarrow$ Destination	-	-	-	0	0
MULU	Unsigned Multiply	(Destinationl* ${ }^{\text {(Source) }} \rightarrow$ Destination	-	-	-	0	0
NBCD	Negate Decimal with Extend	$0-$ (Destination) $10-x-$ Destination	$\cdot$	U	-	U	
NEG	Negate	$0-$ (Destination) $\rightarrow$ Destunation	-	-	-		
NEGX	Negate with Extend	$0-$ (Destination $-\bar{x} \rightarrow$ Destination	-	-	-	-	-
NOP	No Operation	-	-	-	-	-	-
NOT	Logical Complement	$\sim$ (Destination) $\rightarrow$ Destination	-	$\cdot$	-	0	0
OR	Inclusive OR Logical	(Destination) v (Source) $\rightarrow$ Destination	-	-	-	0	0
ORI	Inclusive OR Immediate	(Destination) v Immediate Data $\rightarrow$ Destination	-	-	-	0	0
PEA	Push Effective Address	Destination $\rightarrow$ SP@-	-	-	-	-	-
RESET	Reset External Devices	-	-	-	-	-	-
ROL, ROR	Rotate (Without Extend)	(Destination) Rotated by <count> $\rightarrow$ Destination	-	-	-	0	$\cdot$
ROXL, ROXR	Rotate with Extend	(Destination) Rotated by <count> $\rightarrow$ Destination	-	-	-	0	-
RTE	Return from Exception	SP@ - $\rightarrow$ SR; SP@ + $\rightarrow$ PC	-	-	-	-	-
RTR	Return and Restore Condition Codes	SP@ + $\rightarrow$ CC; SP@ + $\rightarrow$ PC	-	-	-	-	-
RTS	Return from Subroutine	SP@+ $\rightarrow$ PC	-	-	-	-	-
SBCD	Subtract Decimal with Extend	(Destination) $10-$ (Source) $10-\mathrm{X} \rightarrow$ Destination	-	U	-	U	-
$\mathrm{S}_{\text {CC }}$	Set According to Condition	If CC then 1's $\rightarrow$ Destination eise 0's $\rightarrow$ Destination	-	-	-	-	-
STOP	Load Status Register and Stop	Immediate Data $\rightarrow$ SR; STOP	-	-	-	-	-
SUB	Subtract Binary	(Destination) - (Source) $\rightarrow$ Destination	-	-	-	-	-
SUBA	Subtract Address	(Destination) - (Source) $\rightarrow$ Destination	-	-	-	-	-
SUBI	Subtract Immediate	(Destination) - Immediate Data $\rightarrow$ Destination	-	-	-	-	$\cdot$
SUBQ	Subtract Quick	(Destination) - Immediate Data $\rightarrow$ Destination	-	-	-	-	-
SUBX	Subtract with Extend	(Destination) - (Source) - $\mathrm{x} \rightarrow$ Destination	-	-	-	-	-
SWAP	Swap Register Halves	Register [31:16] $\rightarrow$ Register [15:0]	-	-	-	0	0
	Test and Set an Operand	(Destination) Tested $\rightarrow$ CC; $1 \rightarrow$ [7] OF Destination	-	-	-	0	0
TRAP	Trap	PC $\rightarrow$ SSP@-; SR $\rightarrow$ SSPQ-; (Vector) $\rightarrow$ PC	-	-	-	-	-
TRAPV	Trap on Overflow	If $V$ then TRAP	-	-	-	-	-
TST	Test an Operand	(Destination) Tested $\rightarrow$ CC	-	$\bullet$	-	0	0
UNLK	Unlink	$\mathrm{An}^{\rightarrow} \mathrm{SP} ; \mathrm{SP}$ @ $+\rightarrow \mathrm{An}$	-	-	-	-	-

[ ]= bit number

## INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruc tion execution times in terms of external clock (CLK) periods in this timing data. It is assumed that the memory cycle time is no greater than four periods of the externa! processor clock input, which prevents the inserton of watt states in the bus cycle The number of bus read and write cycles for each instruction is also included with the timing data This data is enclosed in parenthesis following the execution periods and is shown as ( $r / w)$ where $r$ is the number of read cycles and $w$ is the nu nber of write cycles

## NOTE

The number of periods includes instruction fetch and all applicable operand fetches and stores

## EFFECTIVE ADDRESS OPERAND CALCULATION TIMING

Table 22 lisis the number of clock periods required to compute an instruction's effective address. It includes fetching of any extension words. the address computation, and fetching of the memory operand The number of bus read and write cycles is shown in parenthesis as (r/w). Note there are no write cycles involved in processing the effective ad dress

## MOVE INSTRUCTION CLOCK PERIODS

Tables 23 and 24 indrcate the number of clock periods for the move instruction. This data includes instruction fetch, operand reads, and operand writes The number of bus read and write cycles is shown in parenthesis as: (r/w)

## STANDARD INSTRUCTION CLOCK PERIODS

The number of clock periods shown in Table 25 indicates the time required to perform the operations, store the results, and read the next instruction The number of bus read and write cycles is shown in parenthesis as $\mid r / w)$ The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated

In Table 25, the headings have the following meanings. $\mathrm{A} n=$ address register operand. $\mathrm{D} n=$ data register operand. ea $=$ an operand specified by an effective address, and $M=$ memory effecuive address operand.

## IMMEDIATE INSTRUCTION CLOCK PERIODS

The number of clock periods shown in Table 26 includes the time to fetch immediate operands, perform the operations, store the results, and read the next operation. The number of bus read and write cycles is shown in parenthesis as $(r / w)$. The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated

In Table 26, the headings have the following meanings * = immediate operand. $D n=$ data regrster operand. $M=$ memory operand, and $S R=$ status register .

## SINGLE OPERAND INSTRUCTION CLOCK PERIODS

Table 27 indicates the number of clock periods for the single operand instructions The number of bus read and write cycles is shown in parenthesis as ( $r / w$ ) The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated

TABLE 22 - EFFECTIVE ADDRESS CALCULATION TIMING

Addreesing Mode		Byte, Word	Long
$\begin{aligned} & \text { Dn } \\ & \text { An } \end{aligned}$	Data Register Direct Addreses Reginter Direct	$010 / 01$ $010 / 0)$	010/0) $010 / 01$
An@   An@ +	Address Register Indirect Memory Address Register Indirect with Postincrement	$\begin{aligned} & 4(1 / 0) \\ & 4(1 / 0) \end{aligned}$	$\begin{aligned} & 8(2 i 01 \\ & 8(2 / 0) \end{aligned}$
An@ -   An@(d)	Address Register Indirect with Predecrement Address Register Indrect with Displecement	$\begin{aligned} & 6(1 / 0) \\ & 8(2 / 0) \end{aligned}$	$\begin{aligned} & 10(2 / 0) \\ & 12(3 / 0) \end{aligned}$
$\begin{aligned} & \text { An@(d, ix) } \\ & x \times x . W \end{aligned}$	Address Register Indirect with Index Abeolute Short	$\begin{gathered} 10(2!0) \\ 8(2,0) \end{gathered}$	$\begin{aligned} & 14(3 ; 0) \\ & 12(3 / 0) \end{aligned}$
$\begin{aligned} & \mathrm{xxx} . \mathrm{L} \\ & \text { PC@(d) } \end{aligned}$	Absolute Long Program Counter with Dieplacement	$\begin{array}{r} 12(3 / 0) \\ 8(2 / 0) \end{array}$	$\begin{aligned} & 1614 / 01 \\ & 1213 / 01 \end{aligned}$
$\begin{aligned} & \text { PC@(d, ix)* } \\ & \text { fixox } \\ & \hline \end{aligned}$	Program Counter with Index Innmediate	$\begin{array}{r} 10(2: 0) \\ 4(1 / 0) \end{array}$	$\begin{array}{r} 14(3 / 0) \\ 8(2 / 0) \end{array}$

-The size of the index register $(\mathrm{x})$ does not affect execution time.

MC68000L40MC68000L6e MC68000L

TABLE 23 - MOVE BYTE AND WORD INSTRUCTION CLOCK PERIODS

Source	Destination								
	Dn	An	An@	An@ +	An@	An@(d)	An@(d,ix)*	xxx.W	xxx.L
Dn	4(1.0)	4(1/0)	$9\left(1^{\prime} 1\right)$	9:1.1)	$91 \mathrm{i}, 11$	131211	1512:11	1312:11	1713. 11
An	4(1/0)	411.01	9:1 11	91! 1:	91' :	1312.11	$15: 211$	13.211	1713 !
An@	812/0)	812,0 )	1312.1)	1312:1:	1312 '	1713.11	1913. 11	1713.1)	21+4,11
An@ +	812101	$8(2,0)$	131211	1312, 11	1312 i.	1713.11	1913.1)	171311	21/4;11
An@ -	1012,01	1012:0)	15:2,11	1512 i)	151311	1933.1 .	2131)	19,3.1:	231411
An@(d)	1213/01	1213,0)	1713.11	1713.11	17.51	21,4 :	$2314 \cdot 11$	2144	251511
An@(d, ix)*	1413/0)	1413.01	1913.11	1913/11	191311	2314. 11	251411	2314.1	27:5i11
xxx.W	12(3/0)	1213.0)	1713. !	171311	173 ' 1	$21+4$ 1]	$23141 ;$	2114: i)	2515,1)
xox.L	1614/0)	16i4/0i	$21(4,1)$	21:411:	$21: 41$.	$2515 \cdot 11$	271511	$2515 \cdot 1$	2916.11
PC@(d)	12(3/0)	1213:01	1713: i)	1713/i)	17311	21.411	23411	$21.4 \cdot 1$	2515,11
PC@(d, ix ! ${ }^{\text {P }}$	143/01	14/3/C)	1913/1:	1913.11	1913 ij	23.411	$25 i 4$ i	2314, !	271511
Pxxx	8(2;0)	8(2)0)	13/2/1i	$13+2.11$	1312:1;	1713, i!	1913 :	1713.11	2114;11

-The size of the index register (ix) does no: affect execution urne

TABLE 24 - MOVE LONG INSTRUCTION CLOCK PERIODS

Source	Destination								
	Dn	An	An@	An@ +	An@-	An@(d)	An@ (d, 1 ) ${ }^{\text {c }}$	xax.W	$x a \times 1$
Dn	4(1/0)	$411 / 0)$	1417.2)	1413/21	16!1/21	18i2 ${ }^{\prime}{ }^{\prime}$	20(2,2)	1812/2)	2213/2:
An	4(1/0)	4(1,0)	1411.21	1411 21	$16!121$	1812: 21	201212)	1812/21	22.3:21
An@	121310)	1213;0)	2213/21	2213/2)	2213121	2614/23	2814.2)	26:4 21	3015121
An@ +	1213/0)	12(3/0)	22(3/2)	22(3/2)	22i3i2)	26(4/6)	2814/21	2614. 21	$3015 / 2)$
An@ -	1413/0)	1413/0)	24/3/2)	24/3/2)	2413/21	2814/2)	30(4; 2 )	28(4/2)	32(5/2)
An@(d)	16(4/0)	16(4)0)	26(4/2)	26i4/2)	26:4/2)	30(5/2)	3215/2!	3015/2)	3416/2)
An@(d, ix)*	18(4/0)	1814/0)	28(4/2)	2814/21	28(4/2)	32(5)21	3415/21	3215/21	$3616 / 21$
xox.W	16(4/0)	16(4/C)	26(4/2)	2614:21	2614:2)	3015/21	32(5/2)	3015; 21	34(6/2)
xxx.L	2015/0)	2015/0)	30(5/2)	3015/2)	30(5,2)	$3466 / 21$	3616/21	34(6/2)	3817/21
PC@(d)	1614/0)	1614/01	2614/2)	26(4)21	2614/21	$3015 / 21$	$32(512)$	3015/2)	34/6/21
PC@(d, $i x$ )*	1814/0)	1814/0)	2814/2)	28:4, 21	2814, 21	3215/2)	34(5/2)	3215/2i	$3616 / 21$
Ixax	12(3)0)	1213/6)	2213/21	2213:21	22(3)2)	26(4, 2 )	28:4/21	26(4/2)	3015/2)

-The size of the index register (ix) does not aflect execurion time

TABLE 25 - STANDARD INSTRUCTION CLOCK PERIODS

Instruction	Size	op <ea>. An	op <ea>. Dn	op Dn, <M>
ADD	Brte, Word	$811 / 01+$	411/0! +	$911 / 11+$
	Long	$611.01+\cdots$	$611,0 i+\cdots$	141!/2) +
AND	Byte. Word	-	4:1/01 +	$9(1 / 1)+$
	Long	-	$611 / 01+\cdots$	14:121+
CMP	Byte, Word	6.1 01 +	41:'01 +	-
	Long	$6(1 / 0)+$	$611 / 01+$	-
DIVS	-	-	$1581101+*$	--
DIVU	-	-	14011.01 -*	-
EOR	Bre, Word	-	$411 / 0)^{\circ+}$	911/1) +
	Long	--	$811 / 0)^{\circ}$	1411/2) +
MULS	-	-	7011/01+*	-
MULU	- -	-	$7011 / 01+$	-
OR	Byte, Word	-	$411 / 0)+$	911/1)+
	Long	-	$6(1 / 0)+\cdots$	$14(1) 21+$
SUB	Byte, Word	$8(1 / 0)+$	$4(1 / 0)+$	$9(1 / 1)+$
	Long	$6(1 / 0)+\cdots$	$6(1 / 0)+\cdots$	1411/2) +

+ add effective address calculation time $\cdots$ total of 8 clock periods for instruction of the effective address is register direct
- indicates maximum value $\quad \cdots$ only available effective address mode is data register direct

TABLE 26 - IMMEDIATE INSTRUCTION CLOCK PERIODS

Instruction	Size	op 1. Dn	Op \#, M	Op f, SR
ADDI	Byte, Word	812/0)	13(2/.1) +	-
	Long	1613/0!	22(3/2) ${ }^{\text {+ }}$	-
ADDQ	Byte, Word	$411 / 01$	$9(1,1)+$	-
	Long	$811 / 0{ }^{\circ}$	14(1/2) +	-
ANDI	Byte, Word	$8(2 / 0)$	13(2/1) +	2013/0)
	Long	1613/0)	22(3/2) +	-
CMPI	Byte, Word	812/0)	$8(2 ; 0)+$	-
	Long	1413/01	12(3/0) +	-
EORI	Byte, Word	812/0)	13(2) $11+$	2013/0)
	Long	1613/0)	22(3/2) +	-
MOVEO	Long	4(1/0)	-	-
ORI	Byte, Word	8(2/0)	1312/1)+	2013/0)
	Long	1613/0)	22(3/2) +	-
SUBI	Byte, Word	812/0)	13(2/1) +	-
	Long	16(3/0)	22(3/2) +	-
SUBA	Byte, Word	4(1)0)	$911 / 11+$	-
	Long	$811 / 01$	14(1/2) +	-

+ add effective address calculation time

TABLE 27 - SINGLE OPERAND INSTRUCTION CLOCK PERIODS

Instruction	Size	Register	Memory
CLR	Byte, Word	$4(1 / 0)$	$9(1 / 1)+$
	Long	$6(1 / 0)$	$14(1 / 2)+$
NEG	Byte	$6(1 / 0)$	$9(1 / 1)+$
	Byte. Word	$4(1 / 0)$	$9(1 / 1)+$
	Long	$6(1 / 0)$	$14(1 / 2)+$
NOT	Byte, Word	$4(1 / 0)$	$9(1 / 1)+$
	Long	$6(1 / 0)$	$14(1 / 2)+$
SCC	Byte, Word	$41 / 0)$	$911 / 1)+$
	Long	$6(1 / 0)$	$14(1 / 2)+$
TST	Byte, False	$4(1 / 0)$	$911 / 1)+$
	Byte, True	$6(1 / 0)$	$9(1 / 1)+$
	Byte	$4(1 / 0)$	$11(1 / 1)+$

+ add efiective address calculation time


## SHIFT/ROTATE INSTRUCTION CLOCK PERIODS

Table 28 indicates the number of clock periods for the shift and rotate instructions. The, number of bus read and write cycles is shown in parenthesis as: ( $r / w$ ). The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated.

## BIT MANIPULATION INSTRUCTION CLOCK PERIODS

Table 29 indicates the number of clock periods required for the bit manipulation instructions. The number of bus read and write cycles is shown in parenthesis as: $(r / w)$. The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated.

## CONDITIONAL INSTRUCTION CLOCK PERIODS

Table 30 indicates the number of clock periods required for the conditional instructions. The number of bus read and write cycles is indicated in parenthesis as: $(r / w)$. The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated.

## JMP, JSR, LEA, PEA, MOVEM INSTRUCTION CLOCK PERIODS

Table 31 indicates the number of clock periods required for the jump, jump to subroutine, load effective address, push effective address, and move multiple registers instructions. The number of bus read and write cycles is shown in parenthesis as: $(\mathrm{r} / \mathrm{w})$.

MC68000L4•MC68000L6•MC68000L

TABLE 28 - SHIFT/ROTATE INSTRUCTION CLOCK PERIODS

Instruction	Size	Register	Memory
ASR, ASL	Byte, Word	$6+2 n(1 / 0)$	$9(1 / 11+$
	Long	$8+2 n(1 / 0)$	-
LSR, LSL	Byte, Word	$6+2 n(1 / 0)$	$9(1 / 1)+$
	Long	$8+2 n(1 / 0)$	-
ROR, ROL	Byte, Word	$6+2 n(1 / 0)$	$9(1 / 1)+$
	Long	$8+2 n(1 / 0)$	-
ROXR, ROXL	Byte, Word	$6+2 n(1 / 0)$	$9(1 / 1)+$
	Long	$8+2 n(1 / 0)$	-

TABLE $2 \boldsymbol{O}$ - BIT MANIPULATION INSTRUCTION CLOCK PERIODS

Instruction	Size	Dynamic		Static	
		Register	Memory	Register	Memory
BCHG	Byte	-	$9(1 / 1)+$	-	$13(2 / 1)+$
	Long	$8(1 / 0)^{\circ}$	-	$12(2 / 0)^{\circ}$	-
BCLR	Byte	-	$9(1 / 1)+$	-	$13(2 / 1)+$
	Long	$10(1 / 0)^{\circ}$	-	$14(2 / 0)^{\circ}$	-
BSET	Byte	-	$9(1 / 1)+$	-	$13(2 / 1)+$
	Long	$8(1 / 0)^{*}$	-	$12(2 / 0)^{\circ}$	-

+ add effective address calculation tume
- indicates maximum value

TABLE 30 - CONDITIONAL INSTRUCTION CLOCK PERIODS

Instruction	Dieplacement	Trep or Branch   Taken	Trap or Branch   Not Taken
BCC	Byte	$10(1 / 0)$	$8(1 / 0)$
	Word	$10(1 / 0)$	$12(2 / 0 i$
BSR	Byte	$10(1 / 0)$	-
	Word	$10(1 / 0)$	-
DBCC	Byte	$2012 / 2)$	-
	Word	$20(2 / 2)$	-
TRAP	CC true	-	$12(2 / 0)$
TRAPV	CC folse	$10(2 / 0)$	$14(3 / 0)$

+ add effective address celculation time
- indicates maximum value
table 31 - JMP, JSR, LEA, PEA, MOVEM instruction Clock periods

Instr	Size	An@	An@ +	An@-	An@(d)	An@(d, ix)**	xxx.W	xxx ${ }^{\text {L }}$	PC@(d)	PC@(d, ix)*
JMP	-	8(2/0)	-	-	10(2/0)	14(3/0)	1012/0)	12(3/0)	10(2/0)	14(3/0)
JSR	-	1812/2)	-	-	2012/2)	2412/2)	2012/2)	22(3/2)	2012/2)	24(2/2)
LEA	-	4(1/0)	-	-	8(2/0)	12(2/0)	812/0)	1213/0)	812/0)	12(2/0)
PEA	-	1411/2)	-	-	18(2/2)	22(2/2)	18(2,2)	22(3/2)	18(2/2)	22(2/2)
MOVEM	Word	$\begin{array}{r} 12+4 n \\ (3+n / 0) \end{array}$	$\begin{array}{r} 12+4 n \\ 13+n / 0) \end{array}$	$-$	$\begin{array}{r} 16+4 n \\ (4+n / 0) \end{array}$	$\begin{array}{r} 18+4 n \\ (4+n / 0) \\ \hline \end{array}$	$\begin{array}{r} 16+4 n \\ (4+n / 0) \end{array}$	$\begin{array}{r} 2 \sigma+4 n \\ (5+n / 0) \end{array}$	$\begin{array}{r} 16+4 n \\ (4+n / 0) \\ \hline \end{array}$	$\begin{array}{r} 18+4 n \\ (4+n / 0) \end{array}$
M - R	Long	$\begin{array}{r} 12+8 n \\ (3+2 n / 0) \end{array}$	$\begin{array}{r} 12+8 n \\ (3+2 n / 6) \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 16+8 n \\ (4+2 n / 0) \\ \hline \end{array}$	$\begin{array}{r} 18+8 n \\ (4+2 n / 0) \\ \hline \end{array}$	$\begin{array}{r} 16+8 n \\ (4+2 n / 0) \\ \hline \end{array}$	$\begin{array}{r} 20+8 n \\ (5+2 n / 0) \end{array}$	$\begin{array}{r} 16+8 n \\ (4+2 n / 0) \\ \hline \end{array}$	$\begin{array}{r} 18+8 n \\ (4+2 n / 0) \end{array}$
MOVEM	Word	$\begin{aligned} & 8+5 n \\ & (2 / n) \\ & \hline \end{aligned}$	-	$\begin{gathered} 8+5 n \\ (2 / n) \\ \hline \end{gathered}$	$\begin{array}{r} 12+5 n \\ (3 / n) \end{array}$	$\begin{array}{r} 14+5 n \\ (3 / n) \\ \hline \end{array}$	$\begin{array}{r} 12+5 n \\ (3 / n) \end{array}$	$\begin{array}{r} \hline 16+5 n \\ (4 / n) \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	-
$R-M$	Long	$\begin{aligned} & 8+10 n \\ & (2 / 2 n) \\ & \hline \end{aligned}$	-	$\begin{aligned} & 8+10 n \\ & (2 / 2 n) \\ & \hline \end{aligned}$	$\begin{array}{r} 12+10 n \\ (3 / 2 n) \end{array}$	$\begin{array}{r} 14+10 n \\ (3 / 2 n) \\ \hline \end{array}$	$\begin{array}{r} 12+10 n \\ (3 / 2 n) \\ \hline \end{array}$	$\begin{array}{r} 16+10 n \\ (4 / 2 n) \\ \hline \end{array}$	-	

$n$ is the number of registers

- is the size of the index register ( $1 x$ ) does not affect the instruction's execution time



## MC68000L40MC68000L6•MC68000L

## MULTI-PRECISION INSTRUCTION CLOCK PERIODS

Table 32 indicates the number of clock periods for the multi-precision instructions. The number of clock periods in cludes the time to fetch both operands, perform the operations, store the results, and read the next instructions. The number of read and write cycles is shown in parenthesis as (r/w).

In Table 32, the headings have the following meanings: $D_{n}=$ data register operand and $M=$ memory operand

## MISCELLANEOUS INSTRUCTION CLOCK PERIODS

Table 33 indicates the number of clock periods for the following miscellaneous instructions. The number of bus
read and write cycles is shown in parenthesis as: $(r / w)$. The number of clock periods plus the number of read and write cycles must be added to those of the effective address calculation where indicated.

## EXCEPTION PROCESSING CLOCK PERIODS

Table 34 indicates the number of clock periods for exception processing. The number of clock periods includes the time for all stacking, the vector fetch, and the fetch of the first instruction of the handler routine. The number of bus read and write cycies is shown in parenthesis as: $(r / w)$.

TABLE 33 - MISCELLANEOUS INSTRUCTION CLOCK PERIODS

Instruction	Size	Register	Memory	Register - Memory	Memory - Register
MOVE from SR	-	$6(1 / 0)$	$9(1 / 1)+$	-	-
MOVE to CCR	-	$12(2 / 0)$	$12(2 / 0)+$	-	-
MOVE to SR	-	$12(2 / 0)$	$12(2 / 0 i+$	-	-
MOVEP	Word	-	-	$18(2 / 2)$	-
	Long	-	-	$28(2 / 4)$	-
EXG	-	$6(1 / 0)$	-	-	-
EXT	Word	$4(1 / 0)$	-	-	-
	Long	$4(1 / 0)$	-	-	-
LINK	-	$18(2 / 2)$	-	-	-
MOVE from USP	-	$4(1 / 0)$	-	-	-
MOVE to USP	-	$4(1 / 0)$	-	-	-
NOP	-	$4(1 / 0)$	-	-	-
RESET	-	$132(1 / 0)$	-	-	-
RTE	-	$20(5 / 0)$	-	-	-
RTR	-	$20(5 / 0)$	-	-	-
RTS	-	$16(4 / 0)$	-	-	-
STOP	-	-	-	-	-
SWAP	-	$12(3 / 0)$	-	-	-
UNLK	-	-	-	-	

1 add effective address calculation time

TABLE 34 - EXCEPTION PROCESSING CLOCK PERIODS

Exception	Periods
Addrees Error	$57(4 / 7)$
Bus Eror	$57(4 / 7)$
Interrupt	$47(5 / 3)^{*}$
Imegal Inatruction	$37(4 / 3)$
Privileged Inatruction	$37(4 / 3)$
Trace	$37(4 / 3)$

- The interrupt acknowledge bus cycle is assumed to take four external clock periods


## MC68000L4•MC68000L6•MC68000L

FIGURE 31 - AC ELECTRICAL WAVEFORMS
These weveforms should only be referenced in regard to the edge-to-edge meesurement of the timing apecifications. They are not intended as a functional description of the input and output signals. Refer to other functional descriptions and their related diegrame for device operation.



> MC68020 Technical Summary

## 32-BIT VIRTUAL MEMORY MICROPROCESSOR

This document contains both a summary of the MC68020 as well as a detailed set of parametrics The purpose is twotold - 10 provide an introduction to the MC68020 and suppori for the sophisticated user for detailed information on the MC660\% User's Manual

The MC68020 is the first full 32 -bit implementation of the M68000 Farnily of microprocessors from Motorola Using VLSI technology, the MC68020 is implemented with 32:bit registers and data paths. 32-bit addresses, a rich basic insiruction set. and vers.atile addressing modes The resources avalable to the MC68020 user consist of the following

- Virtual Memory/Machine Support

- Imo 32 Bit Supervisor Stack Pointers
- Five Special Purpose Control Registers
- 4 Gigabyte Direct Addressing Range
- 18 Addressing Modes
- Memory Mapped I/O
- Coprocessor Interface
- High Performance On-Chip Instruction Cache
- Operations on Seven Data Types
- Complete Floating Pomt Support va MC68881 Coprocessor

FIGURE 1 - FUNCTIONAL SIGNAL GROUPS


## Advance Information

## INTELLIGENT PERIPHERAL CONTROLLER

The MC68120/MC68121 Inteligent Peripheral Controller liPC; is a general purpose, mask programmable peripheral controller The IPC provides the interface between an M68000 or M6800 Family microprocessor and the final peripheral devices through a system bus and control lines System bus data is transferred to and from the IPC via dual-por: RAM while the software utlizes the semaphore registers to control RAM tasking or any other shared resource. Multiple operating modes range from a single chip mode with $21 \mathrm{I} / \mathrm{O}$ lines and 2 contro lines to an expanded mode supporting an address space of 64 K bytes The MC68120 has 2 K bytes of on-chip ROM to make full use of all operating modes The MC68121 utilizes only the expanded address modes, due to the absence of on-chip ROM

A serial communications interfn'e. 16-bit timer, dual-ported RAM and semaphore segisters are available for use by itie IPC in all operating rodes

- Svstem Bus Cumpatible with the Asynchronuus M68000 Famity
- System Bus Compaticie with the MC6809 and Other M6800 Family Processors Perpnerals
- Local Bus Allows Interface with all M6800 Peripherals
- MC6801 Source and Objec: Code Compatible
- Upward Compatible with MC6800 Source and Object Code
- 2048 Evtes of ROM! (MC68120 Only)
- I23 Bvies of Dual-Ported RAM
- Mulinle Operation Modes Ranting from Single Chip to Expanded, with 54 K Bite Address Space
- Six Siared Simaphore Registers
- 21 Parailel 1. 0 Lines and 2 Handshake Lines 151,0 Lines on MC681211
- Seria: Communications Interface (SCI)
- 16-Bit Three Function Timer
- 8-Bit CPU and Interna! Bus
- Halt'Bus Available Capability Control
- $8 \times 8$ Multiply Instruction
- TTL Compatible Inputs and Outputs
- External and Internal Interrupts


MC68120
MC68121


PIN ASSIGNMENT


This document contains informetion in a new procluct Spercifications and information heren
are subiect to change without notice:

## MC68120, MC68121



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {cC }}$	- 0310 + 70	$\checkmark$
In.pul Voltage	$V_{\text {in }}$	-03:0+70	$\checkmark$
Gperaing Temperature Range	${ }_{1}$	01070	${ }^{\circ} \mathrm{C}$
Sturage Temperature Range	${ }^{\text {'stg }}$	55 10-150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Chorecteriatic	Symbol	Value	Rating
Thermial Resistance   Ceramic Package	$\theta_{J A}$	50	C. W

This device contains cricuitry to protect the inputs against damage due to high static voltages of electric freids. however, il is ad vised that normai precautions be taken 10 avoid application of any voltage higher than maximum tated voltages to this high impedance circurt For proper operation is is recommended that $V_{i r}$ and $V_{\text {out }}$ be corsiramed to the range $V S S \leq i V_{i t}$ or voutsVCC
Unused inputs mus: aiways be thed to ar anoropriate logic voltage leve! te $g$ e,thet VSS or VCCl

## Advance Information

## MC6B701 MICROCOMPUTER UNIT (MCU)

The MC68701 is an 8-bit single chip microcomputer unit (MCU) which signif army enhances the capabilites of the M6800 family of parts. It can b? used in production systems to allow for easy firmware changes with ::unimum delay or it can be used to emulate the MC6801/03 for soltwart oevelopment. It includes an upgraded M6800 microprocessor unit (MPUI with upward source and object code compatibility Execution times of key instructions have been improved and S6.dral new instructions nave been added including an unsigned multiply The MCU can function as a monolithic microcomputer or can be expanded to a 64 K byte address space It is TTL compatible and requires one +5 volt power supply for nonprogramming operation. An additional Vpp power sippiy is needed for EPROM programming. On-chip resources include 2048 bytes of EPROM, 128 bvies of RAM, Serial Communications interface ! SCII, oarallei $1 / O$, and a three function Programmable Timer $A$ summary of MCU features includes:

- Enhanced MC6800 Instruction Set
- $8 \times 8$ Multiply instruction
- Serial Communications interface ISCII
- Upward Source and Object Code Compatibility with the MC6800
- 16-Bir-Trree-Function Programmable Timer
- Single-Chip or Expanded Operation to 64K By:e Address Space
- Bus Compatibility with the M6800 Family
- 2048 Bries of UV Erasable. User Programmable ROM (EPROM)
- 128 Byies of RAM (64 Bytes Retainable on Powerdown)
- 29 Paralier I/O and Two Handshake Control Lines
- Internal Clock Generator with Divide-by-Four Output
- 40 to $85^{\circ} \mathrm{C}$ Temperature Range


[^17]
## MC68701

## MCEB7OI MICROCOMPUTER BLOCK DIAGRAM



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	$-0310+70$	$\checkmark$
Input Voltage	$V_{\text {In }}$	$-0310 \cdot 70$	$\checkmark$
```Operating Temperature Range MiC68701 MC68701C```	TA	$\begin{gathered} T_{1} \text { to } T_{H} \\ 0 \text { to } 70 \\ -40 \text { to } 85 \\ \hline \end{gathered}$	C
Storage Temperature Range	$T_{\text {stg }}$	01085	C

Ihis oevice contains creuntiy io protect the ri: puts aganst damage due to high statie voitages or eifec:ic fieids. however, it is advised that noi mal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance CrCuit For proper opera. tion t! is recommended not V_{n}, and $V_{\text {out }}$ be con strarned to the range $V_{S S} \leq i V_{\text {r }}$ or $\left.V_{\text {out }}\right) \leq V_{C C}$ Reliab. "r of operation is entrancedi" uriused in puts a:e "ed to an approprtate logic voltage ieve le is winer $V_{S S}$ or $V_{C C}$
THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Rating
Thermal Resistance Ceramic Package	$\theta_{J A}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER CONSIDERATIONS

The average chip-junction temperature. $T_{\mathrm{J} .}$ in ${ }^{\circ} \mathrm{C}$ can be ubtained from $T_{J}=T_{A}+\left(P_{D}{ }^{\bullet} J_{J A}\right)$

Where
$T_{A}=$ Ambient Temperature, ${ }^{\circ} \mathrm{C}$
$\theta_{J A}=$ Package Thermat Resistance, Junction to Ambient, ${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{D}=P_{I N T}+P_{P O R T}$
PINT $={ }^{I} C C \times V_{C C}$. Watts -. Chip interna: Powe:
PPORT = Port Power Dissipation. Watis Usar [Detarnaried
For most appitcations PPORT \& PINT and cari be neglecied PPORT may becone sanificant if the device is contigured is grive Darlington bases or sink LED loads

An approximate relationship beiween: P_{D} and T_{J} hi PPORT is neglected is

$$
P_{D}=K-\left(T_{j}+273^{\circ} \mathrm{C}\right)
$$

Solving equations 1 and 2 tot K gives

$$
\begin{equation*}
K=P D \cdot\left(T_{A}+273^{\circ} \mathrm{C}\right)+\forall J A \bullet P D^{2} \tag{131}
\end{equation*}
$$

Where K is a constant pertaining to the particuiar part. K can be determined fromed_ation 3 by measuring PD (at equituriumi) for a known TA Using this value of K the values of P_{D} and T_{J} can be nutamed by solv r 3 equations 191 and (2) iteralively for an) value of T_{A}

THE MC68881 FLOATING-POINT CO-PROCESSOR

The MC68881 is a high-performance HMOS thoating-point processor designed to interface with the advanced MC68020 microprocessor it can also be used as a peripheral in systems with other processors The MC6888: is a comprehensive floating-point co-processor that provides a wide range of tloating point capabitites seïdom found even in a large main frame computer. System performance with the MC68020 is the overriding design goal of the MC68881

ARCHITECTURE

The architecture of the MC68881 was defined as an extension to the architecture of the M68000 Family it is a regisieroriented processor The programmer's modet for the MC68881 is shown in Figure 1

FIGURE 1 - PROGRAMMER'S MODEL

There are eight 80 -bit thoating-pont data registers. These registers always hold full extended precision numbers
The control word contains the user selectable modes. The accrued exception word contans the logical inclusive OR of the exceptions for ath operations since the last clear of the accrued exception regrster. The exception word contains the exception(s) of the last operation only. The condition code register holds the result of the last compare instruction

The instruction address regrster contans the address in main processor memory of the last instruction executed by the co-processor. This address can be used during an error trap to determine the address of the faulty instruction.

ARCHITECTURAL JETAILS

Deve Types

The MC6ees1 incorporates four new data types They are
Single Precision Real (S)
Double Precision Real (D)
Double-Extended Precision Real (X)
Packed Real BCD String (P)
In the assembly language syntax these new data types are inandied in the same manner as the existing byte. word and long word data types The suffixes S. D. X. and P are appended to the opcode

Operation Types

The operations on the MC68881 can be broken into five major types They are
Dyadic Operations (2 operands)
Monadic Operations (1 operand)
Moves and Conversions
Conditional Tests
Control Operations
Dyadic Operations - All dyadic operations have as their source argument a MC68020 memory tocation, a MC68020 data register, or a floating-point data register The source is converted to double-extended precision, if not already such The destination argument is always a floating-point data register. The result is returned to the floating-point data register defined as the destination argument

Monadic Operations - The monadic instructions only have one argument it is either in MC68020 memory. an MC68020 data register, or in a floating-point register it is always converted to double-extended precision format, if it is not already the destination is always a floating-point register

Moves and Conversions - Conversion to double-extended precision tormat is implicit in the move-in portion of the dyadic or monadic operation Simiarly, data contained in floating-point registers may be converted to other formats as operands are moved out of the MC68881

Conditional Test - The conditional instructions are the FBcc and FScc which are identical to the M68000 Family instructions Bcc and Scc except they use the MC68881's condition codes for determining the truth of the condition
Control Operations - The control instructions are used to set modes in the control register and to read the exception. accrued exception, and instruction address registers

Co-Processor interface

The co-processor intertace designed by Motorola is an integral part of the design of both the MC68020 and the MC68881 design The interface is clean and simple with the MC68020 and MC68881 sharing the tasks of the interface The MC68020 provides services tor the MC68881 at the co-processor's request The services provided by the MC68020 are the ones done more efficiently by the main processor

On the other hand, the MC68881 does not depend on the MC68020 for all services as do some co-processor schemes Once the MC68020 has provided the services requested by the MC68881 (which may be none) it is tree to continue processing. Thus the choice of concurrency or non-currency is determines on an insiruction-by-instruction basis and is determined by the co-processor The great majority of MC68881 instructions are in fact overlapped in execution with MC68020 instructions

Since the co-processor interface is simple and flexible, it opens up the possibility of user-created co-processors For this and other reasons the co-processor interlace allows multiple co-processors in a system Furthermore, the same handshaking that occurs between the main CPU and the co-processor can be simulated in software on CPUs that do not have the co-processor interface, by treating the MC68881 as a peripheral

Lastly, the co-processor interface was designed with the ever growina. M68000 Family in mind The MC6888) is fully compatible with all future and existing M68000 parts including the M68450 DMA Controller, the M68451 Memory Management Unit, and the MC68020's cache memory it also suppoits true viriual memory

Implementátion

The MC68881 is a microcoded processor whose complexity is on the ordet of the MC68020 itseli It witl be built using Motorola's advanced HMOS III process

The hardware consists of a high-speed 67-bit ALU for manipulating mantissa bits The hardware also includes a barrel shifter that can shift from 1 bit to 67 bits in one machine cycie The barrel shifter not only speeds up standard arithmetic functions, but is also a fundamental part of transcendental function implementation Since argument reduction for transcendental functions will be performed by the microcode. the number of functions provided will be dependent on the available microcode space

THE IEEE FLOATING POINT STANDARD

The MC68881 is a coniorming implementation of the proposed standard in tact it not only supports all the required features and functions of the proposed standard, but also implements most of the suggested features as well. Further, the MC68881 conforms without the need for any software external to the processor All operations take place in high-speed hardware

Data Format Conformance

The MC68881 supports three data sizes defined by the proposed standard. They are single, double, and doubleextended. The single-extended type is redundant when these three are included; all references in this document which refer to "extended" imply "double-extended") The format for all three data types has the basic organization of

The suzes of each field for the three floating-point formats are

	Size in Bits		
	Single	Double	Extended
Sign	1	1	1
Exponent	8	11	15
Mantissa	23	52	64
Total	32	64	80

The three formats described above are the formats which are assumed by floating-point numbers in user's memory. Each time one of these numbers is transferred to the MC68881 it is converted into an extended real number. Thereafter. all operations in the co-processor take place with full extended precision Even integers and BCD strings are converted into 80 -bit numbers when they are loaded into an MC68881 data register This means that the MC68881 supports mixed mode arthmetic

Data Type Conformance

The proposed standard requires that not only must normalized numbers be recognized. but that special data types must also be recognized The largest and smallest exponents are reserved for these special data types

Positive True Zero
Negative True Zero
Plus Infinity
Minus Infinity
Denormalized Numbers
Not-a-Number (NaN 's)

Operation Conformance

All operations specified by the proposed standard are supplied in full precision by the MC68881 The arithmetic operations provided are

Add
Subtract
Multiply
Divide
Remainder
Compare
Square Root
Integer Part

MODE CONFORMANCE

Rounding Modes - The MC68881 supports all four rounding modes specified in the standard:
Round to Nearest
Round Towards Plus Infinity
Round Towards Minus Infinity
Round Towards Zero
Rounding Precisions - Even though the MC68881 does all arithmetic to full 80-bit precision, sometimes it is desirable to round the 80 -bit result to the precision of a single or double result. The three choices are

[^18]> Infinity Closures - Two types of infinity closures are also defined by the standaro and supported in the MC68881 Affine closure defines a number system where both plus and minus infinity exist and are at opposite ends of the number line

In projective closure, infinity is unsigned and the number system can be thought of as a circle which includes all numbers

Error Handling Conformance

The proposed stanaard provides tor the hardware to trap tt an error occurs On the MC68020/MC68881 if an error occurs on an enabled trap. the MC68881 will signal the MC68020 to take a trap and will supply a vector number in other words, floating point exception traps are handled fust thke any other MC68020 traps No external give parts are required and there is no possibility of dead-lock

BEYOND THE IEEE PROPOSAL

The MC68881 offers many features and functions beyond those required or suggested by the IEEE

Additional Instructions

Some of the additional instructions provided in the MC68881 are
Absolute value
Negate
Scale Exponent
Set Byte determined by Floating-Point Condition
Branch on Floating-Point Condition
Get Index Based on Floating. Point Type
Move Constant to Floating. Point Register
Gèt Fraction of Floating-Point Number
Get Exponent of Floating-Point Number
Modulo

Transcendentals

The MC68881 includes on-chip hardware for evaluation of iranscendental functions The functions planned are
Sine x
Cosine x
Arc Tangent x
Log Base 2
e^{x}
Log Base e
The following functions will also be provided if there is adequate space in the microcode atter the above functions are included:

Tangent x
Hyperbolic Arc Tangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Log Base 10
Log Base 2
10x
y^{x}
Each of these functions is calculated to double extended precision

SUMMARY

The MC68881 is the most comprehensive floatir.g-point processor It provides all the required functions and features of the proposed IEEE standard in hardware in addition many other functions are provided to round out the support necessary in most numeric programs The architecture is a logical extension to the M68000 Family architecture and is clean and easy to use. Furthermore, it lends itself to being moved onto the main processor in the future. The co-processor interface was designed with a great deal of thought, not only to allow it to work well with the MC68881, but also to allow for future co-processors, multuple co-processors. and user defined co-processors Lastly. the MC68881 is being designed with state-of-the-art hardware and all-out performance as the primary design goal

Product Preview

THE MC68851 HCMOS PAGED MEMORY MANAGEMENT UNIT (PMMU)

The MC68851 is a high-performance HCMOS paged memory management unit (PMMU) designed to efficiently support a demand paged virtual memory environment as a coprocessor with the MC68020 advanced microprocessor The MC68851 can also be used as a peripheral with other processors. especially the MC68010 The MC68851 provides an efficient means of paging and access control The implementation of a comprehensive paged memory management system is facilitated by utilizing the following MC68851 features:

- Very Fast Logical-to-Physical Address Transiation
- Logical Address Consists of a 4-Bit Function Code and a 32-Bit Address
- Full 32-Bit Physical Address
- Eight Available Page Sizes from 256 to 32 K Byies
- Fully Associative 64 Entry On-Chip Translation Cache
- Translation Cache Can Hold Descriptors for Multiple Processes
- Internal Hardware Maintains Translation Tables and On-Board Cache
- MC68020 Instruction Set Extension and Instruction Oriented Interface Using M68000 Family Coprocessor Interface
- Supports Linear Address Space of 4 Gigabytes or a Hierarchical Protection Mechanism with Eight Levels of Privilege/Protection
- Supports Multuple Logical and/or Physical Bus Masters
- Supports Logical and/or Physical Data Cache
- Supports instruction Breakpoints for Software Debugging and Program Control
The primary system functions of the MC68851 are to provide logical-to-physical address translation, to monitor and enforce the protection/privilege mechanism. and to support the breakpoint operations. The MC68851 also supports the M68000 Family coprocessor interface in order to simplify processor/coprocessor communication

ADDRESS TRANSLATION

Logical-to-physical address translation is the most frequently executed operation of the MC6B85i and, as such. this task has been optimized and requires minimal processor intervention The logical address operated on by the MC6885 1 consists of the 32 -bit incoming logical address and a 4-bit function code
The MC68851 initiates an address translation by searching for the page descriptor corresponding to the logical-to-
physical mapping in the on-chip translation-lookaside module (TLM) The TLM is a very fast 64 -entry fullyassociative cache memory which stores recently used page descriptors if the descriptor does not reside in the TLM. then the bus cycle of the logical bus master is aborted and the MC68851 executes bus cycles to search the translation table in physical memory The translation table is a hierarchical structure in main memory that, at its lowest level. contains the page descriptors controlling the logical-to-physical address translations The 64-bit primary root pointer registers in the MC68851 Isee Figure 11 point to the head of these translation tables The page descriptor is loaded into the TLM and the logical bus master is allowed to retry its bus cycle, which should now be correctly translated

PROTECTION MECHANISM

The MC68851 hierarchical protection mechanism provides cycle-by-cycle examination and enforcement of the access rights of the currently executing process There are eight distinct levels in the privilege hierarchy and these levels are encoded in the upper three bits of the incoming logical address LA (31-29). The MC68851 compares these bits against the value in the current access level register ICAL in Figure 1) If the priority level of the incoming address is less than the current access level, then the bus cycie is requesting a higher privilege than allowed and the MC68851 will terminate this access as a fault. The MC68851 will not assert a physical address strobe during a bus cycle resulting in a privilege violation

The MC68851 completely supports the MC68020 module call and return functions (CALLM/RTM), which include a mechanism to change privilege levels during module operation

BREAKPOINTS

The MC68851 provides a breakpoint acknowledge facility to support the MC68020 and other processors with on-chip cache memory. When the MC68020 encounters a breakpoint instruction it executes a breakpoint acknowledge cycle by reading a particular address in CPU address space The PMMU decodes this address and responds by ether providing a replacement opcode for the breakpoint opcode and asserting the data size and acknowledge outputs or by asserting bus error to initiate illegal instruction processing The PMMU can be programmed to signal the ilegal instruc tion exception or to provide the replacement opcode n times $(1 \leq n \geq 255)$ before signaling the exception

DMA Root
Pointer

Supervisor Root
Pointer

Transletion Control

 Registers
Protection Control Registers
Breakpoint Acknowledge
Data and Control Registers

COPROCESSOR INTERFACE

The M68000 Family coprocessor interface is an integral part of the design of the MC68020 advanced microprocessor, the MC68881 floating-point processor, and the MC68851 pased memory management unit. The coprocessor interface aliows the execution of special purpose instructions which are not executable by the processor. Each coprocessor le g. . MC68851 or MC68881) has an instruction set that reflects its special function. These instructions may be executed merely by placing the instruction opcode and parameters in the MC68020 instruction stream The MC68020 decodes the coprocessor instruction and performs bus communication with the coprocessor registers specifying the nature of the action to be taken Both the MC68020 and the coprocessor will execute parts of the instruction depending on which is best suited to handle a particular task

The interchange of information and the division of responsibility between the processor and the coprocessor are controlled by the coprocessor interface and this process is transparent to the user The addition of a coprocessing unit to an MC68020 system simply complements the instruction set executable by the processor

The coprocessor interface was designed to be flexible. functional, and expandable. The interface is intended to support the M68000 Family of devices and future extensions to the Motorola coprocessor tamily, as well as user defined coprocessors in single or multiple coprocessor systems.

M68000 FAMILY INSTRUCTION SET EXTENSION
The MC68851 implements an extension of the current

M68000 Family instruction set using the M68000 Family coprocessor interface These instructions provide control functions for

1 loading and storing of MMU registers.
2 testing access rights and conditionals based on the result of these tests, and
3 MMU control functions
The instruction set extension is as follows
PMOVE - Moves data to/írom MC68851 register
PVALID - Compares access rights requested by logical address and traps if it is less than the current access level.

PTEST - Searches the translation tables to determine the access rights to an effective address. Sets the MC68851 status register according to the resulis.

PFLUSH - Flush transiation cache entries by root pointer, by root pointer and effective address, or by root pointer, effective address, and function code

PSAVE - Saves the internal state of the MC68851 coprocessor interface in order to support the MC68020 virtual memory capabilities.

PRESTORE - Restores the state of the coprocessor interface stored by the PSAVE instruction.

PBcc - Branches conditionally on MC68851 condition
PDBcc - Tests MC68851 condition, decrements, and branches.

PScc - Tests operand according to MC68851 condition PTRAPcc - Traps on MC68851 condition

Number of bits in each field for three types of floating-point

data size			
	Single	Double	Double Extended
Sign	1	1	1
Exponent	8	11	15
Mantissa	23	52	64
Total	32	64	80

MC68881 connected in a MC68020 system

28001/2 28000® CPU Central Processing Unit

Product Specification

April 1985

FEATURES

- Regular, easy-to-use architecture
- Instruction set more powerful than many mirificomputers
- Directly addresses 8 Mbytes
- Eight user-selectable addressing modes
- Seven data types that range from bits to 32 -bit long words and byte and word strings
- System and Normal operating modes
- Separate code, data, and stack spaces

Sophisticated interrupt structure

- Resource-shaping capabilities for multiprocessing systems
- Multi-programming support
- Compiler support
- Memory management and protection provided by Z8010 Memory Management Unit
- 32-bit operations, including signed multiply and divide
- Z-BUS compatible
- 4. 6, and 10 MHz clock rate

GENERAL DESCRIPTION

The Z 8000 is an advanced high-end 16 -bit microprocessor that spans a wide variety of apolications ranging from simple stand-alone computers to complex parallel-processing systems. Essentially a monolithic minicomputer central processing unit, the Z8000 CPU is characterized by an instruction set more powerful than many minicomputers; abundant resources in registers, data types, addressing modes and addressing range, and a regular architecture that enhances throughput by avoiding critical bottlenecks such as implied cr dedicated registers.

CPU resources include sixteen 16-bit general-purpose registers, seven data types that range from bits to 32 -bit long words and byte and word strings, and eight user-selectable addressing modes. The 110 distinct instruction types can be combined with the various data types and addressing modes to form a powerful set of 414 instructions. Moreover, the instruction set is regular; most instructions can use any of the five main addressing modes and can operate on byte, word, and long-word data types.
The CPU can operate in either the system or normal mode. The distinction between these two modes permits privileged operations, thereby improving operating system organization and implementation. Multiprogramming is supported by the "atomic" Test and Set instruction; multiprocessing by a combination of instruction and

Figure 1. $\mathbf{Z 8 0 0 0}$ CPU Pin Functions
hardware features; and compilers by multıple stacks special instructions, and addressing modes.
The Z8000 CPU is offered in two versions: the Z8001 48-pin segmented CPU and the Z8002 40-pin nonsegmented CPU (Figure 1). The main difference between the two is in addressing range. The $Z 8001$ can directly address 8 megabytes of memory; the $Z 8002$ directly addresses 64 kilobytes. The two operating modes-systern and normaiand the distinction between code, data, and stack spaces within each mode allows memory extension up to 48 megabytes for the Z8001 and 384 kilobytes for the $\mathbf{Z 8 0 0 2}$.

To meet the requirements of complex, memory-intensive applications, a companion memory-management device is
offered for the 28001 The 28010 Memory Management Unit manages the large address space by providing features such as segment relocation and memory protection. The Z8001 can be used with or without the Z8010. If used by itself, the Z8001 still provides an 8 megabyte direct addressing range, extendable to 48 megabytes.
The Z8001, Z8002, and Z8010 are fabricated with high-density, high-pentormance scaled n-channel silicongate depletion-load technology, and are housed in dual-in-line packages (DIPs) and leadless chip cartiers (LCC).

REGISTER ORGANIZATION

The $Z 8000$ CPU is a register-oriented machine that offers sixteen 16-bit general-purpose registers and a set of special system registers. All general-purpose registers can be used as accumulators and all but one as index registers or memory pointers
Register flexibility is created by grouping and overlapping

Figure 2. 28001 General-Purpose Registers
multiple registers (Figures 2 and 3). For byte operations, the first eight 16 -bit registers (R0... R7) are treated as sixteen 8 -bit registers (RLO, RH0..., RL7, RH7). The sixteen 16 -bit registers are grouped in parrs (RR0... RR14) to form 32-bit long-word registers. Similarly, the register set is grouped in quadruples (RCO... RQ12) to form 64-bit registers.

Figure 3. Z8002 Ceneral-Purpoee Reglaters

STACKS

The Z8001 and Z8002 can use stacks located anywhere in memory. Call and Return instructions as well as interrupts and traps use implied stacks. The distinction between normal and system stacks separates system information from the application program information. Two stack pointers are avalable the system stack pointer and the normal stack pointer. Because they are part of the general-purpose register group, the user can manipulate
the stack pointers with any instruction avalable for register operations.

In the Z8001, register pair RR14 is the implied stack pointer. Register R14 contains the 7 -bit segment number and R15 contans the 16 -bit offset. In the Z8002, register R15 is the impled 16 -bit stack pointer.

REFRESH

The 28000 CPU contains a counter that can be used to automatically refresh dynamic memory. The refresh counter register consists of a 9 -bit row counter, a 6 -bit rate counter, and an enable bit (Figure 4) The 9 -bit row counter can address up to 256 rows and is incremented by two each time the rate counter reaches end-of-count. The rate counter determines the time between successive refreshes. It consists of a programmable 6 -bit moduio-n prescaler ($n=1$ to 64), driven at one-fourth the CPU clock rate. The refresh
period can be programmed by 1 to $64 \mu \mathrm{~s}$ with a 4 MHz clock. Refresh can be disabled by programming the refresh enable/disable bit.

Figure 4. Refresh Counter

PROGRAM STATUS INFORMATION

This group of status registers contans the program counter flags, and control bits. When an interrupt or trap occuis, the entire group is saved and a new program status group is loaded.

Figure 5 illustrates how the program status groups of the Z8001 and Z8002 differ. In the nonsegmented Z8002, the program status group consists of two words: the program counter (PC) , and the flag and control word (FCW). In the segmented Z8001, the program status group consists of
four words. a two-word program counter, the flag and control word, and an unused word reserved for future use. Seven bits of the first PC word designate one of the 128 memory segments. The second word supplies the 16 -bit offset that designates a memory location within the segment.

With the exception of the segment enable bit in the $Z 8001$ program status group, the flags and control bits are the same for both CPUs.

28001 Program Status Area Pointer
Figure 5. ze000 CPU Special Reglaters

INTERRUPT AND TRAP STRUCTURE

The $\mathbf{Z 8 0 0 0}$ provides a very flexible and powerful interrupt and trap structure. Interrupts are external asynchronous events requiring CPU attention, and are generally triggered by peripherals needing service. Traps are synchronous events resulting from the execution of certain instructions. Both are processed in a similar manner by the CPU.
The CPU supports three types of interrupts (non-maskable. vectored, and non-vectored) and four traps [system call. Extended Process Architecture (EPA) instruction. privileged instructions, and segmentation trap]. The vectored and non-vectored interrupts are maskable. Of the four traps, the only external one is the segmentation trap, which is generated by the Z8010.

The remaining traps occur when instructions limited to the system mode are used in the normal mode, or as a result of the System Call instruction, or for an EPA instruction. The
descending order of priority for traps and interrupts is: internal traps, nonmaskable interrupt. segmentation trap. vectored interrupt, and non-vectored interrupt.

When an interrupt or trap occurs, the current program status is automatically pushed on the system stack. The program status consists of the processor status (PC and FCW) plus a 16-bit identifier. The identifier contans the reason or source of the trap or interrupt. For internal traps, the identifier is the first word of the trapped instruction. For external traps or interrupts, the identifier is the vector on the data bus read by the CPU during the interrupt-acknowledge or trapacknowiedge cycle.

After saving the current program status, the new program status is automatically loaded from the program status area in system memory. This area is designated by the program status area pointer (PSAP).

DATA TYPES

Z8000 instructions can operate on bits, BCD digits (4 bits), bytes (8 bits), words (16 bits), long words (32 bits), and byte strings and word strings (up to 64 kilobytes long). Bits can be set. reset, and tested; digits are used in BCD arithmetic operations; bytes are used for characters or small integer values; words are used for integer values, instructions and nonsegmented addresses; long words are used for long integer values and segmented addresses. All data elements
except strings can reside either in registers or memory. Strings are stored in memory only.

The basic data element is the byte. The number of bytes used when manipulating a data element is ether implied by the operation or-for strings and multiple register operations-explicitly specified in the instruction.

SEGMENTATION AND MEMORY MANAGEMENT

High-level languages. sophisticated operating systems, large programs and data bases, and decreasing memory prices are all acceleratıng the trend toward larger memory requirements in microcomputer systems. The $\mathbf{Z 8 0 0 1}$ meets this requirement with an eight megabyte addressing space. This large address space is directly accessed by the CPU using a segmented addressing scheme and can be managed by the Z8010 Memory Management Unit.

Segmented Addressing

A segmented addressing space-compared with linear addressing-is closer to the way a programmer uses nemory because each procedure and data space resides in ts own segment. The 8 megabytes of $Z 8001$ addressing .pace is divided into 128 relocatable segments up to 64 kilobytes each. A 23-bit segmented address uses a 7 -bit segment address to point to the segment, and a 16-bit offset to address any location relative to the beginning of the segment. The two parts of the segmented address may be manipulated separately. The segmented Z8001 can run any code written for the nonsegmented $Z 8002$ in any one of its 128 segments, provided it is set to the nonsegmented mode.

Figure 6. Logical-to-Physical Addreae Translation

In hardware, segmented addresses are contained in a register pair or long-word memory location. The segment number and offset can be manipulated separately or together by all the available word and long-word operations.

When contained in an instruction, a segmented address has two different representations: long offset and short offset. The long offset occupies two words, whereas the short offset requires only one and combines in one word the 7 -bit segment number with an 8 -bit offset (range $0-256$). The short offset mode allows very dense encoding of addresses and minimizes the need for long addresses required by direct accessing of this large address space.

Memory Management

The addresses manipulated by the programmer, used by instructions and output by the Z8001, are called logical addresses. The Memory Management Unit takes the logical addresses and transforms them into the physical addresses required for accessing the memory (Figure 6). This address transformation process is called relocation. Segment relocation makes user software addresses independent of the physical memory so the user is freed from specifying
where information is actually located in the physical memory.
The relocation process is transparent to user software. A translation table in the Memory Management Unit associates the 7 -bit segment number with the base address of the physical memory segment. The 16 -bit offset is added to the physical base address to obtain the actual physical address. The system may dynamically reload translation tables as tasks are created, suspended. or changed.
In addition to supporting dynamic segment relocation, the Memory Management Unit also provides segment protection and other segment management features. The protection features prevent illegal uses of segments, such as writing into a write-protected zone.
Each Memory Management Unit stores 64 segment entries that consist of the segment base address, its attributes, size, and status. Segments are variable in size from 256 bytes to 64 kilobytes in increments of 256 bytes. Pairs of Management Units support the 128 segment numbers available for each of the sIX CPU address spaces. Within an address space, several Management Units can be used to create multiple translation tables

EXTENDED PROCESSING ARCHITECTURE

The Zilog Extended Processing Architecture (EPA) provides an extremely flexible and modular approach to expanding both the hardware and software capabilities of the $\mathbf{Z 8 0 0 0}$ CPU. Features of the EPA include:

- Specialized instructions for external processors or software traps may be added to CPU instruction set.
- Increases throughput of the system by using up to four specialized external processors in parallel with the CPU.
- Permits modular design of $\mathbf{Z 8 0 0 0}$-based systems.
- Provides easy management of multiple microprocessor contigurations via "single instruction stream" communication.
- Simple interconnection between extended processing units and 28000 CPU requires no additional external supporting logic.
- Supports debugging of suspect hardware against proven software.
Standard features on all Zilog Z8000 CPUs.

Specific benefits include:

EPUs can be added as the system grows and as EPUs with specialized functions are developed.

- Control of EPUs is accomplished via a "single instruction stream" in the Z8000 CPU, eliminating many significant system software and bus contention management obstacles that occur in other multiprocessor (e.g., master-slave) organization schemes.

The processing power of the Zilog Z8000 16 -bit microprocessor can be boosted beyond its intrinsic capability by Extended Processing Architecture. Simply stated, EPA allows the Z8000 CPU to accommodate up to four Extended Processing Units (EPUs), which perform specialized functions in parallel with the CPU's main instruction execution stream (Figure 7).
The use of extended processors to boost the mair CPU's performance capability has been proven with large mainframe computers and minicomputers. In these systems, specialized functions such as array processing. special input/output processing, and data communications processing are typically assigned to extended processor hardware. These extended processors are complex computers in their own right.

The Zilog Extended Processing Architecture combines the best concepts of these proven performance boosters with the latest in high-density MOS integrated-circuit design. The result is an elegant expansion of design capability-a powerful microprocessor architecture capable of connecting single-chip EPUs that permits very effective parallel processing and makes for a smoothly integrated instruction stream from the Z8000 programmer's point of view. A typical addition to the current Z 8000 instruction set is a set of Floating Point Instructions.

The Extended Processing Units connect directly to the Z8000 Bus (Z-BUS) and continuously monitor the CPU instruction stream. When an extended instruction is detected, the appropriate EPU responds, obtaining or
placing data or status information on the Z-BUS using the Z8000-generated control signals and performing its function as directed

The 28000 CPU is responsible for instructing the EPU and delivering operands and data to it. The EPU recognizes instructions intended for it and executes them, using data supplied with the instruction and/or data within its internal registers. There are four classes of EPU instructions:

- Data transfers between main memory and EPU registers
- Data transfers between CPU registers and EPU registers
- EPU internal operatıons
- Status transfers between the EPUs and the Z8000 CPU Flag and Control Word register (FCW)
Four 28000 addressing modes may be utilized with transters between EPU registers and the CPU and main memory.

- Register

- Indirect Register
- Direct Address
- Index

In addition to the hardware-implemented capabilities of the Extended Processing Architecture, there is an extended instruction trap mechanism to permit software simulation of EPU functions A control bit in the 28000 FCW register indicates whether actual EPUs are present or not. If not when an extended instruction is detected. the 28000 traps on the instruction. so that a software "trap handler" can emulate the desired EPU function--a very useful
development tool. The EPA software trap routine supports the debugging of suspect hardware against proven software. This feature will increase in significance as designers become familiar with the EPA capabrity of the Z8000 CPU

This software trap mechanism facilitates the design of systems for later addition of EPUs initially, the extended function is executed as a trap subroutine, when the EPU is finally attached, the trap subroutine is eliminated and the EPA control bit is set Application software is unaware of the change

Extendeo Processing Architecture also offers protection against extended instruction overlapping Each EPU connects to the 28000 CPU via the STOP line so that if an EPU is requested to perform a second extended instruction function before it has completed the previous one, it can put the CPU into the Stop/Refresh state until execution of the previous extended instruction is complete

EPA and CPU instruction execution are shown in Figure 8 The CPU begins operation by fetching an instruction and determining whether it is a CPU or an EPU command The EPU meanwhile monitors the Z-BUS for its own instructions If the CPU encounters an EPU command, it checks to see whether an EPU is present, if not. the EPU may be simulated by an EPU instruction trap software routine, if an EPU is present, the necessary data and/or address is placed on the Z.BUS. If the EPU is free when the instruction and data for it appear, the extended instruction is executed If the EPU is still processing a previous instruction, it activates the CPU's STOP line to lock the CPU of at the Z.BUS untii execution is complete After the instruction is finished, the EPU deactivates the STOP line and CPU transactions continue

Figure 7. Typlical Extended Processor Configuration

A data on adonesses ane placed on the gus and used ey the epu in the
EXECUTION OF AN INSTAUCTION.
Figure 8. EPA and Z8000 CPU Instruction Execution

INPUT/OUTPUT

A set of $1 / O$ instructions performs 8 -bit or 16 -bit transfers between the CPU and I/O devices. I/O devices are addressed with a 16 -bit $1 / O$ por address. The $1 / O$ port address is similar to a memory address; however, I/O address space need not be part of the memory address space. I/O port and memory addresses coexist on the same bus lines and they are distinguished by the statusioutputs.

Two types of I/O instructions are available: standard and special. Each has its own address space. The I/O instructions include a comprehensive set of In, Out, and Block I/O instructions for both bytes and words. Special I/O instructions are used for loading and unloading the Memory Management Unit. The status information distinguishes between standard and special I/O references.

MULTI-MICROPROCESSOR SUPPORT

Multi-microprocessor systems are supported in hardware and softwate. A pair of CPU pins is used in conjunction with certain instructions to coordinate multiple microprocessors. The Multi-Micro Out pin issues a request for the resource. while the Multi-Micro In pin is used to recognize the state of the resource. Thus, any CPU in a multiple microprocessor system can exclude all other asynchronous CPUs from a critical shared resource.

Multi-microprocessor systems are supported in software by the instructions Multi-Micro Request, Test Multi-Micro In, Set Multi-Micro Out, and Reset Multi-Micro Out. In addition, the eight megabyte CPU address space is beneficial in multiple microprocessor systems that have large memory requirements.

ADDRESSING MODES

The information included in Z8000 instructions consists of the function to be performed, the type and size of data elements to be manipulated, and the location of the data elements. Locations are designated by register addresses, memory addresses, or I/O addresses. The addressing mode of a given instruction defines the address space it references and the method used to compute the address itself. Addressing modes are explicitly specified or implied by the instruction.

Figure 9 illustrates the eight addressing modes: Register (R), Immediate (IM), Indirect Register (IR), Direct Address (DA), Index (X), Relative Address (RA), Base Address (BA), and Base Index ($B X$). In general, an addressing mode explicitly specifies either register address space or memory address space. Program memory address space and I/O address space are usually implied by the instruction.

[^19]Figure 9. Addreseing Modes

PIN DESCRIPTION

$\mathbf{A D}_{\mathbf{0}}-\mathrm{AD}_{15}$. Address/Data (inputs/outputs, active High, 3 -state). These multiplexed address and data lines are used for I/O and to address memory.
$\overline{\text { AS }}$. Address Strobe (output, active Low, 3 -state). The rising edge of $\overline{\mathrm{AS}}$ indicates addresses are valid.
BUSACK. Bus Acknowledge (output active Low). A Low on this line indicates the CPU has relinquished control of the bus.

BUSREQ. Bus Request (input, active Low). This line must be driven Low to request the bus from the CPU.
$\mathrm{B} / \overline{\mathrm{W}}$. ByteNWord (output, Low $=$ Word, 3 -state). This signal defines the type of memory reference on the 16 -bit address/data bus.

CLK. System Clock (input). CLK is a 5 V single-phase time-base input.
$\overline{\text { DS }}$. Data Strobe (output, active Low, 3 -state). This line times the data in and out of the CPU.

MREQ. Memory Request (output, active Low, 3 -state). A Low on this line indicates that the address/data bus holds a memory address.
$\overline{\mathrm{MII}} \overline{\mathrm{MO}}$. Mult-Micro In, Multi-Micro Out (input and output, active Low). These two lines form a resource-request daisy chain that allows one CPU in a multi-microprocessor system to access a shared resource.
$\overline{\text { NMI. Non-Maskable Interrupt (edge triggered, input, active }}$ Low). A high-to-low transition on NMI requests a
non-maskable interrupt. The $\overline{N M 1}$ interrupt has the highest priority of the three types of interrupts.
N/İ. Normal/System Mode (output, Low = System Mode, 3 -state). N / \bar{S} indicates the CPU is in the normal or system mode.
$\overline{\text { NMI. }}$ Non-Vectored Interrupt (input, active Low). A Low on this line requests a non-vectored interrupt.
(EESET. Reset (input, active Low). A Low on this line resets the CPU.
$\mathbf{R} / \overline{\mathbf{W}}$. ReadWrite (output, Low $=$ Write, 3 -state). R / \bar{W} indicates that the CPU is reading from or writing to memory or $1 / \mathrm{O}$.
SEGT. Segment Trap (input, active Low). The Memory Management Unit interrupts the CPU with a Low on this ine when the MMU detects a segmentation trap. Input on Z 8001 only.
$\mathbf{S N}_{\mathbf{0}}-\mathbf{S N}_{6}$. Segment Number (outputs, active High, 3 -state). These lines provide the 7 -bit segment number used to address one of 128 segments by the Z 8010 memory Management Unit. Output by the Z8001 only.
$\mathbf{S T}_{0}-\mathbf{S T}_{\mathbf{3}}$. Status (outputs, active High, 3 -state). These lines specify the CPU status (see Status Code Lines).

STOP. Stop (input, active Low). This input can be used to single-step instruction execution.
$\overline{\mathrm{VI}}$. Vectored Interrupt (input, active Low). A Low on this line requests a vectored interrupt.
$\overline{\text { WAIT. Wait (input, active Low). This line indicates to the CPU }}$
that the memory or I/O device is not ready for data transfer.

Figure 11a. 40-pin Dual-In-Line Package (DIP), Pin Assignments

Figure 10a. 48-pin Duaf-In-Line Package (DIP), Pin Assignments

Figure 10b. 68-pin Chip Carrier, Pin Assignments

Figure 11b. 44-pin Chip Carrier, Pin Assignments

Z8000 CPU TIMING

The $\mathbf{Z 8 0 0 0}$ CPU executes instructions by stepping through sequences of basic machine cycles, such as memory read or write, I/O device read or write, interrupt acknowledge, and internal execution. Each of these basic cycles requires three to ten clock cycles to execute. Instructions that require more clock cycles to execute are broken up into several machine cycles. Thus no machine cycle is longer than ten clock cycles and fast response to a Bus Request is guaranteed.
The instruction opcode is fetched by a normal memory read operation. A memory refresh cycle can be inserted just after the completion of any first instruction fetch (IF_{1}) cycle and can also be inserted while the following instructions are being executed: MULT, MULTL, DIV, DIVL, HALT, all Shitt instructions, all Block Move instructions, and the Multi-Micro

Request instruction (MREQ).

The following timing diagrams show the relative timing relationships of all CPU signals during each of the basic operations. When a machine cycle requires additional clock cycles for CPU internal operation, one to five clock cycles are added. Memory and $1 / O$ read and write, as well as interrupt acknowledge cycles, can be extended by activating the WAIT input. For exact timing information, refer to the composite timing diagram.
Note that the WAIT input is not synchronized in the Z8000 and that the setup and hold times for WAIT, relative to the clock, must be met. If asynchronous WAIT signals are generated, they must be synchronized with the CPU clock before entering the $\mathbf{Z 8 0 0 0}$.

280,000™ CPU

Preliminary
 Product
 Specification

April 1985

FEATURES

- Full 32-bit architecture and implementation
- 4G (billion) bytes of directly addressable memory
- Linear or segmented address space
- Virtual memory management integrated with CPU
- On-chip cache memory
- General-purpose register file with sixteen 32-bit registers
- Nine general addressing modes
- Numerous data types include bit, bit field, logica value, signed integer. and string
- Extended Processing Architecture supports floating point operations
- Regular use of operations, addressing modes, and data types in instruction set
- System and normal modes of operation with separate stacks
- Sophisticated interrupt and trap handling
- Software is a binary-compatible extension of Z8000 ${ }^{\text {TM }}$ software
- Hardware is compatible with other Z-BUSTM components
- Maınframe performance

GENERAL DESCRIPTION

The 280,000 CPU is an advanced, high-end 32 -bit microprocessor that integrates the architecture of a mainframe computer into a single chip. While maintaining full compatibility with Z8000 family software and hardware, the Z80,000 CPU offers greater power and flexibility in both its architecture and interface capability. Operating systems and compilers are easily developed in the Z80,000 CPU's high-quality environment, and the hardware interface provides for connection to a wide variety of system configurations.

Addresses in the Z80,000 CPU are 32 bits. This allows direct addressing of 4 G bytes in each of four address spaces: system-mode data, system-mode instruction, normal-mode data, and normal-mode instruction. The CPU supports three modes of address representation. The 16 -bit compact addresses are compatible with 28000 nonsegmented mode. The 32 -bit segmented ad dresses include both 16 -bit offset, which is compatible with, Z8000 segmented mode, and 24 -bit offset. In addition a full 32 -bit linear address space is provided.

The CPU features a general-purpose register file with sixteen 32 -bit registers and nine operand addressing modes. The various addressing modes allow encoding choices for compact representation or for full 32 -bit addressing. The instruction set can operate on bit, bit field, logical value, signed integer, unsigned integer, address, string, stack, and packed decimal byie data types. Logical and arithmetic instructions operate on bytes (8 bits), words (16 bits) and longwords (32 bits). The Extended Processing Architecture (EPA) supports floating-point operations. In addition, the instruction set is highly regular in combining operations, data types, and addressing modes. High-level language compilation is supported with instructions for procedure linkage, array index calculation, and bounds checking. Other instructions provide operating system functions such as system call and control of memory management.

There are two main operating modes, system and normal, supported by separate stacks. User programs operate in normal mode, while sensitive operating
system functions are performed in system mode. This protects critical parts of the operating system from user access. In addition, some instructions are privileged, and execute only in system mode. Memory management functions protect both system memory from user programs. and user memory from other users. Vectored. nonvectored. and nonmaskable interrupts support realtime operating systems.

Memory management is fully integrated with the CPU: no external support circuitry is necessary. A paging address translation mechanism is implemented Registers in the CPU point to address translation tables located in memory: the most recently used table entries are kept in a Translation Lookaside Buffer (TLB) in the CPU. The CPU performs logical to physical address translation and access protection for each memory reference. When a logical memory reference causes a translation or protection violation, the state of the CPU is automatically restored to restart the instruction. I/O ports can be referenced etther by dedicated instructions or by the memory management mechanism mapping logical memory addresses to I/O port addresses.

Extensive trapping facilities, such as integer overflow. subrange out of bounds, and subscript out of bounds, catch common run-time errors. Software debuggers can use trace and breakpoint traps. Privileged instruction traps and memory protection violation traps secure the
operating system from user programming errors or mischief. The overtlow stack allows recovery from otherwise fatal errors.
The CPU has full 32 -bit internal address and data paths. Externally. 32 pins time-multiplex the address and data. The interface is compatible with the complete line of Z-BUS peripherals. The hardware interface features 16 -bit or 32 -bit memory data path and programmable watt states. Burst transters and an on-chip cache for instructions and data help develop high-performance systems. The interface supports multiprocessing configurations with interlocked memory references and two types of bus request protocols. The system designer can tallor the 280,000 -based system to cost and performance needs.

In summary, the $280,000 \mathrm{CPU}$ meets and surpasses the requirements of medium and high-end microprocessor systems for the 1980s. Software program development is easily accomplished with the CPU's sophisticated architecture. The highly pipelined design, on-chip cache. and external interface support systems ranging from dedicated controllers to mainframe computers. While Zilog continues to develop support for the Z80,000 CPU. $Z 8000$ peripherals and development software are fully compatible with this latest in Zilog's line of highperformance microprocessors.

REGISTERS

The Z80,000 CPU is a register-oriented processor offering sixteen 32 -bit general-purpose registers, a 32 -bt Program Counter (PC), a 16 -bit Flag and Control Word (FCW), and nine other special-purpose registers.
The general-purpose register file (Figure 1) contans 64 bytes of storage. The first 16 bytes (RLO,RHO, ...RL7,RH7) can be used as accumulators for byte data. The first 16 words (R0,R1,...R15) can be used as accumulators for word data, as index registers (except RO). or for memory addresses in compact mode (except RO). Any longword regis ter (RRO,RR2,...,RR30) can be used as an accumulator for longword data, an index register in linear or segmented mode (except RRO), or for memory addresses in linear or segmented mode (except RRO). Quadword registers (RQ0,RQ4, ...,RQ28) can be used as accumulators for Multiply, Divide, and Extend Sign instructions. This unique register organization allows bytes and words of data to be manipulated conveniently while leaving most of the register file free to hold addresses, counters, and any other data.

Two registers are dedicated to the Stack Pointer (SP) and Frame Pointer (FP) used by Call, Enter, Exit, and Return
instructions. In compact mode, R15 is the Stack Pointer and R14 the Frame Pointer. In linear or segmented mode, RR14 is the Stack Pointer and RR12 is the Frame Pointer

Floure 1. General-Purpose Regleter File

The PC and FCW form the Program Status (Figure 2), which is automatically saved for traps and interrupts. The bits in FCW indicate operating modes, masks for traps and interrupts, and flags set according to the result
of instructions. The remaining special registers are used for memory management, system configuration, and other CPU control (Figure 3)

Figure 2. Program Status Registors

ADDRESS SPACES

As shown in Figure 4, the CPU has three modes of address representation: compact, segmented, and linear The mode is selected by two control bits in the Flag and Control Word register (Table 1). The Extended/Compact (E/C) bit selects whether compact addresses (16 bits) or extended addresses (32 bits) are used. For extended addresses the Linear/Segmented ($\llcorner\overline{\mathbf{S}}$) bit selects whether linear or segmented addresses are used.
The Load Address instruction can be used to manipulate addresses in any mode of representation.

In compact mode, addresses are 16 bits. Address calculations using compact aadresses involve all 16 bits. Compact mode is more efficient and less programconsuming for applications requiring less than 64 K bytes of program and less than 64 K bytes of data. This efficien-
cy is due to shorter instructions in compact mode, and the fact that addresses in the register file use word rather than longword registers. Applications requiring more than 64 K bytes of either program or data should use segmented or linear modes.

Table 1. Addross Representation

Control Bits in $\mathbf{F C W}$ $\mathbf{E} \overline{\mathbf{C}}$	Representation $\mathbf{U S}$	
0	0	Compact
0	1	Reserved
1	0	Segmented
1	1	Linear

PNOCRAM STATUS AREA POIMTER (PSAP)

MORMAL STACK POINTEA (MSP)

TRAMBLATION TABLE DEESCNIPTOR NEOISTERS

OVEAFLOW STACK POINTER (OSP)

MARDWARE IWTERPACE COWTROL HEOISTER (NBCN)

SVETEM COMFIOURATIOM CONTROL LONOWORD (SCCL)

Figure 3. Special-Purpose Control Reglaters

Figure 4. Addrees Reprecentatione

In segmented mode, addresses are 32 bits. Segmented addresses are composed of either a 15 -bit segment number and a 16 -bit segment offset or a 7 -bit segment number and a 24 -bit segment offset. Bit 31 of the address selects either of the two types of segmented addresses. Address calculations using segmented addresses involve only the segment offset; the segment number is unaffected. In segmented mode, the address space allows up to 32,768 segments of 64 K -byte maximum size and up to 128 segments of 16M-byte maximum size. Many applications benefit from the logical structure of segmentation by allocating individual objects, such as a program module, stack, or large data structure, to separate segments.
In linear mode, addresses are 32 bits. Address calcula-
tions using linear addresses involve all 32 bits. In linear mode, the address space of 4 G bytes is uniform and unstructured. Many applications benefit from the flexibility of linear addressing by allocating objects at arbitrary positions in the address space.
Memory is byte addressable by the CPUI. The address used for multiple-byte data is the address of the mostsignificant byte. Multiple-byte data can be located at any byte address with no alignment restrictions.

I/O ports can be addressed by either dedicated instructions or by the memory management mechanism mapping logical memory addresses to $1 / O$ ports. $1 / O$ ports can be byte, word, or longword in size.

NORMAL AND SYSTEM MODES

The CPU has two modes of operation, normal and system, selected by the S / \bar{N} bit in the Flag and Control Word register. These modes impact on CPU operation in three areas: privileged instructions, stack pointers, and memory management.
Since the most sensitive portions of the operating system usually execute in system mode, separate stack pointers are used to isolate the two operating modes.

Some instructions, such as those performing I/O operations or accessing control registers, can only be executed in system mode; in addition, the memory management mechanism allows access to some memory locations in system mode only. Programs executing in normal mode can request services from the operating system using the System Call instruction and trap.

THEORY OF OPERATION

Figure 5 shows a block diagram of the $\mathbf{Z 8 0 . 0 0 0}$ CPU's inter nal organization, including the following major functional units and data paths:

- The external interface logic controls transactions on the bus. Addresses and data from the internal memory bus are transmitted through the interface to the Z-BUS. The Z-BI IS is a time-multiplexed, address/data bus that connects the components of a microprocessor system.
- The cache stores copies of instruction and data memory locations. Instructions are read from the cache on the instruction bus. Data is read from or written to the cache on the memory bus. The cache also includes a copy of the physical Program Counter, so that the logical addresses of instructions are translated only for branches and when incrementing the Program Counter across a page boundary.
- The Translation Lookaside Buffer (TLB) translates logical addresses calculated by the address arithmetic unit to physical addresses used to access the cache.
- The address arthmetic unit performs all address calculations. This unit has a path to the register file for reading base and index registers and another path to the instruction bus for reading displacements and direct addresses. The result of the address calculation is transmitted to the TLB.
- The register file contains the sixteen general-purpose longword registers, Program Status registers, specialpurpose control registers, and several registers used to store values temporarily during instruction execution. The register file has one path to the address arithmetic unit and two paths to the execution arithmetic and logic unit.
- The execution arithmetic and logic unit calculates the results of instruction execution, such as add, exclusiveOR, and simple load. This unit has two paths to the register file on which two operands can be read simultaneously or one can be written. One of the paths to the register file is multiplexed with a path from the memory bus.
- The instruction decoding and control unit decodes instructions and controls the operation of the other functional units. This unit has a path from the instruction bus and two programmabie logic arrays for separate microcoded control of the two arthmetic units. This unit also controls exception handling and TLB loading.

All of the tunctional units and data paths listed above are 32 bits wide.

The operation of the CPU is highly pipelined so that several instructions are simultaneously in different stages of execution. Thus, the functional units effectively operate in parallel with one instruction being fetched while an address is calculated for another instruction and resuits are stored for a thira instruction

Figure 6 shows the six-stage, synchronous pipeline. instructions flow through each stage of the pipeline in sequence The various pipeline stages can be working simultaneously on separate instructions or on separate portions of a single complex instruction. Each pipeline stage operates in one processor cycle, which is composed of two clock cycles. called $\phi 1$ and $\$ 2$. Thus, a processor cycle is 200 ns with a 10 MHz clock or 80 ns with a 25 MHz clock.
The instruction-fetch stage increments the Program Counte, and initiates instructions fetched from the cache. The instruction-decoding stage receives and decodes instructions to set up control of the address-calculation stage.
The address-calculation stage can generally caiculate a memory address in one processor cycle, except for Base Index, Relative, and Relative Index addressing modes, which require multiple cycles. After the logical effective address has been calculated, the corresponding physical address is provided by the TL.B. The operand-fetch stage letches the data from the cache and latches it into a holding register.

The execution stage performs data manipulations. Byte. word, and longword results are generally calculated in one processor cycle, but certain instructions, such as multiply and block-move operations, require multiple cycles. During the execution stage, results are stored to registers. Results are stored to the cache and external memory during the operand-store stage The flags are also set during the operand-store stage.

The cache can handie two references during a processior cycle. Instruction tetches use the $\$ 2$ clock cycle for tag com: parison and $\$ 1$ for data access. Either an operand fetch or store can use $\phi 1$ for tag comparison and $\$ 2$ for data access
The pipeline allows single instructions, like register-to register load and memory-to-register add, to execute at a rate of one per processor cycle. Thus, the peak periorm. ance of the CPU is 12.5 million instructions per second (MIPS) with a 25 MHz clock. In practice, the actual periorm ance is reduced to approximately one-third of the peak because of delays due to the execution of multiple-cycle instructions, interference between instructions in the pipeline, and main memory accesses for cache and TLB misses

Figure 5. 280,000 CPU Functional Block Diagram

Figure 6. Instruction Pipeline

2114
 1024×4 BIT STATIC RAM

	$2114-2$	$2114-3$	2114	2114 L 2	2114 L 3	2114 L
Max. Access Time (ns)	200	300	450	200	300	450
Max. Power Dissipation (mw)	525	525	525	370	370	370

- High Density 18 Pin Package
- Identical Cycle and Access Times
- Single +5V Supply
- No Clock or Timing Strobe Required
- Completely Static Memory
- Directly TTL Compatible: All Inputs and Outputs
- Common Data Input and Output Using Three-State Oufputs
- Pin-Out Compatible with 3605 and 3625 Bipolar PROMs

The Intel 2114 is a 4096 -bit static Random Access Memory organized as 1024 words by 4 -bits using N-channel Silicon-Gate MOS technology. It uses fully DC stable (static) circuitry throughout - in both the array and the decoding - and theretore requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided.
The 2114 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. The 2114 is placed in an 18 -pin package for the highest possible density.
It is directly TTL compatible in all respects: inputs, outputs, and a single +5 V supply. A separate Chip Select ($\overline{\mathrm{CS}}$) lead aliows easy selection of an individual package when outputs are or-tied.
The 2114 is fabricated with Intel's N-channel Silicon-Gate technology - a technology providing excellent protection against contamination permitting the use of low cost plastic packaging.

2048-word $\times 8$-bit High Speed Static CMOS RAM

FEATURES

- Single 5V Supply and High Density 24 Pin Package
- High speed: Fast Access Time 120ns/150ns/200ns (max.)
- Low Power Standby and Standby: 100 W W (typ.) Low Power Operation

Operation: 180 mW (typ.)

- Completely Static RAM: No clock or Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time

■FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMMM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to GND	V \%	$-0.5 \cdot$ to +7.0	V
Operating Temperature	$T_{\text {PP }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature (Plastic)	T*es	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature (Ceramic)	T**	$-6510+150$	${ }^{\circ} \mathrm{C}$
Temperature Under Bias	$T_{\text {t.e. }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Power Dissipation	$P_{\text {S }}$	1.0	W

- Pulae Width 30 ns: -1.5 V

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	WE	Mode	Vce Current	1/0 Pin	Ref. Cycle
H	\times	\times	Niot Selected	1 so. 1 sal	High 2	
L	L	H	Read	Ice	Dout	Read Cycle (1)-13)
L	H	L	Write	lice	Din	Write Cycle (1)
L	L	L	Write	Icc	Din	Write Cycle (2)

Advance Information

16K BIT STATIC RANDOM ACCESS MEMORY

The MCM65116 is a 16,384 -bit Static Random Access Memory organized as 2048 words by 8 -bits, fabricated using Motorola's Highperrormance silicon-gate CMOS (HCMOS) technology It uses a design approach which provides the simple timing features associated with fulIV static memories and the reduced power associated with CMOS memories. This means low standby power without the need for clocks, nor reduced data rates due to cycle times that exceed access time.

Chip Enable (E) controls the power-down feature It is not a clock but rather a chip control that affects power consumption in less than a cycle time after chip enable (E) goes high, the part automatically reduces its power requirements and remains in this low-power standby as long as the chip enable (E) remains high: The automatic power-down feature causes no performance degradation
The MCM65116 is in a 24 -pin dual-in-line package with the industry standard JEDEC approved pinout and is pinout compatible with the industry standard 16K EPROM/ROM

- Single $+5 \vee$ Supply
- 2048 Words by 8-Bit Organization
- HCMOS Technology
- Fully Static. No Clock or Timing Strobe Required
- Maximum Access Time: MCM65116-12 - 120 ns MCM65116-15 - 150 ns
MCM65116-20 - 200 ns
Power Dissipation: 55 mA Maximum (Active) 10 mA Maximum (Standby-TTL Levels) 2 mA Maxımum (Standby)
100μ A Maximum (Standby-MCM65LT16)
- Low Voltage Data Retention (MCM65L116 only) $100 \mu \mathrm{~W}$ Maximum

[^20]
HM6264P-10,HM6264P-12, HM6264P-15

8192-word \times 8-bit High Speed Static CMOS RAM

- FEATURES
- Fast access Time
- Low Power Standby Low Power Operation

100ns/120ns/150ns (max:)
Standby: 0.1 mW (typ.)
Operating: 200 mW (typ.)

- Single +5 V Supply
- Completely Static Memory. No clock or Timing Strobe Required
- Equal Access and Cycle Time
- Common Data Input and Output, Three State Output
- Directly TTL Compatible: All Input and Output
- Standard 28pin Package Configuration
- Pin Out Compatible with 64K EPROM HN482764

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Terminal Voltage	$\boldsymbol{V T}$	$-0.5{ }^{* *}$ to +7.0	\mathbf{V}
Power Dissipation	PT	1.0	W
Operating Temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tste	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature (Under Bias)	Tbiae	-10 to +85	${ }^{\circ} \mathrm{C}$

* With respect to GND.
- TRUTH TABLE

$\overline{\text { WE }}$	$\overline{\mathrm{CS}_{1}}$	CS_{2}	$\overline{\mathrm{OE}}$	Mode	YO Pin	$V_{c c}$ Current	Note
X	H	X	X	Not Selected (Power Down)	High 2	/SE, /SE1	
X	X	L	X		High 2	/sm, /sm	
H	L	H	H	Output Disabled	High 2	ICC.JCC:	
H	L	H	L	Read	Dout	ICC, ICC1	
L	L	H	H	Write	Din	ICC.ICC1	Write Cycle (1)
L	L	H	L		Din	ICC. /CC1	Write Cycle. (2):

[^21]
Product Preview

256K BIT READ ONLY MEMORY

The MCM63256 is a MOS mask programrgable byte-organized Read Only Memory (ROM). The MCM63256 is organized as 32,768 bytes of 8 bits and is fabricated using Motorola's high performance N -channel silicon gate technology (HMOS). This device is designed to provide maximum circuit density and reliability with highest possible performance while maintaining low power dissipation and wide operating margins and remaining fully compatible with TTL inputs and outputs.
The active level of the Chip Enab!e and the Output Enable, along with the memory contents, are defined by the user. The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Single $\pm 10 \%+5$ Volt Power Supply
- Fully Static Periphery - No Clocking Required on Chip Enable
- Automatic Power Down
- Power Dissipation

100 mA Active (Maximum) (Unloaded)
15 mA Standby (Maximum)

- Current Surge Suppression When Powering Up Device
- Program Layer Late in Process for Quick Turnaround Time
- 150 ns Maximum Access from Address and Chip Enable
- 28-Pin JEDEC Standard Package and Pinout

ADDITIONAL FEATURE

- Address (A14) is User Selectable for Either Pin 27 or Pin 1

This document conteuns information on a product under development. Motorola reserves the
right to ctrenge or discontinue thes product without notice.

256K-BIT ($32,768 \times 8$) CMOS STATIC RANDOM ACCESS MEMORY WITH DATA RETENTION AND LOW POWER

The Fujitsu MB 84256 is a 32,768 -word by 8 -bit static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronouse circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single +5 volts power supply is required.

The MB 84256 is ideally suited for use in microprocesser systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization: $32,768 \times 8$ bits
- Fast access time: 100 ns max. (MB 84256-10/10L/10LL)

120 ns max. (MB 84256-12/12L/12LL)
150 ns max. (MB 84256-15/15L/15LL)

- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three-state outputs
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby:

CMOS level: 5.5 mW max. (MB 84256-10/12/15)
0.55 mW max. (MB 84256-10L/10LL/12L/12LL/

15L/15LL)
TTL level: $\quad 16.5 \mathrm{~mW}$ max. (MB 84256-10/10L/10LL/12/12L/12LL/ 15/15L/15LL)

- Data retention: 2.0V
- Standard 28-pin DIP (600 mil) (Suffix: -P)
- Standard 28-pin Bend-type Plastic Flat Package (450 mil) (Suffix: -PF)
- Standard 32-pad LCC (Suffix: -CV)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{cc}	-0.5 to +7.0	V
Input Voltage		$V_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Output Voltage		Vout	-0.5 to $V_{c c}+0.5$	\checkmark
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	CERAMIC	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	PLASTIC		-40 to +125	

Toshiba is the world leader in CMOS and NMOS Static RAMs and was one of the first suppliers of the 256K CMOS SRAM.

32,768 WORDS $\times 8$ BIT CMOS STATIC RAM	TC55257APL-85/AFL-85/APL-85L/AFL-85L
SILICON GATE CMOS	TC55257APL10/AFL 10/APL 10L/AFL 10L
	TC55257APL-12/AFL 12/APL 12L/AFL-12L

The TC55257APL is a 262.144 bit static random access memory organized as 32,768 words hy 8 hits using CMOS technology, and operated from a single 5 V supply. Advanced circuit techniques provide twoth high speed and low power teatures with an operating current of $5 \mathrm{~mA} / \mathrm{MHz}_{z}$ (Typ.) and minımum cycle time of 85 ns .
When $\overline{\mathrm{CE}}$ is a logical high, the device is placed in low power standby mode in which standhy current is typical $2 \mu \mathrm{~A}$. The TC55257APL has

- Low Power Dissipation
$27.5 \mathrm{~mW} / \mathrm{MHz}$ (Max.) Operatıng
- Standhy Current
$100 \mu \mathrm{~A}$ (Max.): TC55257API -85/AFL-85
APL-10/AFL- 10
APL-12/AFL-12
$2 \mu \mathrm{~A}(\mathrm{Max}):$. TC55257APL-85L/AFL-85L
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right) \quad \mathrm{APL}-10 \mathrm{~L} / \mathrm{AFL} \cdot 10 \mathrm{~L}$
APL-12L'AFL-12L
- 5V Single Power Supply
- Power Down Feature: $\overline{\mathrm{CE}}$

PINCONNECTION (TOP VIEW)

A14 1	$28 \mathrm{~V}_{\mathrm{DD}}$
A1202	27 R W
A 70	26 A13
A $0^{4} 4$	251 As
A5 5	24 Ay
A 406	2311
A3 7	220 OE
A208	$2 \mathrm{~A} \mathrm{~A}_{1} 0$
A109	$20{ }^{1} \mathrm{CE}$
A) 10	1911/08
1/01011	18 p 1/07
I/02 12	$171 / 00$
LO3 13	161 NOS
ONOQ14	$151 / 04$

PIN NAMES

$A_{0} \sim A_{14}$	Address Inputs
$R N$	Read/Nrite Control Input
$\overline{O E}$	Output Enable Input
$\overline{C E}$	Chip Enable Input
$I / O_{1} \sim 1 / O_{8}$	Data Input/Output
$V_{D O}$	Power (+5 V)
$G N O$	Ground

two control inputs: Chip enable ($\overline{\mathrm{CE}}$) allows for device selection and data retention control, and an ourput enable input ($\overline{\mathrm{OE}}$) provides fast memory access. Thus théTC55257APL is suitable for use in various microprocessor application systems where high speed, low power, and battery back up are required.
The TC55257APL is offered in both a standard dual-in-line 28 pin plastic package (0.6 inch width) and small-our-line plastic flat package.

- Data Retention Supply Voltage: $2.0 \sim 5.5 \mathrm{~V}$
- Access ilime

.	$\begin{gathered} \text { TC55257APL-85 } \\ \text { IAFL-85/APL-ASL } \\ \text { \|AFL-85L } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TC55257A APL-10 } \\ \text { IAFL-10/APL-10L } \\ \text { IAFL-10L } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { TC55257APL-12 } \\ \text { /AFL-12/APL-121 } \\ \text { IAFL-12L } \\ \hline \end{array}$
Access Time (MAX.)	85ns	100ns	120ns
CE Access Time (MAX.)	85ns	100ns	120ns
Output Enable Time (MAX.)	45ns	50ns	60ns

- Directly TTL Compatible: All Inputs and Outputs
- Plastic DIP and Plastic FP Package

BLOCK DIAGRAM

MN4164, N MOS 65K Bit Dynamic Ram

Description

System oriented features include: operation from a single $+5 \mathrm{~V} \pm 10 \%$ tolerance power supply, direct TTL interfacing capability, on-chip addresses and data registers which eliminate the need for interface registers, and two chip select methods to allow the user to determine the appropriate speed/ power characteristics of his memory system.

The RAM module also incorporates several flexible operating modes: "Read," "Write," "Read-Modify-Write" cycles, "Page-Mode" operation and "RAS-Only" refresh. Proper control of the clock inputs (RAS, CAS and WRITE) allows common I/O capability, two dimensional chip selection, and extended page boundaries (for operating in page mode).

Features

- 65,536 $\times 1$ RAM, 16-pin package
- Row access time:

150 ns Max. (MN4164-15/MN4164P-15)
200 ns Max. (MN4164-20/MN4164P-20) 250 ns Max. (MN4164-25/MN4164P-25)

- Cycle time:

270 ns Max. (MN4164-15/MN4164P-15)
330 ns Max. (MN4164-20/MN4164P-20)
410 ns Max. (MN4164-25/MN4164P-25)

- Low power dissipation:

275 mW Max. (active) 27.5 mW Max. (standby)

- Single 5V supply, $\pm 10 \%$ tolerance
- 128 refresh cycles/2ms

Pin Assignment (Top View)

MN4164 Block Diagram

Pin Namee	Function
Ao $\sim A_{y}$	Address Inputs
RAS	Row Address Strobe
CAS	Column Address Strobe
WRITE	Write Enable
Din	Data Input
$D_{o u r}$	Data Output
$V_{C c}$	Power (+5V)
$V_{s i}$	Ground (OV)

The device apecifications are eubject to change withoutforior notice. White overy precaution hes been taten in the preparation of this date theet, the perbither the dovice so repernelbility for petent liablity with reepeot to tive uee of tey information contained harila.

MN4164, N MOS 65K Bit Dynamic Ram

Absolute Maximum Ratings

Rating	Syubeol	Value	Unit
Voltage on any Pin relative to $V_{s s}$	$V_{\text {in, }}$, Vout	-1.0 to +7.0	V
Voltage on Vcc Supply relative to Vss	Vcc	-1.0 to +7.0	V
Operating Temperature	Top	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$T_{\text {atg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	$P_{\text {D }}$	1	W
Short Ci, cuit Current	los	50	mA

Note: Exceeding Abeolute Maximum Ratinge may cauee permanent device demage. Functional operating of the device is not implied outside the operating conditions. Exposure to ebsolute maximum ratinge for extended periods of time may impact device reliability.

Recommended Operating Conditions (Reterenced to $V_{s s}$)

Parameter	Symbol	Min	Typ	Max	Unht	Temperature
Supply Voltage	$V_{c c}$	4.5	-5.0	5.5	V	
	$V_{s s}$	0	0	0	V	
Input High Voltage, all inputs	\boldsymbol{V}_{w}	2.2	-	$V_{c c}+1.0 \mathrm{~V}$	V to	
Input Low Voltage, all inputs	V_{k}	-1.0	-	0.8	V	

Capacitance ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parmmeter	Eymbol	Min	Typ	Max	Unit
Input Capacitance	$\mathrm{C}_{\mathbf{I w}}$	-	-	10	pF
Ouitput Capacitance	$\mathrm{C}_{\text {our }}$	-	-	12	pF

Description

The M41256xxM15B integrated circuit is a high-speed, lowpower 262,144 words by 1 -bit dyramic random access memory (DRAM) device. The device is manufactured according to the general requirements of MIL-STD-883, is screened according to Method 5004 for a class B device, and meets the qualification and quality conformance requirements of Method 5005

Features

- Military temperature range, $\mathrm{TC}=-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
- Complies with MIL-STD-883
- 262.144 words $\times 1$-bit organization
- 150 ns access time from $\overline{R E}$
- 75 ns access time from CE
- 360/330 mW active power, Page Mode at minimum cycle time
- 55 mW standby power
- Multiplexed address inputs
- $\pm 10 \%$ power supply tolerance
- Read-Modify-Write capabilities
- $\overline{\mathrm{RE}}$ Only refresh/Hidden Refresh
- Latched or high-impedance output during refresh
- 256 refresh cycles
- Page Mode operation
- Available in a hermetic ceramic DIP

Figure 1. Page Mode Block Diagram

Pin Descriptions

Figure 2. Pirt Function Diagram

Pin Description Key

Symbol	Name
Vcc	$+5 \vee$ Supply
D	Data In
Q	Data Out
$A(0-8)$	Address Input(0-8)
\bar{W}	Write Enable
$\overline{R E}$	Row Enable
$\overline{C E}$	Column Enable
$V s s$	Ground
.$N C$	No Connect

Product Preview

256K-BIT DYNAMIC RAM

The MCM6256 is a 262,144 bit, high-speed, dynamic Random Access Memory. Organized as 262,144 one-bit words and fabricated using Motorola's high-performance silicon-gate MOS (HMOS) technology, this new single +5 volt supply dynamic RAM combines high performance with low cost and improved reliability. The MCM6256 has the capability of using laser fuse redundancy and is manufactured using advanced direct-step on wafer photolithographic equipment.

By multiplexing row and column address inputs, the MCM6256 requires only nine address lines and permits packaging in standard 16-pin 300 mil wide dual-in-line packages. Complete address decoding is done on-chip with address latches incorporated. Data out (O) is controlled by CAS allowing greater system flexibility.

All inputs and outputs, including clocks, are fully TTL compatible. The MCM6256 incorporates a one transistor cell design and dynamic storage techniques. In addition to the RAS-only refresh mode, a CAS before RAS automatic refresh is available. Another special feature of the MCM6256 is nibble mode, allowing the user to serially access 4 bits of data at a high data rate. Nibble mode address is controlled by the addresses on pin 1 (A8 row and A8 column).

- Organized as 262,144 Words of 1 Bit
- Single +5 Volt Operation $(\pm 10 \%)$
- Maximum Access Time:

MCM6256-10 $=100 \mathrm{~ns}$
MCM6256-12 = 120 ns
MCM6256-15 = 150 ns

- Low Power Dissipation:

70 mA maximum (Active) MCM6256-10
4 mA maximum (Standby)

- Three-State Data Output
- Early-Write Common I/O Capability
- 256 Cycle, 4 ms Refresh
- RAS-Only Refresh Mode
- Automatic ($\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$) Refresh Mode
- Fast Nibble Mode on Read and Write Cycles 20 ns Access Time
40 ns Cycle Time

This doviment contains information on a product under developm

MOS

(N-CHANNEL, SILICON-GATE)

262,144 BIT DYNAMIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated volteges to thie high-impedance circuit.

Toshiba was the first to introduce the 1MB DRAM and is now the world's leading supplier. We offer fast page, nibble or static column operating modes in CMOS. Production quantities of these devices are available in DIP, SOJ and ZIP packages.

1,048,576 WORDS $\times 1$ BIT DYNAMIC RAM	TC511000P/J/Z_85
SILICON GATE CMOS	TC511000P///210
*This is advanced information ard specifications are subject to change without notice.	TC511000P/J/Z 12

The TC511000P/J/Z is the new generation dynamic RAM organized $1,048,576$ words by 1 bit. The TC511000P/J/Z utilizes TOSHIBA's CMOS silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user. Multiplexed address inpurs permit the TC511000P///Z to be packaged in

- $1,048,576$ words by 1 bit organization
- Fast access time and cycle time

		TC511000P/1/2-45	TC511000P/J/2-10	TC511000P/J/2-12
trac	RASAccess Time	85ns	100ns	120ns
tan	Column Address Access Time	45ns	50 ns	60ns
${ }^{\text {t CaC }}$	$\begin{aligned} & \text { CAS Access } \\ & \text { Time } \end{aligned}$	25ns	25ns	30ns
${ }_{\text {tre }}$	Cycle Time	165ns	190ns	$220 n s$
tpC	Fast Page Mode Cycle Time	50ns	55ns	70ns

PINCONNECTION (TOP VIEW)

Pi N NAMES

$A O \sim A O$	Address Inputs
AMS	Row Addrees Strobe
DIN 2	Data in
DOUT	Data Out
CAS	Column Address Strobe
WRTTE	ReedWrite Input
VCC	Power (+5 VV
VSS	Ground
N.C.	No Connection

a standard 18 pin plastic DIP, 20 pin plastic SOJ and 20 pin ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of $5 \mathrm{~V} \pm 10 \%$ tolerance, direct interfacing capability with high performance logic families such as Schottky TTL.

- Singie power supply of $5 \mathrm{~V} \pm 10 \%$ with a built-in V_{BB} generator - Low Power

> 330 mW MAX. Operating (TC511000P///Z-10)
> 275 mW MAX. Operating (TC511000P///Z-12) 5.5 mW MAX. Standby

- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ refresh, $\overline{\mathrm{RAS}}$-only refresh, Hidden refresh and Fast Page Mode capability
- All inputs and output TII compatible
- 512 refresh cycles 8 ms
- Package Plastic DIP: TC511000P

Plastic SOJ: TC511000J
Plastic ZIP: TC511000Z

BLOCK DIAGRAM

2316 STATIC READ ONLY MEMORY (2048x8)

DESCRIPTION

The 2316 high performance read only memory is organized 2048 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations.

The 2316 operates totally asynchronously. No clock input is required. The three programmable chip select inputs allow eight 16 K ROMS to be OR-tied without external decoding

Designed to replace two 2708 8K EPROMS, the 2316 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- 400 mV Noise Immunity on Inputs
- 2048×8 Bit Organization
- Single +5 Volt Supply
- Access Time - 450 ns, 350 ns
- Totally Static Operation
- TTL Compatible
- Three-State Outputs for Wire-OR Expansion - Three Programmable Chip Selects
- Pin Compatible with 2716 EPROM
- Replacement for two 2708s
- 2708/2716 EPROMS Accepted as Program Data Inputs

PIN CONFIGURATION

2332 STATIC READ ONLY MEMORY (4096x8)

DESCRIPTION

The 2332 high pertormance read only memory is organized 4096 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels.

The 2332 operates totally asynchronously. No clock input is required. The two programmable chip select inputs allow four 32K ROMS to be OR-tied without external decoding.

Designed to replace two 2716 16K EPROMS, the 2332 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- 4096×8 Bit Organization
- Single +5 Volt Supply
- Three-State Outputs for Wire-OR Expansion
- Two Programmable Chip Selects
- Pin Compatible with 2716 \& 2732 EPROM
- Replacement for Two 2716s
- 2708/2716 EPROMS Accepted as Program Data Inputs
- 400 mV Noise Immunity on Inputs
- Completely TTL Compatible
- Totally Static Operation

MI COMFIGURATIN

2332		
$A_{7} 41^{\circ}$	24	Pvec
$A_{6} \square_{2}$	23	A_{8}
$A_{5}{ }_{3}$	22	A_{A}
$A_{4} \square_{4}$	21	$\mathrm{Cs}_{2} / \overline{\mathrm{cs}}_{2}$
$A_{3} \mathrm{C}_{5}$	20	$\mathrm{Pcs}_{1} / \overline{\mathrm{Cs}}_{1}$
$A_{2} \mathrm{C}_{6}$	19	A_{10}
$A_{1} 0_{7}$	18	A_{11}
$A_{0} \square^{3}$	17	0_{8}
0189	16	-07
$0_{2} \square 10$	15	DO_{6}
$0_{3} \square_{11}$	14	O_{5}
GNOC12	13	O_{4}

2364 STATIC READ ONLY MEMORY (8192x8)

DESCRIPTION

The 2364 high performance read only memory is organized 8192 words by 8 bits with access times of less than 350 ns . This ROM is designed to be compatible with all microprocessor and similar applications where high performance, large bit storage and simple interfacing are important design considerations. This device offers TTL input and output levels.

The 2364 operates totally asynchronously. No clock input is required. The programmable chip select input allows two 64K ROMS to be OR-tied without external decoding.

Designed to replace two 2732 32K EPROMS, the 2364 can eliminate the need to redesign printed circuit boards for volume mask programmed ROMS after prototyping with EPROMS.

- 8192×8 Bit Organization - One Programmable Chip Select
- Single +5 Volt Supply
- Access Time - $\mathbf{4 5 0} \mathrm{ns}, \mathbf{3 5 0} \mathrm{ns}$
- Pin Compatible with 2716 \& 2732 EPROM
- Replacement for Two 2732s
- Completely TTL Compatible
- Totally Static Operation
- Three-State Outputs for Wire-OR Expansion
- 2716/2732 EPROMS Accepted as Program Data Inputs
- 400 mV Noise immunity on Inputs

Product Preview

256K BIT READ ONLY MEMORY

The MCM65256 is a complementary MOS mask programmable byteorganized Read Only Memory (ROM). The MCM65256 is organized as 32,768 bytes of 8 bits and is fabricated using Motorola's high performance silicon gate CMOS technology (HCMOS). This device is de signed to provide maximum circuit density and relability with highest possible performance while maintaining low power dissipation and wide operating margins. The MCM65256 offers low-power operation from a single +5 Volt supply and is fuliy TTL compatible on all inputs and outputs.

The active level of the Chip Enable and the Output Enable, along with the memory contents, are defined by the user The Chip Enable input deselects the output and puts the chip in a power-down mode.

- Single $\pm 10 \%+5$ Volt Power Supply
- Fully Static Periphery - No Clocking Required on Chip Enable
- 250 ns Maximum Access from Address and Chip Enable
- Automatic Power Down
- Active Current 50 mA Maxımum IUnloaded at a 250 ns Cycle Time) - Decreases with Increasing Cycle Time
- D.C. Active Current 10 mA Maximum
- Standby Current $50 \mu \mathrm{~A}$ Maximum (Full Rall inputs)
- Standby Current 3.0 mA Maximum (TTL Inputs)
- Mask Programmable Chip Enable and Output Enable
- Program Layer Late in Process for Quick Turnaround Time
- 28-Pin JEDEC Standard Package and Pinout
- Address (A14) is User Selectable for Either Pin 27 or Pin 1

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

PRELMMNARY VT23512

65,536 $\times 8$ STATIC READ ONLY MEMORY

FEATURES

- $65,536 \times 8$ bit. organization
- Access time - 150 ns max
- Current - Operating: 100 mA max Standby: 20 mA max
- Total static operation
- Static 5 V supply
- Automatic powerdown ($\overline{\mathrm{CE}}$)
- Complete TTL compatibility
- 3-state outputs for wired-OR expansion
- 28-pin JEDEC approved pinout
- EPROMs accepted as program data input

DESCRIPTION

The VT23512 high performance Read Only Memory is organized 65,536 words by eight bits with an access time of 150 ns . It is designed to be compatible with all microprocessors and similar applications where high-performance large-bit storage and simple interfacing are important design considerations.

The VT23512 offers automatic powerdown with powerdown controlled by the Chip Enable (CE) input. When
> $\overline{\mathrm{CE}}$ goes HIGH, the device will automatically powerdown and remain in a low-power standby mode as long as $\overline{C E}$ remains HIGH. This unique feature provides system level power savings of as much as 80%. The VT23512 also has an Output Enable $(\overline{\mathrm{OE}})$ function to eliminate bus contention in multiple-bus microprocessor systems.

PIN DIAGRAM

VT23512

BLOCK DIAGRAM

Toshiba leads the world in high-speed, high-density mask ROMs: 1 MB and 2MB in CMOS $\ldots 256 \mathrm{~K}$ in NMOS and CMOS
1 MB (128 K WORD $\times 8 \mathrm{BIT}$) CMOS MASK ROM TC531000AP
The TC531000 AP has one chip enable inpur $\overline{\mathrm{CE}} / \mathrm{CE}$, programmat for device selection.

The TC531000AP is molded in a 28 pin standard plastic package. and is 0.6 inch in width.

The TC531000AP is a $1.048,576$ bit read only memory organized as 131.072 words by 8 bits with a low bit cost, thus being suitable for use in microprocessor program memory and especially character generation. The TC531000AP, using CMOS technology, is most suitable for low power applications where battery operations are required.

a., d,	26
A., ${ }^{\text {a }}$, 2	${ }^{27}$
A, 0_{3}	26
\wedge A.	2
a, ${ }^{\text {a }}$	24
a. ${ }^{\text {a }}$	23
$A_{1} \mathrm{~d}^{\text {a }}$	22
$A_{2} 0_{0}$	${ }^{21}$
A. 0 ,	20
* 0^{10}	19
	16
0. 0^{12}	17
0,013	16
ano ${ }^{14}$	15

PIN NAMES

$A_{0} \sim A_{16}$	Address Inputs
$D_{0} \sim D_{7}$	Data Outputs
$\overline{C E} / C E$	Chip Enable Input
$V_{D D}$	Power Supply
GND	Ground

- Single 5V Power Supply
- Access Time: 150 ns (Max.)
- Power Dissipation

Operating Current: 40 mA (Max.)
Standby Current: $20 \mu \mathrm{~A}$ (Max.)

- All Inputs and Ourputs: TTL Compatiblé
- Three State Outputs
- 28 pin 600 mil width DIP Plastic Package ${ }_{1}$
- Fully Static Operarion
- Programmable Chip Enable

2MB (256 K WORD $\times 8$ BIT) CMOS MASK ROM SILICON GATE CMOS

The TC532000P is a $2,097,152$ bit read only memory organized as 262,144 words by 8 bits with a low bit cost, thus being suitable for use in microprocessor program memory, data memory, and especially character generation. The TC532000P, using CMOS technology, is most suitable for low power applications where tattery operations are required.

- Single 5V Power Supply
- Access Time: 200 ns (Max.)
- Power Dissipation

$$
\begin{aligned}
& \text { Operating Current: } 30 \mathrm{~mA} \text { (Max.) } \\
& \text { Standby Current: } \quad 20 \mu \mathrm{~A} \text { (Max.) }
\end{aligned}
$$

The TC532000P has one programmable chip enable input $\overline{\mathrm{CE}} / \mathrm{CE}^{+}$ for device selection

The TC532000P is molded in a 32 pin standard plastic package and: is 0.6 inch in width.

- All Inputs and Outputs: TTL Compatible
- Three State Outpurs
- 32 pin 600 mil width Plastic DIP
- Fully Static Operation
- Programmable Chip Enable

PIN CONNECTION - 32 PIN (TOP VIEW)

N.C. 0_{1}	32	$\mathrm{v}_{\text {d }}$
A16 2	31	N.C.
A15 3	30	A 117
A12 4	29	A ${ }^{14}$
A7 0	28	日 A13
${ }^{\text {A } 6} 6$	27	- AB
A5 07	26	- A9
A4 8	25	P A 11
A3 9	24	$\square \overline{O E}$
A2 10	23	A 10
A1 11	22	$\square \mathrm{CE} / \mathrm{CE}$
a 12	21	07
DO 13	20	D6
D1 14	19	D5
$02{ }^{15}$	18]D4
GND 16	17	D3

PIN NAMES

$A_{0} \sim A_{17}$	Address Inputs
$D_{0} \sim D_{7}$	Data Outputs
$\overline{O E}$	Output Enable Input
CE/ $\overline{C E}$	Chip Enable Input
$V_{D D}$	Power Supply
GND	Ground
N.C	No connection

BLOCK DIAGRAM (2MB)

2708
 8K ($1 \mathrm{~K} \times 8$) UV ERASABLE PROM

	Max. Power	Max. Access
2708	800 mW	450 ns
2708 L	425 mW	450 ns
$2708-1$	800 mW	350 ns
$2708-6$	800 mW	550 ns

- Low Power Dissipation - 425 mW Max. (2708L)
- Fast Access Time - $\mathbf{3 5 0}$ ns Max. (2708-1)
- Static - No Clocks Required
- Data inputs and Outputs TTL Compatible during both Read and Program Modes
- Three-State Outputs - OR-Tie Capability

The Intel ${ }^{\top} 2708$ is an 8192 -bit ultraviolet light erasable and electrically reprogrammable EPROM, ideally suited where fast turnaround and pattern experimentation are important requirements. All data inputs and outputs are TTL compatible during both the read and program modes. The outputs are three-state, allowing direct interface with common system bus structures.

The 2708L at 425 mW is available for systems requiring lower power dissipation than from the 2708. A power dissipation savings of over 50% without any sacrifice in speed is obtained with the 2708 L . The 2708 L has high input noise immunity and is specified at 10% power supply tolerance. A high-speed $2708 \cdot 1$ is also available at 350 ns for microprocessors requiring fast access times.

The 2708 family is fabricated with the N -channel silicon gate FAMOS technology and is availatle in a 24 -pin dual in-line sackage.

2716
 16K (2K x 8) UV ERASABLE PROM

- Fast Access Time
- 350 ns Max. 2716-1
- 390 ns Max. 2716-2
- 450 ns Max. 2715
- 490 ns Max. 2716-5
- 650 ns Max. 2716-6
- Single + 5V Power Supply
- Low Power Dissipation
- 525 mW Max. Active Power
- 132 mW Max. Standby Power
- Pin Compatible to Intelo 2732 EPROM
- Simple Programming Requirements
- Single Location Programming
- Programs with One 50 ms Pulse
- Inputs and Outputs TTL Compatible during Read and Program
- Completely Static

The Intel ${ }^{\odot} 2716$ is a 16,384 -bit ultraviolet erasable and electrically programmable read-onlv memory (EPROM). The 2716 operates from a single 5 -volt power supply, has a static standby mode, and features fast single address location programming. It makes designing with EPROMs faster, easier and more economical.
The 2716, with its single 5-volt supply and with an access time up to 350 ns , is ideal for use with the newer high performance +5 V microprocessors such as Intel's 8085 and 8086. A selected $2716-5$ and 2716-6 is available for slower speed applications. The 2716 is also the first EPROM with a static standby mode which reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the maximum standby power dissipation is only 132 mW , a 75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs - single puise TTL level programming No need for high voltage pu!sing because all programming controls are handled by TTL signals. Program any location at an time-either individually, sequentially or at random, with the 2716's single address location programming. Total programmi time for all 16,384 bits is only 100 seconds.

PIN CONFIGURATION

tRefer to 2732
data sheet for specifications

PIN NAMES

MODE SELECTION

PINE mOOE	CE/pam (18)	$\begin{gathered} \overline{O E} \\ 1201 \end{gathered}$	$V_{\text {(21 }}$	$v_{c c}$ (24)	OUTPUTS $(1-11.1317)$
nead	$v_{\text {IL }}$	v_{12}	-5	+5	Dout
Stencor	$\mathrm{V}_{\text {iH }}$	Don't Core	. 5	+5	Hext 2
Prearem	Pured $V_{\text {IL }}$ to $V_{\text {IH }}$	$V_{\text {IW }}$. 25	+ 5	Oin
Progren Vouth	$Y_{\text {IL }}$	v_{11}	+25	+5	Oout
Progrem Intiort	$v_{\text {IL }}$	V_{HH}	. 25	+5	Munt 2

BLOCK DIAGRAM

ERASURE CHARACTERISTICS

The erasure characteristics of the 2716 are such that erasure begins to occur when exposed to light with wavelengths sho:ter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the $3000-4000 \AA$ range. Data show that constant exposure to room level fluorescent lighting could erase the typical 2716 in approximately 3 years, while it would take approximatley 1 week to cause erasure when exposed to direct sunlight. If the 2716 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 2716 window to prevent unintentional erasure.

The recommended erasure procedure (see Data Catalog PROM/ROM Programming Instruction Section) for the 2716 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of $15 \mathrm{~W}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The 2716 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed beiore erasure.

DEVICE OPERATION

The five modes of operation of the 2716 are listed in Table I. It should be noted that all inputs for the five modes are at TTL levels. The power supplies required are $a+5 \mathrm{~V} V_{C C}$ and a $V_{\text {Pp }}$. The VPP power supply must be at 25 V during the three programming modes, and must be at 5 V in the other two modes.

pins MODE	$\overline{\text { CE/POM }}$ (18)	$\begin{gathered} \overline{O E} \\ (201 \end{gathered}$	$V_{p p}$ (21)	Vcc, (24)	$\begin{aligned} & \text { OUTPUTS } \\ & (8-11,1317) \end{aligned}$
Resd	$v_{\text {IL }}$	$v_{\text {IL }}$	+5	+5	Dout
Stendoy	$V_{\text {IH }}$	Oon't care	+5	+5	High 2
Program	Puised $V_{\text {IL }}$ to $V_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	425	+5	Din
Progrem Verity	$v_{\text {IL }}$	$V_{\text {IL }}$	+25	+5	Dout
Program Inhibit	$v_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	+25	+5	High 2

READ MODE

The 2716 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{C E}$) is the power control and should be used for device selection. Output Enable ($\overline{O E}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output ($t_{C E}$). Data is available at the outputs 120 ns (t_{OE}) after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{0 E}$.

STANDBY MODE

The 2716 has a standby mode which reduces the active power dissipation by 75%, from 525 mW to 132 mW . The 2716 is placed in the standby mode by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input. When in standby mode, the outputs are in a high impedence state, independent of the $\overline{\mathrm{OE}}$ input.

OUTPUT OR-TIEING

Because 2716's are usually used in larger memory arrays, Intel has provided a 2 line control function that accomodates this use of multiple memory connections. The two line control function allows for:
a) the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.
To most efficiently use these two control lines, it is recommended that $\overline{C E}$ (pin 18) be decoded and used as the primary device selecting function, while $\overline{O E}$ (pin 20) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAMMING

Initially, and after each erasure, all bits of the 2716 are in the " 1 " state. Data is introduced by selectively program. ming " O 's" into the desired bit locations. Although only " 0 ' s " will be programmed, both " 1 's" and " 0 's" can be presented in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.
The 2716 is in the programming mode when the $V_{P p}$ power supply is at 25 V and $\overline{\mathrm{OE}}$ is at V_{IH}. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.
When the address and data are stable, a 50 msec , active high. TTL program pulse is applied to the $\overline{C E} / P G M$ input. A program pulse must be applied at each address location to be programmed. You can program any location at any time - either individually, sequentially, or at random. The program pulse has a maximum width of 55 msec . The 2716 must not be programmed with a DC signal applied to the CE/PGM input.
Programming of multiple 2716s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled 2716s may be connected together when they are programmed with the same data. A high level TTL pulse applied to the CE/PGM input programs the paralleled 2716s.

PROGRAM INHIBIT

Programming of multiple 2716s in parallel with different data is also easily accomplished. Except for $\overline{C E} / P G M$, all like inputs (including $\overline{O E}$) of the parallel 2716s may be common. A TTL level program pulse applied to a 2716 's $\overline{\mathrm{CE}} / \mathrm{PGM}$ input with V_{Pp} at 25 V will program that 2716. A low level $\overline{C E} / P G M$ input inhibits the other 2716 from being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify may be performed wth $V_{P p}$ at 25V. Except during programming and program verify, $\mathrm{V}_{\text {Pp }}$ must be at 5 V .

2732
 32K (4K x 8) UV ERASABLE PROM

Fast Access Time:

- 450 ns Max. 2732
- 550 ns Max. 2732.6
- Single $+5 \mathrm{~V} \pm \mathbf{5} \%$ Power Supply
- Output Enable for MCS-85 ${ }^{\text {™ }}$ and MCS-86 ${ }^{\text {™ }}$ Compatibility
- Low Power Dissipation:

150mA Max. Active Current
30mA Max. Standby Current

- Pin Compatible to Intel® 2716 EPROM
- Completely Static
- Simple Programming Requirements
- Single Location Programming
- Programs with One 50ms Pulse
- Three-State Output for Direct Bus Interface

The Intel 2732 is a 32,768 -bit ultraviolet erasable and electrically programmable read-only memory IEPROM। The 2732 operates from a single 5-volt power supply, has a standby mode, and features an output enable control. The total programming time for all bits is three and a half minutes. All these features make designing with the $\mathbf{2 7 3 2}$ in microcomputer systems faster, easier, and more economical.

An important 2732 feature is the separate output control, Output Enable ($\overline{\mathrm{OE}}$) from the Chip Enable control (CE). The OE control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-72 describes the microprnressor system implementation of the $\overline{O E}$ and $C E$ controls on Intel's 2716 and 2732 EPROMs. AP. 72 is available froin Intel's Literature Department.

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maxımum active current is 150 mA , while the maximum standby current is only 30 mA , an 80% savings. The standby mode is achieved by applying a TTL-high signal to the $\overline{C E}$ input.

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{11}$	ADORESSES
$\overline{C E}$	CHIP ENABLE
$\boldsymbol{O E}$	OUTPUT ENABLE
$\boldsymbol{O}_{0}-O_{1}$	OUTPUTS

PINS MODE	$\begin{aligned} & \overline{C E} \\ & (18) \end{aligned}$	$\begin{gathered} \bar{O} N_{p p} \\ (20)^{2} \end{gathered}$	$\begin{aligned} & V_{c c} \\ & (24) \end{aligned}$	OUTPUTS $(9-11,13-17)$
Read	$V_{\text {IL }}$	$V_{\text {IL }}$	+5	Dout
Standby	$V_{\text {IH }}$	Don't Care	+5	High Z
Program	$V_{1 L}$	$V_{P P}$	+5	$\mathrm{DIN}^{\text {N }}$
Program Verify	$V_{\text {IL }}$	$V_{\text {IL }}$	+5	DOUT
Program Inhibit	V_{IH}	VPP	+5	High Z

BLOCK DIAGRAM
MODE SELECTION

2764
 ($8 \mathrm{~K} \times 8$) UV ERASABLE PROM

200 ns (2764-2) Maximum Access Time . . . HMOS*•E Technology

- Compatible to high speed 8 mHz 8086-2 MPU . . . Zero WAIT State

- Two Line Control

- Pin Compatible to 2732A EPROM
 - Industry Standard Pinout . . . JEDEC Approved

■ Low Standby Current . . . 35mA Max.

The Intel 2764 is a 5 V only 65,536 bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The standard 2764 access time is 250 ns with speed selection available at 200 ns . The access time is compatible to high performance microprocessors, such as intel's $8 \mathrm{mHz} 8086-2$. In these systems, the 2764 allows the microprocessor to operate without the addition of WAIT states.

An important 2764 feature is the separate output control, Output Enable ($\overline{\mathrm{OE}}$) from the Chip Enable control ($\overline{\mathrm{CE}}$). The $\overline{\mathrm{OE}}$ control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-72 describes the microprocessor system implementation of the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ controls on Intel's EPROMs. AP-72 is available from Intel's Literature Department.

The 2764 has a standby mode which reduces the power dissipation without increasing access time. The active current is 150 mA , while the standby current is only 35 mA , a 75% savings. The standby mode is achieved by applying a TTLhigh signal to the $\overline{C E}$ input.

The 2764 is fabricated with HMOS*-E technology, Intel's high-speed N-channel MOS Silicon Gate shnology.

2816
 16K (2K x 8) ELECTRICALLY ERASABLE PROM

- hMOS-E 'FLOTOX Cell Design

- Rellable Floating Gate Technology
- Very Fast Access Time
- 250 ns Max. - 2816
- 350 ns Max. - 2818-3
- Single Byte Erase/Write Capability
- 10 ms Byte Erase/Write Time

- Chip Erase Time of 10 ms

- Conforms to JEDEC Byte-Wide Family
- Microprocessor Compatible Architecture
- Low Power Dlssipation -495 mW Max. Active Power -132 mW Max. Standby Power
- Erase/Write Speciflcations Guaranteed $0-70^{\circ} \mathrm{C}$

The Intele 2816 is a 16,384 bit electrically erasable programmabie read-only memory (E^{2} PROM). The 2816 can be easily erased and reprogrammed on a byte basis. A chip erase function is also provided. The device operates trom a 5 -volt power supply in the read mode; writing and erasing are accomplished by providing a single 21 -volt pulse.
The 2816, with its very fast read access speed, is compatible with high performance microprocessors such as the 8086-2. Using the fast access speed allows zero wait operation in large system conflgurations.
The electrical erase/write capability of the 2816 makes it ideal for a wide variety of applications requiring insystem, non-volatile erase and write. Never before has in-system alterability been possible with this combination of density, performance and flexibility. Any byte can be erased or written in 10 ms without affecting the data in any other byte. Alternatively, the entire memory can be erased in 10 ms allowing the total time to rewrite all 2 K bytes to be cut by 50%. The 2816 provides a significant increase in flexibility allowing new applications (dynamic reconflguration, continuous calibration) never before possible.
The 2816 E 2 PROM possesses Intel's 2 -line control architecture to eliminate bus contention in a system environment. A power down mode is also featured; In the standby mode power consumption is reduced by over 73% without increasing access time. The standby mode is achieved by applying a TTL-high signal to the $\overline{C E}$ input.
Byte erase and write are controlled entirely by TTL signal levels, yet require no control signals beyond $\overline{\mathrm{CE}}$ and OE. For byte write a selected chip ($\overline{C E}=T \mathrm{LL}$ low) senses the $21 \mathrm{~V} \mathrm{~V}_{\mathrm{Pp}}$ pulse and automatically goes into write mode. Byte erase mode is identical to byte write except that data-in must be all logic ones (TTL-high). Never before has an in-system alteration of non-volatile information been implemented with such simple control.
muobel is a peterted aroceme of intel Corporation.

Fgure 1. 2816 Functional Block Diagram

Figure 2. Pin Diagrams

27128A
 ADVANCED 128K (16K x 8) PRODUCTION AND UV ERASABLE PROMs

Fast 200 nsec Access Time -HMOS* II-E Technology

- Low Power

- 100 mA Maximum Active
- 40 mA Maximum Standby
- Inteligent IdentifierTM Mode - Automated Programming Operations
- Compatible with 2764A, 27128, 27256
- New Quick-Pulse ProgrammingTM Algorithm

- Used on Plastic DIP
 - intellgent ProgrammingTM Algoritnm Compatible

- $\pm 10 \%$ Vcc Tolerance Available
- Avallable in 28-Pin Cerdip and Plastic Packages
(See Packaging Spec, Order \#231369)

The Intel 27128A is a 5V only, 131,072-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 27128A is an advanced high speed version of the 27128 and is fabricated with Intel's HMOSII-E technology which significantly reduces die size and greatly improves the device's performance, reliability and manufacturability.

The 27128A is currently available in two different package types. CERDIP packages provide flexibility in prototyping and R\&D environments where reprogrammability is required. Plastic DIP EPROMs provide optimum cost effectiveness in production environments.

Intel's new Quick-Pulse Programming Algorithm enables these Plastic EPROMs to be programmed within two seconds. Programming equípment that takes advantage of this innovation will electronically identify the EPROM with the help of the inteligent Identifier and rapidly program it using a superior programming method. The inteligent Programming Algorithm may be utilized in the absence of such equipment and is used to program CERDIP devices.

The 27128A is available in fast access times including 200 ns (27128A-2). This ensures compatibility with highperformance microprocessors, such as Intel's 8 MHz 80186 allowing full speed operation without the addition of WAIT states. The 27128A is also directly compatible with the 12 MHz 8051 family. For access times down to 110 ns , refer to the 27128B data sheet.
*HMOS is a patented process of Intel Corporation.

230849-1
Figure 1. Block Diagram

27256
 256K (32K x 8) PRODUCTION AND UV ERASABLE PROMS

\author{

- New Qulck-Pulse ProgrammingTM
 Algorithm for Plastic P27256
 - 4 Second Programming
 - Intellgent ProgrammingTM Algorithm Compatlble
 - Fast Access Time
 - 170 ns D27.256-1
 - 200 ns P27256-2
 - Intelligent IdentifierTM Mode
}

\author{

- Plastic Production P27256 is Compatible with Auto-Insertion Equipment
 - Molsture Resistant
 - Industry Standard Pinout . . . JEDEC Approved . . . 28 Lead Cerdlp and Plastic Package
 (See Packaging Spec, Order \#231360)
}

The Intel 27256 is a 5V only, 262,144-bit Ultraviolet Erasable (Cerdip)/plastic production (P27256) electrically programmable read-only memory (EPROM). Organized as 32K words by 8 bits, individual bytes can be accessed in less than 170 ns (27256-1). This is compatible with high performance microprocessors, such as the Intel iAPX 186, allowing full speed operation without the addition of performance-degrading WAIT states. The 27256 is also directly compatible with Intel's 8051 family of microcontrolers.

The Plastic P27256 is ideal for high volume production environments where code flexibility is crucial. Plastic packaging is also well-suited to auto-insertion equipment in cost-effective automated assembly lines. Intel's new Quick-Pulse Programming Algorithm enables the P27256 to be programmed within four seconds (plus programmer overhead). Programming equipment which takes advantage of this innovation will electronically identify the EPROM with the help of the inteligent Identifier and rapidly program it using a superior programming method. The inteligent Programming Algorithm may be utilized in the absence of such equipment.

The 27256 enables implementation of new, advanced systems with firmware-intensive architectures. The combination of the 27256's high-density, cost-effective EPROM storage, and new advanced microprocessors having megabit addressing capability provides designers with opportunities to engineer user-friendly, high reliability, high-performance systems.

The 27256's large storage capability of 32 K-bytes enables it to function as a high-density software carrier. Entire operating systems, diagnostics, high-level language programs and specialized application software can reside in a 27256 EPROM directly on a system's memory bus. This permits immediate microprocessor access and execution of software and elminates the need for time-consuming disk accesses and downloads.

Two-line control and JEDEC-approved, 28-pin packaging are standard features of all Intel high-density EPROMs. This assures easy microprocessor interfacing and minimum design efforts when upgrading, adding, or choosing between nonvolatile memory alternatives.

The 27256 is manufactured using Intel's advanced HMOS*II-E technology.
"HMOS is a patented process of Intel Corporation.

290097-1
Figure 1. Block Diagram

Pin Names

$A_{0}-A_{14}$	Addresses
$\overline{C E}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs
$\mathrm{D} . \mathrm{U}$.	Don't Use
$\overline{\mathrm{WE}}$	Write Enable

27918	27513	27512	27128A	$\left\|\begin{array}{l\|l\|l\|} 2784 \mathrm{C} \end{array}\right\|$	2732A	2716
$V_{\text {pp }}$.	D.U.	A_{15}	V_{PP} -	V_{pp}		
${ }^{1} 12$	A_{12}	A_{12}	${ }^{12}$	A_{12}		
${ }^{\text {A }}$	\hat{A}_{7}	A_{7}	\hat{A}^{4}	A_{7}	A_{7}	A_{7}
A_{6}	A_{6}	A_{6}	${ }^{A_{6}}$	A_{6}	A_{6}	A_{6}
A_{s}	A_{5}	A_{5}	A_{5}	A_{5}	$A^{\text {a }}$	A_{5}
A_{1}	A_{4}	A_{4}	${ }_{4}$	A_{4}	A_{4}	A_{4}
A_{3}	A_{3}	A_{3}	${ }^{4}$	A_{3}	A_{3}	A_{3}
$\hat{A}^{\text {a }}$	A_{2}	A_{2}	$\hat{A}^{\text {a }}$	$\hat{A}^{\text {a }}$	\hat{A}^{1}	$\hat{A}^{\text {a }}$
A_{1}	A_{1}	A_{1}	A_{1}	A_{1}	A_{1}	A_{1}
${ }^{\text {A }}$	A_{0}	${ }^{A_{0}}$	${ }^{\text {a }}$	A_{0}	${ }^{0}$	\boldsymbol{A}_{0}
0_{0}	$\mathrm{DO}_{0} / \mathrm{O}_{0}$	0_{0}	O_{0}	0_{0}	O_{0}	O_{0}
O_{1}	$\mathrm{D}_{1} / \mathrm{O}_{1}$	O_{1}	0_{1}	0 0 0	O_{1}	O_{1}
O_{2}	$\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{Gnnd} \end{aligned}$	O_{I}	O_{o}	O_{2}	O_{2}	char

	2732A			27512	27513	27916
		V_{Cl}	v_{cc}	v_{c}	v_{c}	
			PGM	A_{14}	WE	
v_{\propto}	$\mathrm{v}_{\text {cc }}$	N.C.	${ }^{\text {A }}$	A_{13}	A_{13}	${ }^{13}$
A_{0}	A_{6}	A_{0}	${ }^{A_{0}}$	A_{6}	${ }^{\text {A }}$	A_{0}
\boldsymbol{A}_{9}	A_{9}	$\mathrm{A}_{\boldsymbol{\theta}}$	A_{9}	A_{9}	A_{9}	${ }^{\circ}$
$\mathrm{V}_{\text {pp }}$	A_{11}	A_{11}	${ }_{111}$	A_{11}	A_{11}	${ }^{A_{11}}$
OE	${ }^{\text {a }}$	OE	OE	E/ ${ }_{1}$	${ }^{\text {a }}$	OE
${ }^{\text {A }}$	${ }_{10}{ }_{10}$	${ }_{10}$	${ }^{A_{10}}$	A_{10}	${ }^{10}$	${ }_{10}$
CE	CE	CE	CE	ce	CE	
O_{7}	O_{7}	O_{7}	O_{7}	O_{7}	O_{7}	O_{7}
0_{6}	O_{6}	O_{6}	O_{6}	O_{6}	O_{6}	O_{6}
0_{5}	${ }_{5}$	O_{5}	O_{5}	O_{5}	${ }^{0}$	O5
O_{4}	O_{4}	O_{4}	O_{4}	O_{4}	O_{4}	${ }^{0}$
O_{3}	O_{3}	O_{3}	O_{3}	O_{3}	O_{3}	0_{3}

290097-2

NOTE:

Intel "Universal Site"-Compatible EPROM pin configurations are shown in the blocks adjacent to the P27256 pins.
Figure 2. Cerdip/Plastic DIP Pin Configuration

27512
 512K (64K x 8) PRODUCTION AND UV ERASABLE PROM

\author{

- Software Carrier Capablitity
 - 170 ns Maximum Access Time
 - Two-Lline Control
 - Intollgent IdentifierTM Mode - Automated Programming Operations
 TTL Compatible
}

\author{

- Low Power
 - 125 mA max. Active - 40 mA max. Standby
 - intellgent ProgrammingTM Algorithm
 - Available in 28-Pin Cerdlp
 (See packaging spec order \#231369)
}

The Intel 27512 is a 5 V -only, 524,288-bit ultraviolet Erasable and Electrically Programmable Read Only Me' . J ry (EPROM) organized as 64 K words by 8 bits. This ensures compatibility with high-performance microprocessors, such as the intel 8 MHz iAPX 286, allowing full speed operation without the addition of performance-degrading WAIT states. The 27512 is also directly compatible with Intel's 8051 family of microcontrollers.
The 27512 enables implementation of new, advanced systems with firmware intensive architectures. The combination of the 27512's high-density, cost-effective EPROM storage, and new advanced microprocessors having megabyte addressing capability provides designers with opportunities to engineer user-friendly, high-reliability, high-performance systems.
The 27512's large storage capability of 64 K-bytes enables it to function as a high-density software carrier. Entire operating systems, diagnostics; high-level language programs and specialized application software can reside in a 27512 EPROM directly on a system's memory bus. This permits immediate microprocessor access and execution of software and eliminates the need for time-consuming disk accesses and downloads.
Two-line control and JEDEC-approved, 28-pin packaging are standard features of all Intel high-density EPROMs. This assures easy microprocessor interfacing and minimum design efforts when upgrading, adding, or choosing between nonvolatile memory alternatives.
The 27512 is manufactured using Intel's advanced HMOS *II-E technology. -HMOS is a patented process of Intel Corporation.

231008-1
Figure 1. Block Diagram
Pin Names

$A_{0}-A_{15}$	Addresses
$\overline{C E}$	Chip Enable
$\overline{O E} / V_{\text {Pp }}$	Outputs Enable/V ${ }_{\text {Pp }}$
$O_{0}-O_{7}$	Outputs
$\bar{D} . U$.	Don't Use

2764 2744 27084 37 Ce 4	$\begin{gathered} 27124 \\ 27126 A \end{gathered}$		27513
$V_{\text {cc }}$	$V_{\text {cc }}$	$V_{\text {cc }}$	$V_{C c}$
PGIT	PGTM	A_{14}	WE
N.C.	A_{13}	A_{13}	A_{13}
Ab	A_{0}	A_{8}	A_{8}
A_{0}	A_{0}	A_{0}	A_{0}
A_{11}	A_{11}	A_{11}	A_{11}
OE	$\overline{O E}$	OE	OE/VPP
A_{10}	A_{10}	A_{10}	A_{10}
CEALE/CE	CE	CEALE/CE	CE
07	O_{7}	O_{7}	O_{7}
O_{8}	O_{6}	O_{8}	O_{8}
O_{5}	O_{5}	O_{5}	O_{5}
O_{4}	O_{4}	O_{4}	O_{4}
O_{3}	O_{3}	O_{3}	O_{3}

231088-2
Figure 2. Pin Configurations

EXTENDED TEMPERATURE (EXPRESS) EPROMs

The Intel EXPRESS EPROM family is a series of electrically programmable read only memories which have received additional processing to enhance product characteristics. EXPRESS processing is available for several densities of EPROM, allowing the choice of appropriate memory size to match system applications. EXPRESS EPROM products are available with 168 ± 8 hours, $125^{\circ} \mathrm{C}$ dynamic burn-in using Intel's standard bias configuration. This process exceeds or meets most industry specifications of burn-in. The standard EXPRESS EPROM operating temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Extended operating temperature range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) EX PRESS products are available. Like all Intel EPROMs, the EXPRESS EPROM family is inspected to 0.1% electrical AQL. This may allow the user to reduce or eliminate incoming inspection testing.

EXPRESS EPROM PRODUCT FAMILY PRODUCT DEFINITIONS

Type	Operating Temperature	Burn-In $125^{\circ} \mathrm{C}$ (hr)
Q	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	168 ± 8
T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	None
L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	168 ± 8

EXPRESS OPTIONS

27512 VERSIONS

Packaging Options	
Speed Verelons	Cerdip
-170 V 05	Q
$-200 \mathrm{~V} 05,-200 \mathrm{~V} 10$	Q, L
- STD, -25, -250V10	Q, T, L
$-3,-30$	Q, T, L

27F64
 64K (8K x 8) CHMOS FLASH MEMORY

- Quick-EraseTM Algorithm - Two Second Typical Array Electrical Erasure
 - High Performance Speeds - 150 ns Maximum Access Time
 - Low Power Consumption - $100 \mu \mathrm{~A}$ Maximum Standby Current for Power-Down Savings
 - Quick-Pulse ProgrammingTM Algorithm —One Second Typical Chip Program

- On-Board Program/Erase
- New Modes Simplify In-Module Firmware Upgrades
- 2764 A and 27C64 JEDEC Pinout - 28 Pin Cerdip Package
(See Packaging Spec.. Order * 231369)
EPROM Based ETOXTM Process
- 3 Year CHMOS* EPROM Manufacturing Base
- $\pm 10 \%$ VCc Tolerance
- Improved Latch-Up Immunity through EPI Processing

The Intel 27F64 (EPROM tunnel oxide) ETOXTM flash memory is a 64 K bit non-volatile memory organized as 8192 bytes of 8 bits. The 27F64 electrically erases all bits in parallel, making it ideal for EPROM applications where U.V. erasure is impractical or time consuming. Electrical erasure allows manufacturers to efficiently implement code changes for testing and end-of-line final configuration.
To decrease the cost of servicing and updating program code, the 27F64 offers new programming and erase modes called On-Board modes. These modes simplify in-circuit programming and erasure by maintaining V_{CC} at 5 V , and $\overline{C E}$ and $\overline{O E}$ at standard logic levels. Devices socketed or soldered to circuit boards can be erased and programmed via an edge connector to a PROM programmer, or via the board tester already available. The Quick-Erase ${ }^{T M}$ algorithm and On-Board features give system designers innovative capabilities. Compared to byte-alterable E2PROM, these features address industry's need for a cost-effective code update solution.
Intel's new ETOX*" flash memory process combines the programming mechanism of EPROM with the erase mechanism of E2PROM to produce dense electrically erasable memories with the reliability and manufacturability of today's EPROM technology.
Intel's unique Epitaxial (EPI) processing provides excellent latch-up immunity. Prevention of latch-up is specified for stress up to 100 mA from -1 V to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$ on address and data pins. All high voltage pins are protected from overshoot up to 14 V .

Figure 1. 27F64 Internal Block Diagram
290153-1
*CHMOS is a patemted process of Intel Corporation.
**Intel's ETOXTM flash process has patents pending.

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{12}$	Addresses
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{PGM}}$	Program
V_{PP}	Program/Erase Power
V_{CC}	Device Power
GND	Ground
N.C.	No Internal Connection

Figure 2. Cerdip (D) Pin Configuration
Table 1. Pin Description

Symbel	Type	Name and Function
$A_{0}-A_{12}$	1	ADORESS BUS inputs the memory addresses, and selects the 8 bits in the 256 row by 256 column array.
$1 / O_{0}-1 / O_{7}$	1/0	DATA BUS inputs data during memory program cycles; outputs data during memory read cycles. The data bus is active high and floats to tri-state OFF when the chip is deselected or the outputs disabled.
CE	I	CHIP ENABLE activates the device's control logic, input buffers, decoders, and sense amplifiers. CE is active low; CE high deselects the memory device and reduces power consumption to standby levels.
$\overline{O E}$	1	OUTPUT ENABLE when active low gates the device's output through the data buffers during a read cycle. OE driven to a third logic level $\mathrm{V}_{\mathrm{H}} 11.5 \mathrm{~V}$ 13.0 V , selects the conventional chip erase mode.
PGM	1	PROGRAM controls the program and erase pulse-width in the conventional modes by being driven low. P'GM driven to a third logic level V_{H} (11.5V13.0V) gates entry into the On-Board program verity, erase, and erase verity modes*. In the On-Board erase mode, CE controls the erase pulse width.
$V_{\text {PP }}$		PROGRAM/ERASE POWER SUPPLY ($12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}$) for programming and erasing the device. VPp also supplies the Flash memory cell margin voltage during the On-Board program verity and erase verify modes. In these miodes, V_{PP} must switch to $6.25 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $3.25 \mathrm{~V} \pm 0.25 \mathrm{~V}$, respectively.
$V_{C C}$		DEVICE POWER for most operations ($5 \mathrm{~V} \pm 5 \%$ or $\pm 10 \%$). V_{cc} also supplies the memory cell's margin voltage during the conventional program verity and erase verify modes. In these modes, V_{CC} must switch to $6.25 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $3.25 \mathrm{~V} \pm 0.25 \mathrm{~V}$, respectively.
GND		GROUND: Reference for the device's circuitry.
N.C.		NO INTERNAL CONNECTION to this device. Pin may be driven or left floating.

NOTE:
"For complete discussion and explanation of the On-Board modes, refer to the On-Board device operation section.

38F256
 256K (32K x 8) CMOS FLASH MEMORY

\author{

- Flash Electrical Chip-Erase - 1 Second Typical Chip-Erase
 - Quick-Pulse ProgrammingTM
 - 100μ s Typical Byte-Program
 - 4 Second Chip-Program
 - 12.0V or 12.75V Vpp Versions -12.0V VPP
 - 12.75V VPp for Faster Typical Erase/Program Performance
 - 100 Erase/Program Cycles
 - High-Performance Speeds - 170 ns Maximum Access Time
 - Low Power Consumption - $100 \mu \mathrm{~A}$ Maximum Standby Current
}

\author{

- Command Register Architecture for Microprocessor/Microcontroller Compatible Write Interface
 - Noise Immunity Features
 - $\pm 10 \%$ Vcc Tolerance
 - Maximum Latch-Up Immunity through EPI Prccessing
 - ETOXTM Flash-Memory Technology - EPROM-Compatible Process Base
 - High-Volume Manufacturing Experience
 - Compatible with JEDEC-Standard ByteWide EPROM Pinouts
 - 32-Pin Cerdip
 - 32-Lead PLCC
 (See Packaging Spec., Order \%231369)
}

Intel's 28F256 CMOS flash-memory offers the most cost-effective and reliable alternative for updatable nonvolatile memory. The 28F256 adds electrical chip-erasure and reprogramming to familiar EPROM technology. Memory contents can be erased and reprogrammed: in a test socket; in a PROM-programmer socket; onboard during subassembly test; in-system during final test; and in-system after-sale. The 28F256 increases memory flexibility, while contributing to time- and cost-savings. The 28F256 is targeted for alterable codeor data-storage applications where traditional E2PROM functionality (byte-erasure) is either not required or not cost-effective. The 28F256 can also be applied where EPROM ultraviolet erasure is impractical or time-consuming.

The 28F256 is a 256 -Kilobit non-volatile memory organized as 32768 bytes of 8 bits. Intel's 28 F 256 is offered in 32-pin Cerdip or 32-lead PLCC packages. Pin assignments conform to JEDEC standards for byte-wide EPROMs.

The 28F256 is also available in 12.0 V Vpp or 12.75 V Vpp versions. The 12.0 V version accommodates standard 12 V power supplies, while the 12.75 V version yields typical erase/program performance two times faster than the 12.0 V version.

Intel's 28F256 employs advanced CMOS circuitry for systems requiring high-performance access speeds, low power consumption, and immunity to noise. Its 170 nanosecond access time provides no-WAIT-state performance for a wide range of microprocessors and microcontrollers. Maximum standby current of 100 mA translates into power savings when the device is deselected. Finally, the highest degree of latch-up protection is achieved through Intel's unique EPI processing. Prevention of latch-up is provided for stresses up to 100 mA on address and data pins, from $-1 V$ to $V_{C C}+1 V$.

With Intel's ETOXTM (EPROM tunnel oxide) process base, the 28F256 levers years of EPROM experience to yield the highest levels of quality, reliability, and cost-effectiveness.

Figure 2. 28F256 Pin Configurations
Table 1. Pin Description

Symbol	Type	Name and Function
$A_{0}-A_{14}$	INPUT	ADDRESS INPUTS for memory addresses. Addresses are internally latched during a write cycle.
DQ $_{0}-$ DQ $_{7}$	INPUT/OUTPUT	DATA INPUT/OUTPUT: Inputs data during memory write cycles; outputs data during memory read cycles. The data pins are active high and float to tri-state OFF when the chip is deselected or the outputs are disabled. Data is internally latched during a write cycle.
$\overline{C E}$	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE is active low; CE high deselects the memory device and reduces power consumption to standby levels.
$\overline{\text { OE }}$	INPUT	OUTPUT ENABLE: Gates the devices output through the data buffers during a read cycle. OE is active low.
$\overline{\text { WE }}$	INPUT	WRITE ENABLE: Controls writes to the control register and the array. Write enable is active low. Addresses are latched on the falling edge and data is latched on the rising edge of the WE pulse. Note: With VPP = VPPL, memory contents cannot be altered.
$V_{\text {PP }}$		ERASE/PROGRAM POWER SUPPLY for writing the command register, erasing the entire array, or programming bytes in the array.
$V_{C C}$		DEVICE POWER SUPPLY (5V $\pm 10 \%)$

131,072 WORD $\times 8$ BIT FLASH ELECTRICALLY ERASABLE AND PROGRAMMABLE READ ONLY MEMORY SILICON STACKED GATE MOS

TC58F1000P/F/J-15 TC58F1000P/F/J-20

The TC58F1000P/F/J is a $1,048,576$ bits, Flash Electrically Erasable and Programmable Read Only Memory (FEEPROM) organized as 131,072 words by 8 bits. The TC58F1000P/F/J is fabricated using Toshiba's advanced CMOS technology which provides the high speed and low power features, with access times of $150 \mathrm{~ns} / 200 \mathrm{~ns}$, an operating current of 30 mA at 6.7 MHz and a standby current of $100 \mu \mathrm{~A}$.

The TC58F1000P/F/J features a command control mode and an EPROM compatible mode for programming and erasing. The command control mode is used for in-system programming controlled by the MPU tim-

- Access Time: $150 \mathrm{~ns} / 200 \mathrm{~ns}$
- Power dissipation Operating: 30 mA
Standby: $100 \mu \mathrm{~A}$
- Erase/Write endurance 100 cycles 10,000 cycles (Option)
- High-speed programming 14 second/chip 0.5 second/block

PIN CONNECTION (TOP VIEW)

$V_{P P}{ }^{1}$	32	v_{Cc}
A16 2	31	WE
A1503	30	ONC
A12 4	29	PAl4
A) 5	28	PA13
A6 6	27	PA8
A50;	26	-a9
A4 8	25	PA11
A3 9	24	дOÉ
A2d 10	23	- A10
AId:1	22]ce
AOD 12	21	07
DOS 13	20	Q06
Did it	19	QD5
D20is	18	Pos
GNDC 16	17	03

ing. A specific software sequence must be executed to enable the program, program-verify, chip-erase, blockerase, erase-verify, signature read and mode reset operations. The EPROM compatible mode is used for. programming and erasing with a conventional EPROM programmer. The programming time is 14 -seconds and the erasing time is only 1 -second. The TC58F1000P/F/i is also provided with a block-erase feature. The pro gramming time of 1 block (4 K byte) is only 0.5 -second.
The TC58F1000P/F/J has a JEDEC standard pinout contiguration and is packaged in either a 32-pin plastic DIP, 32-pin flat package (SOP) or 32-pin SOJ.

- Electrical erasing mode: Chip erase 1 second Block erase 1 second (Block size: 4 K Byte $\times 32$ blocks)
- Package options Suffix "P": 32-pin Plastic DIP Suffix "F": 32-pin Plastic flat package (SOP) Suffix "J": 32-pin Plastic SOJ
- Program Erase mode Command control mode EPROM Compatible mode
fin names

AO - 16	Address inpul
DO - 7	Data input/output
CE	Chip enable
OE	Output enable
$\overline{W E}$	Write enable/EPROM mode switch
NC	No connection
VPP	Program and erase power Supply
VCC	Power Supply
GND	Ground

ADC0800 8-Bit A/D Converter

General Description

The ADC0800 is an 8-bit monolithic A/D corverter using P channel ion-implanted MOS technology. It contains a high input impedance comparator, 256 series resistors and ana\log switches, control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8-bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE ${ }^{\text {© }}$ to permit bussing on common data lines.
The ADC0800PD is specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the ADC0800PCD is specified over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Low cost
- $\pm 5 \mathrm{~V}, 10 \mathrm{~V}$ input ranges
- No missing codes
- Ratiometric conversion
- TRI-STATE outputs
- Fast
- TTL compatible

Supply voltages	$5 \mathrm{~V}_{\mathrm{DC}}$ and $-12 \mathrm{~V}_{\mathrm{DC}}$
Resolution	8 bits

- Linearity ± 1 LSB
- Conversion speed 40 clock periods
- Clock range

50 to 800 kHz

Block Diagram

[^22]
ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer

General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8 -bit analog-to-digital converter, 8 -channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 8 -channel multiplexer can directly access any of 8 -single-ended analog signals.
The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE outputs.
The design of the ADC0808, ADC0809 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For 16channel multiplexer with common output (sample/hold port) see ADC0816 data sheet. (See AN-247 for more information.)

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 V_{D C}$ or analog span adjusted voltage reference
- No zero or full-scale adjust required
- 8-channel multiplexer with address logic
- 0 V to 5 V input range with single 5 V power supply
- Outputs meet TTL voltage level specifications
- Standard hermetic or molded 28-pin DIP package
- 28-pin molded chip carrier package

Key Specifications

Resolution	8 Bits
Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
Single Supply	5 VDC
Low Power	15 mW
Conversion Time	$100 \mu \mathrm{~s}$

Block Diagram

ADC1210, ADC1211 12-Bit CMOS A/D Converters

General Description

The ADC1210, ADC1211 are low power, medium speed, 12 bit successive approximation, analog-to-digital converters. The devices are complete converters requiring only the application of a reference voltage and a clock for operation. Included within the device are the successive approximation logic, CMOS analog switches, precision laser trimmed thin film R-2R ladder network and FET input comparator.
The ADC1210 offers 12-bit resolution and 12-bit accuracy, and the ADC1211 offers 12 -bit resolution with 10-bit accuracy. The inverted binary outputs are directly compatible with CMOS logic. The ADC1210, ADC1211 will operate over a wide supply range, convert both bipolar and unipolar analog inputs, and operate in either a continuous conversion mode or logic-controlled START-STOP conversion mode. The devices are capable of making a 12 -bit conversion in $100 \mu \mathrm{~s}$ typ, and can be connected to convert 10 bits in $30 \mu \mathrm{~s}$.

Both devices are available in military and industrial temperature ranges.

Features

- 12-bit resolution
- $\pm 3 / 4$ LSB or ± 2 LSB nonlinearity
- Single +5 V to $\pm 15 \mathrm{~V}$ supply range
- $100 \mu \mathrm{~s}$ 12-bit, $30 \mu \mathrm{~s}$ 10-bit conversion rate
- CMOS compatible outputs
- Bipolar or unipolar analog inputs
- $200 \mathrm{k} \Omega$ anaiog input impedance

Block Diagram

Connection Diagram

DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

General Description

The DACOB00 series are monolithic 8 -bit high-speed cur rent-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns . When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of $20 \mathrm{Vp}-\mathrm{p}$ with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than 11 LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system error accumulations.
The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin. VLC grounded. Changing the $V_{L C}$ potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range; power dissipation is only 33 mW with 15 V supplies and is independent of the logic input states.

The DAC0800. DAC0802, DACOB00C. DACUBUIC are DAC0802C are a direct replacement for the DAC-08, DAC 08A, DAC-08C, DAC-08E and DAC-08H, respectively.

Features

- Fast settling output current 100 m
- Full scale error
± 1 LSA
- Nonlinearity over temperature ± 0.18
- Full scale current drift $\pm 10 \mathrm{ppm} /{ }^{\circ}$
- High output compliance -10 V to +10
- Complementary current outputs
- Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range $\pm 4.5 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$
- Low power consumption

33 mW al : b,

- Low cost

Typical Applications

TL/H/5686-1
FIGURE 1. $\pm 20 \mathrm{~V}_{\text {p-p }}$ Output Digital-to-Analog Converter (Note 4)
Ordering Information

Non-Linearity	Temperature Range	Order Numbers				
		J Package (J16A)*		N Package (N16A)*		SO Package (M1W)
$\pm 0.1 \%$ FS	$55^{\circ} \mathrm{C} \cdot \mathrm{T}_{\mathrm{A}} \cdot 1125^{\circ} \mathrm{C}$	DAC0802LJ	DAC-08AO			
+0.1\% FS	$0^{\circ} \mathrm{C} \cdot \mathrm{T}_{\mathrm{A}} \cdot+{ }^{\circ}+70^{\circ} \mathrm{C}$	DAC0802LCJ.	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM
$10.19 \% \mathrm{FS}$		dac:oroor J	DAC.ов			
10.19\% FS	$00^{\circ} \mathrm{C} \quad \mathrm{T}_{\mathrm{A}} \quad: 700^{\circ} \mathrm{C}$	DAC0800LC.	DAC-08EO	dacuroulcn	dac-obep	dacoroolcm
$\pm 0.39 \%$ FS	$0^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0801LCJ	DAC-08CO	DAC0801LCN	DAC-08CP	DAC0801LCM

[^23]
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters

General Description

The DAC0808 series is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current (l ${ }_{\text {REF }}$) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 IREF/ 256. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $l_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.
The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the

MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

Features

- Relative accuracy: $\pm 0.19 \%$ error maximum (DAC0808)
- Full scale current match: ± 1 LSB typ
- 7 and 6-bit accuracy available (DAC0807, DAC0806)
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multíplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$
- Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

Block and Connection Diagrams

Dual-In-Line Package

TL/H/5687-2

Ordering Information

ACCURACY	OPERATING TEMPERATURE	ORDER NUMBERS				
	RANGE	J PACKAGE (J16A)*	N PACKAGE (N16A)*	SO PACKAGE (M16A)		
8-bit	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	DAC0808LJ	MC1508L8			
8-bit	$0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$	DAC0808LCJ	MC1408L8	DAC0808LCN	MC1408P8	DAC0808LCM
7-bit	$0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$	DAC0807LCJ	MC1408L7	DAC0807LCN	MC1408P7	DAC0807LCM
6-bit	$0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$	DAC0806LCJ	MC1408L6	DAC0806LCN	MC1408P6	DAC0806LCM

[^24]
MICRO-DACTM DAC1208, DAC1209, DAC1210, DAC1230, DAC1231, DAC1232 12-Bit, μ P Compatible, Double-Buffered D to A Converters

General Description

The DAC1208 and the DAC1230 series are 12-bit multiplying D to A converters designed to interface directly with a wide variety of microprocessors (8080, 8048, 8085, Z-80, etc.). Double buffering input registers and associated control lines allow these DACs to appear as a two-byte "stack" in the system's memory or I/O space with no additional interfacing logic required.
The DAC1208 series provides all 12 input lines to allow single buffering for maximum throughput when used with 16-bit processors. These input lines can also be externally configured to permit an 8-bit data interface. The DAC1230 series can be used with an 8 -bit data bus directly as it internally formulates the 12-bit DAC data from its 8 input lines. All of these DACs accept left-justified data from the processor.
The analog section is a precision silicon-chromium ($\mathrm{Si}-\mathrm{Cr}$) R-2R ladder network and twelve CMOS current switches. An inverted R-2R ladder structure is used with the binary weighted currents switched between the lOUT1 and IOUT2 maintaining a constant current in each ladder leg independent of the switch state. Special circuitry provides TTL logic input voltage level compatibility.
The DAC1208 series and DAC1230 series are the 12 -bit members of a family of microprocessor compatible DACs (MICRO-DACs ${ }^{\text {TM }}$). For applications requiring other resolutions, the DAC1000 series for 10-bit and DAC0830 series for 8 -bit are available alternatives.

Features

- Linearity specified with zero and full-scale adjust only
- Direct interface to all popular microprocessors
- Double-buffered, single-buffered or flow through digital data inputs
- Logic inputs which meet TTL voitage level specs (1.4V logic threshold)
- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- Operates stand-alone (without $\mu \mathrm{P}$) if desired
- All parts guaranteed 12-bit monotonic
- DAC1230 series is pin compatible with the DAC0830 series 8-bit MICRO-DACs

Key Specifications

- Current Settling Time
- Resolution

12 Bits

- Linearity (Guaranteed over temperature)
- Gain Tempco

10,11 , or 12 Bits of FS
$1.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

- Low Power Dissipation 20 mW
- Single Power Supply $\quad 5 V_{D C}$ to $15 V_{D C}$

Typical Application

TL/H/5690- 1

12-Bit Ultrahigh-Speed Monolithic D/A Converter

AD568

FEATURES
Ultrahigh Speed: Current Settling to 1LSB in 35ns High Stability Buried Zener Reforence on Chip Monotonicity Guaranteed over Temperature 10.24 mA Full-Scale Output Suitable for Video Applications
Integral and Differential Linearity Guaranteed Over Temperature
0.3 " 'Skinny DIP"' Packaging

Variable Threshold Allows TTL and CMOS Interface

PRODUCT DESCRIPTION

The ADS68 is an ultrahigh-speed, 12 -bit digital-to-analog converter (DAC) settling to 0.025% in 35 ns. The monolithic device is fabricated using Analog Devices' Complementary Bipolar (CB) Process. This is a proprietary process featuring high-speed NPN and PNP devices on the same chip without the use of dielectric isolation or multichip hybrid techniques. The high speed of the AD568 is maintained by keeping impedance levels low enough to minimize the effects of parasitic circuit capacitances.
The DAC consists of 16 current sources configured to deliver a 10.24 mA full-scale current. Multiple matched current sources and thin-film ladder techniques are combined to produce bit weighting. The DAC's output is a 10.24 mA full scale (FS) for current output applications or a 1.024 V FS unbuffered voltage output. Additionally, a 10.24 V FS buffered output may be gencrated using an onboard $1 \mathrm{k} \Omega$ span resistor with an external op amp. Bipolar ranges are accomplished by pin strapping.
Laser wafer trimming insures full 12-bit linearity. All grades of the AD568 are guaranteed monotonic over their full operating temperature range. Furthermore, the output resistance of the DAC is trimmed to $100 \Omega \pm 1.0 \%$. The gain temperature coefficient of the voltage output is $30 \mathrm{ppm} /{ }^{2} \mathrm{C} \max (\mathrm{K})$.
The ADS68 is available in three performance grades. The AD568JQ and KQ are available in 24-pin cerdip ($0.3^{\prime \prime}$) packages and are specified for operation from 0 to $+70^{\circ} \mathrm{C}$. The AD568SQ features operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is also packaged in the hermetic $0.3^{\prime \prime}$ cerdip.

AD568 FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. The ultrafast settling time of the AD568 allows leading edge performance in waveform generation, graphics display and high-speed A/D conversion applications.
2. Pin strapping provides a variety of voltage and current output ranges for application versatility. Tight control of the abeolute output current reduces trim requirements in extermally-scaled applications.
3. Matched on-chip resistors can be used for precision scaling in high-speed A/D conversion circuits.
4. The digital inputs are compatible with TTL and +5V CMOS logic families.
5. Skinny DIP ($0.3^{\prime \prime}$) packaging minimizes board space requirements and eases layout considerations.

Monolithic 12-Bit Quad DAC

\square

FEATURES

Four Complete Voltage Output DACs
Data Register Readback Feature
"Reset to Zero" Override
Multiplying Operation
Double-Buffered Latches
PLCC, LCC and DIP Packages

APPLICATIONS

Automatic Test Equipment

Robotics.

Process Control
Disk Drives
Instrumentation

PRODUCT DESCRIPTION

The AD664 is four complete 12 bit, voltage-output DACs on one monolithic IC chip. Each DAC has a double buffered input latch structure and a latch data readback function. All DAC read and write operations occur through a single microprocessorcompatible IO port.
The I/O port accomodates 4, 8- and 12-bit parallel words allowing simple interfacing with a wide variety of microprocessors. A reset to zero control pin is provided to allow a user to simultaneously reset all DAC outputs to zero, regardless of the contents of the input latch. Any one or all of the DACs may be placed in a transparent mode allowing immediate response of the outputs to the input data.
The analog portion of the AD664 consists of four DAC cells, four output amplifiers, a control amplifier and switches. Each DAC cell is an inverting R-2R type. The output current from each DAC is switched to the on-board application resistors and output amplifier. The output range of each DAC cell is programmed through the digital I/O port and may be set to unipolar or bipolar range, $\mathbf{0}$ to 10 volts or -10 to +10 volts respectively. All DACs are operated from a single external reference.
The functional completeness of the AD664 results from the combination of Analog Devices' BIMOS II process, laser-trimmed thin-film resistors and double-level metal interconnects.

PRODUCT HIGHLIGHTS

1. The AD664 provides four voltage-output DACs on one chip offering the highest density 12 -bit D / A function available.
2. The output range of each DAC is fully and independently programmable.
3. Readback capability allows verification of contents of internal data registers.
4. The asynchronous RESET control returns all D/A outputs to zero volts.

AD664 FUNCTIONAL BLOCK DIAGRAMS

28-Pin Block Diagram

5. DAC-to-DAC matching performance is specified and tested.
6. Linearity error is specified to be $1 / 2 \mathrm{LSB}$ at room temperature and 1LSB maximum.
7. DAC performance is guaranteed to be monotonic over the full operating temperature range.
8. Readback outputs have tristate outputs.
9. Multiplying-mode operation allows use with fixed or variable external references.
FEATURES
Complete 12-Bit AD Converter with Reference
and Clock
Faster Version of AD574A
8 and 16 -Bit Bus Interface
No Missing Codes Over Temperature
15μ max Conversion Time
$\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Operation
Unipolar and Bipolar Inputs
DIP Package

PRODUCT DESCRIPTION

The AD674A is a complete 12 -bit successive-approximation analog-to-digital converter with three-state output buffer circuitry for direct interface to an 8 - and 16 -bit microprocessor bus. A high-precision voltage reference and clock are included on-chip, and the circuit requires only power supplies and control signals for operation.
The AD674A is pin compatible with the industry-standard AD574A but offers faster conversion time and bus-access speed.
The AD674A design is implemented with two LSI chips each containing both analog and digital circuitry, resulting in the maximum performance and flexibility at the lowest cost. The chips are laser trimmed at the wafer stage to obtain full rated performance without external trims.
The AD674A is available in six different grades. The AD674AJ, K , and L grades are specified for operation over the 0 to $+70^{\circ} \mathrm{C}$ temperature range. The AD674AS, T , and U are specified for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. All grades are available in a 28 -pin hermetically sealed ceramic DIP.
The S, T, and U grades are also available with optional processing to MIL-STD-883C Class B in 28 -pin DIP. The Analog Devices Military Products Databook should be consulted for details on /883B testing of the AD674A.

[^25]AD674A FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. The AD674A interfaces to most 8 - or 16 -bit microprocessors. Multiple-mode three-state output buffers connect directly to the data bus while the read and convert commands are taken from the control bus. The 12 bits of output data can be read either as one 12-bit word or as two 8 -bit bytes (one with 8 data bits, the other with 4 data bits and 4 trailing zeros).
2. The precision, laser-trimmed scaling and bipolar offset resistors provide four calibrated ranges: 0 to +10 and 0 to +20 volts unipolar, -5 to +5 and -10 to +10 volts bipolar. Typical bipolar offset and full-scale calibration errors of $\pm 0.1 \%$ can be trimmed to zero with one external component each.
3. The internal buried zener reference is trimmed to 10.00 volts with 1% maximum error and $15 \mathrm{ppm}{ }^{\circ} \mathrm{C}$ typical T.C. The reference is available externally and can drive up to 2.0 mA beyond the requirements of the reference and bipolar offset resistors.

Complete High-Speed 16-Bit A/D Converter

FEATURES

Complete 16-Bit Converter With Reference and Clock
$\pm 0.003 \%$ Maximum Nonlinearity
No Missing Codes to 14 Bits Over Temperature
Fast Conversion - $14 \mu \mathrm{~s}$ (14 Bit)
Short Cycle Capability
Parallel and Serial Outputs
Low Power: 645 mW Typical
Industry Standard Pin Out

AD1376 FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The AD1376 is a high resolution 16-bit hybrid IC analog-to-digital converter including reference, clock, and laser-trimmed thin-film components. The package is a compact 32 -pin, pin-stake DIP. The thin-film scaling resistors allow analog input ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0$ to $+5 \mathrm{~V}, 0$ to +10 V , and 0 to +20 V .
Important performance characteristics of the devices are maximum linearity error of $\pm 0.003 \%$ of FSR, and maximum 14 -bit conversion time of $15 \mu \mathrm{~s}$. This performance is due to innovative design and the use of proprietary monolithic D/A converter chips. Laser-trimmed thin-film resistors provide the linearity and wide temperature range for no missing codes.
The AD1376 provides data in parallel and serial form with corresponding clock and status outputs. All digital inputs and outputs are TTL compatible.

APPLICATIONS

The AD1376 is excellent for use in applications requiring 14-bit accuracy over extended temperature ranges. Typical applications include medical and analytic instrumentation, precision measurement for industrial robots, automatic test equipment (ATE), multichannel data acquisition systems, servo control systems and anywhere that excellent stability and wide dynapfic range in the smallest space is required.

PRODUCT HIGHLIGHTS

1. The AD1376 provides 16 -bit resolution with maximum linearity error less than $\pm 0.003 \%$ ($\pm 0.006 \%$ for J grade) at $25^{\circ} \mathrm{C}$.
2. Conversion time is 14μ s typical to 14 bits with short cycle capability, and $16 \mu \mathrm{~s}$ to 16 bits.
3. Two binary codes are available on the AD1376 output. They are complementary straight binary (CSB) for unipolar input voltage ranges and complementary offset binary (COB) for bipolar input ranges. Complementary twos complement (CTC) coding may be obtained by inverting Pin 1 (MSB).
4. The proprietary chips used in this hybrid design provide excellent stability over temperature and lower chip count for improved reliability.
5. The AD1376 includes an internal reference and clock, with external clock adjust pin, and a serial output.

Monolithic 8-Bit
 Video A/D Converter

\square AD9048

FEATURES

8-Bits; 20MSPS Minimum Word Rates
420 mW Power Dissipation
No T/H Required
17pF Input Capacitance
Industry Standard Pinouts

PRODUCT DESCRIPTION

The AD9048 is an 8-bit, 20MSPS flash converter which is pin-forpin compatible with the TDC1048 unit but offers enhancements over its predecessor. Significantly improved output driver stages and reduced power make the AD9048 attractive for system designs.
Full power bandwidth is 7 MHz minimum, making it an ideal choice for doing real-time conversion of video signals, where analog frequency information of interest is seldom higher than $4 \mathrm{MHz}-5 \mathrm{MHz}$.
Clocked latching comparators, encoding logic, and an output buffer register operating at minimum rates of 20MSPS make ir unncecessary to incorporate a sample-and-hold (S/H) or track-andhold (T/H) into designs using the AD9048. All digital control inputs and outputs are TTL compatible.
Devices which operate over two case temperature ranges and with two grades of linearity are available. Linearities of 0.5LSB or 0.75 LSB can be ordered for a commercial range of 0 to $+70^{\circ} \mathrm{C}$, or extended temperatures of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Units are packaged in 28 -pin ceramic DIPs and are also available as LCC packages.

AD9048 FUNCTIONAL BLOCK DIAGRAM

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm) ina

28-Pin Cerdip Package

LeADMO. 1 DEENMFED EY DOT OAMOTC
IEADEANESLDER OATH PLATEDKOVARORALLOY 42

28-Pin Ceramic Leadless Chip Carrier (LCC)

Interface Circuits

LM311 voltage comparator general description

The LM311 is a voltage comparator that has input currents more than a hundred times lower than devices like the LM306 or LM710C. It is also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Its output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, it can drive lamps or relays, switching voltages up to 40 V at currents as high as 50 mA .

features

- Operates from single 5 V supply
- Maximum input current: 250 nA
- Maximum offset current: 50 nA
- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Both the input and the output of the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM306 and LM710C (200 ns response time vs 40 ns) the device is also much less prone to spurious oscillations. The LM311 has the same pin configuration as the LM306 and LM710C.
schematic diagram and auxiliary circuits

Incressing Input Stape Curremt*

[^26]
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET IITM tectnology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offiset currents. The LF353 is pin compatible with the standard LM. 1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

- Internally trimmed offset voltage	10 mv
- Low input bias current	50pA
- Low input noise voltage	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Low input noise current 0	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	3.6 mA
- High input impedance	10^{12} 』
Low total harmonic distortion $A_{V}=10$. $\mathrm{AL}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p} ; B W=20 \mathrm{~Hz}-20 \mathrm{kHz}$	< 0.02%
Low 1/f noise corner	50 Hz
- Fast settling time to 0.01%	$2 \mu \mathrm{~s}$

Connection Diagrams

Metal Can Package (Top View)

Order Number LF353H See NS Package Number H08C

Order Number LF353J, LF353M or LF353N See NS Package Number J08A, MO8A or NOtE

LM363 Precision Instrumentation Amplifier

General Description

The LM363 is a monolithic true instrumentation amplifier. It requires no external parts for fixed gains of 10, 100 and 1000. High precision is attained by on-chip trimming of offset voltage and gain. A super-beta biopolar input stage gives very low input bias current and voltage noise, extremely low offset voltage drift, and high common-mode reןection ratıo. A new two-stage amplifier design yields an open loop gain of 10,000,000 and a gain bandwidth product of 30 MHz , yet remains stable for all closed loop gains. The LM363 operates with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ with only 1.5 mA current drain.
The LM363's low voltage noise, low offset voltage and offset voltage drift make it ideal for amplitying low-level, lowimpedance transducers. At the same time, its low bias current and high input impedance (both common-mode and differential) provide excellent performance at high imped ance levels. These features, along with its ultra-high com-mon-mode rejection, allow the LM363 to be used in the most demanding instrumentation amplifier applications, replacing expensive hybrid, module or multi-chip designs. Be cause the LM363 is internally trimmed, precision external resistors and their associated errors are eliminated.
The 16-pin dual-in-line package provides pin-strappable gains of 10,100 or 1000 . Its twin differential shield drivers
eliminate bandwidth loss due to cable capacitance. Compensation pins allow overcompensation to reduce bandwidth and output noise, or to provide greater stability with capacitive loads. Separate output force, sense and reference pins permit gains between 10 and 10,000 to be programmed using external resistors.
On the 8-pin TO-5 package, gain is internally set at 10,100 or 500 but may be increased with external resistors. The shield driver and offset adjust pins are omitted on the 8-pin versions.

The LM363 is rated for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Offset and gain pretrimmed
- $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input noise $(\mathrm{G}=500 / 1000$)
- 130 dB CMRR tyical $(G=500 / 1000)$
- 2 nA bias current typical
- No external parts required
- Dual shield drivers
- Available at $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum drift
- Can be used as a high performance op amp
- Low supply current (1.5 mA typ)

Typical Connections

TL/H/5609-1

Connection Diagrams

Order Number LM363H-10, LM363H-100 or L.M363H-500 See MS Package Number H0eC

16-Pin Duak-In-Line Package

TL/H/5e09-2

LM565/LM565C Phase Locked Loop

General Description

The LM565 and LM565C are general purpose phase locked loops containing a stable. highly linear voltage controlled osciliator for how distortion FM demodulation, and a double balanced phase detector with good carrier suppression the VCO frequency is set with an external resistor and capacitor. and a tuning range of 101 can be oblained with the same capacitor. The characteristics of the closed loop sys. tem-bandwidth, response speed, capture and pull in range-may be adjusted over a wide range with an external resistor and capacitor The loop may be broken between the VCO and the phase detector for insertion of a digital frequency divider to obtain frequency multiplication
The L.M565H is specified for operation over the $-55^{\circ} \mathrm{C}$ io $+125^{\circ} \mathrm{C}$ military temperature range The LMSS5CH and LM565CN are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range

Features

- $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ frequency stabilty of the VCO
- Power supply range of ± 5 to ± 12 volts with $100 \mathrm{ppm} / \%$ typıcal
- 0.2% linearity of demodulated output
- Linear trangle wave with in phase zero crossings available
- TTL and DTL compatibie phase deweler input and square wave output
- Adfustable hold in range from $\cdot 1^{\circ}$ 。 $10 \cdot 60^{\circ}$.

Applications

- Data and tape synchronization
- Modems
- FSK demodulation
- FM demodulation
- Frequency synthesizer
- Tone decoding
- Frequency multiplication and division
- SCA demodulators
- Telemeiry receivers
- Signal regeneration
- Coherent demodulators

Connection Diagrams

Interface Circuits

LM710 voltage comparator

 general descriptionThe LM710 is a high-speed voltage comparator intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differen tial input and a single-ended output, with saturated output levels compatible with practically alf types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minority. carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in
saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components oper ating at equivalent power levels.
The LM710 is useful as a pulse heighi discrimı nator, a voltage comparator in high-speed A/D con verters or a go. no-go detector in automatic test equipment. It also has applications in digital sys tern's as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the unit suggests it for applications replac ing relatively simple discrete component circuitry
schematic* and connection diagrams

Metal Can Package

typical applications*

Schmidt Trigepr

Pulse Width Modulato

Line Receiver With Increased Output Sink Current

Level Detector With
Lamp Driver

Interface Circuits

LM711 dual comparator

general description

The LM711 contains two voltage comparators with separate differential inputs, a common out put and provision for strobing each side indepen dently. Similar to the LM710, the device features low offset and thermal drift, a large mput voltage range, low power consumption, fast recovery from large overloads and compditility with most inte grated logic circuits

With the addition of an external resistor network. the LM711 can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered with con
ventional sense amplifier designs Further, it has the speed and accuracy needed for reliably detect 1 ing the outputs of cores as small as 20 mils

The LM711 is also useful in other applications where a dual comparator with OR'ed outputs is ${ }^{\circ}$ required, such as a double ended limit detector By using common circuitry for both halves, the device can provide high speed with lower power dissipd tion than two single comparators. The LM711 is dvalable in etther an 10 lead low profile TO 5 header or a $14^{\prime \prime}$ by $14^{\prime \prime}$ inetal flat package

schematic and connection diagrams

typical applications

Sense Amplifier With Supply Strobing
for Reduced Power Consumption*

Smaticomen

GENERAL DESCRIPTION - The $\mu A 741$ is a high performance monolithic Operational Amplitier constructed using the Fairchitd Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and ebsence of "latch-up" tendencies make the «A741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback epplications.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- No latch up

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage	
Military (741)	$\pm 22 \mathrm{~V}$
Commercial (741C)	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	
Metal Can	500 mW
DIP	670 mW
Mini DIP	310 mW
Flatpak	570 mW
Differentiel Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Storage Temperature Range	
Metal Can, DIP, and Flatpak	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Mini DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
Militery (741)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial (741C)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Leed Temperature (Soldering)	
Metal Can, DIP, and Flatpek (60 seconds)	$300^{\circ} \mathrm{C}$
Mini DIP (10 seconds)	$260^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 3)	Indefinite

Noses on following peges.

CONNECTION DIAGRAMS 8-LEAD METAL CAN (TOP VIEW)
PACKAGE OUTLINE 5B

Note: Pin 4 connected to case

ORDER INFORMATION	
TYPE	PARTNO.
741	$741 H M$
$741 C$	$741 H C$

- Pianar is a patented Fairchilld process.

FIGURE 9.47 Manufacturer's specification sheets for the Fairchild μ A741 (Courtesy of Fairchild Semiconductor)

$\mu A 747$
 DUAL FREQUENCY COMPENSATED OPERATIONAL AMPLIFIER
 FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The MA747 is a peir of high performance monolithic Operationel Amplifiers constructed using the Fsirchild Planer ${ }^{\circ}$ epitaxiel process. They are intended for a wide renge of analog applications where boerd spece or weight are important. High common mode voltege range and absence of "latch-up" make the mA747 ided for use as a voltage follower. The high gein and wide range of operating voltoge provides superior performence in integrator, summing amplifier. and generel feedback applications. The MA747 is short-circuit protected and requires no externsi components for frequency compensation. The internal $6 \mathrm{~dB} / \mathrm{octave}$ roll-off insures stebility in closed hoop applications. For single emplifier performence, see uA741 date sheet.

- NO FREQUENCY COMPENSATION REOUIRED
 - EHORT-CIRCUIT PROTECTION
 - OFPEET VOLTAOE NULL CAPABILITY
 - LAREE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
 - LOW POWER CONEUNITTION
 - NO LATCH UP

AESOLUTE MAXIMUM RATINGS	
Supply Voltage	
Military (747)	$\pm 22 \mathrm{~V}$
Commercial (747C)	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	
Metal Con	500 mW
DIP	670 mW
Differentiel Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	215 V
Voltage between Offset $\mathrm{N}_{4} 11$ and $\mathrm{V}_{\text {- }}$	$\pm 0.5 \mathrm{~V}$
Storege Temperature Renge	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Renge	
Military 17471	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial (747C)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3)	Indefinite

- Planer is a patented Fairchild procesa.

BIMOS Operational Amplifiers

With MOS/FET Input/ COS/MOS Output
FEATURES:

- MOS/FET input stage provides:
very high $Z_{1}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ typ.
very low $H \doteq 5$ pA typ. at $15-\mathrm{V}$ operation
2 pA typ. at 5-V operation
- Common-mode input-voltage range includes
negative supply rail; input terminals can be swung 0.5 V below negative supply rail $\}$ single-supply
- COS/MOS output stage permits signal swing to either (or both) supply rails applications

RCA-CA3130T, CA3130E, CA3130S, CA-3130AT, CA 3130AS. CA3130AE, CA3130BT, and CA3130'BS are integrated-circuit operational amplifiers that combine the advantages of both COS/MOS and bipolar transistors on a monolithic chip.

Gate-protected p-channel MOS/FET (PMOS) transistors are used in the input circuit to provide very-high-Input impedance, very-low-input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute in single-supply applications.

A complementary-symmetry MOS (COS/MOS) transistorpair, capable of swinging the output voltage to within 10 millivolts of elther supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3130 Series circuits operate at supply voltages ranging from 5 to 16 volts, or ± 2.5 to ± 8 volts when μ sing split supplies. They can be phase compensated with a single external capacitor, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage.

The CA3130 Series is suppliend in standard 8-lead TO-5 style packages (T suffix), 8-lead duar-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA3130 is avaliable in chip form (H suffix). The CA3130 and CA3130A are also available in the Mini-DIP 8-lead dual-in-line plastic

- Low VIO: 2 mV max. (CA3130B)
- Wide BW: 15 MHz typ. (unity-gain crossover)
- High SR: 10 V/ μ s typ. (unity-gain follower)
- High output current (IO): 20 mA typ.
- High AOL: 320,000 (110 dB) typ.
- Compensation with single external capacitor

APPLICATIONS:

- Ground-referenced single-supply amplifiers
- Fast sample-hold amplifiers
- Long-duration timers/monostables
- High-input-impedance comparators (ideal interface with digital COS/MOS)
- High-input-impedance wideband amplifiers
- Voltage followers (e.g., follower fo: single-supply D/A converter)
- Voltage regulators (permits control of output voltage down to zero volts)
- Peak detectors
- Single-supply full-wave precision rectifiers
- Photo-diode sensor amplifiers
package (E suffix). All types operate over the full militarytemperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The CA3130B is intended for applications requiring premium-grade specifications. The CA3130A offers superior input characteristics over those of the CA3130.

Fig. 1 - Functionai diggrams for the CA3130 series.

CA3140, CA3140A, CA3140B Types

BIMOS Operational Amplifiers

With MOS/FET Input/Bipolar Output

FEATURES:

- MOS/FET Input Stage

(a) Very high input impedance $\left(Z_{I N}\right)-1.5 T \Omega$ typ
(b) Very low input current (I) - 10 pA typ. at $\pm 15 \mathrm{~V}$
(c) Low input-offset voltage $\left(V_{1 O}\right)-$ to $2 m V$ max.
(d) Wide common-mode input-voltage range (VICR)can be swung 0.5 volt below negative supply-voltage rail
(e) Output swing complements input common-mode range
(f) Rugged input stage - bipolar diode protected

The CA3140B, CA3140A, and CA3140 are integrated-circuit operational amplifiers that combine the advantages of highvoltage PMOS transistors with high-voltage bipolar transistors on a single monolithic chip. Because of this unique combination of technologies, this device can now provide designers, for the first time, with the special performance features of the CA3130 COS/MOS operational amplifiers and the versatility of the 741 series of industrystandard operational arnplifiers.
The CA3140, CA3140A, and CA3140 BiMOS operational amplifiers feature gate-protected MOS/FET (PMOS) transistors in the input circult to provide very-high-input impedance, very-low-input current, and high-speed performance. The CA3140B operates at supply voltages from 4 to 44 volts; the CA3140A and CA3140 from 4 to 36 volts (either single or dual supply). These operational amplifiers are internally phase-compensated to achieve stable operation in unity-gain follower operation, and, additionally, have access terminals for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset-voltage nulling. The use of PMOS field-effect transistors in the input stage results in commonmode input-voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute for singlesupply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load-terminal short-circuiting to either supply-rail or to ground.

The CA3140 Series has the same 8-lead terminal pin-out used for the "741" and other industry-standard operational amplifiers. They are supplied in either the standard 8 -lead TO-5 style package (T suffix), or in the 8-lead dual-in-line formed-lead TO-5 style package "DIL-CAN" (S suffix). The CA3140 is available in chip form (H suffix). The CA3140A. and CA3140 are also available in an 8-lead dual-in-line

- Directly replaces industry type 741 in most applications
- Includes numerous industry operational amplifier categories such as general-purpose, FET input, wideband (high slow rate)
- Operation from 4-to-44 volts Single or Dual supplies
- Internally compensated
- Characterized for ± 15-volt operation and for TTL supply systoms with operation down to 4 volts
- Wide bandwidth - 4.5 MHz unity gain at $\pm 15 \mathrm{~V}$ or $30 \mathrm{~V} ; 3.7 \mathrm{MHz}$ at 5 V
- High voltage-follower slew rate - 9 V/ $\mu \mathrm{s}$
- Fast setting time - $1.4 \mu \mathrm{~s}$ typ. to 10 mV with a $10-V_{p-p}$ signal
- Output swings to within 0.2 volt of negative supply
- Strobable output stage

APPLICATIONS:

- Ground-referenced single-supply amplifiers in automobile and portable instrumentation
- Sample and hold amplifiers
- Long-duration timers/multivibrators (microseconds-minutes-hours)
- Photocurrent instrumentation
- Peak detectors Active filters
- Comparators
- Interface in 5 V TTL systems \& other low-supply voltage systems
- All standard operational amplifier applications
- Function generators Tone controls
- Power supplies Portable instruments
- Intrusion alarm systems

Clocks

MM5387AA, MM53108 digital alarm clocks general description
 features

The MM5387AA, MM53108 digital alarm clocks are monolithic MOS integrated circuits utilizing \mathbf{P}-channel low-threshold, enhancement mode and ion-implanted depletion mode devices. They provide all the logic required to build several types of clocks and timers with up to four display modes (time, seconds, alarm and sleep) to maximize circuit utility, but are specifically intended for clock-radio applicatıons. Both devices will directly-drive 7 -segment LED displays in either a 12 hou: format (3% digits) with lead-zero blanking. AM/PM indication and flashing colon, or 24 hour format (4 digits) thongh hard-wire pin selection: the timekeepming lunction operates from either a 50 or 60 Hz input, also through pin selection. Outpents consist ot display drivers, sleep (e.g., timed radio turn off), and
 to inform the user of incoriect time display by flashing all "ON" digits at a 1 Hz rate, and is cancelled by simply resetting time. The device operates over a supply range of $24-26 \mathrm{~V}$ which does not require regulation.

The MM53108 is electrically identical to the MM5387AA, but with mirror-image pin-out to facilitate PC board layout when designing a "module" where the LED display and MOS chip are mounted on the same side; the MM5387AA is more suited for " L " shaped module designs ivertical LED display, horizontal component board). Both devices are supplied in a 40 -lead dual-in-line package.

- 50 or 60 Hz operation
- Single power supply
- 12 or 24 hour display format
- AM/PM outputs $\} 12$ hou format
- 24 -hour alarm setting
- All counters are resettable
- Fast and slow set controls
- Power failure indication
- Elimination of illegal tume display at turn "ON"
- Dirent meterface to LED displays
- 9-minute snoore alarin
- Presettable 59 -minute sleep timer
- Available in : t.maliarl (MM!,387へへ) or mirror unage (MM53108) pilout

applications

- Alarm clocks Portable clocks
- Desk clocks
- Photography timers
- Clock radios
- Industrial timers
- Automobile clocks
- Appliance timers
- Stopwatches
- Sequential controllers
block diagram

Note. MM53108 pin connections shown in parenthesis
Figure 1

functional description

A block diagram of the MM5387AA, MM53108 digital clock radio circuit is shown in Figure 1. The various display setting modes are listed in Table I, and Table II shows the setting control functions. The following description is based on Figure 1 and relers to both devices as they are electrically identical.

50 or 60 Hz Input: A shaping circuit (Figure 3) is provided to square the 50 or 60 Hz input. This circuit allows use of a filtered sinewave input. The circuit is a Schmitt trigger that is designed to provide about 6 V o hysteresis. A simple RC filter such as shown in Figure 7 should be used to remove possible line-voltage transients that could either cause the ciock to gain time or damage the device. The shaper output drives a counter chain which performs the timekeeping function.

50 or 60 Hz Select Input: A programmable prescale counter divides the input line frequency by either 50 ol 60 to obtain a 1 Hz time base. This counter is programmed to divide by 60 simply by leaving $50 /$ 60 H , select unconnected, pulldown to $\mathrm{V}_{\mathrm{D}} \mathrm{do}$ is provided by an internal depletion load. Operation at 50 Hi is programmed by connecting $50 / 60 \mathrm{~Hz}$ seiect to V_{SS}

Display Mode Select Inputs: In the absence of any of these three inputs, the display drivers present time-ofday information to the appropriate display digits. linomial deplelom pull-down deviers allow use of sumple: SiPS swithes to seleat the display merte. It mene th.m one mode is selected, the priorities are as noted in Table 1. Alternate display modes are selected by apply. ing $V_{S S}$ to the appropriate pin. As shown in Figure 1 the code converters receive time, seconds, alarm and slep information from appropriate points in the clock crfcuitry. The display mode select inputs control the
gating of the desired data to the code converter inputs and ultimately (via output drivers) to the display digits.

Time Setting Inputs: Both fast and slow setting inputs are provided. These inputs are applied either singly or in combination to obtain the control functions listed in Table II. Again, internal depletion pull-down devices are provided; application of $V_{\text {SS }}$ to these pins affects the control functions. Note that the control functions proper are dependent on the selected display mode. For example, a hold-time control function is obtained by selecting seconds display and actuating the slow set input. As another example, the clock time may be reset to 12:00:00 AM, by selecting seconds display and actuating both slow and fast set inputs.

Output Common Source Connection: All display output drivers are, open-drain devices with all sources common (Figure 4a). The common source pin should be ronnected to V_{SS}.

12 or 24 Hour Select Input: By leaving this pin unconnected, the outputs lor the most-significant display digit (10's of hours) are programmed to provide a 12 -hour display format. An internal depletion pulldown device is again provided. Connecting this pin to $V_{\text {SS }}$ programs the 24 -hour display format. Segment connections for 10's of Hours in 24 -haur mode are shown in Figure 6.

Power Fail Indication: If the prowet to the mtegrated circuit drops, indicating a momentary ac power failure and possible loss of clock, "all "ON" segments will flash at 1 Hz rate. A fast or slow set input resets an internal power failure latch and returns the display to normal.
connection diagrams

FIGURE 2(b). Nams3103 (Mirror Image Pin-Out)

functional description (Continued)

Alarm Operation and Output: The alarm comparator (Figure 1) senses coincidence between the alarm count ers (the alarm setting) and the time counters (real time). The comparator output is used to set a latch in the alarm and sloep circuits. The latch output enables the alarm output driver (Figure 4b) which is used to control the external alarm sound generator. The alarm latch remains set for 59 minutes, during which the alarm will therefore sound if the latch output is not temporarily inhibited by another latch set by the snooze alarm input or reset by the alarm "OFF" input.

Snooze Alarm Input: Momentarily connecting snooze to $\mathrm{V}_{\text {SS }}$ inhibits the alarm output for between 8 and 9 minutes, after which the alarm will again be sounded. This input is pulled-down to $V_{D D}$ by an internal depletion device. The snooze alarm feature may be repeatedly used during the 59 minutes in which the alarm latch remains set.

Alarm "OFF" Input: Momentarily connecting alarm "OFF" to VSS resets the alarm latch and thereby
silences the alarm. This input is also returned to $V_{D D}$ by an internal depletion device. The momertary alarm "OFF" input also readies the alarm latch for the next comparator ouybut, and the alarm will automatically sound again in 24 hours (or at a new alarm setting). If it is desired to silence the alarm for a day or more, the alarm "OFF" input should remain at $V_{S S}$.

Sleep Timer and Output: The sleep output can be used to turn "OFF" a radio after a desired time interval of up to 59 minutes. The time interval is chosen by selecting the sleep display mode, (Table I) and setting the desired time interval (Table II). This automatically results in a current-source output which can be used to turn "ON" a radio (or other appliance). When the sleep counter, which counts downwards, reaches 00 minutes, a latch is reset and the sleep output current drive is removed, thereby turning "OFF" the radio. This turn "OFF" may also be manually controlled lat any time in the countdown) by a momentary V_{SS} connection to the Snooze input. The output circuitry is the same as the other outputs (Figure 4b).

Figure 3. $50 / 60 \mathrm{~Hz}$ Input Shaping Circuit

FIGURE 4 (a). Sepnent Outputs
FIGURE 4(b). Alarm and Sleep Outputs

functional description (Comtinued)

TABLE I. MM5387AA, MM53108 Display Modes

*SELECTED DISPLAY MODE	DIGIT NO. 1	DIGIT NO. 2	DIGIT NO. 3	DIGIT NO. 4
Itrue Diyplay Seconseds Display Alarm Display Siemp Disphay	10's ot thens of AM/PM Hlankwit 10's of Hours \& AM/PM Blanked	Howis Minuter Hours Blanked	10's of Minutes 10, al Sinesoruls 10's of Minutes 10's of Minutes	Minutes Sipconkts Minutes Minutes

SELECTED DISPLAY MODE	CONTROL INPUT	CONTROL FUNYCTION
* Tine	Sluw	Munutes Advance al 2 H2-Rate
	- Fast	Minutes Advance at 60 Hz Rate
	Hath	Monile. Alvance at 60 Hz Ratr
Alarm	Siow	Alarm Minutes Advance at 2 Hz Rate
	Fast	Alarm Minutes Advance at 60 Hz Rate
	Both	Alarm Resets to 12:00 AM (Miunighy) (12.Hour Format)
	Both	Alarm Resets to 00:00 (24.Hour Format)
Seconkts	Slow	Inpus to Entice Time Counter is Inhibited (Hold)
	1 ast	Seconels and 10's ot Seconds Reset to Zero Without * C.aliy to Minutes
	Herti,	
	Herth.	
Sleep	Slow	Subtracts Count at 2 Hz
	Fast	Subtracts Count at 60 Hz
	Both	Subtracts Count at 60 Hz

*When setting time sleep minutes will decrement at rate of time counter, until the sleep counter reaches 00 minutes (sleep counter will not recycle).

FIGURE 5. Typical Output Current Charecteristics of MM5387AA, MM53108

Switch A must be ganged with Sleep display as shown.

[^27]10's of Hours Digit Conncetions

typical applications

Figure is a schmematic: diagian ol a genet purpose alam clock circuit (12 hour mode) using the MM5387AA or MM5 =' 08 and a 3 1/2-digit LED display.

Calculators

MM5734 8-function accumulating memory calculator

general description

The sugle chip MM5734 calculator was developed usum

 product cost. A complete calculator as shown in Figure I requires only the MM5734 calculator chip, an X-Y matrix keyboard, an NSA 1198 or NSA 1298 LED display and a 9 V battery.

Keyboad decoding and key debounce circuitry, all
 segmenit output display decoding ate meluded on chip), and require no external components. Segments and diguts can usually be driven directly from the MM5734, as the segments tyoncally sounce 8 mA of peak current and the digit drivers sink 20 miA mon

Ledding zelo suppression and a floating negative sign dllow converment rading of the display and conserve

 II digt enght. Up to 8 digits for posilive numbers and 7

 of a complete calculator displaying five " 5 's" is 25 mA .

The MM5734 is capable of decoding a keyboard matrix .N :Inwin in Fignere 1 There possible morlels are shown
 whinch incitules all 8 functions with unly 23 keys by using a function key (F).

features

- 8 digıt, (7-negative), capacity
- 8 finnctomis ($\left.1, \dot{X}, x^{2}, \sqrt{x}, 1 / X, x_{1}\right)$
- Convenient alyebialic notalion
- Fully protected accumulating memory $\quad \mathbf{M}^{-1}$
- Automatic constant independent of memory
- Floating input/floating output
- Power on clear ${ }^{*}$
- On-chip oscillator*
- Direct 9 V battery compatibility
- I ow sy shlem cosst
- Direce digit drive of LED display
- I ow coss X Y kryboand matrix
- Requares no external components
connection diagram
Dual-In-Line Package

keyboard outline

*Double Function Key

functional description

The MM5734 is a calculator chip which contains live data registers: (1) entry, (2) accumulator, (3) 2 working and (4) memory, each consisting of 8 digits, sign, and decimal point. The entry register is always displayed. It contains digit entries from the keyboard, and results of all functions except $M+$ and $M-$. The accumulator is used in all arithmetic functions and stores a copy of the entry register on all results. This allows another number to be entered without losing an intermediate result. Multiply and divide requires three registers to perform the function and save the divisor, or multiplier. The working register is provided to perform these functions in conjunction with the entry and accumulator registers. A second working register is used to store the constant in chain operations while performing X^{2} or $1 / X$. This allows chain operation using $x^{2}, 1 / X$ and \sqrt{x}.

The memory register is used only to store a number to be used later. It is fully protected during all operations,
 "M " key. Powet on clears all of the tegisters milluding the memory register.

The MM5734 performs the $1, \quad X$ und ': functions using algebraic notation. This requires the use of a mode register and a terminate flag. The mode register directs the machine to the proper function (add. subtract, multiply or divide) with each new key entry After the function has been performed, the key entered is used to modify the mode register

The terminate flag is set on " $=$ " and sometimes on "\%" and "C." This signifies the end of the problem. The MM5734 allows for full floating entries and intermediate results.

If the terminate flag is set, a " 1. ." "-." " X " or " \div " key signals the beginning of a new problem. The number being displayed is copied into the accumulator register

 "-," "X" and " \div " keys.

FIGURE IA. Complote Calculotor Schematic

FIGURE 1 (b). Optional Keys

FIGURE I(c). Optional Koys

OPERATION IN THE ADD AND SUBTRACT MODE

figure 2

If the terminate flag is set, an " $=$ " key will result in a constant add/subtract. The number in the accumulator will be added to (or subtracted from) the number being displayed. The result is right-justified and displayed in the entry register. Accumulator and mode registers are not altered, allowing for constant operations.

If the terminate flag is not set and a number has been entered from the keyboard, or memory register, a "+," "-." " X ". or " \div " key will result in an addition or subtraction. The entry register will be added to or subtracted from the accumulator and the new running total will be displayed in the entry register and copied into the accumulator rngistor. Tho moden witl bo alternd aceoreling to which key is entered.

If the terminate flag is not set, and a number has not been entered from the keyboard, or memory, a " + ," "-." "X," ":" key will only change the mode register to the new key entry.

If the terminate flag is not set, an " $=$ " key will add/

 is transferred to the accumulator, and the result of the operation is displayed in the entry register. The terminate flag is set, conditioning the calculator for constant, add/ subtract operation. The number being displayed previous to the " $=$ " key is stored in the accumulator as the constant.

Operation of the "\%" key in add/subtract mode, with the terminate flag reset, will multiply the accumulator by the last entry, divide the result by 100, and display it in the entry register. The mode register remains as it was in the add/subtract mode. All of the above is required to perform the percent add on or discount problems. Depression of an " $=$ " key after the " $\%$ " key will either tax or discount the original number as a function of the mode register and the last entry.

Operation of the "\%" key in add/subtract mode, with the terminate flag set, will shift the decimal point of the number being displayed two places to the left and copy it into the accumulator register. The mode is set to multiply and the terminate flag remains set.

Operation in the Multiply Mode

If the terminate flag is set, an " $=$ " key will result in a constant multiply operation. The number being displayed is multiplied by the constant stored in the accumulator register. The result is displayed in the entry register and the accumulator and mode registers are not altered, allowing for constant operation. Repeated depressions of the " $=$ " key can be used to raise a number to an integer power, i.e., "C," "C," "5.2," "X," " $=$," " $=$," " $=, "$ computes 5.2^{4}.

The constant in multiplication, as well as in addition, subtraction and division is the last number entered. For the sequence: "C," "C," " 3 ," " \div, " " 4 ," " X," " $2, "$ " $=$ " the constant multiplier for future problems is 2.

If the terminate flag is not set, an " $=$ " key will signal the end of a problem. The number in the display will be multiplied by the contents of the accumulator, and the results will be displayed in the entry register. The number previously in the entry register is stored in the accumulator register and the terminate flag is set.

If the terminate flag is not set, and a number has been entered from the keyboard or memory register, a " + ," " - ," "X" or " \div " key will result in a multiplication. The number being displayed will be multiplied by the number residing in the accumulator register. The result will be copied into the accumulator and displayed in the entry register. The mode register is updated as a function of the key depressed.

Operation of the "\%" key while in multiply mods looks exactly the same as an " $=$ " key except the decimal point of the display is shitifed iwo persitions in the loff before the multiplication takes place.

Operation in the Divide Mode

If the terminate flag is set, an " \quad " key will result in constant divide operation. The number being displayed is divided by the constant storod in the accumulator register. The accumulator and mode registers are not alternd allowing (al comstant opmalioms. Reppated de
 by the constant. Thus, it is possible to raise a number to a negative power using the sequence " C ," " C ," "1," $" \div, " " N o ., " ~ " ~=, " ~ "=, " ~ e t c . ~$

If the terminate flag is not set, an " $=$ " key will signal the end of a problem. The number in the accumulator register will be divided by the number being displayed. The result is transferred to the entry register and displayed. The terminate flag is set and the divisor is stored in the accumulator register.

If the terminate flag is not set, a ",+ " ",- " " X " or "ب" key will result in a division. The number in the accumulator register will be, divided by the number being displayed. The results are displayed in the entry register, and a copy of the result is stored in the accumulator. The mode register is modified to reflect the latest key entry.

Operation of the "\%" key while in divide mode looks exactly the same as the " $=$ " kex except the decimal point of the display is shifted two positions to the left before division takes place.

Ordee Number ADO3501CCN See NS Package N28A
Block diagram

ADJ3501 3 1/2-digit DViN block diagram
FIG. 14-21 National Semiconductor ADC 3501

Electronic Telephone

The Complete Electronic Telephone Circuit
 MC34010/11A - $\mathrm{T}_{\mathrm{A}}=-20^{\circ}$ to $+60^{\circ} \mathrm{C}$, Case 711,777

The conventional transformer-driven telephone handset is undergoing major innovations. The bulky transformer is disappearing. So are many of its discrete components, including the familiar telephone bell. They are being replaced with integrated circuits that perform all the major handset functions simply, reliably and inexpensively .. functions such as 2 -to-4 wire conversion, DTMF dialing, tone ringing, and a variety of related activities.

The culmination of these capabilities is the Electronic Telephone Circuit, the MC34010/11A. These IC's place all of the above mentioned functions on a single monolithic chip.
These telephone circuits utilize advanced bipolar linear $\left(1^{2} \mathrm{~L}\right)$ technology and provide all the necessary elements of a modern tone-dialing telephone. The MC34010 even incorporates an MPU interface circuit for the inclusion of automatic dialing in the final system.

Features

- Provides All Basic Telephone Functions, Including DTMF Dialer, Tone Ringer, Speech Network and Line Voltage Regulator
- DTMF Generator Uses Low-Cost Ceramic Resonator with Accurate Frequency Synthesis Technique
- Tone Ringer Drives Piezoelectric Transducer and Satisfies EIA-470 Requirements
- Speech Network Provides Two-Four Wire Conversion with Adjustable Sidetone Utilizing an Electret Transmitter
- On-Chip Regulator Insures Stable Operation Over Wide Range of Loop Lengths
- 12 L Technology Provides Low 1.4 Volt Operation and High Static Discharge Immunity
- MC34010P Provides Microprocessor Interface Port for Automatic Dialing Features

Tone Ringers

The MC34012 and MC34017 Tone Ringers are designed to replace the bulky bell assembly of a telephone, while providing the same function and performance under a variety of conditions. The operational requirements spelled out by the FCC and the EIA, simply stated, are that a ringer
circuit MUST function when a ringing signal is provided, and MUST NOT ring when other signals (speech, dialing signals, noise) are on the line. The MC34012 series and the MC34017 series were designed to meet those requirements.

MC34012 $-T_{A}=-20^{\circ}$ to $+60^{\circ} \mathrm{C}$, Case 626, 751
C3

- Complete Telephone Bell Replacement Circuit with Minimum External Components
- On-Chip Diode Bridge and Transient Protection
- Direct Drive for Piezoelectric Transducers
- Base Frequency Options - MC34012-1: 1.0 kHz MC34012-2: 2.0 kHz MC34012-3: 500 Hz
- Push Pull Output Stage for Greater Output Power Capability (MC34017)
- Base Frequency Options - MC34017-1: 1.0 kHz

MC34017-2: 2.0 kHz
MC34017-3: 500 Hz

- Input Impedance Signature Meets Bell and EIA Standards
- Rejects Rotary Dial Transients

MC34017- $T_{A}=-20^{\circ}$ to $+60^{\circ} \mathrm{C}$, Case 626, 751

Linear Products

DESCRIPTION

The PCF8200 is a CMOS mloyralud circuit for generating good quality speech from digital code with a programmable bit rate. The circuit is primarily intended for applications in microprocessor controlled systems, where the speech code is stored separately.

FEATURES

- Male and lomale speech with good quallty
- Speech-band trom 0 to 5 kHz
- Bit rate between 455 bits/second and 4545 bits/second
- Programmable frame duration
- Programmable speaking speed
- CMOS technology
- Operating temperature range $\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$
- Single 5V supply with low power consumption and power-down stand-by mode
- Interfaces easily with most popular microcomputers and microprocessors through 8-blt parallel bus or $1^{2} C$ bus
- Software readable status word (parallet bus or $1^{2} C$ bus)
- BUSY-signal and REON-signal hardware readable
- Internal low-pass filter and 11-bit D/A converter

APPLICATIONS

- Telecommunications
- Video games
- Aids for the handicapped
- Industrial control equipment
- Automotive
- Irrigation systems

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
24-Pin Plastic DIP (SOT-101A)	$-40^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	PCF8200PN

FEATURES

- TIMING

THROUGH
OPERATES HOURS MONOSTABLE MODES
ADJUSTABLE DUTY CYCLE

- high Current output can source OR SINK 200 mA
output can drive til
- TEMPERATURE STABILITY OF $\mathbf{0 . 0 0 5 \%}$ PER ${ }^{\circ} \mathrm{C}$
- NORMALLY ON AND NORMALLY OFF OUTPUT

APPLICATIONS

PRECISION TIMNG
PULSE GENERATION
SEOUENTIAL TIMING
time delay ceneration
PULSE WIDTH MODULATION
PULSE POSTION MODULATION
mussma pulse detector

ECUIVALENT CIRCUIT

PIN CONFIGURATION
FPACKACE

ABSOLUTE MAXIMUM RATINGS

BLOCK DIAGRAM

FEATURES

- TIMING FROM MICROSECONDS TO hours
- REPLACES Two 555 tmers
- operates in both astable, monostable, time delay modes
- HIGH OUTPUT CURRENT
- ADJUSTABLE DUTY CYCLE
- TtL COMPATIBLE
- TEmPERATURE STABILITY OF 0.005\% PER ${ }^{\circ} \mathrm{C}$
absolute maximum rations Sugply Votage NE556
Power Dissipation Operating Temperature
Range
NEE56
SEE56
Storage Temperature
Range
Lead Temperature
(Soldering, 60 sec)
+18 V
+16 V 600 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ 10 $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$

APPLICATIONS PRECISION TIMING SEQUENTIAL TIMING PULSE SHAPING
PULSE GENERATOR
MISSING PULSE DETECTOR TONE BUAST GENERATOR PULSE WIDTH MODULATION time delay generator FREQUENCY DIVISION industrial controls PULSE POSTIION MODULATION APPLIANCE TIMING TRAFFIC LIGNT CONTROL TOUCH TONE ENCODER

BLOCK DIAGRAM

PIN CONFIGURATION

EQUIVALENT CIHCUIT (SHOWN FOR ONE CIRCUIT ONLY)

Three Terminal Positive Regulators

SG7800A/7800AC/7800/7800C/140/240/340

DESCRIPTION

The SG7800A/7800/140 series of positive regulators offer self contained, fixed-voltage capability with up to 1.5 amps of load current and input voltages up to 50 volts. (SG7800A senes only)
These units feature a unique on-chip trimming system to set the output voltages to within $\pm 1.5 \%$ of nominal on the SG7800A series, $\pm 2.0 \%$ on the SG140/240 series, and $\pm 4.0 \%$ on the SG7800/340 series. The SG7800A versions also offer much improved line and load regulation characteristics.

All protective features of thermal shutdown, current limiting, and safe-area control have been designed into these units and since these regulators require only a small output capacitor for satisfactory performance, ease of application is assured.
Although designed as fixed-voltage regulators, the output voltage can be increased through the use of a simple voltage divider. The low quisscent drain current of the device insures good regulation when this method is used.
Product is available in hermetically sealed TO-3, TO-39 and TO-66 power packages as well as the plastic TO-220 package.

SIMPLIFIED SCHEMATIC

FEATURES

- Output voltage eet internally to $\pm 1.5 \%$ on SG7800A
- Input voltage range to $\mathbf{5 0}$ volts max. on SG7800A
- Two voll input-output differential
- Excellent line and load regulation
- Foldback curremt limiting
- Thermal overiosd protection
- Voltages available - 5V, 6V, 8V, 12V, 15V, 18V, 20V, 24V

ABSOLUTE MAXIMUM RATINGS

Device Output Voltege	Input Voltage (Operating)	7e00A Series input Vothege (translent)	Input Voltage (Output shorted to ground)
5 V	35 V	50 V	35 V
6 V	35 V	50 V	35 V
8 V	35 V	50 V	35 V
12 V	35 V	50 V	35 V
15 V	35 V	50 V	35 V
18 V	35 V	50 V	35 V
20 V	35 V	50 V	35 V
24 V	40 V	50 V	35 V
		see note next page	

Operating Junction Temperature Range

CHIP LAYOUT

CHIP LAYOUT

Three Terminal Positive Regulators

SG7800A/7800AC/7800/7800C/140/240/340

Note: Operation at high input voltages is dependent upon toad current When load currert is less than 5 mA . output will rise out of regula tron as input-output differential increases beyond 30 volts Note also from curve above. that maximum load current is reduced at high voltages The 50 volt input rating of the SG7800A serves reters to ability to withstand high line or transient conditions without damage Since the regulator's maximum current capabilty is reduced, the output may fall out of regulation at high input voltages under nominal loading

APPLICATIONS

fixed output regulator

-INCAEASING VALUE OF OUTPUT CAPACITOA
IMPROVES SYSTEM TMANSIENT RESPONSE
IMPROVES SYBTEM TMANSIENT AESPONSE

HIGH OUTPUT CUARENT, SHORT CIACUIT PROTECTED

CIRCUIT FOR INCREASING OUTPUT VOLTAGE

ADJUSTABLE OUTPUT REGULATOR, 7 to 30 VOLTS

3 Amp, 5 Volt Positive Regulator

SG123/SG223|SG323

Description

The SG123 is a three terminal, three amp, five volt regulator similar to the LM123 but with a special low voltage zener instead of the band gap reference. The SG123 has superior load regulation, lower input-output differential minimums, lower quiescent current, and better temperature coefficient. The circuit is specified identically to the LM123 and is pin for pin compatible with that device. The SG123 uses special processing techniques to achieve reliable operation at high temperatures and high current levels for extended periods of time.
The SG1 23 has been designed for ease of operation as well as performance. It is completely internally phase compensated, and requires no external capacitors unless used with long lead lengths or high speed transients. The device is protected by thermal shutdown, standard current limiting. and an instantaneous power limiting circuit sensitive to high input voltages. In addition, the power transistor is an upgrade of previous three terminal designs and is unusually rugged.

Operation is guaranteed over the junction temperature range of $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. The SG223 is a similar device guaranteed to operate from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. The SG323 is guaranteed over the junction temperature range of $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Features

- 3A Output Currents
- Full Internal Protection
- 7.0 V Minimum Input Voltage, Typical
- Zener Reference for Top Performance

TOP VIEW
K-Package TO-3

CHIP LAYOUT

Absolute Maximum Ratings

Input Voltage	20V
Power Dissipation	Internally Limited
Operating Junction Temperature Range	
SG123	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
SG223	$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
SG323	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	SG123, SG223			SG323			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage	$\begin{aligned} & T=25^{\circ} \mathrm{C} \\ & V=7.5 \mathrm{~V}, 1=0 \end{aligned}$	4.7	5	5.3	4.8	5	5.2	V
Output Voltage	$\begin{aligned} & 7.5 V \leq V \leq 15 V \\ & 0 \leq 1 \leq 3 A . P \leq 30 W \end{aligned}$	4.6		5.4	4.75		5.25	V
Line Regulation (Note 2)	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & 7.5 \mathrm{~V} \leq \mathrm{V} \leq 15 \mathrm{~V} \end{aligned}$		5	25		5	25	mV
Load Regulation (Note 2)	$\begin{aligned} & \mathrm{T}=25^{\mathrm{C}} \mathrm{C}, \mathrm{~V}=7.5 \mathrm{~V} \\ & \mathrm{O} \leq 1 \leq 3 A \end{aligned}$		25	100		25	100	mV
Quiescent Current	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V} \leq 15 \mathrm{~V} . \\ & 0 \leq 1 \leq 3 \mathrm{~A} \end{aligned}$		12	20		12	20	mA
Short Circuit Current Limit	$\begin{aligned} & T=25^{\circ} \mathrm{C} \\ & V=15 \mathrm{~V} \\ & \mathrm{~V}=7.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\hat{\mathbf{A}}$
Long Term Stability				35			35	$m \mathrm{~V}$
Thermal Resistance Junclion to Case (Note 3)			2			2		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise noted, specifications apply for $55^{\circ} \mathrm{C}<\mathrm{T}<+150^{\circ} \mathrm{C}$ for the SG123. $25^{\circ} \mathrm{C} \leq \mathrm{T} \leq+150 \mathrm{C}$ for the SG223, and $0<T<\cdot 125 \mathrm{C}$ for the SG323 Specifications apply for $P<30 \mathrm{~W}$.

Note 2: Load and line regulation are specified with high speed tests in order to separate their effects from temperature coefficient Pulse testing is required with a puise width $<1 \mathrm{~ms}$ and a duty cycie $<5 \%$
Note 3: The junction to ambient thermal resistance of the TO. 3 package is about $35^{\circ} \mathrm{C} \mathrm{W}$.

General-Purpose Positive Regulator

SG723/723C

This regulator is designed for use with either positive or negative supplies as a series, shunt, switching, or floating regulator with currents up to 150 mA . Higher current requirements may be accommodated through the use of external NPN or PNP power transistors.

- Positive or negative supply operation
- 0.03\% line and load regulation
- Output adjustable from 2 to $\mathbf{3 7 V}$
- Low standby current drain
- $0.002 \% /{ }^{\circ} \mathrm{C}$ averege temperature variation

PARAMETERS	$723{ }^{1}$	723C ${ }^{1}$	UNITS
Operating Temperature Range	-55 to +125	0 to +70	${ }^{\circ} \mathrm{C}$
Package Types	T*, J	T*, J, N	-
Input Voitage Range	9.5 to 50	9.5 to 50	V
Output Voltage Range	2.0 to 37	2.0 to 37	V
Input/Output Differential	3.0 to 38	3.0 to 38	V
Load Regulation ${ }^{2,3}$	0.15	0.2	\% $V_{\text {out }}$
Line Regulation $V_{\text {in }}=12$ to 40V	0.2	0.5	\% $\mathrm{V}_{\text {out }}$
Ripple Rejection $C_{\text {ref }}=5 \mu \mathrm{~F} ; \mathrm{f}=50 \mathrm{~Hz}$ to 10 KHz	86 (typ)	86 (typ)	dB
Reference Voltage	6.95-7.35	6.80-7.50	V
Temperature Stability	0.015	0.015	\%/ ${ }^{\circ} \mathrm{C}$
Output Noise Voltage $C_{\text {ref }}=0 ; B W=100 \mathrm{~Hz}$ to 10 KHz	20 (typ)	20 (typ)	$\mu \mathrm{V}$ rms
Standby Current Drain	3.5	4.0	mA
Minımum Load Current	0	0	mA
Long Term Stability	0.1 (typ)	0.1 (typ)	\%/khr

${ }^{1}$ Parameters apply at $T_{A}=+25^{\circ} \mathrm{C}$, except temperature stability is over temperature ranges.
${ }^{2}$ Applies for constant function temperature. Temperature drif* effects must be taken into account separately when the unit is operating under conditions of high dissipation
$3^{3} L_{L}=1$ to 50 mA .

- T -package is TO.96 (can height 240° max., 230° min.)

SG723/723C Chip See T-Package for pad functions) Soe Va (Pin X) is avaliabie only in
voter $\begin{aligned} & \text { V-Package }\end{aligned}$
Ior

High Current Regulator External NPN Transistor $I_{L}=1 A$

Bazic High Voltage Regulator $V_{\text {out }}=7$ to 37 volts

LM117/LM217/LM317 3-Terminal Adjustable Regulator

General Description

The LM117/LM217/LM317 are adjustable 3 terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. They are exceptionaliy easy to use and require only two external resistors to set the output voltage. Further, both line and toad regulation are better than standard fixed regulaiors. Also. the LM117 is packaged in standard transistor packages which are easily mounted and handled.

In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is discominected.

Features

- Adjustablu output duwn to 1.2 V
- Euaranteed 1.5A output current
- Line reguldation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- 100% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

Normally, no capacitors are needed unless the device is sr:udted fat from the input filter capacitors in which case an input bypass is needed. An optional ourput capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripp!e rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Connection Diagrams

Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applicationi. Since the regulator is "floating" and sees only in input-to-outbut differential voltage, supplies of seveial hundred volts can be tegulated as long as the miximum input to output difterential is not exceeded.

Also, it makes an especially simple ad ustable switching reguldtor, a programmable output egulator, or by connecting a fixed resistor between the adjustment and output, the LM117 can be used as a precision current regulator. Supplies with electronic siutdown can be achieved by clamping the adjustment t iminal to ground which programs the output to 1.2 V vhere most loads draw little current.
The LM117K, LM217K and LM317K are packaged in standard TO- 3 transistor packages wt ile the LM117H, LM217H and LM317H are packaged in a solid Kovar base TO- 39 transistor package. The Lall17 is rated for operution tiom $55^{\prime \prime} \mathrm{C}$ to $+150^{\prime \prime} \mathrm{C}$, 'he LM217 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM317 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM317T and LM317MP, rated to operation over a $0^{\circ "} \mathrm{C}$ to $1125^{\prime \prime} \mathrm{C}$ tangu, are available in a $\mathrm{TO} \cdot 220$ plastic packuge and a TO- 202 package, respect vely.
For applications requiring greater orput current in excess of 3A and 5A, see LM150 siries and LM138 series data sheets, respectively. For th. negative comple. ment, see LM137 series data sheet.
iM117 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATIO	DESIGN LOAD CURRENT
LM117	TO.3	20 W	$1.5 A$
LM217	TO.39	$2 W$	$0.5 A$
LA.1317		TO 220	15 W
LIA317T	TO	$1.5 A$	
IM317M	TO.202	7.5 W	$06 A$

SG3524
 SMPS Control Circuit

Product Specification

Linear Products

DESCRIPTION

This monolithic integrated circuit contains all the control circuitry for a regulating power supply inverter or switching regulator. Included in a 16 -pin dual-in line package is the voltage reference. error amplifier, oscillator, pulse-width modulator, pulse steering flip-flop. dual alternating output switches and currentlimiting and shut-down carcuitry. This device can be used for switching regulators of either polarity, transformer-coupled DC-to-DC converters, transformerless voltage doublers and polarity converters, as well as other power control applications. The SG3524 is designed for commercial applications of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

FEATURES

- Complete PWM power control circultry
- Single ended or push-pull outputs
- Line and load regulation of 0.2%
- 1\% maximum temperature varlation
- Total supply current is lese than 10 mA
- Operation beyond 100 kHz

PIN CONFIGURATION

D', F, N Packegen	
	B6) ver
	[15] vm
arive 3	(10) emrrea
Mes 4	[13) covectone
,cat 5	(12) courctos 4
* 6	(ii) cumena
c 9	(io) suroovm
mone	9] comemantom
Top viw	
More: 1. Sol Helinees in targe 90 peckege onty.	

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
16 -Pin Plastic DIP	0 to $+70^{\circ} \mathrm{C}$	SG3524N
16 -Pin Cerdip	0 to $+70^{\circ} \mathrm{C}$	SG3524F
16 -Pin SOL	0 to $+70^{\circ} \mathrm{C}$	SG35240

BLOCK DIAGRAM

Standard Digital BUS-Interfaces

Communication between a computer and a peripheral may be
a) Simplex where information can be transmitted in one direction only, e.g. computer to (non-intelligent) printer, keyboard to computer.
b) Half duplex where information may be transmitted in both directions but in only one direction at a time, e.g. IEEE 488 bus
c) Full duplex where information may be transmitted in both directions simultaneously, e.g. VDU.

It is now a universal standard to transmit computer data in bytes comprising a seven-bit ASCII code with the eighth bit as a parity test. The data byte may be transmitted in parallel, when all eight bits are transmitted on eight separate transmission lines, or serially when the data bits are transmitted
\quad Parallel and
serial transmission of
the data byte
$A 6=10100110$ separately, in a serial sequence, down a single transmission line In both cases the data may be transmitted with synchronous clock pulses (synchronous transmission). Additional lines for handshaking may also be present.

Parallel transmission has the advantage of speed (about eight times faster than serial transmission). However, it requires eight times as many transmitting and receiving circuits, at increased cost, which are also prone to cross-talk and have poor noise immunity. Parallel transmission is usually limited to cases where the transmitter and receiver are situated close to each other, resulting in connecting cable lengths of 20 m or less.

Serial transmission is used for long-range (20 m to many kilometres) communications where the cost of multiple data transmission lines would be high, and where facilities for multiple lines may not even exist (e.g. telephone lines). The use of a single transmission line can allow circuits with good noise immunity properties to be used at an overall economic cost.

To allow different peripherals to be interfaced to different computing systems, with minimal hardware and software effort, standard interfacing systems have been developed. Of these the IEEE 488 (GPIB) bus (parallel transmission) and the RS 232C (serial transmission) are now universally recognised standards.

IEEE 488 (GPIB) Bus

The standards for this bus were set by the Institute of Electrical and Electronics Engineers (USA) in October 1975 (IEEE document number ANSI MC 1.1, 1975) and accepted as an international standard in 1980.

Fig. c IEEE 488 bus structure

This interface is also known as the HP-IB (Hewlett Packard Interface Bus) and, more recently, as the GPIB (General Purpose Interface Bus).

The IEEE 488 bus is primarily designed for connecting instrumentation to a central controller (usually a computer) for purposes of creating fully automated/data-logging measurement systems. At present some 220 different manufacturers produce equipment which is either partially or wholly IEEE 488 bus compatible.

The basic bus structure is shown in fig. ce Devices connected to the bus may be
a) A controller
b) A talker only
c) A listener only
d) A talker and a listener.

The controller is responsible for the overall operation of the system by issuing the appropriate commands to other devices on the bus. As might be expected any system may only have one controller, which is usually a minicomputer with data-recording facilities. A talker only is a peripheral which can only transmit information (e.g. a frequency counter), whilst a listener only can only receive information (e.g. a signal generator). A talker and listener can both transmit and receive information (e.g. a digital multimeter). During operation, the controller will dictate whether a given device is a talker. listener or is idle (disconnected from the bus).

GPIB Connector Signal Descriptions

Description

Lines DIO1 through DIO8 are used to transfer addresses. control information and data The formats for addresses and control bytes are defined by the IEEE 488 standard Data formats may be ASCll (with or without parity) or binary D:O1 is the Least Significant Bit (bit 0).

Atiention. This signat is asserted by the Controller 10 indicate that it is placing an address or control byte on the Data Bus ATN is de-asserted to allow the assigned Talker to place status or data on the Data Bus The Controller regains control by reasserting ATN
End or identity. This signal has two uses as its name implies A talker may assert EOI simultaneously with the last byte of data to indicate end of data The Controller may assert EOI along with ATN to iniliate a Paraliel Poll
Selvice Request. This line is like an interrupt it may ve asserted by any device to request the Controller to take some action The Controlier must determine which device is asserting SRQ by conducting a Serial Poll a: its eariles! opportunty
Interface Clear This signal is asserted only by the System, Controller in order to intialize ail - device interfaces to a known state

Remote Enable This signal is asserted only by the Syslem Controller lts assertion does not place devices into Remote Control mode. REN only enables a device to go remote when addressed to listen

Not Ready For Data This handshake line is asserted by a listener to indicate it is not yet ready for the next data or control byte
Not Data Accepted This handshake line is asserted by a Listener to indicate it has not yet accepled the data or control byte on the DIO lines
Data Vaild. This handshake line is asserted by the Taiker to indicate that a data or control byte has been placed on the DIO lines and has had the minimum specified setting time.

EIA RS 232C Serial Interface

The Electronics Industry Association (EIA) RS 232C interface standard allows for two full duplex data channels transmitting serial data, either synchronously or asynchronously, with or without handshake. The RS 232C (versions A and B are now obsolete) signal levels are shown in fig.a b from which it should be noted that the binary 0 (also called a Space or on condition) is more positive than the binary 1 (also called the Mark or OHF condition). This can present problems when interfacing RS 232C to TTL (a common requirement) since not only is there a considerable difference between the two signal voltage levels but the signal logic is inverted as well.

Connection between RS 232C devices is via a standard 25 -pin connector (Cinch or Cannon chassis-mount, female-type DB-25S) illustrated in fig. C which also lists the pin connections. Unlike the IEEE 488 bus, the RS 232C interface is designed for connection between two devices only-usually a computer and a peripheral. Consequently if a computer wishes to communicate with more than one peripheral, a separate RS 232C interface must be provided for each peripheral. In addition, all RS 232C lines, unlike the IEEE 488 bus, are unidirectional, transfering data in one direction only, a factor which greatly simplifies both the hardware and software control of the interface.

Rarely is the full RS 232C standard implemented, with the majority of systems requiring only a subset of the electrical circuits. This has led to a re-defining of the RS 232C interface in terms of subsets called Level 1 . Level II and Level III which are defined as:

```
LEVEL I \(\left.\begin{array}{ccc}\text { Pin 2 } & \text { Transmitted Data } \\ \text { Pin 3 } & \text { Received Data }\end{array}\right\}\) Channel 1
    Pin 7 Logical Ground
    Pin 1 Protective Ground
LEVEL II Level I +
    Pin 6 Data Set Ready
    Pin 8 Data Carrier Detect
    Pin 20 Data Terminal Ready
LEVEL III Level II +
    Pin 4 Request to Send
    Pin 5 Clear to Send Channel 1
    Pin 22 Ring Indicator
```

Level I is normally used with equipment tied directly to each other, such as a terminal or a printer connected directly to a computer. Level II is normally used where a certain amount of handshaking is required, and is most often encountered in acoustic couplers (for transmission over a normal GPO telephone line, etc). Level III is used where a more precise and detailed control over data flow is required, such as in auto-answer modems. As such, Level III implementation may be considered as reserved for specialist equipment.

Fig. (c) EIA RS 232C interfacé pin assignments

EIA
 STANDARD
 RS-232C DATA COMMUNICATIONS

EIA Standard RS-232C is an established specification defining the logic levels and impedances at the modem/ terminal interface. This has been a well-accepted standard for low data-rate systems. Maximurn data rate is about 20 kilobaud.

Employing a voltage-mode type driver. RS-232C requires dual polarity logic signals and power supplies The data is unidirectional and not condusive to party. line operation. Hysteresis is generally employed in RS-232C receivers and a single power supply is required at the receiver end. Termination is not required.

EIA RS-232C	
Driver Output Voltoge $\left(Z_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega\right)$	$\begin{aligned} & 15 \mathrm{~V}<\mathrm{VOH}_{\mathrm{OH}}<5.0 \mathrm{~V} \\ & -5.0 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{OL}} \geqslant-15 \mathrm{~V} \end{aligned}$
Driver Output Voltege $\left(z_{L}-\infty\right)$	$\left\|v_{0}\right\|<25 v$
Driver Output Impedance (Power Supplies = 01	$2_{0}>300 \Omega$
Driver Short-Circuit Current	$\left\|\mathrm{I}_{\mathrm{O}}\right\|<0.5 \mathrm{mp}$
Driver Sliew Rate	$\frac{d v}{d t}<30 \mathrm{~V} / \mu \mathrm{s}$
Receiver input impedance	$7 \mathrm{kS} 2>\mathrm{Bin}>3 \mathrm{k} \Omega$
Receiver Input Voltage	$\left\|V_{1}\right\|<25 v$
Receiver Output with Open Input	Mark (thigh)
Recelver Output nith 30012 to Gnd of Input	Mark (high)
Receiver Output with +3.0 V on Input	Space (low)
Receiver Output with -3.0 V on Inpul	Mark (high)
Boud Rate	$B A<20$ kilobaud

EIA
 STANDARD
 RS-2326 DATA COMMUNICATIONS

MC1488 - Quad RS-232C Driver, Output Current Limiting

The MC1488 is a quad inverting TTL or DTL input line driver for RS-232C. It is designed to operate on ± 9 to $\pm 12 \mathrm{~V}$ power supplies and at a temperature range of 0 to $70^{\circ} \mathrm{C}$.

Features include guaranteed power-off output impedance and output current limiting.

Second sources available.

VOH - $V_{c c} / N_{E E}= \pm 9.0 \mathrm{~V}$ Volts Min		los	$\begin{gathered} \text { iPHL } \\ \mathrm{C}_{\mathrm{L}}^{\mathrm{P}}=\mathrm{Max} \mathrm{pF} \\ \hline \end{gathered}$
6.0	-6.0	± 6.0 to 12	175

MC1489 - Quad RS-232C Receiver, 0.25 V Input Hysteresis

The MC1489 quad inverting RS-232C receiver fea tures 250 mV of input hysteresis. The threshold window may be shifted by means of the response control input

Temperature range is 0 to $70^{\circ} \mathrm{C}$ and power supply requirement is a single +5 supply.
Second sources available.

MC1489A - Quad RS-232C Receiver, 1.1 V Input Hysteresis

The MC1489A is an improved version of the MC1489. It features 1.1 volts of input hysteresis for improved performance when slow-slewing input signals are present in noisy environments.

Second sources are available.

Device Number	Input $V_{\text {IHL }}$ Volts	inpur Vilih Volss	$\begin{gathered} \text { iPHL } \\ R_{\mathrm{L}}=390 \Omega \\ \mathrm{~m}=\mathrm{Max} \end{gathered}$
MC1489	1.0201 .5	0.75 to 1.25	50
MC1489A	1.15 to 2.25	0.75 to 1.25	50

	$7 \underset{5}{\square} \longrightarrow$					${ }^{0} 0$	${ }_{0}$	${ }^{0} 10$	${ }^{0} 1$	${ }^{1} 0_{0}$	${ }^{1} 0_{1}$	${ }^{1} 10$	${ }^{1} 1$.
	4	3	2	1	$\xrightarrow[\text { Row }]{\text { Column }}$	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	P		p
	0	0	0	1	1	SOH	DC1	- !	1	A	0	a	q
	0	0	1	0	2	STX	DC2	'	2	B	R	b	r
	0	0	1	1	3	ETX	DC3	\#	3	C	S	C	s
	0	1	0	0	4	EOT	DC4	\$	4	D	T	d	t
	0	1	0	1	5	ENQ	NAK	\%	5.	E	\mathbf{U}	e	u
	0	1	1	0	6	ACK	S.YN.	8	6	F	V	1	v
	0	1	1	1	7	BEL	ETB	,	7	G	W	g	w
	1	0	0	0	8	BS -	CAN	1	8	H	X	n	X
	1	0	0	1	9	SKIP HT	EM)	9	1	Y	i	y
	1	0	1	0	10 (a)	LF	SUB	\star	:	J	2	i	2
	1	0	1	1	11 (b)	VT ${ }^{\text {- }}$	ESC	+	;	K	[k	
	1	1	0	0	12 (c)	FF..	FS		-	L		1	
	1	1	0	1	13 (d)	CR	GS	-	$=$	M]	m	
	1	1	1	0	14 (e)	SO	HOME RS	.	-	N		n	\sim
	1	1	1	1	15 (f)	SI	NEW LINE	1	$?$	0	-	0	DEL RUB

ASCII Code Table
Abbreviations For Control Characters

NUL	null	FF	form feed	CAN	cancel
SOH	start of heading	CR	carriage return	EM	end of medium
STX	start of text	SO	shift out	SUB	substitute
ETX	end of text	SI	shift in	ESC	escape
EOT	end of transmission	DLE	data link escape	FS	file separator
ENQ	enquiry	DC1	device control 1	GS	group separator
ACK	acknowledge	DC2	device control 2	RS	record separator
BEL	bell	DC3	device control 3	US	unit separator
BS	backspace	DC4	device control 4	SP	space
HT	horizontal tabulation	NAK	negative acknowledge	DEL	delete
LF	linefeed	SYN	synchronous idle		
VT	vertical tabulation	ETB	end of transmission block		

NUMBERS CONVERSION TABLE

DECIMAL 10	BINARY ${ }_{2}$	OCTAL 8	HEXADEC 16	2^{n}
\&	\%	@	\$	
0	0	0	0	1
1	1	1	1	2
2	10	2	2	4
3	11	3	3	8
4	100	4	4	16
5	101	5	5	32
6	110	6	6	64
7	111	7	7	128
8	1000	10	8	256
9.	1001	11	9	512
10	1010	12	A	1024
11	1011	13	B	2048
12	1100	14	C	4096
13	1101	15	D	8192
14	1110	16	E	16384
15	1111	17	F	32768
16	10000	20	10	65536
17	10001	21	11	131072
18	10010	22	12	262144
19	10011	23	13	524288
20	10100	24	14	1048576
32	100000	40	20	4294967296
50	110010	62	32	-
60	111100	74	3 C	-
64	1000000	100	40	-
100	1100100	144	64	-
200	11001000	310	C8	-
255	11111111	377	FF	-

Ex. \& $39=\% 00100111=$ $047=\$ 27$

B 12479
新 $\$ 34.95$

Published by

[^0]: $H=$ HIGH voltage level

[^1]: $\mathrm{H}=\mathrm{HIGH}$ voltage leve

[^2]: $\mathrm{H}=\mathrm{HIGH}$ voltage level
 L = LOW voltage level

[^3]: $H=$ HIGH voltage level steady state
 = HIGH voltage level one set-up time prior to the HIGH-to-LOW Clock transition. ${ }^{(3)}$
 = LOW voltage level steady state.
 $=$ LOW voltage level one set-up time prior to the HIGH-to-LOW Clock transition. ${ }^{(3)}$
 $=$ Lower case letters indicate the state of the referenced output prior to the HIGH-to-LOW Clock transition.
 $x=$ Don't care.
 $\Omega=$ Positive Clock pulse.

 ## NOTES:

 1. Both outputs will be HIGH while both \bar{S}_{D} and \bar{R}_{D} are LOW, but the output states are unpredictable if \bar{S}_{D} and \bar{R}_{D} go HIGH simultaneously. 2. The 74LS76 is edge triggered. Data must be stable one set-up time prior to the negative edge of the Clock for predictable operation
 2. The J and K inputs of the 7476 must be stable while the Clock is HIGH for conventional operation.
[^4]: $\mathrm{H}=\mathrm{HIGH}$ voltage level
 $\mathrm{L}=$ LOW voltage level
 $X=$ Don't care

[^5]: $H=H I G H$ voltage level
 $L=$ LOW voltage level
 $X=$ Don't care

[^6]: $\mathrm{H}=\mathrm{HIGH}$ voltage level.
 $h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
 $\mathrm{L}=\mathrm{LOW}$ voltage level.
 I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
 $\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input (or output) on set-up time pror to the LOW-to-HIGH clock transition.
 $\mathrm{X}=$ Don't care
 $(Z)=$ HIGH impedance "off" state.
 $=$ LOW-to-HIGH clock transition.

[^7]: H $=$ HIGH voltage level
 L = LOW voitage level
 X = Don't care

[^8]: H $=$ HIGH voltage level
 $L=$ LOW voltage level
 X = Don't care

[^9]: $x=$ Don't Cate

[^10]: For the 8080A a logic " 1 " is defined as a high level and a logic " 0 " is defined as a low level.

[^11]: Mnemonics © Intel, 1978

[^12]: Intel Copporation Aseumee Mo Responability for the Uee of Any Circuitry Other Then Circultry Embodiad in an Intel Product. No Other Circult Patent Licenses are Implied information Contained Herein supercedee Proviouely Publithed Epecifications On Theee Devices From Intel.

[^13]: The folluwing are trademarks of intel Corporation and its alfisates and may be used only to dentify intel products BXP. CREDIT. I, ICE. ICS. Im. Insite. Intel. INTEL. Intelevisyon. Intellink. intellec. MMX, IOSP, IPDS, IAMX ISBC ISBX. Library Manager MCS. MULTIMOOULE, Megechassis Micromaintrame. MULTIBUS. Multichannei. Plug-A-Bubble. PROMPT, Promware. RUPI, RMXBEO. System 2000. UPI and the combination of ICS. IRMX. ISBC. ISBX. ICE, IIICE, MCS. Or UPI and a numerical sulfix intel Corporation Assumes No Responibelity for the Use of Any CIrcuitry Other Than Circuitry Embodied in an intel Product No Other Parent Licensas are implied § intel CORPORATION. 1983

[^14]: Intel Corporation assumes no responsibility for use of any c : cuitry other than circuitry emtentise in an intel product. No other crrcult patent icenses are implied.

[^15]: Intel Corporation assumes no responsibslity for the use of any cricuitry other than cricurtry embodied in an Intel product. No other circuit patent incenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel

[^16]: NOTE [] = bit number

[^17]: dre suhturt to riselys withent motion

[^18]: Round to Extended (Default)
 Round to Double
 Round to Single

[^19]: - Do not use RO or RRO as indirect, index, or base reqisters.

[^20]: Thas document contains information on a new product. Specifications and information herein are subject to change without notice

[^21]: x : Denit care

[^22]: TRI-STATEe is a registered trademerk of National Semiconductor Corp.

[^23]: - Devices may be ordered by using ether order number.

[^24]: *Note. Devices may be ordered by using either order number.

[^25]: ${ }^{4}$ Protected by U.S. Patear Nos. 3,803,590; 4,213,805; 4,511,413; RE 28,633.

[^26]: - Pin connections shown on schematic diagram
 and typical applications are for TO. 5 package.

[^27]: FIGURE 6. 24HHour Oper:AOn:

