

PROGRAMMING

THE 8086/8088

PROGRAMMING
THE 8086/8088

James W. Coffron

~EX®
~,

Berkeley. Paris. Dusseldorf

Cover art by Jean Francois Penichoux

Design and layout by Ingrid Owen

8086 and 8088 are trademarks of, and all mnemonics are copyright by, Intel Corporation.

IBM PC is a registered trademark ofInternational Business Machines, Inc.

Sybex is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, Sybex assumes
no responsibility for its use, nor for any infringements of patents of other rights or third parties which
would result.

©1983 SYBEX Inc. 2344 Sixth Street. Berkeley, CA 94710. World rights reserved. No part of this publi­
cation may be stored in a retrieval system, transmitted. or reproduced in any way. including but not
limited to photocopy. photograph. magnetic or other record. without the prior agreement and written
permission of the publisher.

Library of Congress Card Number: 83-50228
ISBN 0-89588-12()'9
First Edition 1983
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

To Bill Long

vi

CONTENTS

Acknowledgements x

Introduction xi

BASIC CONCEPTS 11 What Is Programming? 2

Flowcharting 3

Information Representation 4

INSIDE THE 8086/8088 272 General Microprocessor System Architecture 28
Inside a Microprocessor 30
The General Instruction Cycle 34
Internal Organization of the 8086/8088 37
8086/8088 General Registers 39
Additional Control Flags 42
Summary 43

8086/8088 MEMORY ORGANIZATION 3 AND ADDRESSING MODES 47
System Memory Organization of the 8086 48
Aligned and Non-Aligned Words 51
System Memory Organization of the 8088 52
Address Generation with the 8086/8088 52
8086/8088 Object Code 58
Object Code for Indexing and Base Register Use 62
Object Code Summary 62
Summary 63

vii

4

5

6

7

8

THE INSTRUCTION SET:

INDIVIDUAL DESCRIPTIONS
 65

BASIC PROGRAMMING TECHNIQUES
 175
Arithmetic Programs 176

BCD Arithmetic 180

Subroutines 188

CALL-RETURN Mismatch 191

Summary 193

INTERRUPTS FOR THE 8086/8088 195

What is an Interrupt? 196

CPU Activity During the NMI Request 198

The Interrupt Table 199

INTR Input 202

Internal Interrupts 203

Resetting the 8086/8088 206

Summary 208

INPUT/OUTPUT FOR THE 8086/8088 211

What is Input and Output? 212

liD Addressing 213

Input Instruction 216

Output Instruction 218

8086 Input and Output Ports 219

8088 Input and Output Ports 219

Using an 8255 PIO Device with the 8086/8088 224

Example of Keyboard Scanning 232

Summary 238

MORE APPLICATIONS USING THE IBM

PERSONAL COMPUTER
 241
BIOS (Basic liD System) 242

BIOS Advantage 242

Accessing Peripherals Using the BIOS 243

Preamble for the Printer liD 246

Keyboard Preamble 253

RS-232 Preamble 256

viii

Program Definition 258

Summary 261

PROGRAM DEVELOPMENT 263
9
Programming Choices 264

The Software Development Sequence 268

Hardware Alternatives 269

Summary of Hardware Resources 271

The Assembler 271

The Assembly Language 275

Summary 279

Conclusion 279

Index 306

x

ACKNOWLEDGEMENTS
I wish to thank Bob Schuchard and Richard King, for their review and

helpful suggestions; and my wife Carol, for preparing the original dia­
grams. Finally, a hearty thanks to the entire staff at Sybex for their splendid
efforts.

xi

INTRODUCTION

Welcome to the exciting world of 16-bit microprocessors. Imagine

yourself programming, controlling, and using one of the most powerful
and versatile 16-bit microprocessors: the 8086. This microprocessor can
access over ONE MILLION memory locations-a far cry from the 64 thou­
sand available in the majority of 8-bit microprocessors.

The 8086 is one of the most widely-used, 16-bit microprocessors in
industry today. It has an extremely powerful instruction set that allows
you to make your own software application a reality. In fact, the 8086 has
two instructions that allow you to directly multiply and divide numbers;
thus lengthy algorithms are no longer required to perform these tasks.

As you learn how to program the 8086, you will also be learning how to
program the 8088 microprocessor. These two processors have identical
instruction sets, and software written for one can be run on the other with
no changes.

Both the 8086 and 8088 are well suited for communication with I/O
devices and 110 ports. In fact, their architecture can support over 64,000
unique input and output ports. These ports can be any combination of 8 or
16 bits wide!

In addition, the 8086 and 8088 offer a powerful interrupt scheme, which
allows you to vector to any system address for service routines. There are
special interrupt vectors for single stepping and for internal errors, such as
division by zero. Further, any of the interrupt service routines can be
evoked via hardware or software.

The 8086 and 8088 are designed for ease of use in multiprocessor system
applications. In light of this, Intel Corporation has designed several co­
processors for use with the 8086/8088.

The preceding topics and more will be covered in this text. You will
learn to program the 8086/8088 inside and out. From the internal micro­
processor architecture to the advanced addressing modes, you will be
shown how it all works. Each instruction will be described and several
examples of actual programs will be given. To add more "real world"
explanation, we will actually present examples of programs written for the
IBM® PC, that use the 8088 microprocessor.

So, whether you are a beginner in microprocessor assembly-language
programming or an advanced programmer, there is something for you in
this text. After reading this book, you should be able to program the 8086/
8088 for any application. In addition you should find that the text will
serve as a valuable reference later on.

xii

So let's get going! Let's start down the path that will lead you to an under­
standing of the power contained in one of the most advanced 1S-bit micro­
processors in use today.

CHAPTER BREAKDOWN

Chapter 1 starts off with a review of the basic concepts of micropro­
cessor programming. It covers number representation, the addition and
subtraction of binary and BCD numbers, and the use of flags.

Chapter 2 describes in general, the internal structure of a micropro­
cessor; and discusses, in particular, the internal registers of the 8086/8088.
An in-depth discussion focuses on the differences and similarities
between the 8086 and 8088, and microprocessors in general.

Chapter 3 details the physical memory organizations of the 8086 and
8088 microprocessors-and shows that they are completely different. In
addition, this chapter examines the different addressing modes for the vari­
ous instructions.

Chapter 4 is a big one. It gives a complete listing of each instruction for
the 8086/8088 and provides the relevant information pertaining to each
instruction.

Chapter 5 discusses the basic programming techniques for micropro­
cessors-addition, subtraction, multiplication, and division-and shows
how these techniques are accomplished using the 8086/8088 instructions.

Chapter 6 discusses the general topic of interrupts for a microprocessor
system and describes the complete interrupt structure for the 8086/8088.
By the end of this chapter you will have a good understanding of how
interrupts are used with these CPUs.

Chapter 7 covers the input and output techniques for the 808618088. Vari­
ous input and output instructions are discussed and their uses examined.
Included are programs for controlling an 8255 PIO and an 8253 counter
timer LSI device.

Chapter 8 gets into "real world" applications. It shows you how to use
the information on the 8088 to control the IBM PC. Two different applica­
tion programs are given. Each uses the IBM BIOS to control the printer,
the keyboard, and the RS-232 port.

Chapter 9 explores various program development techniques. Develop­
ment hardware is evaluated and trade-offs are discussed. The chapter
concludes with a discussion of assembly language details which you will
be needing to write programs for the 8086/8088 CPU.

xiii

Also included are four useful appendices. Appendix A is a hexadecimal
conversion table. Appendix B is an ASCII conversion table. Appendix C
is a decimal-to-BCP conversion table. Appendix D is an 808618088 instruc­
tion set summary.

BASIC CONCEPTS

INTRODUCTION

We shall begin with a discussion of the
basic concepts and definitions used in com­
puter programming. Ifyou are already famil­
iar with these concepts, you may only want
to glance quickly at the contents of this
chapter and then move on to Chapter 2. We
do suggest, however, that even if you are an
experienced programmer, you read through
this chapter in order to familiarize yourself
with the approach used throughout this book.

2 PROGRAMMING THE 8086/8088

WHAT IS PROGRAMMING?

Given a problem, one normally tries to devise a solution. When this solu­
tion is expressed as a step-by-step procedure, it is called an algorithm. An
algorithm may be expressed in any language or symbolism. It must termi­
nate in a finite number of steps. Here is a simple example of an algorithm
for unlocking and opening a door:

1. Insert key in the keyhole

2. Turn key one full turn to the left

3. Grasp doorknob

4. Turn doorknob, and push on the door

At this point, if the algorithm is correct for the type of lock involved, the
door will open.

Once a solution to a problem has been expressed in the form of an algo­
rithm, the next step is to translate it into a language that is understood by
the computer.

At this point in time, only a well-defined subset of a natural language­
called a programming language-is "understood" by computers. The
conversion of an algorithm into a sequence of instructions comprising a
programming language is called programming. The actual translation
phase of the algorithm into the programming language is called coding.
Programming refers not just to the coding, but also to the overall design of
the programs and "data structures" that will implement the algorithm.

Effective programming requires not only an understanding of the possible
implementation techniques for standard algorithms, but also the skillful
use of computer hardware resources (such as internal registers, memory,
and peripheral devices) and a creative use of appropriate data structures.
(Note: We will examine these techniques in the chapters that follow.)

Programming also requires a strict documentation discipline. Well­
documented programs are understandable not only to the author later on,
but also to other users. Documentation must be both internal and external.
Internal program documentation refers to the comments used in the body
of a program to explain its operation. External documentation refers to the
design documents that are separate from the program, including written
explanations, manuals, and flowcharts.

An intermediate step is almost always taken between the design of the
algorithm and the creation ofthe program. This step is called flowcharting.

3 BASIC CONCEPTS

FLOWCHARTING

A flowchart is simply a symbolic representation of an algorithm, usually
expressed as a sequence of rectangles and diamonds. On a flowchart, rec­
tangles are used to represent commands, (or executable statements), and
diamonds are used for tests such as: If information X is true, then take
action A; if not, take action B. Figure 1.1 shows an example of a flowchart.
We will not give a formal definition for flowcharts at this point; we will dis­
cuss flowcharting in more detail in Chapter 3.

Flowcharting is a highly recommended intermediate step between
the specification of an algorithm and the actual coding of a solution.
Remarkably, it has been observed that perhaps 10% of the programming
population can write a program successfully without having to prepare a
flowchart. Unfortunately, it has also been observed that 90% of the popula­
tion believes it belongs to this 10%! The result, then, is that, on the average,
80% of the programs fail the first time they are run on a computer. (These
percentages are naturally not meant to be accurate.) In short, most novice
programmers seldom see the necessity for drawing a flowchart. Ignoring

START

READ TEMPERATURE

SETTING "T" ON

THERMOSTAT

BOX

2 READ ACTUAL ROOM
TEMPERATURE "R"

FROM THERMOMETER
OR OTHER SENSOR

(OPTIONAL DELAY) (OPTIONAL DELAY)

'---------iFisure 1.1: A flowchart for keeping room temperature constant.

4 PROGRAMMING THE 8086/8088

the flowcharting step usually results in an erroneous program, and the
programmer must then spend a long time testing and correcting his or
her program. (This is known as the debugging phase.) The discipline of
flowcharting is, therefore, highly recommended in all cases. Flowcharting
generally requires a small amount of additional time prior to the coding,
and usually results in a clear program that executes correctly within
a short period of time. Once the procedure of flowcharting is well­
understood, a small percentage of programmers can perform this step
mentally, without using paper. Unfortunately, in such cases, the programs
they write are usually difficult for others to understand, since the docu­
mentation normally provided with a flowchart is not available. It is univer­
sally recommended that flowcharting be used as a strict discipline for any
program more than ten or fifteen instructions long. Many examples of
flowcharting are provided throughout this book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or char­
acters. We will now examine the external and internal representations of
information on a computer.

INTERNAL REPRESENTATION OF INFORMATION

Information in a computer is stored as groups of bits. A bit stands for
binary digit. Because of the limitations of conventional electronics, the
most practical representation of information uses two-state logic. The two
states of the circuits used in digital electronics are generally "on" and "off."
These states are represented logically by the symbols "0" and "1". Because
these circuits are used to implement logical functions, they are called
binary logic circuits. As a result, virtually all information processing
today is performed in binary format. A group of eight bits is called a byte.
A group of four bits is called a nibble.

Let us now see how information is represented internally in this binary
format. Two entities must be represented inside the computer: the pro­
gram (which is a sequence of instructions), and the data on which the
program operates. The data may include numbers or alphanumeric text.
Let's now discuss the representation of instructions, numbers, and alpha­
numerics in binary format.

Many of the examples that follow use eight bits. This makes it easier to
explain the concept being discussed. The examples can easily be ex­
panded to more than eight bits.

5 BASIC CONCEPTS

Representing Numeric Data The representation of numbers in binary
is not a straightforward task: several cases must be distinguished. We must
be able to represent whole numbers, such as signed numbers (i.e., positive
and negative numbers or integers) and numbers with decimal points. Let
us now address these requirements and possible solutions.

Integers may be represented using a direct binary representation. The
direct binary representation is simply the representation of the decimal
value of a number in the binary system. In the binary system, the right­
most bit represents 2 to the power O. The next bit to the left represents 2 to
the power 1; the next, 2 to the power 2; and the left-most bit, 2 to the power
7, which equals 128. For example,

b7bsb5b4b3b2b1bo

represents

b727 + b626 + b525 + b424 +b323 + b222 + b121 + b02°

The powers of 2 are:

27 =128,26 =64,25 = 32,24 = 16,23 =8,22 = 4,21 = 2,2° = 1

The binary representation is analogous to the decimal representation of
numbers. For example, 123 represents:

1 x 100 = 100

+2 x 10 = 20

+3 x 1 = 3

123

Note that 100 = 102,10 = 10\ 1 = 10°. In this positional notation, each
digit represents a power of 10. In the binary system, each binary digit or bit
represents a power of 2, instead of a power of 10 as in the decimal system.
Let's look at an example of binary. 00001001 in binary represents:

lx 1=1 (2°)

Ox 2=0 (21)

Ox 4=0 (22)

1 x 8=8 (23)

Ox 16 = 0 (24)

Ox 32 = 0 (25)

Ox 64 = 0 (26)

Ox 128 = 0 (27)

or 9 in decimal

6 PROGRAMMING THE 8086/8088

Let's look at some other examples. 10000001 represents:

1 x 1 = 1

Ox 2= 0

Ox 4= 0

Ox 8= 0

Ox 16 = 0

Ox 32 = 0

Ox 64= 0

1 x 128 = 128

or 129 in decimal

Therefore, 10000001 represents the decimal number 129. Examining the
binary representation of numbers makes it easy to understand why bits are
numbered from 0 to 7, going from right to left. Bit 0 is bo and corresponds
to 2°. Bit 1 is b1and corresponds to 21, and so on. The binary equivalents of
the numbers from 0 to 255 are shown in Figure 1.2.

Decimal to Binary Conversely, we can compute the binary equivalent of
11 decimal:

11 + 2 = 5 remains 1 >1 (lowest bit)

5 + 2 = 2 remains 1 >1

2 + 2 = 1 remains 0 >0

1 + 2 = 0 remains 1 >1 (highest bit)

The binary equivalent is 1011 (read the right-most column from bottom to
top). The binary equivalent of a decimal number can be obtained by con­
tinually dividing by 2, until a quotient of 0 is obtained.

Operating on Binary Data The arithmetic rules for binary numbers are
straightforward. The rules for addition are:

0+ 0 = 0

0+ 1 = 1

1 + 0 = 1

1 + 1 = (1) 0

where (1) denotes a "carry" of 1 (note that 10 is the binary equivalent of 2
decimal). Binary subtraction can be performed by "adding the comple­
ment." We will discuss binary subtraction once we learn how to represent
negative numbers. Let's consider the following example involving

7 BASIC CONCEPTS

addition:

(2) 10

+(1) +01

(3) 11

Addition is performed just as in decimal, by adding the columns. from

DECIMAL BINARY DECIMAL BINARY

0 OOOOOOOO 32 00100000

1 00000001 33 00100001

2 00000010 •
3 00000011 •
4 00000100 •
5 00000101 63 0011111

6 00000110 64 0100000

7 00000111 65 0100001

8 00001000 •
9 00001001 •

10 00001010 •
11 00001011 127 01111111

12 00001100 128 10000000

13 00001101 129 10000001

14 00001110

15 00001111 •

16 00010000 •

17 00010001 •

•

•

• 254 11111110

31 00011111 255 11111111

8 PROGRAMMING THE 8086/8088

right to left. First you add the right-most column:

11

+01 (0 + 1 = 1. No carry.)

Then the next column:

1.0
+111
'1 (1 + 0 = 1. No carry.)

Let us now look at other examples of binary addition:

0010 (2) 0011 (3)
+ 0001 	 (1). +0001 (1)

0011 (3) 0100 (4)

The last example illustrates the role of the carry. Looking at the right-most
bits: 1 + 1 = (1) O. A carry of 1 is generated, which must be added to the
next bits:

001 (column 0 has just been added)
+000
+ 1 (carry)

= (1)0 (where (1) indicates a new carry into column 2)

The final result is 0100.

Let's consider another example:

0111 (7)
+ 0011 	 + (3)

1010 (10)

In this example, a carry is again generated, up to the left-most column.
With eight bits, it is, therefore, possible to directly represent the numbers

00000000 to 11111111 (i.e., 0 to 255). Two limitations, however, should be
immediately visible. First, we are only representing positive numbers. Sec­
ond, the magnitude of these numbers is limited to 255, if we use only eight
bits. Let's now address these limitations in turn.

Signed Binary In a signed binary representation, the left-most bit is used
to indicate the sign of the number. Traditionally, 0 is used to denote a posi­
tive number and 1 is used to denote a negative number. For example,
11111111 represents -127, while 01111111 represents +127. We can now

9 BASIC CONCEPTS

represent positive and negative numbers, but we have reduced the maxi­
mum magnitude of these numbers to 127. As another example, 00000001
represents + 1 (the leading 0 is .. + ", followed by 0000001 = 1) and
10000001 is - 1 (the leading 1 is " - H).

Let us now address the magnitude problem. In order to represent larger
numbers, it is necessary to use a larger number of bits. For example, if we
use sixteen bits (two bytes) to represent numbers, we will be able to repre­
sent numbers from - 32K to + 32K in signed binary. (lK in computer jar­
gon represents 1,024.) Bit 15 is used for the sign, and the remaining 15 bits
(bit 14 through bit 0) are used for the magnitude: 215 = 32K.

If we wish to represent large integers, it is necessary to use a larger
number of bytes internally. This is why most simple BASICs, and other
languages, provide only a limited precision for integers. This way, they can
use a shorter internal format for the numbers they manipulate. Better ver­
sions of BASIC and some other languages provide a larger number of sig­
nificant decimal digits at the expense of a large number of bytes for each
number.

Let us now solve another problem: speed efficiency. Let's perform an
addition in the signed binary representation we have just introduced. We
want to add + 7 and - 5.

+ 7 is represented by 00000111

- 5 is represented by 10000101

The binary sum is: 10001100, or -12

This is not the correct result. The correct result is +2. We have neglected
the fact that in order to use this representation, special actions must be
taken, depending on the sign. This results in increased complexity and
reduced performance. In other words, the binary addition of signed num­
bers does not "work correctly." This is annoying. Clearly, the computer
must not only represent information, but it must also perform arithmetic
on it.

The solution to this problem is called the two's complement representa­
tion. We will use the two's complement representation, instead ofthe
signed binary representation. Before we introduce two's complement, we
will first introduce an intermediate step: one's complement.

One's Complement In the one's complement representation, all positive
integers are represented in their correct binary format. For example + 3
is represented as usual by 00000011. However, its complement, - 3, is
obtained by complementing every bit in the original representation. Each

10 PROGRAMMING THE 8086/8088

ois transformed into a 1 and each 1 into a O. In our example, the one's com­
plement representation of - 3 is 11111100.

Let's look at another example:

+2 is 00000010
-2 is 11111101

Note that, in this representation, positive numbers start with a 0 on the
left, and negative numbers start with a 1 on the left. As a test, let's add - 4
and +6:

-4 is 11111011
+ 6 is 00000110

The sum is: (1) 00000001

where (1) indicates a carry. The correct result should be 2 or 00000010.
Let's try again:

-3 is 11111100
-2 is 11111101

The sum is: (1) 11111001

or - 6, plus a carry. The correct result is - 5. The representation of - 5 is
11111010. It did not work.

This representation does represent positive and negative numbers; how­
ever, the result of an ordinary addition does not always come out correctly.
We will now use another representation. It is evolved from the one's com­
plement and is called the two's complement representation.

Two's Complement Representation In the two's complement represen­
tation, positive numbers are represented, as usual, in signed binary, just
like in one's complement. The difference lies in the representation of neg­
ative numbers. A negative number represented in two's complement is
obtained by first computing the one's complement and then adding one.
Let's examine an example:

Example: + 3 is represented in signed binary by 00000011. Its one's
complement representation is 11111100. The two's complement is
obtained by adding one. It is 11111101.

Let's try an addition:

(3) 00000011
+ (5) + 00000101

(8) 00001000

The result is correct.

BASIC CONCEPTS 11

Let's try a subtraction:

(3) 00000011
(-5) 	 + 11111011

11111110

Now, let's identify the result by computing the two's complement:

(The one's complement of 11111110 is) 00000001
(Adding 1) + 1

(Therefore, the two's complement is) 00000010 (or + 2)

The result +11111110 represents - 2. It is correct.
We have now tried addition and subtraction, and the results have been

correct (ignoring the carry). It seems that two's complement works!
We will now add +4 and - 3 (the subtraction is performed by adding the

two's complement):

+4 is 00000100

-3 is 11111101

The result is: (1) 00000001

Ifwe ignore the carry, the result is 00000001 (Le., 1 in decimal). This is the
correct result. Without giving the complete mathematical proof, we will
simply state that this representation does work. In two's complement, it is
possible to add or subtract signed numbers, regardless of the sign. Using
the usual rules of binary addition, the result comes out correct, including
the sign. The carry is ignored. This is a very significant advantage. If this
were not the case, we would have to correct the result for sign every time,
causing a much slower addition or subtraction time.

For the sake of completeness, let us state that two's complement is sim­
ply the most convenient representation to use for simpler processors, such
as microprocessors. On more complex processors, other representations
may be used. For example, one's complement may be used, but if one's
complement is used, special circuity is required to "correct the result."

From this point on, all signed integers will be implicitly represented
internally in two's complement notation. See Figure 1.3 for a table of two's
complement numbers.

We will now offer examples that demonstrate the rules of two's comple­
ment. In particular, C denotes a possible carry (or borrow) condition. (It is
bit 8 of the result.) V denotes a two's complement overflow; that is, it indi­
cates when the sign of the result is changed "accidentally," because the

12 PROGRAMMING THE 8086/8088

+ lWO'S COMPLEMENT CODE

+ 127 01111111

+ 126 01111110

+ 125 01111101
...

+ 65 01000001

+64 01000000

+ 63 00111111
.. .

+ 33 00100001

+ 32 00100000

+ 31 00011111
.. .

+ 17 00010001

+ 16 00010000

+ 15 00001111

+ 14 00001110

+ 13 00001101

+ 12 00001100

+ 11 00001011

+ 10 00001010

+ 9 00001001

+ 8 00001000

+ 7 00000111

+ 6 00000110

+ 5 00000101

+ 4 00000100

+ 3 00000011

+ 2 00000010

+ 1 00000001

+ 0 OOOOOOOO

-

- 128

- 127

- 126

- 125
...

- 65

-64

- 63
...

-33

- 32

- 31
...

- 17

- 16

- 15

- 14

- 13

- 12

- 11

- 10

- 9

- 8

- 7

- 6

- 5

- 4

- 3

- 2

- 1

lWO'S COMPLEMENT CODE

10000000

10000001

10000010

10000011

10111111

11000000

11000001

11011111

11100000

11100001

11101111

11110000

11110001

11110010

11110011

11110100

11110101

11110110

11110111

11111000

11111001

11111010

11111011

11111100

11111101

11111110

11111111

-Figure 1.3: A Two's Complement ThbIe.-------------­

BASIC CONCEPTS 13

numbers are too large. It is an essentially internal carry from bit 6 to bit 7
(the sign bit). This will be clarified below.

Let us now demonstrate the role of the carry C and the overflow V.

The Corry C Here is an example of a carry:

(128) 10000000
+ (129) + 10000001

(257) = (1) 00000001

where (1) indicates a carry. The result requires a ninth bit (bit 8, since the
right-most bit is 0). It is the carry bit.

Ifwe assume that the carry is the ninth bit of the result, we recognize the
result as binary 100000001 = 257. However, the carry must be recognized
and handled with care. Inside the microprocessor, the registers used to
hold information are generally only eight bits wide. When storing the
result, only bits 0 to 7 will be preserved.

A carry, therefore, always requires special action. It must be detected by
special instructions, then processed. Processsing the carry means either
storing it somewhere (with a special instruction), ignoring it, or deciding
that it is an error (if the largest authorized result is 11111111).

Overflow V Here's an example of overflow:

bit 6

bit 7#
01000000 (64)

(+)01000001 + (65)
10000001 (-127)

An internal carry has been generated from bit 6 into bit 7. This is called an
overflow. The result is now negative, "by accident." This situation must be
detected, so that it can be corrected.

Let us examine another situation:

11111111 (-1)
+ 11111111 + (-1)

(1) 11111110 (- 2)

+
carry

In this case, an internal carry has been generated from bit 6 into bit 7, and
also from bit 7 into C. The rules of two's complement arithmetic specify

14 PROGRAMMING THE 8086/8088

that this carry should be ignored. The result is then correct. This is because
the carry from bit 6 to bit 7 did not change the sign bit.

The carry from bit 6 into bit 7 is not an overflow condition. When oper­
ating on negative numbers, the overflow is not simply a carry from bit 6
into bit 7. Let's examine one more example:

11000000 (-64)
+ 10111111 (-65)

(1) 	 01111111 (+ 127)

t carry

This time, there has been no internal carry from bit 6 into bit 7, but there
has been an external carry. The result is incorrect, as bit 7 has been
changed. An overflow condition should be indicated.

Overflow will occur in four situations, including:

1. 	 the addition of large positive numbers

2. 	 the addition oflarge negative numbers

3. 	 the subtraction of a large positive number from a large negative
number

4. 	 the subtraction of a large negative number from a large positive
number.

Let us now improve our definition of the overflow.
Technically, the overflow indicator, a special bit reserved for this pur­

pose, and called a condition code, will be set when there is a carry from bit
6 into bit 7, and there is no external carry. It will also be set when there is
no carry from bit 6 into bit 7, but there is an external carry. This indicates
that bit 7-the sign of the result-has been accidentally changed. For the
technically-minded reader, the overflow flag is set by Exclusive DRing the
carry-in and carry-out of bit 7 (the sign bit). Practically every micropro­
cessor is supplied with a special overflow flag to automatically detect this
condition-a condition that requires corrective action.

Overflow indicates that the result of an addition or subtraction requires
more bits than are available in the standard 8-bit register used to contain
the result.

The Carry and the Overflow The carry and the overflow bits are called
condition codes. They are provided in every microprocessor. We will learn
to use them for effective programming in Chapter 2. These two indicators

BASIC CONCEPTS 15

are located in a special register called the flags or "status" register. This
register also contains additional indicators (as described in Chapter 4).

Examples We will now look at actual examples that illustrate the opera­
tion of the carry and the overflow. In each example, the symbol V denotes
the overflow, and C denotes the carry. Ifthere has been no overflow, V will
equal o. If there has been an overflow, V will equal 1 (the same is true for
the carry C). Remember that the rules of two's complement specify that the
carry be ignored. (The mathematical proofis not supplied here.) Let's
examine the following examples:

Positive-Positive
00000110

+ 00001000
(+ 6)

[+8)

00001110
[CORRECT)

[+ 14) V:o C:O

Positive-Positive with Overflow
01111111 [+ 127)

+ 00000001 (+ 1)

10000000
(ERROR)

(- 128) V:1 C:O

The above is invalid because an overflow has occurred.

Positive-Negative (result positive)
00000100 [+4)

+ 11111110 (-2)

(1)00000010 [+ 2) V:o C:1 (disregard)
(CORRECT)

Positive-Negative (result negative)
00000010 [+2)

+ 11111100 [-4)

11111110 [-2) V:o C:o
(CORRECT)

Negative-Negative
11111110 [-2)

+ 11111100 [-4)

(1)11111010 (-6) V:o C:1 [disregard)
[CORRECT)

16 PROGRAMMING THE 8086/8088

Negative-Negative with Overflow
10000001 (-127)

+ 11000010 (- 62)

(1)01000011 (+ 67) V:1 C:1
(ERROR)

In the last examples, an "underflow" has occurred, by adding two large neg­
ative numbers. The result is - 189, which is too large to reside in eight bits.

Fixed Format Representation We now know how to represent signed
integers; however, we have not yet resolved the problem of magnitude. If
we want to represent larger integers, we will need several bytes. In order
to perform arithmetic operations efficiently, it is necessary to use a fixed
number of bytes, rather than a variable number. Therefore, once the num­
ber of bytes is chosen, the maximum magnitude of the number that can be
represented is fixed.

THE MAGNITUDE PROBLEM

Let us consider the following important point: the number of bits, n,
chosen for the two's complement representation is usually fixed for that
program. If any result or intermediate computation should generate a
number that requires more than n bits, some bits will be lost. The program
normally retains the n left-most bits (the most significant) and drops the
low-order ones. This is called truncating the result.

Let's look at an example in the decimal system, using a six-digit repre­
sentation:

123456
x 1.2

246912

123456

148147.2

The result requires seven digits. The 2 after the decimal point will be
dropped, and the final result will be 148147. It has been truncated. Usually,
as long as the position of the decimal point is not lost, this method is used
to extend the range of the operations that can be performed, at the expense
of precision. The problem is the same in binary. This fixed-format repre­
sentation may cause a loss of precision, but it may be sufficient for usual
computations or mathematical operations.

Unfortunately, in the case ofaccounting, no loss of precision is tolerable.

BASIC CONCEPTS 17

For example, ifa customer rings up a large total on a cash register, it would
not be acceptable to have a five-figure total that would be approximated to
the dollar. Thus, another representation must be used whenever precision
in the result is essential. The solution normally used is BCD, or binary­
coded decimal.

BCD Representation The principle used in representing numbers in BCD
is to encode each decimal digit separately and to use as many bits as neces­
sary to represent the complete number exactly. To encode each of the dig­
its from 0 through 9, four bits are necessary. (Three bits supply only eight
combinations and, therefore, cannot encode the ten digits.) Four bits allow
sixteen combinations and are, therefore, sufficient to encode the digits 0
through 9. It should also be noted that six of the possible codes will not be
used in the BCD representation (see Figure 1.4). This will result later on in
a potential problem, when pedorming additions and subtractions. Since
only four bits are needed to encode a BCD digit, two BCD digits may be
encoded in every byte. This is called packed BCD. As an example,
00000000 is 00 in BCD. 10011001 is 99.

A BCD code is read as follows:
0010

I

As many bytes as necessary will be used to represent all BCD digits.
Typically, one or more nibbles will be used at the beginning of the repre­
sentation to indicate the total number of nibbles (i.e., the total number of
BCD digits used). Another nibble or byte will be used to denote the position

CODE BCD SYMBOL CODE BCD SYMBOL

0000 0 1000 8

0001 1 1001 9

0010 2 1010 UNUSED
0011 3 1011 UNUSED
0100 4 1100 UNUSED
0101 5 1101 UNUSED
0110 6 1110 UNUSED
0111 7 1111 UNUSED

------------------Figure1.4: A BCD 'lbbJe.­

18 PROGRAMMING THE 8086/8088

of the decimal point. However, conventions may vary. Here is an example
of a representation for multibyte BCD integers:

3 + 2 2 1 (3 bytes)

+ ~

number of dIgits sign number 221•
(up to 255)

This example represents + 221. (The sign may be represented by 0000 for
+ , and 0001 for -, for example.)

The BCD representation can easily accommodate decimal numbers. For
example, +2.21 may be represented by:

3 2 + 2 2 1

3 digits• • +• -------­"." is on the 221

left of digit 2

The advantage of BCD is that it yields absolutely correct results. Its
disadvantage is that it uses a large amount of memory and results in slow
arithmetic operations. This is acceptable only in an accounting environ­
ment, but BCD is normally not used in other cases.

We have now solved the problems associated with the representation of
integers, signed integers, and large integers. We have even presented one
possible method of representing decimal numbers, with BCD representa­
tion. Let us now examine the problem of representing decimal numbers in
fixed length format.

Floating-Point Representation The basic principle of floating point rep­
resentation is that decimal numbers are represented with a fixed length
format. In order not to waste bits, the representation will normalize all the
numbers. For example, 0.000123 wastes three zeroes on the left before
non-zero digits. These zeroes have no meaning except to indicate the posi­
tion of the decimal point. Normalizing this number results in .123 x 10- 3•

. 123 is the normalized mantissa; - 3 is the exponent. We have normalized
this number by eliminating all the meaningless zeroes to the left of the first
non-zero digit and by adjusting the exponent. Let's consider another

BASIC CONCEPTS 19

example:
Example: 22.1 is normalized as .221 x 102 • The general form of floating­

point representation is M x 10E, where M is the mantissa, and E is the
exponent.

It can be readily seen that a normalized number is characterized by a
mantissa less than 1 and greater than or equal to .1 in all cases where the
number is not zero. In other words, it can be represented mathematically
by:

.1~ M<10rl0-1~ M<llf

Similarly, in the binary representation:

2-1~ M< 2°(or.5~ M<l)

where M is the absolute value of the mantissa (disregarding the sign). For
example:

111.01 is normalized as: .11101 x 23.

The mantissa is 11101. The exponent is 3.
Now that we have defined the principle of the representation, let us

examine the actual format. A typical floating-point representation appears
in Figure 1.5.

In the representation in Figure 1.5, four bytes are used for a total of 32
bits. The first byte on the left of the illustration is used to represent the
exponent. Both the exponent and the mantissa will be represented in two's
complement. As a result, the maximum exponent will be -128. "S" in Fig­
ure 1.5 denotes the sign bit.

Three bytes are used to represent the mantissa. Since the first bit in the
two's complement representation indicates the sign, this leaves 23 bits for
the representation of the magnitude of the mantissa.

This is only one example of a floating point representation. It is possible
to use only three bytes, or it is possible to use more. The +byte representa­
tion proposed above is a common one that represents a reasonable compro­
mise in terms of accuracy, magnitude of numbers. storage utilization. and
efficiency in arithmetic operation.

We have now explored the problems associated with the representation
of numbers and have learned how to represent them in integer form with a

31 24 23 16 15 8 7 o

-----------Figure 1.S: Typjcal Floating-Point Representation.­

20 PROGRAMMING THE 808618088

sign, or in decimal form. Let's now go on to examine how alphanumeric
data is represented internally.

Representing Alphanumeric Data The representation of alphanu­
meric data (i.e., characters) is completely straightforward: all characters
are encoded in an 8-bit code. Only two codes are in general use in the com­
puter world, the ASCII Code and the EBCDIC Code. ASCII stands for
"American Standard Code for Information Interchange," and is univer­
sally used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and is, therefore, not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We encode 26 letters of the
alphabet for both upper and lower case, plus 10 numeric symbols, and per­
haps 20 additional special symbols. This can be easily accomplished with
7 bits, which allow 128 possible codes. (See Figure 1.6) All characters are,
therefore, encoded in 7 bits. The 8th bit, when it is used, is the parity bit.

HEX MSO 0 1 2 3 4 5 6 7

LSD BiTs 000 001 010 011 100 101 110 111

0 0000 NUL OLE SPACE 0 @ p - P
1 0001 SOH DC1 ! 1 A Q a q

2 0010 STX DC2 " 2 B R b r

3 0011 ETX DC3 1# 3 C S c s
4 0100 EOT DC4 $ 4 0 T d t

5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f v

7 0111 BEL ETB
,

7 G W 9 w

8 1000 BS CAN (8 H X h x

9 1001 HT EM) 9 I Y i Y
A 1010 LF SUB * J Z J z
B 1011 VT ESC + , K [k {

C 1100 FF FS , < L \ I -­
0 1101 CR GS - = M I m }

E 1110 SO RS > N A

n 'V

F 1111 SI US / ? 0 0 DEL

-Figure 1.6: ASCU Convenion lbbJe (See Appendix B for Abbnviations.JI----­

http:Abbnviations.JI

BASIC CONCEPTS 21

Parity is a technique for verifying that the contents of a byte have not been
accidentally changed. The number of l's in the byte are counted and the
8th bit is set to one if the count was odd, thus making the total even. This is
called even parity. Odd parity (i.e., writing the 8th bit [the left-most bit] so
that the total number of 1's in the byte is odd) can also be used.

As an example, let us compute the parity bit for 0010011 using even par­
ity. The number of l's is 3. The parity bit must, therefore, be a 1, so that the
total number of bits is 4, or even. The result is 10010011, where the leading
1 is the parity bit and 0010011 identifies the character.

The table of 7-bit ASCII codes is shown in Figure 1.6. In practice, it is
used "as is," without parity, by adding a 0 in the left-most position, or else
with parity, by adding the appropriate extra bit on the left.

In specialized situations, such as telecommunications, other codings,
such as error-correcting codes, may be used. However, descriptions of
these codings are beyond the scope of this book.

Now that we have examined the usual representations for both pro­
gram and data inside the computer, let us examine the possible external
representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation of information refers to the way informa­
tion is presented to the user, i.e., generally to the programmer. Information
may be presented externally in essentially three formats: binary, octal or
hexadecimal, and symbolic. Let's examine these formats.

1. Binary We have seen that information is stored internally in bytes,
which are sequences of eight bits (O's or l's). It is sometimes desirable to
display this internal information directly in its binary format-this is
known as binary representation. A simple example is provided by light­
emitting diodes (LEDs) which are essentially miniature lights on the front
panel of a microcomputer. In the case of an 8-bit microprocessor, a front
panel will typically be equipped with eight LEDs to display the contents of
any internal register. A lighted LED indicates a 1. An unlighted LED indi­
cates a o. Such a binary representation may be used for the fine debugging
of a complex program, especially if it involves input/output, but is natu­
rally impractical at the human level. This is because in most cases, it is
easier to look at information in symbolic form. For example, 9 is much
easier to understand and to remember than 1001. More convenient
representations have been devised, which improve the interface between
people and machines.

22 PROGRAMMING THE 8086/8088

2. Octal and Hexadecimal Octal and hexadecimal encode three and
four binary bits, respectively, into a unique symbol. Octal is a format using
three bits, where each combination of three bits is represented by a symbol
between 0 and 7. (See Figure 1.7)

For example, 00 100 100 binary is represented by:

+ + +o 4 4

or 044 in octal.
As another example: 11 111 111 is:

+ + + 3 7 7

or 377 in octal.
Conversely, the octal 211 represents

010 001 001

or 10001001 binary.
Octal has traditionally been used on older computers that employ

various numbers of bits, ranging from 8 to, perhaps, 64. More recently,
with the dominance of s-bit microprocessors, the s-bit fonnat has become
the standard, and another, more practical, representation is used­
hexadecimal representation.

In the hexadecimal representation, a group of four bits is encoded as one
hexadecimal digit. Hexadecimal digits are represented by the symbols

BINARY OCTAL

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Ffsure 1.7: Octol Symbols.,---------------------l

BASIC CONCEPTS 23

from 0 to 9, and by the letters A, B, C, D, E, F. For example, 0000 is repre­
sented by 0; 0001 is represented by 1; and 1111 is represented by the letter
F (see Figure 1.8). For example, 1010 0001 in binary is represented by

I........-JI........-J

A 1

in hexadecimal.
Hexadecimal offers the advantage of encoding eight bits into only two

digits. This is easier to visualize or memorize and faster to type into a com­
puter than its binary equivalent. Therefore, on most new microcomputers,
hexadecimal is the preferred method of representation for groups of bits.

Naturally, whenever the information present in the memory has a mean­
ing, such as representing text or numbers, hexadecimal is not convenient
for representing the meaning of this information for a human user.

Symbolic Representation Symbolic representation refers to the exter­
nal representation of information in actual symbolic form. For example,

DECIMAL BINARY HEX OCTAL

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 8 10

9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100 C 14

13 1101 D 15

14 1110 E 16

15 1111 F 17

-----------------Figure 1.B: Hexadecimal CGdes­

24 PROGRAMMING THE 8086/8088

decimal numbers are represented as decimal numbers, and not as
sequences ofhexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the user. It is
used whenever an appropriate display device is available, such as a CRT
display or a printer. (A CRT display is a television-type screen used to dis­
play text or graphics.) Unfortunately, in smaller systems, such as one­
board microcomputers, it is uneconomical to provide such displays, and
the user is restricted to hexadecimal communication with the computer.

Summary of External Representations Symbolic representation of
information is the most desirable, since it is the most natural for a human
user. However, it requires an expensive interface in the form of an alpha­
numeric keyboard, plus a printer or a CRT display. For this reason, it may
not be available on the less expensive systems. An alternative type of rep­
resentation is then used and in such a case, hexadecimal is the dominant
representation. Only in rare cases, relating to fine debugging at the hard­
ware or software level, is the binary representation used. Binary directly
displays the contents of the registers of memory in binary format.

Now that we have seen how information is represented internally and
externally, let's go on to examine the actual microprocessor that manipu­
lates this information.

2 INSIDE THE 8086/8088

INTRODUCTION

In this chapter we will discuss the internal
architecture of the 8086/8088 micropro­
cessor. We will begin with a broad discus­
sion of the architecture of a microprocessor
in general. We will then discuss important
concepts common to most single-chip
microprocessors.

Next, we will examine the instruction
cycle ofa typical microprocessor. By the end
of this discussion you should have a good
general understanding of the internal orga­
nization of a microprocessor and the execu­
tion of instructions.

We will then go on to examine the internal
organizations of the 8088/8088. We will look
closely at the many features provided by
these two processors and contrast them with
features typical of other microprocessors.
When comparing processors, it can be
clearly seen that the designers of the 8086/
8088 have implemented new solutions to old
problems, and this has resulted in an easy­
to-use, extremely powerful microprocessor.

28 PROGRAMMING THE 8086/8088

GENERAL MICROPROCESSOR SYSTEM
ARCHITECTURE

Let's begin our discussion by examining the general hardware architec­
ture of a typical microprocessor-based system. Although we will not take
the time now to explain how this architecture is realized with the 8086/
8088, we will show how a microprocessor fits into a system environment
and thereby help you to better understand the internal organization of
a CPU.

Figure 2.1 displays a block diagram of a typical microprocessor­
controlled system. Appearing on the left of the diagram is the micropro­
cessor unit (the MPU)-in this case the 808618088-which implements the
functions of the central-processing unit (the CPU) on a single chip. The
CPU includes an arithmetic-logical unit (the ALU), plus its internal regis­
ters, and a control unit (the CU), which decodes and internally sequences
instructions. (We will learn more about the CPU later in this chapter.) The
MPU has three buses: an address bus, a data bus, and a control bus. A bus

CRYSTAL
DATA BUS

+5 Port
A

6809
Port

B

rT RST

CONTROL BUS

+5V GND

Figure 2.1: A diagram showing a typical microprocessor system architecture that uses ROM,
RAM, and1/0.------------------------'

INSIDE THE 8086/8088 29

is a collection of electronic signals that originate at a common source and
perform a common function.

We can see in Figure 2.1 that alongside the CPU are the ROM, RAM, and
110. These are the main blocks of a microprocessor system. No matter how
complex a system is or what its function is, the block diagram of Figure 2.1
accurately depicts it.

Let us examine briefly each of the main blocks, labeled ROM, RAM, and
I/O. The ROM (or read-only memory) stores the program of the system.
The advantage of ROM memory is that its contents are permanent; they do
not disappear when the system is turned off. For this reason, ROM usually
contains the "bootstrap" or monitor program that permits initial system
operation. In a process-control environment, nearly all programs reside in
ROM. This is because they are seldom changed and must be protected
against power failures.

RAM (or random access memory) is the read/write memory of the
system. In a hobbyist or program-development environment, most of the
programs reside in RAM, so they can be easily changed. Such programs
can be kept in RAM or transferred into ROM, ifdesired. RAM is volatile.
Information in RAM is lost when power is turned off. In a control system,
the amount of RAM is typically small (for data only); however, in a
program-development environment, the amount of RAM is generally
large, as it contains programs, plus the development software. Prior to use,
the contents of RAM must be loaded from an external device.

Finally, the system also contains one or more interface chips. An inter­
face chip allows communication between the system and the external
world. The PIa is a frequently-used interface chip. PIO stands for parallel
input/output. PIOs, like the other chips in the system, connect to all three
buses and provide data paths for communication with the outside world.

Let's now study the function of the buses.

THE THREE BUSES

As we mentioned previously, the system in Figure 2.1 has a 3-bus archi­
tecture. The address bus has the "job" of enabling the path for the com­
munication between the CPU and ROM, RAM, or I/O. The data bus
passes the actual information between the CPU and the enabled system
block (see Figure 2.1). Finally, the control bus performs the dual task of 1)
electrically defining the type of communication, and 2) beginning and end­
ing the transfer.

In most applications the CPU controls each bus. It is the function of the
CPU to correctly time each bus so that reliable communication can occur.

30 PROGRAMMING THE 8086/8088

You, as the programmer, need not concern yourself with this activity, as it
is done by the system hardware. However, you must provide the correct
instructions to the CPU so that it can generate the right addresses and data
to the system hardware. (As a programmer you can only assume that the
hardware is functioning correctly.)

The width of a bus determines the number of signal lines contained in
the group comprising the bus. For the 8086/8088 the address bus can be up
to 20 bits wide. The width of the data bus is 16 bits and the width of the
control bus varies, but it has a nominal value of 5 bits. The width of each
bus differs from CPU to CPU, and from system to system.

INSIDE A MICROPROCESSOR

Let us now examine Figure 2.2 and discuss the general internal architec­
ture of a microprocessor. In addition, we will show you how the 8086 and
8088 implement their specific internal architectures, and we will point out
the similarities and differences to the general case (shown in Figure 2.2).

EXTERNAL
DATA
BUS

DATA BUS (8 BITS)

A
C

R C
E U

I G M
N I U

SP PC D S L
E T A
X E T

R 0
S R

S

ADDRESS BUS (16 BITS)

Figure 2.2: This diagram moWli the general internal archltecture ofa "stondanl"mJcroprocessor.

INSIDE THE 8086/8088 31

Figure 2.2 shows a diagram of a standard architecture of a general
microprocessor. Let's examine the different modules in this figure. The
control box (on the right of the illustration) represents the control unit that
synchronizes the system hardware and timing.

To the left of the control box is the ALU. The ALU performs all
arithmetic and logical operations. Special registers, called accumulators,
are usually connected to the output of the ALU. They contain the results of
arithmetic operations. In addition to the arithmetic and logical operations,
the ALU also provides shift and rotate facilities. As illustrated in Figure
2.3, a shift moves the contents of the accumulator to the left or right by one
or more positions. In this illustration, each bit has been moved to the left by
one position.

Referring back to Figure 2.2, the status or condition code register
appears to the left ofthe ALU. The job of this register is to store the internal
conditions of the microprocessor in codes. The condition codes are some­
times referred to as condition flags. An example of this is a bit that
indicates when the result of an operation performed by the ALU leaves all
accumulator bits equal to o. When this occurs, the condition flag called the
zero flag is set to true.

The contents of the condition code register can be tested by specialized

SHIFT LEFT

"--0

ROTATE LEFT

'---------Figure 2.3: The ALU also provides shift and rotate facilities.

32 PROGRAMMING THE 8086/8088

instructions. The CPU alters its execution path based on the logical values
of these codes. We will discuss this subject in further detail when we
present the instruction set and give program examples for the 8086/8088.
(Note: most of the instructions executed by the microprocessor will mod­
ify some or all of the condition flags. The instruction set for the 8086/8088
[presented in Chapter 4] clearly indicates which instructions modify
which condition flags.)

Moving to the left in Figure 2.2, we find the address registers. These regis­
ters are used for the storage of addresses. They are connected to the system
address bus. Whenever the CPU executes a program, the address registers
are combined logically to form a complete system address. Some of the
power of a microprocessor comes from its ability to combine the address
registers in special ways to form the system address present on the address
bus. Chapter 3 describes in detail how the address registers of the 8086/
8088 can be logically combined to form a single address. Figure 2.4 shows

DATA BUS

Rp pc E
R 0 S 0 I

G
0 U T I N 16-BIT

I
G N A N D ADDRESSS
R T C T E REGISTERST
A E K E X

E
M R R R

ADDRESS BUS (16 BITS)

Figure 2.4: The PC, Sp, and index registers are common microprocessor registers used in
forming a complete system address.------------------'

INSIDE THE 8086/8088 33

three common address registers contained in a microprocessor: the pro­
gram counter, the stack pointer, and the index register. Note that the regis­
ters also appear in Figure 2.2. Let's discuss them.

THE PROGRAM COUNTER (or PC)

The program counter (or PC] must be present in all microprocessors, as
it is fundamental to program execution. It contains the address of the next
instruction to be executed.

A program normally executes in a sequential fashion. To access the next
instruction, it is necessary to "fetch" it from the system memory and read
the instruction into the microprocessor. The contents of the PC are depos­
ited on the address bus and input to the memory address line. The memory
then reads the contents specified by the address and sends the correspond­
ing instruction back to the CPU.

THE STACK POINTER (or SP)

The stack pointer (or SP) implements the system stack. (The stack is
described in detail in a following section. The stack is often used for han­
dling interrupts and subroutines, and for saving temporary data.) The
stack pointer contains the memory address of the top of the stack.

THE INDEX REGISTER

Indexing is a memory-addressing facility used to access blocks ofdata in
the memory, using only a single instruction. This facility is not available in
all microprocessors. It is, however, available with the 808618088. An index
register typically contains a displacement, which is automatically added
to a base value when forming an address. In short, indexing is used to
access a word within a block of data. Now that we have discussed all the
elements in Figure 2.2, let's move on and discuss the stack.

THE STACK

A stack, formally called a LIFO (last-in, first-out) structure, is a set of
memory locations, allocated to the stack data structure. The essential char­
acteristic of the stack is that the first element introduced in the stack is
always at the bottom. and the element most recently deposited is always
on top.

34 PROGRAMMING THE 8086/8088

An analogy can be drawn with plates stacked on a restaurant counter­
assuming that there is a hole in the counter with a spring at the bottom,
and that the plates are piled up in the hole. With this organization, it is
guaranteed that the plate that was placed first in the stack is always at the
bottom, and the most-recent placement is on top.

In normal use, a stack is only accessible via two operations or instruc­
tions: PUSH and pop. These two instructions are illustrated in Figure 2.5.
The PUSH operation deposits elements on the top of the stack. A POP
transfers the top element of the stack into the internal register specified by
the instruction.

THE GENERAL INSTRUCTION CYCLE

Let's now examine Figure 2.6. This diagram illustrates the role of the
program counter, which fetches an instruction from the memory. The
microprocessor unit appears on the left of the illustration, and the memory
appears on the right. The memory stores instructions and data. The mem­
ory chip can be either ROM, RAM, or any other chip that happens to con­
tain memory.

MICROPROCESSOR
REGISTER 7 MEMORY 0

l :===J
PUSH~

~POP

Figure 2.5: This diagram shows the two stack manipulation instructions: PUSH and POR

INSIDE THE 8086/8088 35

MPU ROM/RAM

pc: INSTRUCTION

'-----Figure 2.6: This diagram shows the fetching ofan instruction from memory.

Viewing Figure 2.6, we will assume that the program counter holds an
address, which is the address of the next instruction to be fetched from the
memory.

Every microprocessor proceeds in three cycles, which involve:

1. fetching the next instruction

2. decoding the instruction

3. executing the instruction.

Let us now discuss each cycle.

FETCHING

In the first cycle, the contents of the program counter are placed on the
system address bus and input to memory at the correct time. The control
bus then generates a memory read signal. When the memory reaches the
read signal, data stored in memory at the specified address is placed on the
system data bus. The microprocessor then reads the information on the
data bus into an internal register called the instruction register (or IR).
The information read into the CPU is the instruction. We can say that the

36 PROGRAMMING THE 808618088

instruction has been fetched from memory. Figure 2.7 is a block diagram
showing the fetching of an instruction from memory.

DECODING AND EXECUTING

Once the instruction is in the IR, the control unit of the microprocessor
decodes it and generates the correct sequence of internal and external sig­
nals for its execution. Some time, typically one clock period, is necessary
for the CPU to decode an instruction and logically decide what action to
take. We will see later on that the 808618088 puts to good use this normally

MPU

IR

MEMORY
PROPER

ADDRESS
DECODER

Figure 2.7: This diagram shows the fetching ofan instruction from memory.,--------'

INSIDE THE SOS6/S0SS 37

"idle" time (i.e., the time waiting for the CPU to decode the instruction).
Once the CPU has decoded the instruction, it then performs a series of

events, dictated by the instruction. Some instructions require simple tasks
and thus take little time to execute; others require several events to occur
and thus take longer. The speed of execution for an instruction is usually
expressed in the total number of clock cycles required for completion.

FETCHING THE NEXT INSTRUCTION

We have just described how an instruction is fetched from memory,
using the program counter. During the execution of a program, instruc­
tions are fetched in sequence. It is, therefore, necessary for an automatic
mechanism, called an incrementer, to be provided to fetch instructions in
sequence. The incrementer is attached to the program counter, as shown
in Figure 2.7.

It must be stressed that the preceding descriptions are simplified. In
reality, some instructions may be two, three, or six bytes long and, in such
cases, the PC must logically decide how many bytes are contained in each
instruction, before the next instruction starts. We will be discussing more
about the function of the PC as we detail the internal architecture of the
S086/S0SS.

INTERNAL ORGANIZATION OF THE 8086/8088

So far, we have discussed (in general terms) how a microprocessor sys­
tem is organized, and we have examined the internal architecture of a
CPU. Let us now build on this information and detail the actual internal
architecture of the SOS6/S0SS. Once you understand this program, it is
much easier to understand the topic of addressing modes (presented in the
following chapter).

The internal architectures of the SOS6 and sass are virtually identical
from a programming point of view. Software written for the SOS6 will run
on the sass with no modifications. The reverse is also true. (Note: It is
important to note that the hardware implementation of each micropro­
cessor is quite unique, but this is of little concern to us here, since we are
concentrating on programming in this text.)

Figure 2.S shows a functional block diagram of the S086/S088. This dia­
gram shows that there are two main functional logic blocks in the device:
the BIU (bus interface unit) and the EU (execution unit). In the general
block diagram back in Figure 2.2, both of these functions were grouped
into a single control block. Let us examine what they do.

38 PROGRAMMING THE 8086/8088

The major function ofthe BIU in the 8086/8088 is to provide the physical
interface between the 8086/8088 and the "outside" world. The BIU con­
trols the system address, data, and control buses. It can operate in parallel
with the EU. One of the unique features of the BIU is its "instruction pre­
fetch" capability. To understand what this means, consider the following.

When the PCU executes instructions, it first fetches the instruction from
memory and then decodes it. During the decoding time the external buses
of the CPU are idle. In other words, there is no activity on the buses
because the CPU does not electrically know what to do, as the instruction
has not yet been decoded.

In the 8086/8088, the BIU fetches an instruction from memory and then
while the EU is decoding that instruction, the BIU gets the next instruction

BUS INTERFACE UNIT (BIU)

EXECUTION UNIT(EU)
SEGMENT

GENERAL REGISTERS
REGISTERS

INSTRUCTION
POINTER

ADDRESS
GENERATION AND

BUS CONTROL --.J t
OPERANDS MULTIPLEXED BUS ~

INSTRUCTION
QUEUE

Figure 2.B: A block diagram showing the two basic functional logic blocks inside the
BOB6/B08B. These are the EV (execution unit} and BIV (bus interface unit}.---------'

INSIDE THE 8086/8088 39

from memory. In this way, the next instruction is "prefetched" and waiting
to be executed by the CPU. As a matter of fact, the 8086 can have up to six
bytes of information in the instruction queue, while the 8088 can have up
to four.

Some instructions on the 8086/8088 are executed completely internally
in the CPU, and can require many clock cycles. An example of this type of
instruction would be the DIVIDE instruction. During the time that the
CPU is performing the division, the BIU is prefetching data from memory,
up to the maximum number of bytes that can be held in the queue.

Prefetching data from memory reduces the overall instruction execu­
tion time. This is because the instruction fetch time does not have to be
counted in the overall execution time. This statement is not always true,
however, because there will be times when an entire instruction must be
obtained without a prefetch. This occurs whenever the queue is flushed or
reset. For example, whenever the 8086/8088 executes a jump instruction,
the queue is flushed and must be filled again. If you are not familiar with
the jump instruction, you may not understand why the queue must be
flushed. This will be made clear when the instruction set is given in
Chapter 4.

The other functional hardware section of the 8086/8088 shown in Figure
2.8 is the execution unit. This unit contains a 16-bit arithmetic logic unit. It
maintains the condition flags of the CPU. The EU also manipulates the
general registers of the CPu. All registers in the EU are 16 bits wide. This
is true of both the 8086 and 8088.

8086/8088 GENERAL REGISTERS

Figure 2.9 shows the general registers of the 8086/8088. We can seen in
this figure that there are two main groups: the data group, and the pointer
and index group. Each register is 16 bits wide. The data group is labeled
AX, BX, CX and DX. They can be used as a single 16-bit register or as two
8-bit registers. When used as two 8-bit registers, they are divided into
an upper (H) and lower (L) half, labeled AH, AL, BH, BL, CH, CL, and
DH,DL.

The pointer and index group of registers (shown in Figure 2.9) are used
only as 16-bit registers. These registers are labeled SP (stack pointer), BP
(base pointer), SI (source index), and DI (destination index). The reasoning
behind these names will become clear later on in the text when we discuss
the various addressing modes and show programming examples for the
8086/8088. For now, it is only important to know that these registers exist,
and how they are organized.

40 PROGRAMMING THE 8086/8088

SEGMENT REGISTERS

There are four segment registers in the 8086/8088. as shown in Figure
2.10. We will give a brief description of the segment registers now and a
more detailed description in Chapter 3. Each segment register is 16 bits in
length and each has a particular name: code segment (CS). data segment

AH AX AL ACCUMULATOR

BH BX BL BASE
DATA

GROUP
CH CX CL COUNT

DH OX DL DATA

SP STACK POINTER

POINTER BP BASE POINTER
AND

INDEX
GROUP SI SOURCE INDEX

01 DESTINATION INDEX

Figure 2.9: This diasrom shows the general internal registers a/the 8086/8088.------'

15 o

CS CODE SEGMENT

OS DATA SEGMENT

SS STACK SEGMENT

ES EXTRA SEGMENT

Fisunt 2.10: This diasrom shows the four II8JDI8l1t registers a/the 808618088. These reg-,
isters are JogicaJJy combined with the generoJ registers toform a 2O-bif system address.

INSIDE THE 8086/8088 41

(OS), stack segment (SS) and extra segment (ES). The names are useful for
understanding how the segment registers are used during program
execution.

These registers are combined with other internal registers during
program execution to form a complete 20-bit system address for the CPU
external address bus. For example, when performing a PUSH or POP
operation with the stack, the S8 register is combined logically with other
registers to form the memory address at points to the top of the stack. We
will expand on this in the addressing mode discussion in Chapter 3.

INSTRUCTION POINTER

In the description of the general block diagram of a microprocessor
shown in Figure 2.2, we discussed the operation of the program counter.
In the 8086/8088 the program counter is replaced by the instruction
pointer (IP) register. The IP register is updated by the BIU to point to the
address of the next instruction. Programs do not have direct access to
the instruction pointer; but, during execution of a program, the IP can be
modified or saved and restored from the stack.

FLAGS

The 8086/8088 have six 1-bit status or condition flags that are updated by
the EU. These flags, shown Figure 2.11, represent the condition of the
result of an arithmetic or logic operation that has just occurred. In Chapter

CONTROL FLAGS 	 STATUS FLAGS

I

RR
~~~I~ 

AUXIUARY CARRY 
ZERO 

OVERFLOWL__============ SIGN 
DIRECTIONL__~=~================ 	TRAPINTERRUPT-ENABLE 

'-----------------Fipre2.U: 808618088 System FlaB 



42 PROGRAMMING THE 8086/8088 

4 you will find a group of instructions that will allow the program to alter 
its execution path, based on the logical value of these flags. 

FLAG DEFINITIONS 

AF 	auxiliary carry flag If this flag is set, there bas been a carry of the 
low nibble to the high nibble or a borrow from the high nibble to 
the low. The high or low nibble refers to the low-order byte ofa 16­
bit value. 

CF 	carry flag This flag is set when there has been a carry or a borrow 
to the high-order bit of the (8- or 16-bit) result. (We discussed the 
general carry flag in Chapter 1.) 

OF 	overflow flag When this flag is set, an arithmetic overflow has 
occurred. This means that the size of the result exceeded the stor­
age capacity of the destination, and a significant digit has been 
lost. (The general overflow flag was discussed in Chapter 1.) 

SF 	sign flag This flag is set when the high-order bit of the result is a 
logical 1. Since negative binary numbers are represented using 
two's complement notation, SF reflects the sign of the result: a 0 
indicates a positive number, and a 1 indicates a negative one. 

PF 	parity flag If this flag is set, the result of the operation has an even 
number of 1s in it. This flag can be used to check for data trans­
mission errors. 

ZF 	zero flag This flag will be set when the result of the operation is 
zero. 

Figure 2.12 shows the complete set of internal registers for the 8086/ 
8088. 

ADDITIONAL CONTROL FLAGS 

There are three control flags in the 80866/8 that we have not yet 
discussed. We have chosen not to cover them at this time because it will be 
more useful to discuss them when we know more about the 8086/8088 
instruction set. These three flags are labeled DF (direction flag), IF (inter­
rupt enable flag) and TF (trap flag). 



INSIDE THE 8086/8088 43 


AH AL ACCUMULATORi.x
T 


BH ~X BL BASE 

J 


CH C~ CL COUNT
-[ 

DH D~ DL DATA 

I 


SP STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

01 DESTINATION INDEX 

CS CODE SEGMENT 

OS DATA SEGMENT 

SS STACK SEGMENT 

ES EXTRA SEGMENT 

I IP I INSTRUCTION POINTER 

I I I I IOFIDFIIF ITFISFIZFI IAFI IPFI ICFI FLAGS 

'--------.Figure 2.12: This diagram shows the internal registers for the 8086/8088. 

SUMMARY 

In this chapter we have covered the basic organization of the micro­
processor system. We have described ROM, RAM and I/O and have 
explained how the three bus architecture is interfaced to them. We have 



44 PROGRAMMING THE 8086/8088 

defined each bus by its function in the system. In addition, we have exam­
ined the internal block diagram of a microprocessor. We have explored 
each major block, and its interaction with the other blocks. Finally, we 
have discussed the internal organization of the 8086/8088 beginning with 
the major blocks of the CPU-the BIU and the EU-and then sharpening 
our focus to include the internal registers of the 8086/8088. 

In the next chapter we will use this information to learn more about the 
8086/8088. In particular, we will examine how the 8086/8088 uses the 
internal registers to form a specific memory address. 







3 8086/8088 MEMORY 
ORGANIZATION and 

ADDRESSING MODES 

INTRODUCTION 

In this chapter we will examine the system 
memory organizations of the 8086 and 8088 
microprocessors. We will point out the many 
similarities and differences between the two 
architectures, and we will discuss the differ­
ent addressing modes for each. We will also 
look at examples showing how each address­
ing mode operates. Finally, we will learn 
how to generate object or binary code for the 
8086/8088, and we will discuss several 
important points regarding the writing of 
object code. 



48 PROGRAMMING THE 8086/8088 

SYSTEM MEMORY ORGANIZATION OF THE 8086 

The 8086 has 20 address lines. This means that it has 220 or 1,048,576 
unique storage locations that can be addressed. Since the data bus for the 
8086 is 16 bits wide, the system memory for the 8086 is 16 bits (or two 
bytes) wide. These two bytes are labeled upper byte and lower byte, as 
shown in Figure 3.1. 

The 8086 can access any of the possible 1,048,576 bytes of memory. 
Since each word of memory uses two bytes, this gives a system memory 
that is 219 addresses of 16 bits each. (Note: It is important to remember that 
the 8086 can access bytes of memory, as well as words.) 

As we will see in a later chapter, the instructions for the 8086 are made 
up of 1 to 6 bytes of data. This means that the 8086 instructions may start at 
either an even (lower byte) or odd (upper byte) address, as shown in Figure 
3.2. Two signals determine which byte of memory is being accessed: AO 
andBHE. 

When AO is a logical 0, the 8086 is accessing the lower byte of the valid 
memory address. When BHE is a logical 0, the 8086 is accessing the upper 

16-BIT DATA BUS 

UPPER LOWER 
BYTE BYTE 

SYSTEM 
MEMORY 

20-BIT ADDRESS BUS 

Fisure 3.1: This block diagram shows how the 18 bits ofthe 8088 memory are divided 
into upper and lower bytes.-------------------' 



MEMORY ORGANIZATION AND ADDRESSING MODES 49 

15 o 
WORD ON 
EVEN ADDRESS 

WORD ON 
ODD ADDRESS 

Ffsure 3.2: Word. (16 bits) stored in the 8OB6 memory may reside at either even or odd 

byte of the valid memory address. From this, you may be inclined to think 
that the BHE is simply AO. In some cases, this maybe true, but it is not true 
in all cases. 

The 8086 is capable of accessing 16 bits (or two bytes) ofdata in memory 
in a single memory cycle. When this occurs, both the BHE and AO are logi­
cal 0 at the same time. As a programmer, you do not need to be aware of 
these signals; however, it is important that you know that any byte in mem­
ory can be accessed separately when certain 8086 instructions are used. 

ACCESSING 16 BITS AT AN EVEN ADDRESS 

To explain more fully how the 8086 accesses data in memory, let's exam­
ine some examples. Let's assume that the 8086 is reading a 16-bit word 
from address OOOFO, an even address. This means that the 8086 requires 
both the upper and lower byte of data at that address. The CPU then out­
puts the address on the address bus with BHE and AO set to a logical O. 
Both bytes of data communicate with the CPU at the same time (in a paral­
lel fashion), as seen in Figure 3.3. 

ACCESSING 8 BITS AT AN EVEN ADDRESS 

Let us now assume that the 8086 is reading a byte from memory address 
OOOFO. Since this address is even, the byte of data will be read from the 



50 PROGRAMMING THE 808618088 

lower byte of the address data word. In this case, AO equals logical 0 and 
BHE equals logical 1. 

ACCESSING 8 BITS AT AN ODD ADDRESS 

Let's now assume that the 8086 is accessing a byte from address OOOF1, 
an odd address. This data will be read from the upper byte of the 16-bit 
data word at address OOOOFO. In this instance, AO is a logical 1 and BHE is 
a logical o. 

ACCESSING 16 BITS AT AN ODD ADDRESS 

So far, we have described two cases where the 8086 is accessing data in 
memory and the logical conditions of AO and BHE have been different. 
The following question must now be asked: "What happens if the 8086 
accesses a 16-bit word that starts at an odd address?" This problem is 
shown in Figure 3.4. 

AO - 0 ENABLE LOWER BYTE 

UPPER BYTE LOWER BYTE 

BREmO 

ENABLE 

UPPER 

BYTE 


DATA BUS 

F.isw'e 3.3: When the 8086 access. a 16-&if word l'8Siding at an even address in the 
system memory, both the upper and lower bytes wUJ be enabled onto the system dato 
bus; and in this case, AO wUJ equal 0 and BHE wUJ equal 0.------------' 



MEMORY ORGANIZATION AND ADDRESSING MODES 51 

OOF1 W1 OOFO 


OOF3 W1 OOF2 


Figure 3.4: Ifa word is stored at an odd address, the 8086 will access the entire word 
in two memolYaccesses.---------------------' 

This is a typical problem due to the flexibility of the memory structure of 
the 8086. That is, instructions may require an even or odd number of bytes. 
So that bytes are not wasted, the 8086 allows bytes or words of data to start 
at either even or odd addresses. Thus, to read a 16-bit word starting at an 
odd address, the 8086 must perform two memory accesses. 

ALIGNED AND NON-ALIGNED WORDS 

We now know the different ways that the 8086 accesses data in memory. 
When the CPU accesses a word (Le., 16 bits) located on an even address, it 
is accessing an "aligned" word. The word is aligned because both bytes are 
located at the same word address and can be read or written in a single 
memory cycle. 

When the CPU accesses a word starting at an odd address, it is said to be 
accessing a non-aligned word. This is due to the fact that both bytes of the 
word do not reside at the same word address. Thus, two memory cycles 
are required to read the entire word. Figure 3.5 shows the concept of 
aligned and non-aligned words. 

The 8086 is designed to handle both aligned and non-aligned words. The 
importance of words being aligned or non-aligned is determined by the 
execution speed of certain operations. For example, if your program 
accesses or manipulates many word quantities, then storing the data start­
ing at an even address can help in the speed of system execution. 



52 PROGRAMMING THE 8086/8088 

OOF1 W1 W1 OOFO 

OOF3 W2 OOF2 

OOFS W2 OOF4 

W11SALIGNED 

W21S NON-ALIGNED 


Figure 3.5: Thls diagram. shows the concept ofaligned and non-oligned words. 

Aligned words may be accessed in a single memory ~cycle.-------' 


SYSTEM MEMORY ORGANIZATION OF THE 8088 

Like the 8086 CPU, the 8088 CPU has 20 bits of address. Unlike the 8086 
however, it has only an 8-bit data bus. This leads to a memory organization 
like the one shown in Figure 3.6. The 8088 is essentially an 8-bit system 
that uses a 1s-bit microprocessor. All of the 1s-bit software capabilities are 
available on the 8088. This is demonstrated by the fact that both the 8086 
and the 8088 execute the same software instructions. 

ADDRESS GENERATION WITH THE 8086/8088 

In the preceding discussions we have introduced the memory organiza­
tion for both the 8086 and the 8088 CPUs. In Chapter 2 we discussed the 
internal registers for these microprocessors. In the remaining sections of 
this chapter we will learn how addresses are generated using the internal 
registers ofthe CPU. Each different way of generating an address is 
referred to as an addressing mode. 

INSTRUCTION ADDRESS GENERATION 

Let's first see how the 8086/8088 generates an address for an instruction 
in memory. Recall from previous discussions that all internal registers on 



MEMORY ORGANIZATION AND ADDRESSING MODES 53 

the 8086/8088 are 16 bits wide. However, the physical address bus of the 
CPU is 20 bits. This means that more than one of the internal registers of 
the CPU must be used to generate a 2o-bit physical address. 

The two registers used for the instruction address are the IP (instruction 
register) and the CS (code segment register). These two registers are com­
bined in a special way to generate a complete 20-bit address. Here is the 

8 BIT DATA BUS 

D 
00000 

- ..... - '­

~______~~______ FFFFF~ 

20-BIT ADDRESS BUS 

L-______Figure 3.6: This block diagram shows the 8088 system memory. 



54 PROGRAMMING THE 8086/8088 

equation that describes how these two 16-bit registers are combined: 
20-bit address = (16 xeS) + IP 

For example: 
CS register = 1000H 
IP register = 0414H 

Therefore: 
20-bit address = (16 x 1000H) 

= 10000H (shifted left 4 bits) + 0414H 
This equals 

10414H 
This is the address in memory from which the new instruction will be 
fetched. The IP register is referred to as the offset-the CS register x 16 
points to the starting address or segment in memory from which the offset 
is computed. That is, it points to the starting address of the segment of 
memory that contains the instruction codes; hence, the name code seg­
ment register. Figure 3.7 displays a block diagram showing how a 20-bit 
instruction address is computed. 

CS x 16 

+ 

20-BIT ADDRESS 

SYSTEM ADDRESS BUS 

Figure 3.7: A 20-bit system instruction address is computed using the equation 
CSxl~+1P.;------------------------------------------~ 



MEMORY ORGANIZATION AND ADDRESSING MODES 55 

Every address generated by the 8086/8088 uses one of the four segment 
registers. This segment register is then shifted left four bits before it is 
added to the offset value. The offset value is computed by adding the inter­
nal registers. The CPU instruction specifies which internal registers are 
used to generate the offset. Note that a segment register is never used in the 
computation of an offset value for address generation. 

With this brief introduction to the formation of a 20-bit address, let's 
examine some examples of the different types of addressing modes used. 
We will use the 8086/8088 instruction MOV, because it is straightforward 
to understand. Our goal is to learn more about the different addressing 
modes of the 8086/8088. 

THE MOV INSTRUCTION 

The MOV instruction transfers a byte or word from the source operand 
to the destination operand. (Note: an operand is data to be operated on by 
the CPU.) The instruction is written as: 

MOV destination, source 

IMMEDIATE ADDRESSING 

In the immediate addressing mode, the operand appears in the instruc­
tion. An example of an immediate instruction is one that moves a constant 
value into an internal register (which, in this example, is AX): 

MOV AX.568 

The constant 568 is loaded into the internal register AX. The number 568 
will reside in the bytes of memory that comprise the instruction. 

REGISTER ADDRESSING 

The register addressing mode indicates that the operand to be used is 
contained in one of the general internal registers of the CPU. In the case of 
the AX, BX, CX, or DX registers, this register may be 8 or 16 bits. (These 
registers were discussed in Chapter 2.) For example, the instruction MOV 
AX,BX will move the contents of the BX register into the AX register. A 
similiar instruction, MOV AL,BL. will move the contents of the BL register 
(8 bits) into the AL register. When using register addressing, the CPU 
performs all operations internally; thus, no 2O-bit address is generated to 
specify the operand. 



56 PROGRAMMING THE 8086/8088 

DIRECT ADDRESSING 

The direct addressing mode completely specifies in the instruction, the 
location in memory that contains the operand. In this type ofaddressing, a 
2o-bit address must be formed. This means that some internal address gen­
eration on the 8086/8088 will take place. Here is an example of this type of 
addressing: 

MOV CX,COUNT 

The value of COUNT is a constant. It is used as the offset value in com­
puting the 2o-bit address. The 8086/8088 always uses a segment register 
when computing a physical address. Which register will be used for this 
particular instruction? Unless instructed otherwise, the DS or data seg­
ment register will be used. (See Figure 3.8.) This is the default segment 
value. However, any of the four segment values may be used. This is 
accomplished by specifying the register appropriate in the instruction. For 
example, suppose we wish to use the ES register, rather than the DS regis­
ter, we would then specify: 

MOV CX,ES:COUNT 

16 o 

DSx16 

16 o 

+ 

2Q-BIT SYSTEM ADDRESS 

Figure 3.B: When accessing data, the DS resister is used with an offset to compute the 
ao-bit system address. This is the default segment. Itcan be overriden by using a seg­
mentovenide prefix with an instruction•.-------______--1 



MEMORY ORGANIZATION AND ADDRESSING MODES 57 

where ES is the "segment override prefix" for the instruction. Its value 
will be used as the segment register for computing the 20-bit physical 
address. 

REGISTER INDIRECT ADDRESSING 

With the register index addressing mode, the 16-bit offset address is con­
tained in a base or index register. That is, the address resides in the BX, BP, 
SI or DI register. Here is an example of this type of addressing: 

MOV AX,[SI] 

The 16-bit binary value contained in the SI register would be the offset 
used to compute the 2o-bit address. Again, a segment register will be used 
to generate the final address. The 16-bit value in SI is combined with the 
proper segment value for address generation. 

REGISTER INDIRECT WITH DISPLACEMENT 

This type of addressing involves the two previous modes of addressing. 
The 16-bit offset address is computed by adding the 16-bit value specified 
by the internal register and a constant. For example, let's use the internal 
DI register and the constant value (displacement), where COUNT has 
been previously defined as some number equal to COUNT. The mnemon­
ics for this type of addressing are: 

MOV AX, COUNT [DI] 

IfCOUNT = 0378H and DI = 04FAH, then the 16-bit offset address will be 
0872H-the sum of 0378H + 04FAH. 

REGISTER INDIRECT WITH A BASE AND INDEX REGISTER 

This addressing mode uses the sum of two internal registers on the 8086/ 
8088 to obtain the 16-bit offset address to be used in the computation ofthe 
2o-bit address. Here are examples of these type of instructions: 

A MOV, [BP] [DI], AX 

B MOV AX, [BX] [SI] 


In this instruction, the offset A equals BP + DI and the offset B equals 
BX + SI. 



58 PROGRAMMING THE 8086/8088 

REGISTER INDIRECT WITH BASE + INDEX + CONSTANT 

This is the most complex addressing mode. But if it is taken one piece at 
a time, it is not too difficult. This addressing mode is identical to the pre­
vious addressing mode, except that there is a constant added onto the final 
16-bit sum. For example, let's suppose that the following register values 
are given: 

DI = 0367H 
BX = 7890H 
COUNT = 0012H 

This addressing mode indicates that the offset specified by the sum of DI 
+ BX + COUNT be used to move the memory data into register AX. The 
instruction would be written as: 

MOV AX, COUNT [BX] [DI] 

The 16-bit offset address would be equal to 7C09H, which is the sum of 
0367H + 7890H + 0012H. The complete 20-bit address would be com­
puted by the equation (16 x DS) + 7C09H. If the DS register equals 3000H, 
then the complete, physical 2o-bit address would equal (16 x 3000H) + 
7C09H = 37C09H. 

8086/8088 OBJECT CODE 

The preceding addressing modes are used by the 8086/8088. As a pro­
grammer, you will write the mnemonics. The object code is very often gen­
erated by the computer. (Recall that the object code is the actual data bytes 
that the CPU executes.) In the remainder of this chapter we will discuss 
the details of how the object code is generated for the 8086/8088 CPU. This 
information will help you in your study of the 8086/8088 instruction set 
(given in Chapter 4). 

We will now discuss the important points of generating the object code 
for the 8086/8088. Let's examine some examples. These examples are the 
same ones that we presented earlier, in the addressing mode sections. In 
each case we will present the object code and an explanation of why the 
bits are set to a logical 1 or a logical o. 

Before we examine any object code examples, we should explain that it 
is difficult to say exactly how many bytes a certain instruction will require. 
(Those who have previously programmed 8-bit microprocessors will recall 
that this has not always been the case.) With the 8086/8088 instruction set, 
each type of addressing mode may require a different number of data 
bytes. Therefore, in the examples that follow we will provide the number 



MEMORY ORGANIZATION AND ADDRESSING MODES 59 

of bytes required for each addressing mode for a particular instruction. 
Your job will be to decide what the data in each byte must be. This task will 
become more clear to you as we proceed in the discussion. 

REG FIELD AND W BIT 

The first example we will discuss is the instruction MOV AX,568. This 
instruction indicates an immediate move to an internal register. The inter­
nal register is the destination. It can be a byte or a word register. This 
instruction requires 2 or 3 bytes, as shown in Figure 3.9. 

We can see in this figure that the first byte of data for this instruction has 
the upper 4 bits as 1011. The next bit is W. The W is for WORD = 1 or 
BYTE = O. That is, if the destination register is a 16-bit or word register, 
then this bit is a logical 1. If the destination register is an 8-bit or byte regis­
ter, then this bit is a logical o. 

The next three bits of the first byte shown in Figure 3.9 are labeled REG. 
This 3-bit field determines which register, byte, or word the data will be 
input to. The 3-bit definitions for the registers are shown in Figure 3.10. 

1011WREG DATA DATAIFW=l 

'--_Figure 3.9: This fJBW"8 shows object code for the MOV reg,constant instruction 

16-BIT 6-BIT 
REGISTER REGISTER 

000 AX AL 
001 CX CL 
010 OX OL 
011 BX BL 
100 SP AH 
101 BP CH 
110 SI OH 
111 01 BH 

Figure 3.10: This fJBW"8 gives the register definitions (8- and 16-bitJ for the object code 
REGfimd.-------------------------------~ 



60 PROGRAMMING THE 8086/8088 

Examining the next two bytes of the instruction in Figure 3.9, we can see 
that they are labeled DATA. If the destination register is a byte, then the 
data will be in the second byte of the instruction. If the destination is a 
word, then the second byte of the instruction will be the lower byte of the 
16-bit immediate data. The third byte of the instruction will be the upper 
byte of the 16-bit immediate data. 

For this example (MOV AX,568) we will assume that the 568 is a hexade­
cimal immediate data. We will also assume that the instruction is a 3-byte 
one, and that the bytes are B8 68 05. Notice that the first byte has the W bit 
equal to 1 and the REG equal to 000 for AX. 

However, if the instruction had been MOV AL,56, the instruction would 
then be two bytes. These bytes would be BO 56. The first byte would have 
the W bit equal to aand the register equal to 000 for AL, as shown in Fig­
ure3.10. 

D BIT, MOD, AND RIM 

In this example, we will move data from memory, or move a register to 
or from a register. We will use an instruction like MOV AX,BX. This 
instruction is 2 bytes because there is no memory address to add on. The 
bytes will appear as shown in Figure 3.11. 

We can see in Figure 3.11 that the first byte has the lower two bits as DW, 
The W is for word or byte (as shown previously). The D is to indicate if the 
data is to be stored in the operand specified by the MOD and RIM field, D 
= 0, or if it is to be stored in the register specified by the REG 
field, D = 1. 

Figure 3.12 shows the MOD and RIM assignments. Notice in the MOD 
description that if the value is 11, then the RIM field is encoded with a reg­
ister format. This format was shown in Figure 3.10. 

For this instruction we wish to store the data in the AX register. There­
fore, the D bit will be a logical O. This means that the data must be stored in 
the location specified by the MOD and RIM fields. Therefore, the MOD 
will equal 11. The RIM field will equal 000, indicating that the AX register 
is the destination for the data. The REG field for the second byte of data 
will equal all, thus indicating that the BX register is the source register to 

....1 _1000_1_0D_W_-,-_MO_D_R_EG_Rl_M---Il 
Figure 3.11: A 2-byte registe....to-regisw..--------------' 



MEMORY ORGANIZATIONS AND ADDRESSING MODES 61 

be used (this value comes from Figure 3.10). The complete second byte of 
data for the instruction will be 11 011 000 or D8. Thus, the object code for 
the instruction MOV AX,BX is 89D8. 

BASE AND INDEX REGISTER SPECIFIED 
BY RIM FOR OPERANDS IN MEMORY (MOD*11) 

RIM FIELD BASE REGISTER INDEX REGISTER 

000 BX SI 

001 BX DI 

010 BP SI 

011 BP 01 

100 NONE SI 

101 NONE 01 

110 BP NONE 

111 BX NONE 

MOD DISPLACEMENT COMMENT 

00 ZERO 

01 8·BIT CONTENTS INSTRUCTION 

OF NEXT BYTE OF CONTAINS 

INSTRUCTION AN 

SIGN EXTENDED ADDITIONAL 

TO 16 BITS BYTE 

10 16·BIT INSTRUCTION 

CONTENTS OF CONTAINS 

NEXT TWO TWO 

BYTES OF ADDITIONAL 

INSTRUCTION BYTES -
11 RIM REGISTER 

IFMOD = 00 AND RIM =110, THEN: 
1. THE ABOVE DOES NOT APPLY 
2. THE INSTRUCTION CONTAINS TWO ADDITIONAL BYTES 
3. THE OFFSET ADDRESS IS CONTAINED IN THOSE BYTES 

L----Figure 3.12: HIM field and MOD defmitions for the 8086/808B object code. 



62 PROGRAMMING THE 8086/8088 

OBJECT CODE FOR INDEXING 

AND BASE REGISTER USE 


Let us examine one last example of generating object code for the 8086/ 
8088. In this example we will calculate the object code for the instruction 
MOV 'X, COUNT [BX] [SI]. This instruction has the same general format 
as the previous example. The byte count for this instruction is 4. These 
bytes are shown in Figure 3.13. 

The first byte of Figure 3.13 will have the D bit set to a logical 1. This is 
due to the fact that the destination for the data will be specified by the REG 
field in the second byte. The W bit will be set to a logical 1 because it is a 
word transfer. This gives a first byte data equal to 10001011 or 8B. 

Next, we go to the MOD field of the second byte. Since we are using 
a constant that requires 16 bits, the MOD will be set to 10. Referring to Fig­
ure 3.12 this indicates that the displacement will be formatted in two bytes 
and will follow this byte. 

The next field for the second byte is the register field or REG. Since we 
will be using the ex register, this value will be set to 001 (this was obtained 
from the register field definitions given in Figure 3.10). 

Finally, we have the RIM field. Since the MOD field was not equal to 11, 
this field will specify which base and index registers are being used to gen­
erate the 16-bit offset address. In our case, we are using the (BX + SI + 
DISP) field. This corresponds to a RIM of 000. See Figure 3.12. 

The total second byte of data will be equal to 10 001 000. This is equal to 
88. The third and fourth bytes will be equal to the displacement. In this 
case, the value of count will be equal to 0345 in hexadecimal. The last two 
bytes will be 4503. This gives a total object code for the instruction MOV 
ex, eOUNT [BX] [SI] = 8B 884503. 

OBJECT CODE SUMMARY 

One question you may be asking at this point is "Will I have to figure out 
the D, W, REG, MOD and RIM fields all the time?" If this were the case, 
then you probably would not program the 8086/8088. Fortunately, your 

10001 ODW MOD REG RIM ADD LOW ADD HIGH 

Figure 3.13: The object code format for an instruction like MOV BX, COUNT fBXl (SlJ. 



MEMORY ORGANIZATION AND ADDRESSING MODES 63 

computer will help you figure them out. This object code section has been 
presented only to enable you to better understand the inner workings of 
the 8086/8088 microprocessors. 

SUMMARY 

In this chapter we have discussed some important topics relating to pro­
gramming the 8086/8088 microprocessors. We started with a presentation 
of the organization of the system memory for both CPUs. This discussion 
was provided to help you more clearly understand how the instructions 
are organized in the system memory; furthermore, it allows you to see the 
differences and similarities between the 8086/8088 systems. 

Next we discussed all the addressing modes. As each mode was 
presented, examples were given to show exactly how the addresses were 
generated. We also discussed the segment, base and index registers, and 
learned how a physical 2o-bit system address is internally generated by 
the CPU. 

We ended the chapter with examples showing how to generate object 
codes for the 8086/8088. These examples included discussions of the dif­
ferent fields that make up the object code, including the D, W, RIM, REG, 
and MOD fields. 

The information given in this chapter should help you to better under­
stand the encoding of the instructions shown in the next chapter. 





4 THE INSTRUCTION 
SET: INDIVIDUAL 

DESCRIPTIONS 

In this chapter we will present the com­
plete 8086/8088 instruction set, listed alpha­
betically by mnemonics. We will give a brief 
description ofeach instruction and show the 
use of each instruction in assembly lan­
guage (with arguments included). In addi­
tion, we will describe how the 8086/8088 
executes each instruction. This is helpful if 
you want a quick reference displaying what 
actually occurs during the execution of an 
instruction. Each description will include 
any special considerations that a particular 
instruction might have, and it will detail 
when each instruction can and cannot be 
used. 

For certain instructions we will give 
examples. For others it will be clear from the 
descriptions exactly how they are to be used. 

Finally, we will show the object code for 
each instruction. 



66 PROGRAMMING THE 8086/8088 


The mnemonics used in this chapter are consistent with those designed 
by Intel Corporation. The information presented should not only help 
you better understand how the 8086/8088 microprocessor can be pro­
grammed, but it should also serve as a valuable reference when you actu­
ally begin writing programs in assembly language. 

The table below shows the abbreviations and symbols, and Figure 4.1 
shows the 8086/8088 register model that we will use in the descriptions 
that follow of the 8086/8088 instructions. 

ABBREVIATIONS AND SYMBOLS 

FOR INSTRUCTION DESCRIPTIONS 


If d = 1, then "to"; if d = 0, then "from" 

Ifw = 1, then word instruction; if w = 0, then byte instruction 

If s:w = 01, then 16 bits of immediate data form the operand 

If s:w = 11, then an immediate data byte is sign-extended to form 
the 16-bit operand 

If v = 0, then "count" = 1; ifv = 1, then "count" in CL 

x = don't care 

z is used for some string instructions to compare with the ZF flag. 

AL = 8-bit accumulator 

AX = Hi·hit accumulator 

CX = Count register 

DX = Variable port register 

DS = Data Segment 

ES = Extra Segment 

Abovelbelow refers to unsigned value 

Greater = more positive 

Less = less positive (more negative) signed values 



THE 8086/8088 INSTRUCTION SET 67 

AH ~ "I AL ACCUMULATOR 

BH B~-, BL BASE 

CH Jx-j CL COUNT 

OH O~ OL DATA 
I 

SP STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

01 DESTINATION INDEX 

CODE SEGMENT 

os DATA SEGMENT 

SS STACK SEGMENT 

ES EXTRA SEGMENT 

CS 

L--__________I_P_________-.lIINSTRUCTION POINTER 

'----------------- Figure 4.:1: The 8088/8088 internal register. 



68 PROGRAMMING THE 8086/8088 

~ AAA· ~ ASCH Adjuslfor Addition ---- ­

Mnemonic: 

AAA no operands 

Function: 

If	03, 02, 01, DO ofAL >9 or AF flag = 1, then AL = AL + 6, AH 
= AH + 1, AF = 1, CF = AF, AL = AL "and" OFh 

Flags Defined: 

AF,CF 

Flags Undefined: 

OF, PF, SF, ZF 

Description: 

The AAA instruction changes the value of the AL register to a 
valid unpacked decimal number; bits 07-04 of the AL register are 
zeroed. 

Example: 

AAA 

Before: 
AL = OBh 
AH = ooh 

After: 
AL = 

AH = 

olh 
01h 

Encoding: 
1"--00-1-1-01-1-1"""11 31­

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 69 

-----ASCII Adjust for Division -1 AAD ~ 

Mnemonic: 

AAD no operands 

Function: 

AL = ((AH *OAh) + AL; AH = 0) 

Flags Defined: 

PF, SF,ZF 

Flags Undefined: 

AF,CF,OF 

Description: 

The AAD instruction changes the contents of the AL and AH 
registers (each containing a valid unpacked BCD number) to an 
equivalent binary number contained in the AL register. This 
enables the programmer to use the IDIV instruction to produce 
the correct result. The AH register must be zero prior to the IDIV 
instruction. After the IOIV instruction, the quotient is returned in 
AL and the remainder is returned in AH. Both high-order half­
bytes are zeroed. 

Example: 

AAD 

Before: 
AL = 03h 
AH = 05h 

After: 
AL = 

AH = 

35h 
ooh 

Encoding: 
r-1-ll-0-1-01-0-1'T10-OO-Ol-0-l-0"" 

b5 ¢A 
All mnemonics copyright Intel Corporation. 1981. 



70 PROGRAMMING THE 808S/8088 


-1 AAM ~ ASCU AdjusljiJr Multiply ---- ­

Mnemonic: 


AAM no operands 


Function: 


AH = AL / OAh; AL = remainder 


Flags Defined: 


PF,SF,ZF 


Flags Undefined: 


AF,CF, OF 


Description: 

The AAM instruction corrects the result of a multiplication of 
two valid unpacked BCD numbers. A valid unpacked BCD num­
ber is formed from the content ofAH and AL. The binary number 
in AL is divided by 10 and the quotient is stored into the AH regis­
ter. The remainder from the division is stored in the AL register. 
The high-order half-bytes of the multiplied operands must have 
been oh in order for AAM to produce a correct result. 

Example: 

AAM 

Before: After: 
AH = ooh AH = osh 
AL = 41h AL = 05h 

Encoding: 

lr-ll-0-1-01-oo-r10-0-00-1-0-1-0-', 
 D4- ¢A 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 71 


----ASCII Adjust for SubIradion -1 AAS ~ 

Mnemonic: 

AAS no operands 

Function: 

If D3, D2, D1, DO of AL >9 or AF flag = 1, then AL = AL - 6, AH 
'" AH - 1, AF '" 1, CF = AF, AL = AL "and" OFh 

Flags Defined: 

AF,CF 

Flags Undefined: 

OF, PF, SF, ZF 

Description: 

AAS corrects the result of a previous subtraction of two valid 
unpacked decimal operands. AAS changes the content of AL to 
a valid unpacked decimal number. The high-order half-byte is 
zeroed. 

Encoding: 

'-100-1-1-11-11--'1 

AI, mnemonics copyrlght/nte' Corporation. 1981. 



72 PROGRAMMING THE 8086/8088 

-1 ADC ~AddWithCony-----­

Mnemonic: 


ADC destination, source 


Function: 

IfCF = 1 then destination = destination + source + 1 
IfCF = 0 then destination = destination + source 

Flags Defined: 


AF, CF, OF, PF, SF, ZF 


Description: 

ADC sums the operands, which may be bytes or words, and 
then adds one if CF is set and replaces the destination operand 
with the result. Both operands may be signed or unsigned binary 
numbers. 

Example: 

AOCAX,BX 

ADCAL,9 

ADCBX,458 


Encoding: 


Memory or Register Operand with Register Operand


IOOOlOOdw! mod reg rIm! 

Immediate Operand to Memory or Register Operand 


!100000sw Imod 010 rIm! data Idata if s:w = 01 


Immediate Operand to Accumulator 


I0OO101Ow Idata Idata if w =1 I 

All mnemonics copyright Intel Corporation, 19BI. 



THE 8086/8088 INSTRUCTION SET 73 


-------AddiIion1ADD ~ 

Mnemonic: 

ADD destination, source 

Function: 

destination = destination + source 

Flags Defined: 

AF, CF, OF, PF, SF, ZF 

Description: 

The sum of the two operands, which may be bytes or words, 
replaces the destination operand. 

Example: 

ADD DX,CX 

ADDAX,400 

ADD label,BL 


Encoding: 

Memory or Register Operand with Register Operand

IoooooOdw Imod reg rIm I 
Immediate Operand to Memory or Register Operand 

1 100000SW Imod 000 rIm Idata Idata if s:w = 01 I 
Immediate Operand to Accumulator 

I0000010w Idata Idata if w = 1 I 

All mnemonics copyright Intel Corporation, 1981. 



74 PROGRAMMING THE 8086/8088 

-1 AND ~AndLogical------­

Mnemonic: 


AND destination, source 


Function: 

destination = destination "and" source 

CF = O,OF = 0 


Flags Defined: 


CF, OF, PF, SF, ZF 


Flags Undefined: 


AF 


Description: 

AND performs the logical "and" of the two operands (byte or 
word) and returns the result to the destination operand. A bit in 
the result is set to a logical 1 if both bits of the original operands 
are a logical 1; otherwise, the bit is cleared. 

Example: 


AND BX,CX 


Before: After: 

BX = AC07h BX = 2004h 

ex = 23F4h CX = 23F4h 


Encoding: 


Memory or Register Operand with Register Operand 


IoOlooodw Imod reg rim I 


All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 75 

Immediate Operand to Memory or Register Operand 


1100oo00W Imod 100 rIm Idata Idata if W= 1 


Immediate Operand to Accumulator 


I 0010010w Idata Idata if w = 1 I 


All mnemonics copyright Intel Corporation, 1981. 



76 PROGRAMMING THE 8086/8088 


1CALL~ CaHPnx:ed1lM --- ­

Mnemonic: 

CALL Procedure-name 

Function: 

If	inter-segment then: SP = SP - 2; CS pushed 
CS = new segment specified: SP = SP - 2; IP pushed 
IP = new instruction pointer specified 

If	intra-segment, then: SP = SP - 2; IP pushed 
IP = new instruction pointer specified 

Flags Affected: 

none 

Description: 

CALL activates an out-of-line procedure, saving information on 
the stack to permit a RET (return) instruction in the procedure to 
transfer control back to the instruction following the CALL. The 
assembler generates a different type of CALL instruction depend­
ing on whether the programmer has defined the procedure name 
as NEAR or FAR. For control to return properly, the type of CALL 
instruction must match the type of return (RET) instruction that 
exists from the procedure. 

For an intra-segment direct CALL, SP is decremented by two 
and IP is pushed onto the stack. The target procedure's relative 
displacement (up to ± 32K) from the CALL instruction is then 
added to the instruction pointer. 

An intra-segment indirect CALL may be made through mem­
ory or a register. SP is decremented by two and the IP is pushed 
onto the stack. The target procedure offset is obtained from the 
memory word or la-bit general register referenced in the instruc­
tion that replaces the IP. 

All mnemonics copyrlght Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 77 

For an inter-segment direct CALL, SP is decremented by two, 
and CS is pushed onto the stack. CS is replaced by the segment 
word contained in the instruction. SP is again decremented by 
two, and the IP is pushed onto the stack and replaced by the offset 
word in the instruction. 

For an inter-segment indirect CALL, SP is decremented by two, 
and CS is pushed onto the stack. CS is then replaced by the con­
tent of the second word of the double-word memory pointer refer­
enced by the instruction. SP is again decremented by two, and IP 
is pushed onto the stack and replaced by the contents of the first 
word or the double-word pointer referenced by the instruction. 

Example: 

CALL NEAR 

CALL FAR 

CALL AX 


Encoding: 

Intra-Segment Direct 

111101000 I disp-Iow disp-high I 
Destination = Effective Address 

Intra-Segment Indirect 

111111111 1 mod 010 rIm 1 

Destination = IP + displacement 

Inter-Segment Direct 

10011010 offset-low offset-high 

Inter-Segment Indirect 

111111111 1 mod 011 rIm 1 

Destination = Effective address, Segment = Effective address + 2 

All mnemonics copyright Intel Corporation, 1981. 



78 PROGRAMMING THE 8086/8088 


1CBW ~Convel'tllylefol\bnl-----

Mnemonic: 


CBW no operands 


Function: 

IfAL < 80h then AH = ooh 

IfAL >80h then AH = FFh 


Flags Affected: 


none 


Description: 

CBW extends the sign of the byte in register AL through register 
AH. 

Example: 


CBW 


Before: After: 
AL = 83h AH = FFh: AL = 83h 

AL = 56h AH = Doh: AL = 56h 


Encoding: 


r-11-00-1-1000---'1 


All mnemonics copyright Intel Corporation. 2982. 



THE 8086/8088 INSTRUCTION SET 79 


----ClauCarIY1 CLC ~ 

Mnemonic: 

CLC no operands 

Function: 

CF = 0 

Flags Defined: 

CF 

Description: 

CLC zeroes the carry flag (CF) and affects no other flags. 

Encoding: 
'I-11-1-1-10-0-0'1 

All mnemonics copyright Intel Corporation. 1981. 



80 PROGRAMMING THE 8086/8088 

~ CLD ~ Clear Direction F/ag -----­

Mnemonic: 

CLD no operands 

Function: 

DF = 0 

Flags Defined: 

DF 

Description: 

CLD zeroes DF, causing the string instructions to auto­
increment the SJ and/or DJ index registers. 

Encoding:
.---::-----. 
1 11111100 

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 81 

----Clear Interrupt Enoble Flog -1 eLI ~ 

Mnemonic: 

CLI 

Function: 

IF = 0 

Flags Defined 

IF 

Description: 

CLI zeroes the IF flag, which will disable maskable interrupts. 
Software interrupts are not disabled. 

Encoding: 
1'-1-1-1-11-0-1-0-', 

All mnemonics copyright Intel Corporation, 1981. 



82 PROGRAMMING THE 8086/8088 


~ CMC ~CompIementCanyFlag------

Mnemonic: 

CMC no operands 

Function: 

IfCF = othen CF = 1; ifCF = 1 then CF = 0 

Flags Defined: 

CF 

Description: 

CMC "toggles" CF to its opposite state. 

Encoding: 

1"--11-1-10-1-0-1--', 

All mnemonics copyrightInlel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 83 


----Compare-1 CMP ~ 


Mnemonic: 

CMP destination, source 

Function: 

destination - source 

Flags Defined: 

AF, CF, OF, PF, SF, ZF 

Description: 

CMP subtracts the source from the destination, which may be 
bytes or words, but does not return the result. The operands are 
unchanged, but the flags are updated and can be tested by a subse­
quent conditional jump instruction. 

Example: 

CMPDX,CX 
CMPAL,25 
CMP BH,Label 

Encoding: 

Memory or register Operand with Register Operand 

I00l11Odw I mod reg rIm I 
Immediate Operand to Memory or Register Operand 

1100000SW I mod 111 rIm I data I data if s:w =01 I 
Immediate Operand with Accumulator 

I0011110w I data I data ifw= 1 

All mnemonics copJTight Intel Corporation, 1981. 



84 PROGRAMMING THE 8086/8088 

1CMPS~ Compare String (Byte or -.lJt--- ­

Mnemonic: 

CMPS [destination-string) - [source-string) 

Function: 

[destination-string) - [source-string) 
If DF = 0, then SI = SI + delta, DI = DI + delta 
If DF = 1, then SI = S - delta, DI = DI - delta 

If string is byte then delta is 1 

If string is word then delta is 2 


Destination string is addressed by DI 

Source string is addressed by SI 


Flags Defined: 

F, CF, OF, PF, SF, ZF 

Description: 

CMPS [Compare String) subtracts the destination byte or word 
[addressed by Dn from the source byte or word (addressed by Sn. 
CMPS affects the flags but does not alter either operand. If CMPS 
is prefixed with REPE or REPZ, the operation is interpreted as 
"compare while not end-of-string (eX not zero) and the strings are 
equal (ZF = 1)." IfCMPS is preceded by REPNE or REPNZ, the 
operation is interpreted "as compare while not end-of-string (CX 
not zero) and the strings are not equal (ZF = 0)." Thus, CMPS can 
be used to find matching or differing string elements. 

The operands named in the CMPS instructio.n are used only by 
the assembler to verify type and accessibility using current seg­
ment register contents. 

Encoding: 


,""--:lO-l-OO-ll-W---', 


All mnemonics copyright Intel Corporation, 1981. 



THE 808618088 INSTRUCTION SET 85 


---- Convert Wmllo Douhle WmI ~ CWD ~ 

Mnemonic: 

CWD no operands 

Function: 

IfAX < 8000h then DX = 0 

If AX >8000h then DX = FFFFh 


Flags Affected: 

none 

Description: 

CWD extends the sign of the word register AX throughout 
register DX. 

Example: 

CWD 

Before: After: 

AX = 9034h DX = FFFFh, AX = 9034h 

AX = 7034h DX = FFFFh, AX = 7034h 


Encoding: 

r--ll-00-1100-1--'1 

All mnemonics copyright Intel Corporation, 1981. 



86 PROGRAMMING THE 8086/8088 

-1 DAA ~ Decimal Adjust forAddilioDl----­

Mnemonic: 

DAA no operands 

Function: 

IfD3, D2, D1, DO of AL > 9 or AF flag = 1, 
then AL = AL + 6: AF = 1 

IfAL > 9Fh or CF flag = 1, 
then AL = AL + 60h: CF = 1 

Flags Defined: 

AF, CR, PF, SF, ZF 

Flags Undefined: 

OF 

Description: 

DAA changes the content of AL to a pair of valid packed deci­
mal digits. 

Example: 

DAA 

Before: 
AL8Ah 

After: 
AL = 90h 

Encoding: 
,........::~-~ 


I 00100111 

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 87 

----Decimal Adjustfor Subtnu:tion -1 DAS ~ 

Mnemonic: 

DAS no operands 

Function: 

IfD3, D2, D1, DO of AL >9 or AF = 1 
then AL = AL - 6; F = 1 

If AL >9Fh or CF = 1 then AL =AL - 6Oh; CF = 1 

Flags Defined: 

AF, CR, PF, SF, ZF 

Flag Undefined: 

OF 

Description: 

DAS changes the content of AL to a pair of valid packed deci­
mal digits that were the result of a previous subtraction. 

Example: 

DAS 

Before: After: 
AL = 1Fh AL = 19h 

Encoding: 
"'-1-00-1-0-11-1-1""1 

All mnemonics copyright Intel Corporation, 1981. 



88 PROGRAMMING THE 8086/8088 

-1 DEC ~v-.menlp-------

Mnemonic: 

DEC destination 

Function: 

destination = destination - 1 

Flag Defined: 

AF, OF, PF, SF, ZF 

Description: 

DEC subtracts one from the destination operand. The operand 
may be a byte or a word. 

Example: 

DECBX 

Before: 
BX = 12h 

After: 
IlFFh 

Encoding: 

Memory or Register Operand 

Il111111w I mod 001 rIm I 
Register Operand 

101001reg 

AU mnemonics copyrightlnlel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 89 


--------~ DIV ~ 


Mnemonic: 

DIVsource 

Function: 

If	source operand = byte: AX I source: AH = Quotient 
AL = remainder 

If	source operand = word: AX, DX I source, AX = Quotient, 
DX = remainder, where contains the most-significant 16 bits 
for the divide. 

Flags Defined: 

none 

Flags Undefined: 

AF, CF, OF, PF, SF, ZF 

Description: 

DIV (divide) performs an unsigned division of the accumulator 
(and its extension) by the source operand. If the source operand is 
a byte, it is divided into the double-length dividend assumed to be 
in registers AL and AH. The single-length remainder is returned 
in AH. If the source operand is a word, it is divided into the 
double-length dividend in registers AX and DX. The single-length 
remainder is returned in DX. If the quotient exceeds the capacity 
of its destination register (FFH for byte source, FFFFH for word 
source), as when division by zero is attempted, a type 0 interrupt 
is generated. At this time the quotient and remainder are unde­
fined. Non-integral quotients are truncated to integers. 

All mnemonics copyright Intel Corporation. 1981. 



90 PROGRAMMING THE 8086/8088 

Example: 

DIV 25 this is a byte 

Before: After: 
AH = ooh AH = 01h remainder 
AL = 33h AL = 02h quotient 

DIV 300 this is a word 

Before: After: 
DX = ooooh DX = ooo5h remainder 
AX = 0389h AX = 0003h quotient 
DIVCL 
DIVCX 

Encoding: 
~1~11~1-1-0-11-w--~m--od--l-l0--d-m~--2---4-b-yt-e-s-m-a-y-fu-ll-o-w-'I 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 91 


----~.ESC~ 


Mnemonic: 

ESC external opcode, address 

Function: 

If MOD is not equal to 11. the instruction is placed on the data 
bus. 

If MOD is equal to 11. a no-operation is performed. 

Flags Affected: 

None 

Description: 

The Escape instruction provides a mechanism by which other 
processors (co-processors) may receive their instructions from the 
8086/8088 instruction stream and make use of the 8086/8088 
addressing modes. The CPU does no operation for the ESC 
instruction other than to access memory and place the operand 
on the data bus. The 8086/8088 are designed to operate with a vari­
ety of co-processors that perform different system functions. Two 
co-processors that operate with the 8086/8088 are the 8089 Input 
and Output Processor and the 8087 Numeric data processor. 

Example: 

ESC6.AL 

Encoding:r--------,-----------,
11011xxx mod xxx rim 

All mnemonics copyrighllnlel Corporalion. 1981. 



-----

92 PROGRAMMING THE 8086/8088 


1HLT ~Hal&~-----

Mnemonic: 

HLT no operands 

Function: 

None 

Flags Affected: 

None 

Description: 

HLT causes the 8086/8088 to enter the halt state. The processor 
leaves the halt state upon activation of the RESET line, upon 
receipt of a non-maskable interrupt request on NMI, or, if inter­
rupts are enabled, upon receipt ofa maskable interrupt request on 
INTR. 

Encoding: 

111110100 1 

AU mnemonics copyright Intel Corporation. 19B1. 



THE 808618088 INSTRUCTION SET 93 

-------InIBgarDivide1IDIV ~ 

Mnemonic: 

mIVsource 

Function: 

If	it is a byte source, the quotient is returned in AL, the remainder 
is returned in AH, and the dividend is contained in AX and is 
dividedby the source specified. 

If	it is a word source, the quotient is returned in AX, the remain­
der is returned in DX, and the dividend is contained in AX, 
DX and is divided by the source specified. 

Flags Defined: 

None 

Flags Undefined: 

AF, CF, OF, PF, SF, ZF 

Description: 

Integer Divide performs a signed division of the accumulator 
(and its extension) by the source operand. Ifthe source operand is 
a byte, it is divided into the double-length dividend assumed to be 
in registers AL and AH. The single-length quotient is returned in 
AL, and the single-length remainder is returned in AH. For byte 
integer division, the maximum positive quotient is +127 (7FH) 
and the minimum negative quotient is -127 (81H). If the source 
operand is a word, it is divided into the double-length dividend in 
registers AX and DX. The single-length quotient is returned in 
AX, and the single-length remainder is returned in DX. For word 
integer division, the maximum positive quotient is + 2,767 
(7FFFH) and the minimum negative quotient is - 32,767 (8001H). 

All mnemonics copyright Intel Corpora~on. 1981. 



94 PROGRAMMING THE 8086/8088 

If the quotient is positive and exceeds the maximum, or is nega­
tive and is less than the minimum, the quotient and remainder are 
undefined, and a type 0 interrupt is generated. Non-integral quo­
tients are truncated (towards 0) to integers, and the remainder has 
the same sign as the dividend. 

Example: 

IDIVCL 

IDIVBX 


Encoding:

I'-11-1-1-0-11-w--'-m--o-d-l-11--d-m~1 

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 95 

------Integer Multiply -1IMUL~ 

Mnemonic: 

IMULsource 

Function: 

Ifbyte source: AX = AL x source (signed) 

If word source: AX, DX = AX x source (signed) 


Flags Defined: 

CF,OF 

Flags Undefined: 

AF, PF, SF, ZF 

Description: 

IMUL performs a signed multiplication of the source operand 
and the accumulator. If the source is a byte, then it is multiplied by 
register AL, and the double-length result is returned in AH and 
AL. If the source is a word, then it is multiplied by register AX, 
and the double-length result is returned in registers OX and AX. If 
the upper-half of the result (AH for byte source, OX for word 
source) is not the sign extension of the lower-half of the result, CF 
and OF are set; otherwise, they are cleared. When CF and OF are 
set, they indicate that AH or OX contains significant digits of the 
result. 

Example: 

IMULBL 
IMULCL 
IMUL400 

Encoding: 
11"""1-1-1-1-01-1-w-r-m-o-d-l0-l-r-'m--'I 

All mnemonics copyright Intel Corporation, 1981. 



96 PROGRAMMING THE 8086/8088 


-1L-_I_N_--,~ Input Byte OrmmI------­

Mnemonic: 

IN accumulator, port 

Function: 

If byte: AL = data from port number, or AL = data addressed by 
OX register. 

Ifword: AX = data from port number, or AX = data addressed by 
DX register. 

Flags Affected: 

None 

Description: 

IN transfers a byte or a word from an input port to the AL or AX 
register, respectively. The port number may be specified either 
with an immediate byte constant, 0 - 255, or with a number previ­
ously placed in the OX register, 0 - 65,535. 

Example: 

INAL,045H immediate byte 
INAX,046H immediate word 
INAL,OX byte variable port 
INAX,DX word variable port 

Encoding: 

Fixed Port 

I	1110010W Iport 

Variable Port 

I 1110110W Iport address is contained in OX register 

All mnemonics copyrighl Inlel Corporation, 1981. 



THE 808618088 INSTRUCTION SET 97 

-----lJU:l1Jmant1 INC ~ 


Mnemonic: 

INC destination 

Function: 

Destination .. Destination + 1 

Flags Defined.: 

AF, OF, PF, SF, ZF 

Description: 

INC adds 1 to the destination operand. The operand may be a 
byte or a word. 

Example: 

INCBL 

INCBX 


Encoding: 

Memory or Register Operand 

I l111111w I mod 000 rIm I 
Register Operand 

I01000reg I 

J\JJ mnemonics copyrighllnlel Corporalion. 1981. 



98 PROGRAMMING THE 8086/8088 


-1 INT ~Interrupt------­

Mnemonic: 

INT interrupt type 0 - 255 

Function: 

SP = SP - 2; Flags pushed; IF = 0; TF = 0; SP = SP - 2; CS 
pushed; 

New CS = data at memory address (type *4 + 2); SP = SP - 2; IP 
pushed; 

New IP = data at memory address type * 4. 

Flags Defined: 

TF,IF 

Description: 

INT activates the interrupt procedure specified by the 
interrupt-type operand. The address of the interrupt pointer is cal­
culated by multiplying the interrupt-type by 4. The second word 
of the interrupt pointer replaces CS. The first word of the inter­
rupt pointer replaces IP. 

If the type is specified as 3, the assembler will generate a special 
one-byte form of the interrupt instruction. This is the breakpoint 
interrupt. 

Example: 

INT3 

INT58 


Encoding: 


I'l-l-OO-U-Ov---'I type ifv = 1 


Ifv = 0, then type = 3 

All mnemonics copyris/lt Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 99 


-----Inlanupt On 0vm1I0w --1 INTO ~ 

Mnemonic: 

INTO no operands 

Function: 

IfOF = 1 then: SP = SP - 2; Flags are pushed; IF = 0; TF = 0; 
SP = SP - 2; CS is pushed; New CS = data at memory location 

12H; 
SP = SP - 2; IP is pushed; New IP = data at memory location 

10H. 

Flags Affected: 

None 

Description: 

INTO generates a software interrupt if the overflow flag (OF) is 
set; otherwise. control proceeds to the following instruction with­
out activating an interrupt procedure. 

Encoding: 
1'1-1-00-1-1-1-0'1 

All mnemonics copyright Intel Corporat/on. 1981. 



100 PROGRAMMING THE 8086/8088 


1IRET ~ InIamJptOn IWum---­

Mnemonic: 

IRET no operands 

Function: 

IP popped from stack: SP = SP + 2; es is popped from the stack; 
SP = SP + 2; Flags popped from the stack; SP = SP + 2. 

Flags Defined: 

ALL 

Description: 

IRET transfers control back to the point of interruption by pop­
ping IP, es, and the flags from the stack. IRET is used to exit any 
interrupt procedure, whether activated by hardware or software. 

Encoding: 
'-1-11-00-11-1-1-'1 

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 101 

-----JumP OnAhove-1 fA ~ 

----JUmPOnNotBelowOrEqual-1 fNBE ~ 

Mnemonic: 

JA S-bit signed displacement 
JNBE S-bit signed displacement 

Function: 

IfCF and ZF = 0, then IP = IP + s-bit displacement. 
Displacement is sign-extended to 16 bits. 

Flags Affected: 

None 

Desc::ription: 

JA and JNBE transfer control to the target operand (IP + dis­
placement) under the conditions CF and ZF = 0 (or false). Both of 
these mnemonics will generate the same instruction code by the 
assembler. 

Example: 

JA label 
JNBE label 

Encoding: 

"'-10-1-1-10-1-11---r"I-di-'s-p--'I 

All mnemonics copyright Intel Corporation, 1981. 



102 PROGRAMMING THE 8086/8088 

--1 JAE ~ Jump On Above OrEquaI----­

--1 JNB ~JumPOnNotBelow------

Mnemonic: 

JAE S-bit signed displacement 
JNB S-bit signed displacement 

Function: 

If CF = 0, then IP = IP + displacement (sign-extended to 16 bits). 

Flags Affected: 

None 

Description: 

JAE and JNB transfer control to the target operand (lP + dis­
placement) if the condition (CF = 0) is above or equal/not below 
the tested value. Both of these mnemonics will generate the same 
instruction code for the 8086/8088. 

Example: 

JAElabel 
JNBlabel 

Encoding: 
l'O-l-l-l00-l-l --r-di-·s-p-' 

AJJ mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 103 


-------Jump On Below-j IB ~ 

---- lump On Not Abo... OrEqual-j INAE ~ 

Mnemonic: 

JB S-bit signed displacement 
JNAE 8-bit signed displacement 

Function: 

If CF = 1, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected.: 

None 

Description: 

JB and JNAE transfer control to the target operand (lP + dis­
placement) if the condition (CF = 1) is below/not above or equal to 
the tested value. Both of these mnemonics will generate the same 
instruction for the 8086/8088. 

Example: 

JB label 
JNAElabel 

Encoding: 
,'O-1-1-10-0-1-0-'-,-di-'s-p-', 

All mnemonics copyright Intel Corporation, 1981. 



104 PROGRAMMING THE 8086/8088 

1 IBE ~JumPOnBelowOrEquol-----

1INA ~ Jump OnNotAhove ---- ­

Mnemonic: 


JBE a-bit signed label 

JNA a-bit signed label 


Function: 

IfCF or ZF = 1, then IP = IP + a-bit signed label (sign-extended to 
16 bits). 

Flags Affected: 


None 


Description: 

JBE and JNA transfer control to the target operand (IP + dis­
placement) if the conditions (CF or ZF = 1) are below or equal/or 
not above the tested value. These two mnemonics will generate 
the same instruction for the 8086/8088. 

Example: 


JBE label 

JNA label 


Encoding: 

r-I-01-1-10-1-1-0--r---·-p""
dis

AU mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 105 

----JumpOn Carry-l'---....;;.....Jc----J~ 

Mnemonic: 

IC s-bit signed label 

Function: 

If	CF = 1, then IP = IP + S-bit signed label (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

IC transfers control to the target operand (IP + displacement) if 
CF = 1. 

Example: 

IC label 

Encoding: 

Ir-O-ll-1OO-l-O--',-dis-'p---', 

All mnemonics copyrightintel Corporation, 1981. 



106 PROGRAMMING THE 8086/8088 

1fexz ~ ---­Jump IfCX IIegiBIm'kro 

Mnemonic: 


JCXZ s-bit signed label 


Function: 

IfCX = 0, then IP = IP + displacement (sign-extended to 16 bits). 

Flags Affected: 


None 


Description: 

JCXZ transfers control to the target operand if CX is o. This 
instruction is useful at the beginning of a loop to bypass the loop if 
CX has a zero value (that is, to execute the loop zero times). 

Example: 


JCXZlabel 


Encoding: 


'-1-11-1-00-0-1-1--'--d-is-p---' 


All mnemonics copyright Intel CorporatJon. 1981. 



THE 8086/8088 INSTRUCTION SET 107 

-------Jump On EqUa1-1,--_J_E_--,~ 

-----JumpOnz-.1 JZ ~ 

Mnemonic: 

JE S-bit signed label 

JZ S-bit signed label 


Function: 

If ZF = 1, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

JE and JZ transfer control to the target operand (lP + displace­
ment) if the condition (ZF = 1) is equal/or zero on the tested value. 
Both of these mnemonics will generate the same instruction for 
the 8086/8088. 

Example: 

JE label 

JZlabel 


Encoding: 
r-0-ll-1-0-1-00-r-1-di-'s-p--'I 

All mnemonics copyright Intel Corporation. 1981. 



108 PROGRAMMING THE 8086/8088 


-1 JG ~ Jump On Grea"'" Than -----­

-1 JNLE ~ Jump On Not Less OrEquaI---­

Mnemonic: 

JG S-bit signed label 

JNLE S-bit signed label 


Function: 

If SF = OF and ZF = 0, then IP = IP + displacement (sign­
extended to 16 bits). 

Flags Affected: 

None 

Description: 

JG and JNLE transfer control to the target operand (IP + 
displacement) if the condition SF xor OF = 0 or ZF == 0 is greater 
than/not less than or equal to the tested value. Both of these mne­
monics will generate the same instruction for the 8086/8088. 

Example: 

JG label 

JNLElabel 


Encoding: 
,..--O-ll-l-l-l-11-r--- -P--',dis

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 109 


-------:. Jump On G_Or Equal1 JGE ~ 

----JumPOnNot~ JNL ~ 


Mnemonic: 

JGE S-bit signed displacement 

JNL 8-bit signed displacement 


Function: 

If SF is equal to OF, then IP = IP + displacement (sign-extended 
to 16 bits). 

Flags Affected: 

None. 

Description: 

JGE and JNL transfer control to the target operand (IP + dis­
placement) if the condition (SF xor OF = 0) is greater than or 
equal/not less than the tested value. These two mnemonics will 
generate the same instruction for the 8086/8088. 

Example: 

JGElabel 

JNLlabel 


Encoding: 

'I-Ol-1-1-11-0-1---rI-di-·s-p-'I 

All mnemonics ropyrijhl Intel Corporation. 1981. 



110 PROGRAMMING THE 8086/8088 


-1 JL ~JumpOnIao-----

-1 JNGE ~ Jump On NoIGrealerOrEquaI--­

Mnemonic: 

JL 8-bit signed displacement 
JNGE 8-bit signed displacement 

Function: 

If SF is not equal to OF, then IP = IP + displacement (sign­
extended to 16 bits). 

Flags Affected: 

None 

Description: 

JL and JNGE transfer control to the target operand (IP + dis­
placement) if the condition (SF xor OF = 1) is less than/not greater 
than or equal to the tested value. Both of these mnemonics will 
generate the same instruction for the 8086/8088. 

Example: 

JL label 
JNGE label 

Encoding: 

--I0-11-1-11-00-'-,-di-SP---', 

All mnemonics copyrishllnlel Corporation, 2982. 



THE 8086/8088 INSTRUCTION SET 111 


---Jump On Less Than Or Equal1 JLE ~ 

----JumpOnNotGreoferThan--1 JNG ~ 

Mnemonic: 

JLE S-bit signed label 
JNG S-bit signed label 

Function: 

IfSF is not equal to OF or ZF = 1, then IP = IP + displacement 
(sign-extended to 16 bits). 

Flags Affected: 

None 

Description: 

JLE and JNG transfer control to the target operand (IP + dis­
placement) if the condition SF xor OF = 1 or ZF = 1 is less than or 
equal tolnot greater than the tested value. Both of these mnemon­
ics will generate the same instruction for the 8086/8088. 

Example: 

JLE label 
JNGlabel 

Encoding: 
II"'"O-1-1-11-1-1-0-'--di-'s-p--' 

All mnemonics copyright Intel Corporation, 1981. 



112 PROGRAMMING THE 8086/8088 


--1 IMP ~ Jump UncondilionaHy ----- ­

Mnemonic: 

IMP target 

Function: 

If intra-segment, then IP = IP + signed displacement; 
If inter-segment, then CS and IP are replaced by new values ob­

tained from the instruction. 

Flags Affected: 

None 

Description: 

IMP unconditionally transfers control to the target location. 
The target operand may be obtained from the instruction itself 
(direct IMP), or from memory, or a register referenced by the 
instruction (indirect IMP). 

An intra-segment direct IMP changes the instruction pointer by 
adding the relative displacement of the target from the IMP 
instruction. If the assembler can determine that the target is 
within 127 bytes of the IMP, it automatically generates a two-byte 
SHORT IMP instruction. Otherwise, the assembler will address a 
target within ±32K. 

An intra-segment IMP can be made by using memory or a 16-bit 
general register. In the first case, the word content referenced by 
the instruction replaces the IP. In the second case, the new IP 
value is taken from the register named in the instruction. 

An inter-segment IMP replaces IP and CS with values con­
tained in the instruction. The indirect inter-segment IMP may be 
made only through memory. with the first word of the double­
word pointer referenced by the instruction replacing IP, and the 
second word replacing CS. 

AD mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 113 

Example: 

JMPlabel 

JMP label.seg 


Encoding: 

Intra-Segment Direct 

111101001 1 disp-Iow disp-high 

Intra-Segment Direct Short 

Displacement is sign-extended to 16 bits 

111101011 1 disp 1 

Intra-Segment Indirect 

111111111 1 mod 100 rIm 1 

Inter-Segment Direct 

11101010 offset-low offset-high 

Inter-Segment Indirect 

11111111 mod 101 rIm I 

All mnemonics copyright Intel Corporation, 1981. 



114 PROGRAMMING THE 8086/8088 


-1 INC ~lumponNOICarry------

Mnemonic: 

JNC 8-bit signed label 

Function: 

If	CF = 0, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

JNC transfers control to the target operand (IP + displace­
ment ) on the condition CF = O. 

Example: 

JNC label 

Encoding: 
'-1-01-1-1-0-0-11---r--is- -'d p 

All mnemonics copyright Intel Corporalion, 1981. 



THE 8086/8088 INSTRUCTION SET 115 


-----JumponNotEqUaITh~ JNE ~ 


-------JumponNotZero~ JNZ t 

Mnemonic: 

JNE 8-bit signed label 

JNZ 8-bit signed label 


Function: 

If	ZF = 0, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

JNE and JNZ transfer control to the target operand (lP + 
displacement) ifthe condition tested (ZF = 0) is true. 

Example: 

JNElabel 

JNZlabel 


Encoding: 
1r--Ol-l-l-0-10-1---r-di-S-P.....' 

All mnemonics copyright Intel CorporalJon. 1981. 



116 PROGRAMMING THE 8086/8088 


~ INO ~JUmponNotOVerflOW-----

Mnemonic: 

INO 8-bit signed displacement 

Function: 

If OF = 0, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 


None 


Description: 

INO transfers control to the target operand (IP + displace­
ment) if the condition tested (OF = 0) is true. 

Example: 


JNOlabel 


Encoding: 

1.....0-1-1-1-00-0-1--.--d-iS-p-.1 


All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 117 


-------JumponNotSjgn~ INS ~ 


Mnemonic: 

INS 8-bit displacement 

Function: 

If SF = 0, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

INS transfers control to the target operand (lP + displace­
ment) if the condition tested (SF = 0) is true. 

Example: 

INS label 

Encoding: 
,""'-Ol-1-1-1-00-1-'--d-iS-P-', 

All mnemonics copyright Inlel Corporation. 1981. 



118 PROGRAMMING THE 8086/8088 


~ Jump On Not Parity ------ ­-1 JNP 
~ Jump On Parity Odd ------ ­-1 JPO 

Mnemonic: 

JNP 8-bit signed displacement 

JNO 8-bit signed displacement 


Function: 

If PF = 0, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

JNP and JPO transfer control to the target operand (IP + dis­
placement) if the condition tested (PF = 0) is true. Both of 
these mnemonics will generate the same instruction for the 
8086/8088. 

Example: 

JNPlabel 

JPO label 


Encoding: 
,..-------r---, 

01111011 disp 

All mnemonics copyright Intel Corporation, 1981. 



THE SOS6/S0SS INSTRUCTION SET 119 

-------Jump On Overflow ~L----,,-J_O_----I~ 

Mnemonic: 

TO s-bit signed displacement 

Function: 

If	OF = 1, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

TO transfers control to the target operand (IP + displace­
ment) ifthe tested condition (OF = 1) is true. 

Example: 

TO label 

Encoding: 
"'-0-11-1-0-00-0-'-d-is-p--'1 

All mnemonics copyright Intel Corporation, 1981. 



120 PROGRAMMING THE 8086/8088 


~ Jump On Parity Even ------ ­-1 JP 
~JumpOn Parity Equal------­-1 JPE 

Mnemonic: 

JP 8-bit signed displacement 

JPE 8-bit signed displacement 


Function: 

If PF = 1, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

JP and JPE transfer control to the target operand (IP + displace­
ment) if the condition tested (PF =) 1 is true. 

Example: 

JP label 

JPE label 


Encoding: 
.----~--

01111010 disp I 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 121 

--------Jump On sign1.....----"J_S_---'~ 

Mnemonic: 

IS 8-bit signed displacement 

Function: 

If SF = 1, then IP = IP + displacement (sign-extended to 16 
bits). 

Flags Affected: 

None 

Description: 

IS transfers control to the target operand (IP + displace­
ment) if the tested condition (SF = 1) is true. 

Example: 

IS label 

Encoding: 
r--------,---....., 


01111000 disp 


All mnemonics copyright Intel Corporation, 1981. 



122 PROGRAMMING THE 808a/8088 

--1LAHF~ Load Resister AH From Flags ---­

Mnemonic: 


LAHF no operands 


Function: 


AH = d7 da d5 d4 d3 d2 d1 do 

SF ZF X AF X PF X CF where x .. undefined 


Flags Affected: 


None 


Description: 

LAHF (load register AH from flags) copies SF, ZF, AF, PF, CF 
into bits 7, 6, 5, 4, 2, 0, respectively, of register AH. The contents of 
bits 5, 3, and 1 are undefined. 

Encoding: 

'1-=100-1-11-1-1""1 


All mnemonics copyright Intel Corporation. 1981. 



THE 808618088 INSTRUCTION SET 123 


----- Load Pointer Using DS -1 LDS ~ 

Mnemonic: 

LDS destination, source 

Function: 

REG = data from source operand 
DS = data from source operand + 2 

Flags Affected: 

None 

Description: 

LOS transfers a 32-bit pointer variable from the source operand, 
which must be a memory operand, to the destination operand and 
register OS. The offset word of the pointer is transferred to the 
destination operand, which may be any 16-bit general register. 
The segment word of the pointer is transferred to register OS. 

Example: 

LOS SI, label 

Encoding: 
11""'-11-000-1-0-1---r--m- -re-g-r-'m--'od

All mnemonics copyri8hllnlel Corporation. 1981. 



124 PROGRAMMING THE 8086/8088 

1LEA ~LoodEffecIiwAddres.o----­

Mnemonic: 


LEA destination, source 


Function: 


REG = offset of source operand 


Flags Affected: 


None 


Description: 

LEA transfers the offset of the source operand (rather than its 
value) to the destination operand. The source operand must be a 
memory operand and the destination operand must be a 16-bit 
general register. 

Example: 


LEA ex, label 


Encoding: 

r-I-1000--11-0-1---r-m- o-d-re-g-r-/m---'1 


All mnemonics copyrighllnlel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 125 


------I.ood.POinIerUsing~ LES ~ 


Mnemonic: 

LES destination, source 

Function: 

REG = data from source address 
ES = data from source address + 2 

Flags Affected: 

None 

Description: 

LES transfers a 32-bit pointer variable from the source operand, 
which must be a memory operand, to the destination operand and 
register ES. The offset word of the pointer is transferred to the 
destination operand, which may be any 16-bit general register. 
The segment word of the pointer is transferred to register ES. 

Example: 

LES DI,label 
Label 
Label + 2 

0215h 
0457h 

Before: 
DI = 0158h 
ES = 1005h 

After: 
DI = 

ES = 

0215h 
0457h 

Encoding: 
~I-l-lOOO---l-00--'-m--o-d-re-g-r-l-m~1 

All mnemonics copyright Intel Corporation, 1981. 



126 PROGRAMMING THE 8086/8088 


-1LOCK~LockTlteBus~-----

Mnemonic: 

LOCK MOV AX, Label 

Function: 

None 

Flags Affected: 

None 

Description: 

LOCK is a one-byte prefix that causes the 8088 (configured in 
the maximum mode) to assert its bus LOCK signal while the fol­
lowing instruction executes. 

Encoding: 
1'-1-1-1-100-00--' 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 127 

---__Load String (Byte Or Wmlr-j LODS~ 

Mnemonic: 

LODS source-string 

Function: 

Ifbyte-string: AL = data at memory addressed by SI: 
If DF = 0, then SI = SI + 1 
IfDF = 0, thenSI = SI - 1 

If word-string: AX = data at memory addressed by SI: 
If DF = 0, then SI = SI + 2 
If DF = 0, then SI = SI - 2 

Flags Affected: 

None 

Description: 

LODS transfers the byte- or word-string element addressed 
by SI to register AL or AX, and updates SI to point to the next ele­
ment in the string. The assembler uses the source-string specified 
in the instruction to determine the type and accessibility of the 
data. 

Encoding:l.....l-0-l0-l-l-Ow----, 

All mnemonics copyright Intel Corporation, 1981. 



128 PROGRAMMING THE 8086/8088 


1LOOP~Looplfcx.NOIZero'-------

Mnemonic: 

LOOP a-bit signed displacement 

Function: 

ex = ex - 1: Ifex is not equal to zero, then IP = IP + dis­
placement (sign-extended to 16 bits). Ifex = 0, then the next 
sequential instruction is executed. 

Flags Mfected: 

None 

Description: 

LOOP decrements ex by 1 and transfers control to the target 
operand if ex is not 0; otherwise, the instruction following LOOP 
is executed. 

Encoding: 
r-ll-l-l-000-1-0---'-di-'s-p-' 

All mnemonics copyright/nlBl Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 129 


-----.,LoopWltlleE~LOOPEj_ 


----LoopWltllez--/LOOPz\­

Mnemonics: 

LOOPE 8-bit signed displacement 

LOOPZ 8-bit signed displacement 


Function: 

CX = CX - 1: IfCX is not equal to zero and ZF = 1, then 
IP = IP + displacement (sign-extended to 16 bits). 

Flags Affected: 

None 

Description: 

LOOPE and LOOPZ are different mnemonics for the same 
instruction. CX is decremented by 1, and control is transferred to 
the target operand if CX is not 0 and ZF = 1; otherwise, the 
instruction following LOOPEIWOPZ is executed. 

Example: 

LOOPElabel 
LOOPZlabel 

Encoding: 
~---....---111100001 disp 1 

All mnemonics copyright Intel Corporation. 1981. 



130 PROGRAMMING THE 8086/8088 


1LOOPNZ~WopWhileNot:r.m----­

1LOOPNE~WopWhile NotEquoI--­

Mnemonics: 

WOPNZ a-bit signed displacement 

Function: 

ex = ex - 1: Ifex is not equal to zero and ZF = 0, then 
IP = IP + displacement (sign-extended to 16 bits). 

Flags Affected: 

None 

Description: 

LOOPNZ and WOPNE are different mnemonics for the same 
instruction. ex is decremented by 1, and control is transferred to 
the target operand if ex is not 0 and ZF = 0; otherwise, the 
instruction following LOOPNEILOOPNZ is executed. 

Example: 

LOOPNZ label 
LOOPNE label 

Encoding: 
.-----~-~

111100000 1disp 1 

All mnemonJcs copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 131 

------MoveByfeOrWml-1 MOV~ 

Mnemonic: 

MOV destination, source 

Function: 

Destination = source 

Flags Affected: 

None 

Description: 

MOV transfers a byte or word from the source operand to the 
destination operand. 

Example: 

MOVAX,BX 

MOVCL,AL 

MOVBX,300 

MOVBH,25 


Encoding: 

Memory or Register Operand to/from Register Operand: 

1100010dw I mod reg rIm I 
Immediate Operand to Memory or Register Operand: 

I11000l1w I mod 000 rIm I data dataifw=l I 
Immediate Operand to Register 

11011 wreg data data if w = 1 I 

All mnemonics copyright Inlel Corporation, 1981. 



132 PROGRAMMING THE 8086/8088 

Memory Operand to Accumulator 

11010000w I addr-Iow I addr-high I 

Accumulator to Memory Operand 


11010001 w I addr-Iow I addr-high I 

Memory or Register Operand to Segment Register 


\10001110 \ mod 0 reg rIm I 

Segment Register to Memory or Register Operand 


110001100 mod 0 reg rIm 1 


AD mnemonics copyright Intel Corporation. 198I. 



THE 8086/8088 INSTRUCTION SET 133 


-----MowStrins-lMOV~ 


Mnemonic: 

MOVS destination-string, source-string 

Function: 

Destination string = source string 

Flags Affected: 

None 

Description: 

MOVS transfers a byte or a word from the source string 
(addressed by SI) to the destination string (addressed by 01) and 
updates SI and 01 to point to the next string element. When used 
with REP, MOVS performs a memory-ta-memory block transfer. 
The source and destination string operands specified in the 
instruction are used by the assembler to determine type and 
accessability of the operands. 

Example: 

MOVS Bufferl, Buffer2 

Encoding: 

1'--1-01-00-lOw--'1 

All mnemonics copyright Intel Corporatlon. 1981. 



134 PROGRAMMING THE 8086/8088 


-1 MUL ~Mulliply~-------

Mnemonic: 

MULsource 

Function: 

Ifbyte source, then AX = AL x source (unsigned) 

Ifword source, then AX, OX = AX x source (unsigned) 


Flags Defined: 

CF,OF 

Flags Undefined: 

AF, PF, SF, ZF 

Description: 

MUL performs an unsigned multiplication of the source oper­
and and the accumulator. If the source is a byte, then it is multi­
plied by register AL, and the double-length result is returned in 
AH and AL. If the source operand is a word, then it is multiplied 
by register AX, and the double-length result is returned in regis­
ters OX and AX. The operands are treated as unsigned binary 
numbers. If the upper half of the result (AH for byte source, OX 
for word source) is non-zero, CF and OF are set; otherwise, they 
are cleared. When CF and OF are set, they indicate that AH or OX 
contains significant digits of the result. 

Example: 

MUL25 
MULCX 
MULBL 

Encoding: 


r-1-l-ll-l-O-l-1W-'-1m-o-d-l-oo-r'-m-'I 


All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 135 

----Negale(fonn hw'..;ompIement~ NEG ~ 

Mnemonic: 

NEG destination 

Function: 

Destination = 0 - Destination 

Flags Defined: 

AF, CF, OF, PF, SF, ZF 

Description: 

NEG subtracts the destination operand, which may be a byte or 
a word, from 0 and returns the result to the destination. This 
forms the two's complement of the number. 

Encoding: 
1'""1-1-11-1-0-1-1w----..l-m-o-d-0-1-1-r-'m---.1 

All mnemonics copyright Intel Corporation. 1981. 



136 PROGRAMMING THE 8086/8088 


-l NOP ~NOOperotionl--------

Mnemonic: 

NOP 

Function: 

None 

Flags Affected: 

None 

Description: 

NOP causes the CPU to do nothing. 

Encoding: 
r-,-10-0-1-00-0-0-', 

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 137 


-----.Logic:olN--1 NOT ~ 


Mnemonic: 

NOT destination 

Function: 

Destination = one's complement of destination 

Flags Affected: 

None 

Description: 

NOT inverts the bits (forms the one's complement) of the byte or 
word operand. 

Example: 

NOTAL 

Encoding: 

'.----11-1-1-0-1-1W---r"'m-o-d-0-1-0-r/-m---', 

All mnemonics copyright Intel Corporation. 1981. 



138 PROGRAMMING THE 8086/8088 

-1 OR ~Losif;aIo.t-----

Mnemonic: 


OR destination, source 


Function: 


Destination = Destination OR Source: CF = 0: OF = 0 


Flags Defined: 


CF, OF, PF, SF, ZF 


Flags Undefined: 


AF 


Description: 

OR performs the logical "inclusive or" ofthe two operands (byte 
or word) and returns the result to the destination operand. A bit in 
the result is set if either or both of the corresponding bits in the 
original operands is set; otherwise, the result bit is cleared. 

Example: 

ORAL,BL 

OR AL,OOll1010B 


Encoding: 


Memory or Register Operand with Register Operand 


I0OOOlodw mod reg rIm 


All mnemonics copyright lntel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 139 


Immediate Operand to Memory or Register Operand 


11000000w I mod 001 rIm I data I data if w = 1 


Immediate Operand to Accumulator 


I 0000l1Ow I data I data ifw =1 I 


All mnemonics copyright Intel Corporation. 1981. 



140 PROGRAMMING THE 8086/8088 

10UT~-----

Mnemonic: 


OUT port, accumulator 


Function: 

If AL is specified, then AL data is written to the port number. 
If AX is specified, then AX is written to the port number and port 

number + 1. 

Flags Affected: 


None 


Description: 

OUT transfers a byte or a word from the AL or AX register to an 
output port. The port number may be specified either with an 
immediate byte constant, allowing access to ports 0-255, or with 
a number previously placed in register DX, allowing variable 
access to ports 0-65,535. 

Example: 

OUT 45,AX 

OUT DX,AL 


Encoding: 


Fixed Port 


I1110011Wlport 


\ 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 141 


------PoPSlack~ POP ~ 


Mnemonic: 

POP destination 

Function: 

Destination = data on top of stack: SP = SP + 2 

Flags Affected: 

None 

Description: 

POP transfers the word at the current top of the stack (pointed 
to by SP) to the destination operand, and then increments SP by 2, 
pointing to the new top of the stack. 

Example: 

POPDX 

POP DS CS is illegal to specify in POP 


Encoding: 

Memory or Register Operand 

1100011111 mod 000 rIm 1 

Register Operand 

1 01011reg 1 


Segment Register 


1OOOregl11 


All mnemonics copyri&ht Intel Corporation. 1981. 



142 PROGRAMMING THE 8086/8088 


-1 POPF~PopF1agos-------

Mnemonic: 

POPF 

Function: 

Flag bits are set with data from the top of the stack: SP = SP + 2 

Flags Affected: 

All 

Description: 

POPF transfers specific bits from the word at the current top of 
the stack (pointed to by register SP) into the flags. thus replacing 
whatever values the flags previously contained. SP is then incre­
mentedby2. 

POPF may also be used to set the value of TF. as no specific 
instruction does this. 

Encoding: 

'--11-00-11-1-00---' 


All mnemonics copyright Intel Corporation, 1981. 



THE 8086/S088 INSTRUCTION SET 143 


----PushDaIoOD'lbpOfStack-lPUSH~ 


Mnemonic: 

PUSH source 

Function: 

SP = SP - 2: Source is pushed onto the top of the stack. 

Flags Affected: 

None 

Description: 

PUSH decrements SP (the stack pointer) by 2 and then transfers 
a word from the source operand to the top of the stack now 
pointed to by SP. 

Example: 

PUSH SI 

PUSH ES CS is legal to push 


Encoding: 

Memory or Register Operand

I11111111Imod 110 rIm I 
Register Operand 

I01010reg I 
Segment Register

IOOOreg110 I 

All mnemonics copyright Intel Corporation. 1981. 



144 PROGRAMMING THE 8086/8088 

-1 PUSHF ~ PushFJogs ---­

Mnemonic: 

PUSHF 

Function: 

SP = SP - 2: Flag register is pushed onto the top of the stack. 

Flags Affected: 

None 

Description: 

PUSHF decrements SP (the stack pointer) by 2 and then trans­
fers all flags to the word at the top of the stack pointed to by SP. 
The flags are not affected. 

Encoding: 

1""'-100-1-11-0-1......' 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 145 


----HoIoIe TIuoush ConyLefI-1 RCL ~ 

Mnemonic: 

RCL destination, count 

Function: 

(temp) = count: If temp is not equal to zero, then: 
(temcary) = CF; CF = high-order bit of destination; 
destination = (destination x 2) + (temcary); 
(temp) = temp - 1; repeat function until temp = o. 

If count = 1, then: If high-order bit of destination is not equal to 
CF, then OF = 1; otherwise, OF = O. 

Ifcount is not equal to 1, then OF is undefined. 

Flags Defined: 

CF,OF 

Description: 

RCL rotates the bits in the byte or word destination operand to 
the left by the number of bits specified in the count operand. The 
carry flag (CF) is treated as "part of" the destination operand; that 
is, its value is rotated into the low-order bit of the destination, and 
it is replaced by the high-order bit of the destination. 

Example: 

RCLAL,3 

Before: After: 
AL = 01011110, CF = 0 AL = 10111100, CF = 0 1 count 
AL = 10111100, CF = 0 AL = 01111000, CF = 1 2 count 
AL = 01111000, CF = 1 AL = 11110001, CF = 0 3 count 

Encoding: 
r-,-11-0-1-00vw---r,m-od-Ol-0-r-'m---', 

If v = 0, then count = 1 
AU mnemonics copyright Intel Corporation. 1981. 



146 PROGRAMMING THE 8086/8088 

-1 RCR ~ lIotafe Through ConyRighl--­

Mnemonic: 


RCR destination, count 


Function: 

(temp) = count: If temp is not equal to zero, then: 
(temcary) = CF: CF = low-order bit of destination; 
destination = destination 12; 
high-order bit of destination = (temcary): (temp) = (temp) - 1. 

If	count = 1, then: If high-order bit of destination is not equal to 
next high-order bit of destination, then OF = 1; otherwise, 
OF = O. 

If count is not equal to 1, then OF is undefined. 

Flags Affected: 

CF,OF 

Description: 

RCR rotates the bits in the byte or word destination operand to 
the right by the number ofbits specified in the count operand. The 
carry flag (CF) is treated as "part or' the destination operand; that 
is, its value is rotated into the high-order bit of the destination, and 
it is replaced by the low-order bit of the destination. 

Example: 

RCRBL,2 

Before: After: 
BL = 11000010, CF = 1 BL = 11100001, CF = 0 1 count 
BL = 11100001, CF = 0 BL = 01110000, CF = 1 2 count 

Encoding: 

'-1-11-0-1-00vw----rlm-o-d-01-1-r-'m---.1 


Ifv = 0, then count = 1 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 147 


-----IIepoa~ REP ~ 


------.1Iepoa1WhHeEQUw1 REPE ~ 

----.IIepoaIWhHe-1 REPZ~ 

Mnemonic: 

REP MOVS destination, source 

Flags Affected: 

None 

Description: 

REP is used in conjunction with the MOVS (MOVE STRING) 
and STOS (STORE STRING) instructions and is interpreted as 
"repeat while not end-of-string" (eX not 0). 

REPE and REPZ operate identically and are physically the 
same prefix byte as REP. These instructions are used with the 
CMPS (COMPARE STRING) and SCAS (SCAN STRING) instruc­
tions and require ZF (posted by these instructions) to be set before 
initiating the next repetition. ZF does not need to be initialized 
before executing the repeated string instruction. 

Repeated string sequences are interruptible; the processor will 
recognize the interrupt before processing the next string element. 
System interrupt processing is not affected in any way. Upon 
return from the interrupt the repeated operation is resumed from 
the point of interruption. 

Example: 

REP MOVS destination, source 

REPECMPS destination, source 


Encoding: 
....ll-l-l-l00-l-Z-,1 

All mnemonics copyright Intel Corporolion, 1981. 



148 PROGRAMMING THE 8086/8088 

1 REPNE ~Repeat While Not Equall---­

1REPNZ ~RepeatWhileNot7Alro---

Mnemonic: 

REPNE SCAS destination 

Flags Affected: 

None 

Description: 

REPNE and REPNZ operate identically and are physically the 
same prefix byte as REP. These instructions are used with the 
CMPS (COMPARE STRING) and SCAS (SCAN STRING) instruc­
tions. The ZF must be cleared or the repetition is terminated. ZF 
does not need to be initialized before executing the repeated 
string instruction. 

Repeated string sequences are interruptible; the processor will 
recognize the interrupt before processing the next string element. 
System interrupt processing is not affected in any way. Upon 
return from the interrupt, the repeated operation is resumed from 
the point of interruption. 

Example: 

REPNE SCAS destination 

Encoding: 
r----..., 

ll11001z 

All mnemonics copyright Intel Corporation, 1961. 



THE 8086/8088 INSTRUCTION SET 149 


HetunJ 1RET---- ~ 

Mnemonic: 

RET optional-pap-value 

Function: 

If intra-segment: IP is popped off the stack; SP = SP + 2 
If inter-segment: CS is popped off the stack; SP = SP + 2 
IP is popped off the stack; SP = SP + 2 
Ifoptional pop value is used, then SP = SP + value 

Flags Affected: 

None 

Description: 

RET transfers control from a procedure back to the instruction 
following the CALL that activated the procedure. The assembler 
generates an intra-segment RET if the programmer has defined 
the procedure NEAR, or an inter-segment RET if the procedure 
has been defined as FAR. RET pops the word at the top of 
the stack (pointed to by SP) into the instruction pointer and 
increments SP by 2. If RET is inter-segment, the word at the new 
top of the stack is popped onto the CS register, and SP is incre­
mented by 2. If an optional pop value has been specified, RET 
adds that value to Sp. This feature may be used to discard parame­
ters pushed onto the stack, prior to the execution of the CALL 
instruction. 

Example: 

RET 

RET 6 


All mnemonics copyright Intel Corporation. 1981. 



150 PROGRAMMING THE 8086/8088 

Encoding: 


Intra-Segment 


c"3 111000011 1 

Intra-Segment and Add Immediate to Stack Pointer 


C2- 111000010 Idata-Iow 1data-high 1 

Inter-Segment 


C e, 111001011 1 

Inter-Segment and Add Immediate to Stack Pointer 


CA 111001010 1data-low 1data-high 1 


All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 151 


-----HotateLeJl-1 ROL~ 


Mnemonic: 

ROL destination, count 

Function: 

(temp) = count: If (temp) is not equal to zero, then: 
CF = high-order bit of destination; 
destination = destination x 2 + CF; (temp) = (temp) - 1. 

If	count = 1, then: If high-order bit of destination is not equal to 
CF, then OF = 1; otherwise, OF = 0: 

Ifcount is not equal to 1, then OF is undefined. 

Flags Defined: 

CF,OF 

Description: 

ROL rotates the bits in the byte or word destination operand to 
the left by the number ofbits specified in the count operand. If the 
count value equals 1, then it can be specified directly. If the count 
value is greater than 1, it must be set in the CL register prior to 
using this instruction. 

Example: 

ROLBL,l 
MOVCL,2 
ROLBL,CL 

Before: 	 After: 
BL = 11001100, CF = 0 BL = 10011001, CF = 1 1 count 
BL = 10011001, CF = 1 BL = 00110011, CF = 1 2 count 

Encoding: 
r---------r----------, 

110100vw mod 000 rIm 

Ifv = 0, then count = 1 
All mnemonics copyright Intel Corporation. 1981. 



152 PROGRAMMING THE 8086/8088 

-1 ROR ~BotaIA!llighl-----

Mnemonic: 

ROR destination, count 

Function: 

(temp) = count: If (temp) is not equal to zero then: 
CF = low-order bit of destination; 
destination = destination /2; 
high-order bit of destination = CF; 
(temp) = (temp) - 1. 

If count = 1, then: If high-order bit of destination is not equal to 
the next-to-high-order bit, then OF = 1; otherwise, OF = O. 

If count is not equal to 1, then OF is undefined. 

Flags Affected: 


CF,OF 


Description: 

ROR rotates the bits in the byte or word destination operand to 
the right by the number of bits specified in the count operand. If 
count equals 1, it may be specified directly. Ifcount is greater than 
1, it must be set in the CL register prior to using this instruction. 

Example: 

RORBL,l 
MOVCL,2 
ROR,BL,CL 

Before: After: 
BL = 11001100, CF = 0 BL = 01100110, CF = 0 1 count 
BL = 01100110, CF = 0 BL = 00110011, CF = 0 2 count 

Encoding: 
""1-11-0-1-0-Ovw-~-m-o-d-O-O-l-r-/m---'I 

Ifv = 0, then count = 1 
AD mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 153 


----S/me Resisters AH inID Flosa -1 SAHF~ 

Mnemonic: 

SAHF 

Function: 

SF: ZF: X: AF: X: PF: X: CF: 
d7 d6 d5 d4 d3 d2 d1 do AH transferred into £lags 

Flags Defined: 

AF, CF, PF, SF, ZF 

Description: 

SAHF transfers bits 7, 6, 4, 2, and 0 from register AH into SF, ZF, 
AF, PF, and CF, respectively, thereby replacing whatever values 
these flags previously had. OF, DF, IF, and TF are not affected. 

Encoding: 
'-1-100-1-11-1-0'1 

All mnemonics copyright Intel Corporation. 1981. 



154 PROGRAMMING THE 8086/8088 


-1 SAL ~ ShlftAriIluneticLeJl----­

~ SHL ~ShlftLogicaILeJl------

Mnemonic: 

SAL destination, count 

SHL destination, count 


Function: 

(temp) = count: If (temp) is not equal to zero, then: 
CF = high-order bit of destination; 
destination = destination x 2; 
low-order bit of destination = 0; (temp) = (temp) - 1. 

Ifcount = 1 then: Ifhigh-order bit of destination is not equal to the 
next-to-CF bit, then OF = 1; otherwise, OF = 0 

If count is not equal to 1, then OF is undefined. 

Flags Defined 

CF, OF, PF, SF, ZF 

Flags Undefined: 

AF 

Description: 

SHL and SAL perform the same operation and are physically 
the same instruction. The destination byte or word is shifted left 
by the number of bits specified in the count operand. Zeroes are 
shifted in on the right. Ifthe sign bit retains its original value, then 
OF is cleared. If count is equal to 1, it may be specified directly. If 
count is greater than 1, its value must be loaded into the CL regis­
ter prior to using this instruction. 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 155 

Example: 

SALAL,l 

MOVCL,2 

SALAL,CL 


Before: After: 
AL = 11001100, CF = 0 AL = 10011000, CF = 1 1 count 
AL = 10011000, CF = 1 AL = 00110000, CF = 1 2 count 

Encoding: 
'I-1-10-1-00vw--'--m-o-d-1-00-r'-m---'1 

Ifv = 0, then count = 1 

All mnemonics copyrightlnlB] Corporation. 1981. 



156 PROGRAMMING THE 8086/8088 

-1 SAR ~AritIuneIic:H/ght-----

Mnemonic: 

SAR destination, count 

Function: 

(temp) = count: If (temp) is not equal to zero, then: 
CF = low-order bit of destination; 
destination = destination /2; 
high-order bit of destination is the same as the previous high­
order bit (sign bit); (temp) = temp) - 1 

If	count = 1, then: Ifhigh-order bit of destination is not equal to 
the next-to-next-to-high-order bit, then OF = 1; 
otherwise, OF = O. 

Flass Defined: 

CF, OF, PF, SF, ZF 

Flags Undefined: 

AF 

Description: 

SAR shifts the bits in the destination operand (byte or word) to 
the right by the number ofbits specified in the count operand. Bits 
equal to the original high-order (sign) bit are shifted in on the left, 
thereby preserving the sign of the original value. Note that SAR 
does not produce the same result as the dividend of an "equiva­
lent" IDIV instruction if the destination operand is negative and 1­
bits are shifted out. 

For example, shifting - 5 right by one bit yields - 3, while inte­
ger division - 5/2 yields - 2. The difference in the instructions is 
that IDIV truncates all numbers towards 0, while SAR truncates 
positive numbers towards 0 and negative numbers toward nega­
tive infinity. 

AU mnemonics copyrishllnlel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 157 

If count is equal to 1, it may be specified directly. If count is 
greater than 1, its value must be loaded into the CL register prior 
to using this instruction. 

Example: 

SARBL,l 

MOVCL,2 

SARBL,CL 


Before: After: 
BL = 11001100, CF = 0 BL = 11100110, CF = 0 1 count 
BL = 11100110, CF = 0 BL = 11110011, CF = 0 2 count 

Encoding: 
1r-11-0-1-0Qvw--r-m-od-1-11-r-/m---' 

Ifv = 0, then count = 1 

All mnemonics copyright Intel Corporation, 1981. 



158 PROGRAMMING THE 8086/8088 

-i SBB ~Subtmclwilhl!omJw-----

Mnemonic: 

SBB destination, source 

Function: 

IfCF = 1, then destination = destination - source - 1 
IfCF is not equal to 1, then destination = destination - source 

Flags Defined: 

AF, CF, OF, PF, SF, ZF 

Description: 

SBB subtracts the source from the destination, then subtracts 1 
ifCF is set, and returns the result to the destination operand. Both 
operands may be bytes or words. Both operands may be signed or 
unsigned binary numbers. 

Encoding: 

Memory or Register Operand and Register Operand 

I ooo11odw I mod reg rIm I 

Immediate Operand from Memory or Register Operand 

1100000SW Imod 011 rIm Idata I data if s:w = 01 

Immediate Operand from Accumulator 

I 000l11Ow data I dataifw=l 

All mnemonics copyrighllnlei Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 159 

----'Scan(&yteorword)~SCAS ~ 

Mnemonic: 

SCAS destination-string 

Function: 

If	byte destination-string, then the data addressed by the DI regis­
ter is subtracted from AL. IfDF = 0, then DI = DI + 1; if DF 
= 1, then DI = DI - 1. 

If	word destination-string, then the data addressed by the DI regis­
ter is subtracted from AX. If DF = 0, then DI = DI + 2; if DF 
= 1, then DI = DI + 2. 

Flags Defined: 

AF, CF, OF, PF, SF, ZF 

Description: 

SCAS subtracts the destination string element (byte or word) 
addressed by DI from the content of AL (byte string) or AX (word 
string) and updates the flags, but does not alter the destination 
string or the accumulator. SCAS also updates DI to point to the 
next string element and AF, CF, OF, PF, SF and ZF to reflect the 
relationship of the scanned value in AUAX to the string element. 
SCAS may be prefixed with REPE, REPZ, REPNE, or REPNZ. 

Encoding: 

1'1-0-10-1-1-1w---'I 

All mnemonics copyright Intel Corporation. 1981. 



160 PROGRAMMING THE 8086/8088 

-1 SHR ~ Shijl Logical Hight ----- ­

Mnemonic: 

SHR destination, source 

Function: 

(temp) = count; If (temp) is not equal to zero, then: CF = low­
order bit of destination; destination = destination / 2; high­
order bit of destination = 0; (temp) = (temp) - 1. 

If	count = 1, then: If high-order bit of destination is not equal to 
the next-to-next-to-high-order bit, then OF = 1; otherwise, 
OF = O. 

If count is not equal to 1, then OF is undefined. 

Flags Defined: 

CF, OF, PF, SF, ZF 

Flags Undefined: 

AF 

Description: 

SHR shifts the bits in the destination operand (byte or word) to 
the right by the number of bits specified by the count operand. 
Zeroes are shifted in on the left. If the sign bit retains the original 
value, then OF is cleared. 

If count is equal to 1, it may be specified directly. If count is 
greater than 1, its value must be loaded into the CL register prior 
to execution of this instruction. 

Example: 

SHRBL,l 
MOVCL,2 
SHRBL,CL 
AD mnemonics copyright Intel Corporation. 1961. 



THE 8086/8088 INSTRUCTION SET 161 

Before: After: 
BL = 00110011, CF = 0 BL = 00011001, CF = 1 1 count 
BL = 00011001, CF = 1 BL = 00001100, CF = 1 2 count 

Encoding: 
r-1-=11:.....0-1-00vw--r-m-O-d-10-1-r-'m----.I 

Ifv = 0, then count = 1 

All mnemonics copyrightlntel Corporation, 1981. 



162 PROGRAMMING THE 8086/8088 

-1 STC ~SetCcnTy-----

Mnemonic: 


STC 


Function: 


CF = 1 


Flag Defined: 


CF 


Description: 


STC sets CF to 1 and affects no other flags. 


Encoding: 

,........::~-----. 


1 11111001 1 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 163 


------SeIDinN:Iion~ STD ~ 


Mnemonic: 

STD 

Function: 

DF = 1 

Flags Defined: 

DF 

Description: 

STD sets DF to 1, causing the string instructions to auto­
decrement the SI and/or DI index registers. STD does not affect 
any other flags. If DF is not set, the string instructions will auto­
increment. 

Encoding: 
1'1-1-1-11-1-0-1""1 

All mnemonics copyright Intel Corporation. 1981. 



164 PROGRAMMING THE 8086/8088 


-1 STI ~ SetIntenupt-Enoble FIos ---- ­

Mnemonic: 


STI 


Function: 


IF = 1 


Flag Defined: 


IF 


Description: 

STI sets IF to 1, thus enabling the CPU to recognize maskable 
interrupt requests appearing on the INTR input line. A pending 
interrupt will not actually be recognized until the instruction fol­
lowing STI has been executed. STI does not affect any other flags. 

Encoding: 
r-,-11-1-1-10-1-1""', 

All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 165 

----SIore(byfeonordJString1STOS~ 
Mnemonic: 

STOS destination-string 

Function: 

If a byte, then the data in AL is stored in the address pointed to by 
DI. 

IfDF = 0, then DI = DI + 1. IfDF = 1, then DI = DI - 1. 
If a word, then the data in AX is stored in the address pointed to 

byDI. 
IfDF = 0, then DI = DI + 2. IfDF = 1, then DI = DI - 2. 

Flags Affected: 

None 

Description: 

STOS transfers a byte or word from register AL or AX to the 
string element addressed by DI, and updates DI to point to the 
next location in the string. 

Example: 

STOS BYT~EST 


STOS WORD-IJEST 

REPSTOSBYT~EST1 

Encoding: 
1""1-10-1-0-1-01-W---'1 

All mnemonics copyright Intel Corporation, 1981. 



166 PROGRAMMING THE 8086/8088 

-1 SUB ~Subtmcf------

Mnemonic: 

SUB destination, source 

Function: 

Destination = Destination - Source 

Flags Defined: 

AF, CF, OF, PF, SF, ZF 

Description: 

The source operand is subtracted from the destination operand, 
and the result replaces the destination operand. The operands 
may be bytes or words. Both operands may be signed or unsigned 
binary numbers. 

Example: 

SUB BX,AX 

SUB BL,10 

SUB SI,4790 


Encoding: 

Memory or Register Operand and Register Operand 

I001010dw Imod reg rim I 
Immediate Operand from Memory or Register Operand 

1 100000SW I mod 101 rim I data I data if s:w = 01 

Immediate Operand from Accumulator 

I0010110W Idata Idata if w = 1 I 
All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 167 


----- Test (Logical Compare) -1 TEST ~ 

Mnemonic: 

TEST destination, source 

Function: 

Destination is "anded" with Source. The flags are updated: CF = 

0; OF = o. 

Flags Defined: 

CF, OF, PF, SF, ZF 

Flags Undefined: 

AF 

Description: 

TEST performs the logical "and" of the two operands (byte or 
word), and updates the flags but does not return the result (i.e., 
neither operand is changed). If a test instruction is followed by a 
JNZ ijump if not zero) instruction, the jump will be taken if there 
are any corresponding l-bits in both operands. 

Example: 

TEST AL,3FH 

TEST BX,0557H 


Encoding: 

Memory or Register Operand with Register Operand 

1000010w Imod reg rIm 

All mnemonics copyright Intel Corporation. 1981. 



168 PROGRAMMING THE 8086/8088 


Immediate Operand with Memory or Register Operand


I1111011w ImodOOOr/m Idata Idataifw=l 


Immediate Operand with Accumulator 


11010100w Idata Idata if w = 1 I 


All mnemonics copyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 169 


-----~WAIT~ 


Mnemonic: 

WAIT 

Function: 

None 

Flags Affected: 

None 

Description: 

WAIT causes the CPU to enter the wait state while its test line is 
not active. 

Encoding: 
r--1OO-1-10-1-1'1 

All mnemonics oopyrighl Intel Corporation. 1981. 



170 PROGRAMMING THE 8086/8088 


-IXCHGj-ExchODg'e-e--------- ­

Mnemonic: 

XCHG destination, source 

Function: 

(Temp) = destination; destination = source; source = (Temp) 

Flags Affected: 

None 

Description: 

XCHG switches the contents of the source and destination (byte 
or word) operands. 

Example: 

XCHGBX,AX 

XCHG label,CX 


Encoding: 

Memory or Register Operand with Register Operand 

11000011W Imod reg rIm I 
Register Operand with Accumulator 

10010reg 

All mnemonics copyright Intel Corporation. 1981. 



THE 8086/8088 INSTRUCTION SET 171 

-----Thmsla-lXLAT~ 


Mnemonic: 

XLAT Table~ame 

Function: 

AL = data at address pointed to by BX + AL 

Flags Affected: 

None 

Description: 

XLAT replaces a byte in the AL register with a byte from a 256­
byte, user-coded translation table. Register BX is assumed to point 
to the beginning of the table. The byte in AL is used as an index 
into the table and is replaced by the byte at the offset in the table 
corresponding to AL's binary value. The first byte in the table has 
an offset of zero. 

For example, if AL contains 5H, and the sixth element of the 
translation table contains 33H, then AL will contain 33H after 
XLAT is executed. 

Example: 

MOV BX, OFFSET_Table_Value 

XLAT Table_1 


Encoding: 

1""11-1-0-10-1-1-1-'1 

AU mnemonics copyright Intel Corporation. 1981. 



172 PROGRAMMING THE 8086/8088 

1XOR ~Exdusiveor--------

Mnemonic: 

XOR destination, source 

Function: 

Destination = Destination xor Source; CF = 0; OF = O. 

Flags Defined: 

CF, OF, PF, SF, ZF 

Flags Undefined: 

AF 

Description: 

XOR performs the logical "exclusive or" of the two operands 
and returns the result to the destination operand. A bit in the 
result is set if the corresponding bits of the original operands con­
tain opposite values. 

Example: 

XORAX,BX 

Before: After: 

AX = 5857H AX = OOFFH 

BX = 58A8H BX = 58A8H 


Encoding: 

Memory or Register Operand with Register Operand 

I001100dw Imod reg rIm I 

All mnemonics oopyright Intel Corporation, 1981. 



THE 8086/8088 INSTRUCTION SET 173 

Immediate Operand to Memory or Register Operand 


11000000w I mod 110 rIm I data Idata if w = 1 I 

Immediate Operand to Accumulator 


I0011010w Idata Idata if w = 1 I 


All mnemonics copyright Intel Corporation, 1981. 





BASIC 
PROGRAMMING 

TECHNIQUES 

INTRODUCTION 

In this chapter we will examine some 
basic techniques for programming the 8086/ 
8088. We will write simple arithmetic pro­
grams using many of the instructions 
discussed in Chapter 4. In addition, we will 
discuss subroutines and returns from sub­
routines. We willieam that due to the width 
of the 8086/8088 address bus, there are sev­
eral different ways a subroutine can be 
called. 



176 PROGRAMMING THE 8086/8088 

ARITHMETIC PROGRAMS 

The arithmetic programs in this chapter will show you how to perform 
addition, subtraction, multiplication, and division with the 8086/8088. These 
programs will teach you how to perform integer arithmetic on positive 
binary numbers and on negative numbers represented as two's comple­
ment integers. We will start with an example of B-bit addition. (Note, how­
ever, that the 8086/8088 is also capable of performing arithmetic 
operations with 16-bit numbers.) 

8-BIT ADDITION 

The addition program that follows is designed to add two B-bit operands, 
OPl and OP2, stored at memory addresses ADRl and ADR2, respectively. 
The sum, stored at memory location ADR3, is called RES. Figure 5.1 
shows a block diagram of how the operands and results are to be stored in 
memory. 

MEMORY 

ADR1 OP1 (FIRST OPERAND) 

ADR2 --. OP2 (SECOND OPERAND) 

ADR3 RES (RESUL1) 

ADDR ESSES 

Fisure 5.1: This diasmm shows how the operands and results are to be stored in mem­
I'}'. OPl is added to OP2 and stored in memory location HES.---------' 



BASIC PROGRAMMING TECHNIQUES 177 


Here is the program: 

INSTRUCTION COMMENT 
MOV AL,ADRl MOVE OPl INTO AL 
ADD AL,ADR2 ADD AL WITH OP2 @ ADR2 
MOV ADR3,AL SUM STORES @ ADR3 

Each line of the program (expressed here in symbolic form) is called 
an instruction. Each instruction is translated by the computer into the cor­
responding object code on which the CPU can execute. Later in this 
discussion we will examine the object code for this program. Let's now 
take a look at the program. 

The first line of the program specifies that the contents of the AL register 
(8-bit) be loaded with the data now in memory location ADR1. (Note: We 
could have specified any of the general8-bit registers in the 8086/8088 
CPU in place of the AL register.) 

ADRl is a symbolic representation of the actual address in the system 
memory. This address is defined elsewhere in the program. When the CPU 
reads the data from memory, the l6-bit value of ADRl is then summed 
with the corresponding segment register to generate the 20-bit system 
address. 

Referring back to the program,let's now examine the COMMENT field, 
the right-most field of each instruction line. Comments are very useful to 
the programmer for understanding and remembering exactly what each 
line of the program does. Comment fields are ignored when the object 
code is generated. Figure 5.2 shows the results after the first instruction is 
executed. 

The second instruction: 

ADD AL,ADR2 

specifies that the data in memory address ADR2 be added to the contents 
of the 8-bit data in register AL. Address ADR2 contains the second oper­
and, OP2. When the second instruction is executed, OP2 is read from 
memory and added to OP1. The result is stored in the AL register. 

The sum of OPl and OP2 is now contained in the AL register. To com­
plete the program. we must transfer the contents of AL into the memory 
location ADR3. This is accomplished by the third line of the program: 

MOV ADR3,AL 

Going over this simple program, we can see that there are some impor­
tant points about the 8086/8088 operation that we should discuss. One 
such point is that data is stored in bytes of memory. Thus, in this example. 
when the result was written in the memory at ADR3. only the byte ADR3 



178 PROGRAMMING THE 808618088 

was disturbed. This is true even with the l6-bit data bus of the 8086. The 

CPU will electrically write a single byte in the system memory because an 

8-bit register (AL) is used in the instruction. 


Another interesting point about the program is that it transfers data 

from memory into an internal register. The location from which data is 

read is called the source operand. This operand is not changed during the 

execution of the program. If we were to examine the memory locations 

ADRl and ADR2 at the conclusion of the program, we would find that 

they contain the same data that was originally present at the start of the 

program. 


Let's now go on to assign actual numerical values to the address 

locations ADR1, ADR2 and ADR3. We can do this using "pseudo­

instructions." Pseudo-instructions are instructions not used by the micro­

processor, but used instead by the computer program that generates the 

object code. The pseudo-instruction we will use here is the EQUATE 

instruction-written as EQU. The name is derived from its function. This 

instruction equates or sets equal the two arguments on either side of the 

pseudo-instruction EQU. A complete program for this 8-bit addition is 

shown in Figure 5.3. In this program ADRl equals 300H, ADR2 equals 

320H, and ADR3 equals 345H. 


8086/8088 MEMORY 

DATA BUS 

AL 

(ADR1) 

ADDRESS BUS 

Fisure 5.2: After the MOV AL,OPl instruction i. executed, the lower 8 bits ofthe AX register 
will contain the value stored at memory location OP1.--------------l 



BASIC PROGRAMMING TECHNIQUES 179 


to-BIT ADDITION 

Let us now extend this 8-bit addition problem to a 16-bit addition prob­
lem. A 16-bit problem can be solved in exactly the same way as an 8-bit 
problem except that there is a difference in the registers used and the num­
ber of memory locations taken up. 

Recall that with the 8086 or 8088, a byte is a single memory location. 
Thus, a word (16 bits) will require two memory locations. Figure 5.4 shows 

1 ; 

2 ; PROGRAM TO ADD TWO 8-BIT NUMBERS 

3; 
40RG0200H 
5; 
6ADR1 EQU0300H 
7ADR2 EQU0320H 
8ADR3 EQU0345H 
9; 

0200 AOOOO3 10 MOVAL,ADR1 ;LOAD AL WITH DATA @ ADR1 
0203 02062003 11 ADD AL,ADR2 ;ADD AL WITH DATA @ ADR2 
0207 A24503 12 MOVADR3,AL ;STORE AL @ ADR3 

13; 

Figure 5.3: This Is an assembled 8088/8088 prosmmfor adding two B-bit numbers. 

UPPER BYTE LOWER BYTE 

ALIGNED W1 W1 

NON-ALIGNED W2 8086 

W2 

(a) 

B1 
8088 

W1 

(b) 

Figure 5.40: 18-bit dam in an 8088 system may be aligned or non-aJigned. 
Figure 5.4b: 18-bit dam in an 8088 system requires two collll8CUtive bytes o/memory. 



180 PROGRAMMING THE 8086/8088 


how the data is organized for 16-bit operations in the 8086/8088 system 
memory. A program for adding two 16-bit numbers is shown in Figure 5.5. 

16-BIT SUBTRACTION 

The subtraction of two 16-bit numbers with the 8086/8088 is similar to 
the 16-bit addition problem we solved earlier. Using the same example, we 
will now subtract OP2 from OPl and store the results in ADR3. The data 
in memory will reside as shown in Figure 5.6. A program to perform the 
16-bit subtraction is shown in Figure 5.7. 

BCD ARITHMETIC 

In Chapter 1 we discussed the concept of BCD arithmetic. Recall that 
BCD is used in applications in which it is imperative that every significant 
digit of the result be retained.. 

8-BIT BCD ADDITION 

In BCD notation, a 4-bit nibble is used to store one decimal digit 
(0 - 9). As a result, every 8-bit byte can store two BCD digits. (This is called 
packed BCD.) Let us now see how BCD works. Let's add two bytes, each 
containing two BCD digits. A memory diagram of this example is shown 
in Figure 5.8. 

1 ; 

2 ; PROGRAM TO ADD TWO 16-BIT NUMBERS 

3; 
40RG0250H 
5; 
6ADR1 EOU0300H 
7ADR2 EOU0320H 
8ADR3 EOU0345H 
9; 

O25OA10003 10 MOV AX,ADR1 ;LOAD AX WITH DATA @ ADR1 
0253 03062003 11 ADD AX,ADR2 ;ADD AX WITH DATA@ ADR2 
0257A34503 12 MOV ADR3,AX ;STORE AX @ ADR3 

13; 

Fipre 5.5: This CIIIII8IlIbJed BOB6I8088 prosram for adding two 16-bit numbers is 
similar to the 6-bit prosram in Fisure 5.3, with the exception that the AX resister 
is used instead oftheAL ntBisfer•.------------------' 



BASIC PROGRAMMING TECHNIQUES 181 

SYSTEM MEMORY 

OP1 ADR1 

OP2 ADR2 

RES.OP1-0P2 ADR3 

Figure 5.8: This memol)' diagram mows how the opemnds (OPt and OP2) and the re­
sult will appear in a subtraction example •.---------------1 

1 ; 

2 ; PROGRAM TO SUBTRACT TWO 16-BIT NUMBERS 

3; 
40RG0250H 
5; 
6ADRl EOU0300H 
7ADR2 EOU0320H 
8ADR3 EOU0345H 
9; 

0250A10003 10 MOV AX,ADRl ;LOAD AX WITH DATA @ ADRl 
0253 2B062003 11 SUB AX,ADR2 ;ADD AX WITH DATA @ ADR2 
0257A34503 12 MOV ADR3,AX ;STORE AX @ ADR3 

13; 

F.igunJ 5.7: This is an _bled 808818088 pJ'08l'ODl to perform a tfJ.bit subtractian. 



182 PROGRAMMING THE 8086/8088 


Before we write any programs to perform BCD addition, let's first work 
with some numeric examples. This will help us define any problems that 
may arise from this type of addition. Let's first add 01 and 02. 

01 is represented by; 00000001 

02 is represented by; 00000010 


The result is: 00000011 

This result is the BCD representation for 03. (If you are not sure of 
the BCD equivalent, refer to the conversion table at the end of this book.) 
Everything worked quite simply in this case; so let's try another. Let's add 
8 and 3. 

DB is represented by; 00001000 
03 is represented by; 00000011 

If you have obtained 00001011 as your result, you have computed the 
binary sum of 8 and 3. This number is indeed 11 in binary. Unfortunately, 
1011 is an illegal code in BCD. The BCD representation of 11 is 00010001. 

This difference stems from the fact that the BCD representation uses 
only the first ten combinations of four digits to encode the decimal 

MEMORY 

I 
1 1 

I 

I 

~+ 
2 

J 
2 

(RESULT) (ADR) 

Figure 5.8: This memory diogmm shows the storage of two packed BCD bytes before 
d afteraddition •.---------------------' 



BASIC PROGRAMMING TECHNIQUES 183 


symbols 0 - 9. Thus, the remaining six possible combinations of four digits 
are unused in BCD notation. The number 1011 is one of these unused com­
binations. In other words, whenever the sum of two BCD digits is greater 
than 9, you must add 6 to the result in order to skip over the 6 unused 
codes. 

The following example shows how to correct the previous example. By 
simply adding 6 to the binary equivalent of 11 (or the sum we just obtained 
by adding 8 and 3), we will obtain the correct result: 

1011 illegal BCD result 
0110 + 6 

00010001 

This result is equal to 11 in BCD. We now have the correct answer to the 
BCD addition problem of 8 + 3. 

This example illustrates one of the basic difficulties of the BCD mode: 
you must compensate for the six missing codes. There is, however, a 
special decimal addition adjust instruction (DAA) that will automatically 
adjust the result of the binary addition. (This instruction will add 6 if the 
result is greater than 9.) 

We will now use this same example to illustrate another point about 
BCD arithmetic. When we add 6 to the result of 11, a carry is generated 
from the lower nibble into the upper nibble. This internal carry must 
be taken into account and added to the second BCD digit. Although the 
addition instruction automatically takes care of this problem, it is often 
convenient to be able to actually detect this internal carry from bit 3 to bit 
4. This can be done by testing the AF flag. (Note: This carry is sometimes 
referred to as a half-carry or auxiliary carry.) 

As an example, here are the program instructions for adding two BCD 
numbers, 11 and 22: 

MOV AL,l1H 11 INTO AL REGISTER 
ADD AL,22H ADD 11 TO 22 STORE IN AL 
DAA DECIMAL ADJUST THE RESULT 
MOV ADR3,AL STORE RESULT IN MEMORY 

(Note: The H following the numbers 11 and 22 indicate these numbers are 
to be taken in hexadecimal notation, rather than decimal.) The AL register 
is used because the DAA instruction expects the operand to be in the AL 
register. 

This program is similar to the one given for 8-bit binary addition. It does, 
however, use a new instruction: DAA (decimal adjust for addition). (Refer 
to Chapter 4 for more information on the DAA instruction.) Let's now see 



184 PROGRAMMING THE 8086/8088 

exactly what the DAA instruction does in this program. 
The first event that occurs is that 11 and 22 are added. This will appear 

in the AL register like this: 

00010001 (11) 
+ 00100010 (22) 

= 00110011 (33) 

Since the number in the lower 4 bits of the result is not greater than 9 and 
since there was no carry from bit 3 to bit 4, the DAA instruction did noth­
ing to the lower 4 bits of the result. (AF equals 0.) Furthermore, there is no 
need to operate on the upper four bits of the result. Therefore, in this 
instance, the DAA instruction did not change the result in any way. 

Let us take another example. We will add the numbers 22 and 39: 

00100010 (22) 
+ 00111001 (39) 

= 01011011 (5?) 

1011 is an illegal BCD code, as it is greater than 9. The result must be 
corrected. We can use the DAA instruction, which will add 6 to the lower 4 
bits and generate a carry into the next 4 bits. This will result in the 
following: 

01011011 (5?) 
+ 00000110 (06) 

= 01100001 (61) 

This is the correct result for the addition of 22 and 39. In this case the DAA 
instruction was needed to generate the correct solution. 

BCD SUBTRACTION 

Performing BCD subtraction with the 8086/8088 is as simple as perform­
ing BCD addition. This is due to the fact that the CPU has a special DAS 
(decimal adjust for subtraction) instruction. (Refer to Chapter 4 for more 
information on this instruction.) Here is a program for subtracting two 
valid packed BCD numbers: 

MOV AL,42H LOAD AL WITH BCD 42 
SUB AL,23H SUBTRACT 23 FROM 42 
DAS DECIMAL ADJUST FOR SUBTRACTION 
MOV ADR3,AL STORE THE RESULT IN MEMORY 



BASIC PROGRAMMING TECHNIQUES 185 


So far we have shown examples ofaddition and subtraction using differ­
ent 8086/8088 instructions. Let's now examine the arithmetic operations 
of multiplication and division. 

MULTIPLICATION 

Let's begin our study of multiplication by examining a simple decimal 
multiplication problem. We will multiply 12 by 23: 

12 multiplicand 
x 23 multiplier 

36 partial product 
+ 24-­

276 final result 

The multiplication is performed by first multiplying the right-most digit 
of the multiplier by the multiplicand, i.e., 3 x 12 (the partial product is 36), 
and then multiplying the next digit of the multiplier (i.e., 2) by 12; then add­
ing these two results to obtain the final result. 

There is, however, one more operation: either 24 must be offset to the left 
(or shifted left) by one digit position, or equivalently, the partial product (36) 
must be shifted right by one position. The two numbers are then added. 
The sum is 276. 

Let us now examine binary multiplication. It is performed in the same 
way as decimal multiplication. Let's multiply 5 x 3: 

(5) 101 multiplicand 
(3) x 011 multiplier 

101 partial product 
101 

+000 

(15) 01111 final result 

We can see from this example that binary multiplication is very similar to 
decimal multiplication. We are fortunate in that the 8086/8088 is equipped 
with an instruction that will perform this multiplication for us. Early 
microprocessors, as well as 8-bit microprocessors, do not have a multiply 
instruction. Therefore, multiplication is performed by a small program. In 
fact, the only arithmetic these microprocessors can do is to add and shift. 

Let us now examine how the multiply operation is performed on the 
8086/8088. 



186 PROGRAMMING THE 8086/8088 

MULTIPLYING 16-BIT NUMBERS 

With the 8086/8088, it is possible to perform multiplication directly on 
two 16-bit numbers. When the operation is complete, the result is placed in 
two 16-bit registers. This is necessary because 216 x 216 is equal to 232. 
Therefore, a 32-bit register is needed to hold the maximum possible 
answer obtained by multiplying two 16-bit numbers. 

With the 8086/8088, one of the numbers to multiply is stored in the AX 
register. The double length [32-bit) result is stored in the OX and AX regis­
ters, with the most-significant 16-bits in the OX register. 

If the multiply is to be an 8-bit operation, one of the numbers must be in 
the AL register. The 16-bit result is returned in the AX register, with the 
most-significant byte in AH. 

Figure 5.9 presents a program for multiplying two 16-bit numbers and 
storing them in memory locations AOR3 and ADR4. 

BINARY DMSION 

Let's start our discussion of binary division by examining decimal divi­
sion. Let's divide 254 by 12: 

21 [quotient) 

[divisor) 12 )254 [dividend) 
-24 

14 
- 12 

2 [remainder) 

Examining this problem, we can see that the division is performed by 
subtracting the largest possible multiple of the divisor from the left-most 
digits of the dividend. [This generates a new dividend of 14.) The multi­
plier of the divisor now becomes the second digit of the quotient. Finally, 
the remainder is the result of the last possible subtraction. 

To find the largest multiple of the divisor that can be subtracted from the 
dividend, we must make trial comparisons and subtractions. It should be 
noted that in determining the first digit of the quotient, the actual number 
is 20, not 2; and the number subtracted from the dividend is 240, not 24. By 
leaving the zeroes out, we are able to make notation convenient, but we 
must not lose sight of what is actually occurring in the process. 

Binary division is performed in the same way, as can be seen in the 



BASIC PROGRAMMING TECHNIQUES 187 


following example: 
0011 (quotient) 

(divisor) 11 hOlo (dividend) 
-11 

100 
-11 

1 (remainder) 

This example has followed the same procedure as the decimal example 
presented earlier. As we can see, the division results in a quotient and a 
remainder. 

DMSION WITH THE 8088/8088 

The 8086/8088 provides a divide instruction that will perform a com­
plete division operation for us. The dividend for the CPU is stored in the 
AX and OX registers. This means that the dividend is a 32-bit quantity, 
with the most-significant 16 bits being located in the OX register. 

For this division, the divisor is a la-bit quantity. When the operation is 
complete the la-bit quotient is stored in the AX register. A la-bit remainder 
is returned in the OX register. 

When the division is performed on byte quantities, the la-bit dividend 
is stored in the AX register. At the conclusion of the operation, the 8-bit 

1 ; 
2 ; 8086/8088 PROGRAM TO MULTIPLY 
3; TWO 16-BIT NUMBERS. THE NUMBERS WILL BE 
4;2345 x 5378 =12,611,410 =OOC06F52 
5; 
60RG250H 
7; 
8ADR3 EQU300H 
9ADR4 EQUADR3+2 

10 ; 
0250 882909 11 MOV AX,#2345 ;2345 TO THE AX REGISTER 
0253 B90215 12 MOV CX,#5378 
0256F7E1 13 MULCX ;MUL AX x (CX)5378 
0258 A30003 14 MOV ADR3,AX ;STORE AX IN ADR3 LOWER 16 BITS 
025B 89160203 15 MOV ADR4,DX ;STORE DX IN ADR4 UPPER 16 BITS 

16; 

Figure 5.9: This is an CUIII8Dlbled 8088/8088 program to multiply two ls-bit numbers. 



188 PROGRAMMING THE 8086/8088 


quotient is returned to the AL register with the remainder being stored in 
the AH register. 

Figure 5.10 shows an 8086/8088 program that will divide two numbers 
and store the quotient and remainder in memory. 

SUBROUTINES 

In this section we will examine how the 8086 and 8088 operate with sub­
routines. We will start by giving a general definition of a subroutine; we 
will then proceed with the details of using a subroutine with the CPU. 

In concept, a subroutine is simply a block or section of instructions 
named by the programmer. A subroutine is executed when the main 
program executes the special CALL instruction; the subroutine is then ter­
minated by a special instruction called a RETURN. Let us now illustrate 
the use of a subroutine in order to demonstrate its value. 

Figure 5.11 illustrates how a subroutine is used. The main program 
appears on the left of the figure and the subroutine appears, symbolically, 
on the right. Let's examine how the subroutine works. In this program, the 
lines of the main program are executed successively until a CALL 
SUBROUTINE instruction is encountered. Execution of this instruction 
then results in a transfer to the subroutine section of the program. (Thus. 
the next instruction to be executed after the CALL SUBROUTINE is the 
first instruction in the subroutine.) This is illustrated by arrow 1 in Figure 

1 ; 
2 ; 808618088 PROGRAM TO DIVIDE TWO NUMBERS 
3 ; THE PROBLEM WILL BE TO DIVIDE 450 BY 20 
4 ; THIS WILL BE EQUAL TO 22 WITH A REMAINDER = 10 
5; 
60RG250H 
7; 
8 ADR3 EQU 300H ;2 BYTES FOR QUOTIENT 
9 ADR4 EQU ADR3 +2 ;2 BYTES FOR REMAINDER 

10 ; 
02503102 11 XORDX,DX ;ZERO OUT OX REGISTER 
0252B8C201 12 MOV AX,#450 ;450 IS LOADED INTO AX 
0255891600 13 MOveX,#22 ;22 LOADED INTO ex 
0258 F7F1 14DIveX ;DIV DXAX BY ex (22) 
025AA30003 15 MOV ADR3,AX ;STORE QUOTIENT IN MEM 
025089160203 16 MOV ADR4,DX ;STORE REMAINDER IN MEM 

17; 

Figure 5.10: This is an olJlleJllbled 808618088 PnJSl'CIDl to divide two 18-bit numbers. 



BASIC PROGRAMMING TECHNIQUES 189 

5.11. (In this example, the section of the program that we are using as a 
subroutine executes like any other program, as indicated by arrow 2. In 
other words the subroutine does not contain any CALL SUBROUTINE 
instructions [described later].) 

The last instruction of the subroutine is a RETURN. This special instruc­
tion causes the CPU to return to the main program. When the CPU returns 
to the main program, it will execute the instruction that comes immedi­
ately after the CALL SUBROUTINE instruction that initially forced the 
CPU to go to the subroutine section of the program. This is shown by 
arrow 3 in Figure 5.11. 

MAIN PROGRAM 

1 SUBROUTINE 

1 
CALL SUB 

/"~ 
4,,/ I 

,,/ I 

, 
3 

I
ICALLSUB N RETURN __ ~____tI __ 

7 

Figure 5.11: A block diagram showing how a subroutine may be called from different 
locations in the main prosnun. Solid arrows 1, 2, and 3 show the execution path for the 
first CALLSUB; the dotted arrows 4, 5, and 6 show thepathfor the second CALLSUB. 



190 PROGRAMMING THE 8086/8088 


Later, a second CALL SUBROUTINE instruction appears in the body of 
the main program. A new transfer occurs, as shown by arrow 4. This 
means that the body of the subroutine is again executed, following the 
CALL SUBROUTINE instruction. 

Whenever a RETURN is encountered within a subroutine, a return 
occurs to the instruction that follows the CALL SUBROUTINE being exe­
cuted. This is illustrated by arrow 6. Following the return to the main 
program, execution proceeds normally, as illustrated by arrow 7. 

The effect of the two instructions, CALL SUBROUTINE and RETURN, 
should now be clear. What is the use of a subroutine? The essential value of 
a subroutine is that it can be called from any number of points in a main 
program, and the instructions in a subroutine can be used repeatedly with­
out having to be rewritten. An advantage of this approach is that it saves 
memory space because the subroutine doesn't need to be rewritten each 
time. Another advantage is that the programmer needs to design a specific 
subroutine only once, as it can be used repeatedly. This is a significant sim­
plification of the program design process. 

IMPLEMENTATION OF THE SUBROUTINE MECHANISM 

We will now discuss how the two instructions CALL SUBROUTINE 
and RETURN are implemented within the microprocessor. We will first 
discuss CALL SUBROUTINE. The CALL SUBROUTINE instruction 
causes a new address to be placed in the IP register of the cpu. Recall that 
the IP register determines the memory address from which the next 
instruction is executed. In other words, the start address of the subroutine 
is loaded into the IP register. But is that sufficient? 

To answer this question, let us consider the other instruction: RETURN. 
This instruction causes a return to the main program instruction that fol­
lows the CALL SUBROUTINE. An action such as this can be possible 
only if the memory address of the instruction that follows the CALL SUB­
ROUTINE is preserved somewhere. 

The next problem is with saving this return address: it must always be 
saved in a location where it will not be erased. 

When the CPU encounters a CALL SUBROUTINE instruction, the 
value of the IP register is saved automatically. At this time the IP register is 
equal to the address offset of the next instruction to be executed. In this 
case, it is the address of memory directly following the CALL SUBROU· 
TINE instruction. 

Next, the CPU starts execution at the address of the subroutine. When 
the RETURN instruction is executed in the subroutine, the saved value of 



BASIC PROGRAMMING TECHNIQUES 191 

the address is restored from the memory location where it was saved. 
Saving and restoring the address of the instruction after the CALL SUB­
ROUTINE instruction is done automatically by the CPU. The CALL 
instruction saves the address, and the RETURN instruction restores the 
address. 

We have previously stated that the address is saved in a specific location 
of memory. The question is, "Where in memory is the address saved?" It is 
saved in the location of memory designated as the stack. The stack is a spe­
cial section of memory reserved for certain CPU operations. We will be 
showing these operations in later chapters of this text. 

In Chapter 4 we presented the PUSH and POP instructions, which use 
the system stack. When a CALL SUBROUTINE instruction is encoun­
tered, the address of the next instruction to be executed is PUSHed onto 
the stack. That is where it is saved. When a RETURN instruction is 
encountered by the CPU, the saved address is automatically POpped off 
the stack. This popped address is then used as the address for the next 
instruction. 

INTRA-SEGMENT CALL 

There are two main types of subroutine CALLS: INTRA-SEGMENT 
and INTER-SEGMENT. Let's examine them. 

The intra-segment CALL instruction causes the CPU to execute a sub­
routine that is located within the same 64K segment block of memory. 
When the 8086/8088 encounters this type of CALL, the IP register is 
pushed onto the stack. When a RETURN instruction is encountered, the 
IP register value is popped off the stack and placed again in the IP register 
of the CPU. See Figure 5.12. 

INTER-SEGMENT CALL 

This CALL causes the 8086/8088 to execute a subroutine that resides 
outside the 64K segment block of code. In this instance, both the CS (code 
segment) register and the IP register are pushed onto the stack. When a 
return instruction is encountered, both the CS and IP saved values are 
popped off and restored to the internal register of the CPU. This is shown 
in block diagram form in Figure 5.13. 

CALL-RETURN MISMATCH 

We can see from the preceding examples of intra-segment and inter­
segment calls that the return instruction must either pop off the CS and IP 



192 PROGRAMMING THE 808618088 

PUSHESIP 
INTRA-SE GMENT CALL (NEAR) 

POPSIP 

INTRA-SEGMENTRETURN 
IP STACK 

Figure 5_12: An inira-flegment (inside a 64K block ofdata) CALL pushes the IP regillter 
on the Ilystem Iltack. The corresponding intra-segment RETURN pops the IP regillter 
~thelltacJc.--------------------------------------------~ 

PUSHES CS,IP 
INTER-SEGMENTCALL(FAR) 

POPSIp,CS 

INTER-SEG MENTRETURN 
IP STACK 

CS 

Figure 5.13: An inter-segment (ouflllde a 64K blocJc ofdata) CALL pushes both the CS 
and IP registers onta the Ilystem IltacJc. An infer-segment RETURNpops both ofthese 
regillfel'll off the stack.------------------------------------------l 



BASIC PROGRAMMING TECHNIQUES 193 

register, or pop off the IP register only. Due to this procedure, there must be 
more than one type of return instruction. There is. Recall from Chapter 4 
that there are inter-segment and intra-segment RETURNs. 

This means that a subroutine must always be used as either an intra­
segment or an inter-segment routine. Figure 5.14 shows a CALL-RETURN 
mismatch. 

CS,IP PUSHED 
IN TER-SEGMENT CALL 

IP ONLY POPPED 

INTRA-SEGMENTRETURN 
IP STACK 

CS 

Figure 5.14: This sJwws a CALL-RETURN mismatch.In this diasram an inter-sesment 
CALL push_ both the CS and IP register on the stack. An infnHegment RETURNonly 
pops offthe IP register. This results in a CALL-RETURN mismatch and the program 
usually{aiIs.,------------------------' 

SUMMARY 

In this chapter we have presented some basic programming concepts. 
These have included binary addition, subtraction, multiplication, and 
division as well as BCD arithmetic. We have written several programs and 
explained how the 8086/8088 realizes these concepts. 

Toward the end of this chapter we discussed the use of subroutines in 
programming. We examined how the 8086/8088 implements subroutine 
calls and returns, and we looked at both the inter-segment and intra­
segment call and return. We will find this information useful when we 
discuss different programming applications involving the 8086/a088 in the 
chapters that follow. 





INTERRUPTS FOR 

THE 8086/8088 

INTRODUCTION 

In this chapter we will discuss the general 

topic of interrupting the 8086 and 8088 

microprocessors. We will first introduce the 

concept of an interrupt. We will then show 

how each different type of interrupt is han­

dled electrically by the 8086 and 8088. In 

addition, we will examine useful examples 

of software, and we will discuss what actu­

ally occurs in the CPU during an interrupt 

operation. 




196 PROGRAMMING THE 8086/8088 

WHAT IS AN INTERRUPT? 

An example of an interrupt is best given through the following scenario. 
Picture this: 

You are having a conversation with another person. A second person 
walks up and speaks your name-requesting your attention. The following 
is a list of possibilities for responding to this external request: 

1. 	 You can completely ignore the second person and continue your 
conversation with the first person. 

2. 	 You can get to a convenient stopping place in your conversation 
and then turn your attention to the second person. 

3. You can immediately end your conversation with the first person, 
and start talking with the second person. 

In any case, it is likely that when you have finished talking with the second 
person, you will want to continue your conversation with the first. 

Although this scenario may seem simplistic, it accurately presents the 
concept of interrupts within a microprocessor system. Think of it this way. 
Think of yourself as being the 808618088 CPU. Think of the first person as 
being the main programbeing executed and the second person as being an 
external interrupt request (that is, as some hardware in the system that 
wishes the attention of the CPU). The 8086/8088 CPU must handle this 
request in some fashion. There are various ways this can be done. The 
three possibilities listed above are the most common. 

With this general introduction to interrupts, let us now concentrate on 
the details of interrupts for the 8086/8088. 

WHERE DO THE EXTERNAL INTERRUPT REQUESTS 
COME FROM? 

A microprocessor system may be comprised of many different hard­
ware components: a printer, a hard disk or floppy disk drive(s), a CRT, a 
timer, a control motor, or a digitial to analog converter (a DAC)-just to 
name a few. Most of these external hardware components need the atten­
tion of the CPU only at certain times. At other times, they can function on 
their own. 

For example, let's suppose your system has a clock as an external hard­
ware device, which is designed to display the time of day on the CRT 
screen. In other words, as the screen is viewed, the clock hardware 



INTERRUPTS FOR THE 8086/8088 197 

screen. In other words, as the screen is viewed, the clock hardware 
requires the CPU to read the time once each second and print it to the CRT 
screen. At all other times, the CPU is available to perform the other tasks 
required of it. 

The main point here is that the external hardware of the clock does 
not need the attention of the CPU all of the time. The clock hardware 
electrically requests the CPU to read it, only when required. One way to 
accomplish this is through the CPU's interrupt system, whereby, once 
each second the CPU receives an external electrical interrupt request from 
the clock hardware. At this time, the CPU stops whatever it is doing and 
reads the clock time. After the clock has been read and the time displayed, 
the CPU will resume execution of the program it was running prior to the 
interrupt. 

This simple example of an interrupt should help answer the initial ques­
tion of where do the interrupt requests come from. The answer is that they 
come from the microprocessor system hardware. 

NON-MASKABLE INTERRUPTS (NMI) 

As shown in Figure 6.1, there are three main interrupt input lines on the 
8086/8088 microprocessors: INTR, NMI and RESET. Each of these inputs 
can cause an external interrupt request to occur. In this section we will 
discuss the NMI or non-maskable interrupt input request. We will cover 

8086J8088 CPU 

INTR 18 

NMI 17 

RESET 21 

Fisure 6.1: This block diCJBMDI shows the INTH, NMI, and BESET infMrupt inputs 
~rthe~/~.----------------------------------------~ 



198 PROGRAMMING THE BOB6/808B 


several important points concerning BOB6/808B interrupts. Many of these 
points are common to other types of interrupt inputs as well. We shall 
begin our discussion with the non-maskable interrupt because it operates 
in only one way. 

The term "non-maskable interrupt" means that this interrupt must 
always be recognized by the BOB6/BOBB as soon as electrically possible. 
(This was the third possibility in our previous list.) Since the BOB6/BOBB has 
a non-maskable interrupt, it follows that there must also be a maskable 
interrupt input. This is the INTR input. We will discuss this input later on 
in this chapter. 

Let's assume that the NMI interrupt input has been externally asserted. 
The next question then is, "When will the NMI input be electrically recog­
nized by the CPU?" Generally, it is recognized at the end of a current 
instruction cycle; that is, when the present instruction is complete. Note 
that there are some instructions on the B086/B088 that can require quite a 
long time to execute (e.g., the divide and multiply instructions). The time 
required for the CPU to respond electrically to an interrupt request is 
known as interrupt latency. The actual amount of time depends on how 
many clock cycles are left in the current instruction. 

CPU ACTIVITY DURING THE NMI REQUEST 

During an NMI operation the first event to occur is that the FLAGS are 
pushed onto the system stack area. This action saves the current value of 
all the system flags. Next, the CPU clears the IF (the interrupt enable flag) 
and thus disables any interrupt from occurring on the INTR input line. 
When this flag is cleared, all interrupt requests from the INTR input are 
electrically ignored. 

Next, a special flag on the BOB6/BOBB, labeled TF (trap flag), is also 
cleared. This flag is used when the BOB6/BOBB is set into a single step mode. 
Therefore, clearing it determines that the BOB6/B08B is no longer being 
used in the single step mode. 

The next action taken by the CPU is to push the CS and the IP registers 
onto the system stack. At this point in the handling of the NMI by the CPU, 
the system stack appears as shown in Figure 6.2. 

Finally, the CPU loads the IP register with the 16-bit value located at 
memory address OOOOBH. The CS register is then loaded with the 16-bit 
value located at address OOOOAH. A new memory address is then gener­
ated, using the newly loaded CS and IP registers. Finally, the CPU starts 
execution of the code located at this new memory address. 

In review, here are the steps taken when the CPU handles an NMI 



INTERRUPTS FOR THE 8086/8088 199 


request: 

1. 	 The FLAG register is pushed onto the system stack. 

2. 	 The INTR inputs are disabled. 

3. 	 TF is cleared, no single step may occur. 

4. 	 The CS register is pushed onto the system stack. 

5. 	 The IP register is pushed onto the system stack. 

6. 	 The IP register is loaded with the 16-bit data at memory address 
OOOOSH. 

7. 	 The CS register is loaded with the 16-bit data at memory address 
OOOOAH. 

S. 	 The CPU fetches the next instruction from the 2(}bit address gen­
erated by the new CS and IP registers. 

At this time, the CPU is executing the interrupt service routine for an NMI 
interrupt request. 

THE INTERRUPT TABLE 

Before proceeding with our discussion of the INTR input, let's examine 
the concept of the interrupt table. In our explanation of the NMI interrupt 
we stated that addresses OOOOSH and OOOOAH are used for storage ofthe IP 
and CS registers. The values held in these registers are used to generate the 
new 20-bit address. These address values were obtained from a sequence 

r--------, SYSTEM 
IP STACK 

CS 

FLAGS 

Fipre 6.2: Here is how the system stack looks after the FLAGS, CS, and lP registers 
have been pushed onto the stack durins the hand.l.i.ns ofan interrupt.,------­

http:hand.l.i.ns


----

----

200 PROGRAMMING THE 8086/8088 


of addresses designated as the interrupt table. Figure 6.3 shows a diagram 
of the interrupt table for the 8086/808S. This interrupt table occupies the 
first 1024 bytes of system memory; that is. memory addresses 
00000 - 003FF. There are 255 different types of interrupts that may be han­
dled by the 8086/s088. Later on in this chapter we will discuss the topic of 

_r­

t-

t ­

-' ­
-r 

t-

t ­

~ 

t ­

>­

t-

TYPE 255 POINTER 

(AVAILABLE) 


TYPE 33 POINTER 

(AVAILABLE) 


TYPE 32 POINTER 

(AVAILABLE) 


TYPE 31 POINTER 

(RESERVED) 


TYPE 5 POINTER 

(RESERVED) 


TYPE 4 POINTER 

OVERFLOW 


TYPE 3 POINTER 

1·BYTE INT. INSTRUCTION 


TYPE 2 POINTER 

NON·MASKABlE 


TYPE 1 POINTER 

SINGLE-STEP 


TYPE 0 POINTER 

DIVIDE ERROR 


-

-

-

-

-


-

-

-

-

AVAILABLE 
INTERRUPT 
POINTERS 

(224) 

RESERVED 
INTERRUPT 
POINTERS 

(27) 

DEDICATED 
INTERRUPT 
POINTERS 

(5) 

003FFH 
03FCH 

0084H 

OOSOH 

007FH 

0014H 

0010H 

OOOCH 

OOOSH 

0OO4H 

OOOOH 

r-14-----16 BITS ------I~~I 

Fipre 6.3: The interrupt table for the 8086/8088. Each type ofinterrupt requires 4 
~ofmmno~..------------------------------------------~ 



--

--

INTERRUPTS FOR THE 8086/8088 201 

interrupt types in more detail. You will learn that each type is given a label, 
from type 0 - type 255. 

For every type of interrupt (from 0 - 255) there are four memory bytes 
reserved in the interrupt table. These four bytes are required to store the 
16-bit CS and IP registers used in generating the 20-bit address of the inter­
rupt service routine. The first two bytes of the four bytes contain the value 
of the IP register. The last two bytes contain the value of the CS register, as 
shown in Figure 6.4. 

16 BITS 
r-

IP 

INTERRUPT CS 8086 
POINTER 

'----­

(a) 

Figure 8.40: The infarrupt pointer for the 8088 requires two 18-bit WOMS. The lower 
ddress equals the IP resister; the higher adm- equals the CS ngister..------' 

8 BITS 

IP 

IP 

INTERRUPT CS 8068 
POINTER 

CS 

-'­

(b) 

Figure 8.4b: The intenupt pointerfor the 8088 requires four consecutive 
bytesofmemory.----------------------' 



202 PROGRAMMING THE 8086/8088 

RESERVED INTERRUPT TYPES 

Some of the 255 possible interrupt types are reserved for specific uses. 
The following is a list of type 0 - type 4 interrupts and their specific uses in 
the system: 

Type 0 Reserved for division by 0 

Type 1 Reserved for single stepping 

Type 2 Reserved for NMI interrupts 

Type 3 Reserved for l-byte software interrupt instruction 

Type 4 Reserved for signed overflow interrupt 

(Note: The Intel Corporation [the designer of the 8086/8088] has requested 
that interrupt types 5 - 31 [memory addresses 00014H - 0007FH] be 
reserved for future Intel products. In other words, if you use an interrupt 
type 5 - 31, your system may not be able to use some future product 
designed by Intel.) 

INTRINPUT 

Let's now discuss the INTR input. This interrupt input can be logically 
enabled and disabled with software. When it is disabled, the CPU will not 
honor any external requests-in fact, it can be thought of as not even exist­
ing on the CPU. In Chapter 4 we discussed the CLI (clear interrupt) 
instruction. This software instruction is used to disable the INTR input. 

We can enable the INTR input to the 8086/8088 CPU by using the STI 
(set interrupt flag) instruction. As an example, let's assume that the INTR 
input has been enabled and an external request has been asserted. The 
following discussion will explain how the CPU handles these types of 
requests. 

When the INTR input has been honored by the CPU, an external signal, 
called interrupt acknowledge, is generated. This signal allows the hard­
ware of the system to place an s-bit value, called the interrupt type, on the 
system data bus. Recall that there are 255 different types. 

The CPU next reads the interrupt type from the data bus and computes 
the address for the type in the interrupt table. This is done by multiplying 
by 4, the type number read from the system data bus. For example, let's 
suppose the external hardware places a 2FH on the system data bus when 
the interrupt acknowledge is asserted. 2F is the type number. The address 
for this type number in the interrupt table is 4 x 2FH, which is OOOBCH. 



INTERRUPTS FOR THE 8086/8088 203 

Next, the flags are pushed onto the system stack. Following this the 
interrupts are disabled. 

The CPU now pushes the IP and CS registers onto the system stack. 
After this, the CPU loads the new values for the CS and IP registers from 
memory locations OOOBCH - OOOBFH. When these registers are loaded, 
the microprocessor fetches the next instruction from the 20-bit address 
generated by the new CS and IP registers. 

Let's now review the list of operations that the CPU performs when han­
dling an INTR request: 

1. 	 An external interrupt acknowledge signal is generated. 

2. 	 A type code 0 - 255 is read from the system data bus. 

3. 	 The flag register is pushed onto the system stack. 

4. 	 The interrupts and single step mode are disabled. 

5. 	 The CS and IP registers are pushed onto the system stack. 

6. 	 The IP register is loaded from data at memory address (TYPE x 4) 
and (TYPE x 4) + 1. 

7. 	 The CS register is loaded from data at memory address (TYPE x 4) 
+ 2 and (TYPE x 4) + 3. 

8. 	 The CPU fetches the next instruction from the 20-bit memory 
address generated by the new value of the CS and IP registers just 
loaded from the interrupt table. 

Figure 6.5 shows a flowchart of the events that occur during the handling 
of interrupts with the 8086/8088. 

INTERNAL INTERRUPTS 
External interrupts are only one way of generating interrupt types with 

the 8086/8088. Another technique for generating interrupts is via software. 
Using special software instructions, it is possible to enable the CPU to 
respond to any interrupt type, 0 - 255. Here is how it is done. 

One software instruction that generates an interrupt is INT (presented 
in Chapter 4). There are two ways of using this particular instruction-as 
either a 1-byte or a 2-byte instruction. Ifyou use a 1-byte INT instruction, it 
is encoded as CCH. 

When the CPU executes this 1-byte instruction, a type-3 interrupt is 
automatically generated in exactly the same manner as the INTR input. 



204 PROGRAMMING THE 8086/8088 

Figure 8.5: This flowchart shows the events that occur during the handling ofintenupts with 
~/~~--------------------------------------------~ 



INTERRUPTS FOR THE 8086/8088 205 


However, unlike the INTR input to the microprocessor, the software inter­
rupt cannot be disabled or masked. 

Let us now assume that we are using the 2-byte version of the INT 
instruction. The first byte would be encoded as CDH. The second byte 
would be equal to an 8-bit number between 0 - 255 (inclusive). This num­
ber defines the interrupt TYPE you wish to generate. 

For example, let's suppose you wish to generate an interrupt type 96H. 
The 2-byte INT~nstruction would be encoded as CD96H. The interrupt 
table address in hexadecimal for the IP would be equal to 4 x 96H = 258 
in hexadecimal. Addresses 258H and 259H would contain the IP register 
value for the interrupt service routine. Addresses 25AH and 25BH would 
contain the CS register value for the interrupt service routine. 

INTERRUPT ON OVERFLOW 

There is another software instruction that can cause an automatic gen­
eration of a type 4 interrupt: the INTO instruction. When the overflow flag 
(OF) is set, and this instruction is executed, an internal interrupt is gener­
ated. Refer to chapter 1 for a complete discussion of what an overflow 
means. 

RETURN FROM INTERRUPT 

Now that we have learned how the CPU starts execution of an interrupt 
service routine, let us discuss how the CPU gets back to the main program 
from the service routine. When the CPU first enters the service routine, the 
FLAGS, CS, and IP registers are saved. This is essentially the information 
needed to return the CPU to the address it held prior to the interrupt. 

During the execution of the interrupt service routine, you can change 
the values of some internal registers. If it is important that you save the 
original value of these registers, it is wise to PUSH them onto the stack. 
Figure 6.6 shows a typical start of an interrupt service routine. 

Another point to note about entering an interrupt service routine is that 
all the interrupts have been disabled. Ifyou wish other interrupts to be 
honored by the CPU while servicing this interrupt, the set interrupt flag 
(STI) instruction should be one of the first instructions you execute in the 
interrupt service routine. This is demonstrated by the partial program in 
Figure 6.7. 

Let's assume we have completed the servicing of the interrupt. How do 
we return to the main program? We use the RETI instruction. When this 
instruction is executed the FLAGs, IP, and CS registers are popped off the 



206 PROGRAMMING THE 8086/8088 


stack. Before returning to the main program it is important to insure that 
the interrupts are again enabled (if this is desired). Further it is necessary 
to pop off any internal registers that were pushed onto the system stack 
during the interrupt service routine. Figure 6.8 shows a sample interrupt 
service routine that demonstrates all of these points. 

RESETTING THE 8086/8088 

In the preceding examples we have shown how the NMI, INTR, and 
SOFTWARE interrupts operate for the CPU. Let us now discuss another 
type of interrupt: the RESET input on the 8086/8088. When the reset input 

START OF INTERRUPT SERVICE ROUTINE 

PUSH AX ;SAVEAXREG 
PUSHBX ;SAVE BX REG 
PUSHCX ;SAVE CX REG 
PUSHDX ;SAVEDXREG 

NOW START THE ACTUAL CODE FOR THE INTERRUPT ROUTINE 

MOVAX,NUM 

Figure 6.6: A typical start ofan interrupt service routine that shows how important 
registers are saved on thestack.-------------------' 

START OF INTERRUPT SERVICE ROUTINE 

STI ;TURN ON INTERRUPTS AGAIN 
PUSH AX ;SAVEAXREG 
PUSH BX ;SAVEBXREG 
PUSHCX ;SAVE CX REG 
PUSHDX ;SAVE DX REG 

NOW START THE ACTUAL CODE FOR THE INTERRUPT ROUTINE 

MOVAX,NUM 

Figure 6.7: This diagram shows the start ofan interrupt routine that allows further 
interrupts. This is made possible, early in the service routine, by the STI instruction. 



INTERRUPTS FOR THE 8086/8088 207 


START OF INTERRUPT SERVICE ROUTINE 

PUSH AX ;SAVEAXREG 
PUSH BX ;SAVEBXREG 
PUSHCX ;SAVECXREG 
PUSH OX ;SAVEDXREG 

NOW START THE ACTUAL CODE FOR THE INTERRUPT ROUTINE 

MOVAX,NUM 
MULAX,BX 

MORE OF THE ROUTINE GOES HERE 

END OF THE ROUTINE 

POPDX 
POPCX 
POPBX 
POP AX 
STI ;TURN ON INTERRUPTS 
RETI ;RETURN FROM INTERRUPTS 

'----------Figure6.8: A sample infeJTupt routine for the 8086/8088. 

line is asserted, the CPU starts execution in one, and only one, way. This 
allows for an orderly start, restart, or power-up of the system. 

Following the assertion of the RESET input line, the CPU registers are 
initialized in the following way: 

FLAGS = Clear 

Instruction Pointer = OOOOH 

CS register = FFFFH 

DS register = OOOOH 

SS register =OOOOH 

ESregister = OOOOH 

Based on these register definitions, after reset, the first instruction will be 
fetched from the following location: 

(eS x 16) + IP = FFFFOH + OOOOH = FFFFOH 

The first location after reset is in high memory absolute location FFFFOH. 



208 PROGRAMMING THE 8086/8088 


Recall that the manufacturer recommends that these high memory loca­
tions, FFFFOH to FFFFFH, not be used except for their intended purposes. 
The total reserved memory locations for the 8086/8088 are shown in 
Figure 6.9. 

FFFFFH 
RESERVED 

FFFFCH 

DEDICATED 
FFFFBH 

FFFFOH 
FFFEFH 

_.... - ­
-c- OPEN -­

SOH 

RESERVED 
7FH 

14H 

DEDICATED 
13H 

OH 
MEMORY 

Figure 6.9: A memory map showing the reserved locations for the 8086/8088.------' 

CHAPTER SUMMARY 

In this chapter we have examined interrupts for the 8086/8088. Our dis­
cussion began with a general introduction of an interrupt. From there we 
proceeded to discuss both the maskable "INTR" and non-maskable "NMI" 
interrupts. In each case, we explained how the interrupt request is han­
dled by the cpu. 

Next, we discussed how the CPU generates internal interrupts using the 
INT and INTO instructions. We finished the chapter by showing how the 
8086/8088 responds internally to a reset. 

Once you understand the information in this chapter, you should be able 
to better understand how the CPU can be programmed to handle different 
interrupt requests from the peripheral system hardware. 







7 INPUT AND OUTPUT 
FOR THE 8086/8088 

INTRODUCTION 

An 8086/8088 system generally consists of 
one or more input and/or output devices. In 
this chapter we will discuss the input/output 
(I/O) architecture of the 8086/8088 CPU. We 
will also present the special instructions for 
I/O and an explanation of how they can be 
used. We will give several examples showing 
how an 8086/8088 interfaces with and con­
trols different I/O devices. 



- -

- -

212 PROGRAMMING THE 8086/8088 


WHAT IS INPUT AND OUTPUT? 

In Chapter 2 we examined the general architecture of a microprocessor­
based system. Figure 7.1 provides a quick review. In this figure we can see 
that the microprocessor communicates with ROM, RAM, and 1/0. ROM 
and RAM are grouped together to make up the system memory (inputl 
output). With the 8086/8088, the system memory has valid addresses from 
OOOOOH to FFFFFH. Note that the 1/0 block is not included in this memory 
space. 

Some microprocessors allocate some of the available memory space for 
1/0. These microprocessors include the 6800, the 6502, the 6809, and the 
680OD-to name just a few. Microprocessors that use memory space for 
1/0 are said to use "memory-mapped I/O." 

ROM 

MEMORY 

CONTROL - 1---­

DATACPU RAM 

ADDRESS 

1/0 

r-- -

Ffsure 7.1: The diasmm mows the general3-bus an:.Itifecturefor a microprocessor system. 



INPUT AND OUTPUT FOR THE 8086/8088 213 

The 8086 and 8088 do not use memory-mapped 110. Thus, all the system 
memory space can be used for memory, as the system I/O has its own 
address space. An 110 architecture like this is called "I/O-mapped 110." 

An 110 operation can be defined as follows: 

Input: When the microprocessor reads data from a source that is 
not system memory. 

Output: When the microprocessor writes data to a destination 
that is not system memory. 

We stated earlier in this text that the system control bus defines the type 
of communication that occurs. In other words, if the system uses "I/O­
mapped 110," there are separate control lines for the 110 and memory sys­
tems. For example, the memory system uses control lines labeled memory 
read and memory write, while the 110 system uses control lines labeled 
input read and output write. See Figure 7.2. 

110 ADDRESSING 

In a typical microprocessor system there are usually several 110 ports. 
(Note: A port is a unique place to read or write data that is not system 
memory. In fact, a port is similar to a unique location in the system mem­
ory from which data will be read or written to during a memory opera­
tion.) Each port in the 110 system is given a unique address, called the port 

CPU 

MEMORY READ 

MEMORY WRITE 

INPUT READ 

OUTPUT WRITE 

SYSTEM 
CONTROL 

BUS 

Figure 7.2: The system control sisnals for memory are memory read and memory 
write. The corresponding control signals for lID are input read and output write. 



214 PROGRAMMING THE 8086/8088 

select code. (See Figure 7.3.) To generate the port select code, the system 
address lines Ao-A15 are decoded with logic to respond to a specific com­
bination. For example, a port may have a port select code of 0057H, as 
shown in Figure 7.4. 

PORT 
SELECT 

ADDRESS 

BUS ~ 
LINEDECODEAO-A15V LOGIC 

CPU 

1 
THIS LINE RESPONOS 


TO AN ADDRESS 

COMBINATION 


Figure 7.3: Each lIO port in the system is cfesisned to respond efectricaJJy to a unique 
L-OOJIlllJiJlOition on tJae&ylfem address bus.----------------' 

"OO57H.... 1 
DECODEAD-A15.) LOGIC 

CPU 

DECODE LOGIC WILL 

GENERATE A LOGICAL 0 


IF AND ONLY IF 0057H 

EXISTS ON THE SYSTEM 

ADDRESS LlNESAO-A15 


Figure 7.4: This lIO port will respond efecbicaHy to system address 0057H.-----' 



INPUT AND OUTPUT FOR THE 8086/8088 215 

For the B0861B08B there are only 16 address lines out of the 20 (total) 
microprocessor address lines available for 110 addressing. This gives a 
total of 65,535 input and output ports available in the system. Figure 7.5 
shows a memory map of the space available for 110 with the 8086/8088. 

Although the 110 system and the memory system are completely sepa­
rate, these two systems use the same address lines. This means that you 
can have a memory address of OOF4H and an 110 address ofOOF4H. A dis­
tinction can be made between these two systems by reviewing the lines in 
the system control bus: during a memory operation the memory read or 
memory write control line is active; and during an I/O operation the input 
read or output write line is active. 

RESERVED I/O SPACE 

Figure 7.5 shows an area of 110 space-addresses OOFBH-OOFFH­
which is labeled "reserved." This area is labeled "reserved" because Intel 
Corporation has requested that it not be used for your system application, 
as it is meant to be used for future Intel products. 

WHAT IS AN I/O DEVICE? 

An I/O device may be defined as any hardware that the system controls. 
Such a device may have one or more 110 ports or 110 addresses associated 

FFFFFH 
RESERVED 

FFFFCH 

DEDICATED 
FFFFBH 

FFFFOH 

- -- - OPEN 

FFFEFH 

-­-­ 1 
- ­ OPEN 

IFFFFH 

-r 

SOH 

RESERVED 
7FH 
14H RESERVED 

100H 
FFH 
FSH 

DEDICATED 
13H 

OPEN 
F7H 

OH OH 
MEMORY I/O 

Fipre 7.5: A memory map showing the space avaUabJe for system memory and 110. 



216 PROGRAMMING THE 8086/8088 


with it, as shown in Figure 7.6. Examples of 110 devices are LSI (large scale 
integration) chips, such as a floppy disk controller or a timer chip. 

INPUT INSTRUCTION 

The IN instruction is used to read data from an input port on the micro­
processor. This instruction is written as: 

IN accumulator,port 

The IN instruction transfers a byte or word of data to the accumulator 
from an input port address. Ifthe transfer is a byte ofdata, it is stored in the 
AL register; if it is a word, it is placed in the AX register. 

FIXED PORT ADDRESSING 

There are two ways to use the IN instruction-with either fixed or vari­
able port. When a fixed port IN instruction is used, it is encoded, as shown 
in Figure 7.7. We can see in this figure that the first byte has the W bit set to 
a either logical 1 or O. If W is set to a logical 1, the transfer is a word (16 
bits), and the data ends up in the AX register. If it is set to a logical 0, the 
transfer is a byte, and the data ends up in the AL register. 

The second byte shown in Figure 7.7 is an S-bit port address. Since there 
are only 8 bits, a total of 255 unique 110 ports can be accessed using this 
instruction. As an example of using this instruction, let's suppose that we 

RESPONDS 
TOAO-A15~CPU 

V I/O ADDRESS 
OOOOH-0007H 

1/0 DEVICE 

Figure 7.6: An I/O device will respond electricaHy to one or more I/O port addresses. 
Thls device will respond to aU I/O addresses between OOOOH and 0007H, inclusive. 



INPUT AND OUTPUT FOR THE 8086/8088 217 

are reading byte data at port 3DH. The instruction encoding should appear 
as shown in Figure 7.8. The way to specify a byte or word transfer is like 
this: 

IN AX,port (word) 
IN AL,port (byte) 

VARIABLE PORT ADDRESSING 

Another way the IN instruction may be used is with variable port. Using 
variable port encoding gives you access to all 16 bits of the system address 
bus for 110 addressing. The encoding of the variable port format for the IN 
instruction is shown in Figure 7.9. 

Viewing Figure 7.9, we can see that only one byte is required to use this 
instruction. The W bit equals 1 if word data is wanted; it equals 0 if byte 
data is wanted. The address for the port is contained in the DX register at 
the time this instruction is executed. Using the DX register gives 16 bits of 
address that can be modified under program control. For example, we can 
use the variable port format of the IN instruction to read word data from 
port 05ACH. The program shown in Figure 7.10 will accomplish this. 

111oo10W la-BIT PORT NUMBER I 
BYTE 1 BYTE 2 

'---------Fisure 7.7: The encodingfor a fixed port INput instruction. 

11100100 00111101 

BYTE 1 BYTE 2 

'------Figure 7.8: The encodingfor a fixed port IN instruction: IN AL,3DH. 

1110110W 

Figure 7.9: This shows the encoding for a variable port INput instruction. The address 
'------------wiH he contained in the DX regist.erofthe CPU. 



218 PROGRAMMING THE 8086/8088 


OUTPUT INSTRUCTION 

The OUT instruction is used to transfer data from the CPU to an output 
port. This instruction has a similar format to the IN instruction. Its format 
is: 

OUT port,accumulator 

Like the INput instruction, the OUTput instruction can be used with 
either fixed or variable port format. Figure 7.11 shows examples of two 
small programs that use the OUT instruction in the fixed and variable port 
formats. 

1 
2 PROGRAM TO USE THE VARIABLE PORT 
3 MODE FOR THE IN INSTRUCTION 
4 16-BIT PORT NUMBER = 05AC 
5 

0000 BAACOS 6 MOV DX,#05ACH ;PORT NUMBER TO THE DX REG 
0003 ED 7 IN AX,DX ;INPUTWORD TO AX FROM DX 

8 

Figure 7.10: An 8086/8088 program showing the variable port IN instruction in use.,------J 

1 
2 

0000 BAAC05 3 MOV DX,#05ACH ;LOAD ADDRESS INTO DX REG 
0003EC 4 INAL,DX ;INPUT BYTE TO AL FROM ADD IN DX 

5 
6 NOW TO OUTPUT BYTE USING VARIABLE PORT FORMAT 
7 

0004 BA8704 8 MOV DX,#0487H ;LOAD ADDRESS INTO DX REG 
0007EE 9 OUT DX,AL ;OUTPUT DATA TO VARIABLE PORT 

10 
11 

OOOSE607 12 OUT07H,AL ;OUTPUT BYTE TO FIXED PORT .. 07 
13 

Figure 7.11: This 8086/8088 program moWli how the fIXed and variable port OUTput instruc­
tionjsWNd.,---------------------------~ 



INPUT AND OUTPUT FOR THE 8086/8088 219 

8086 INPUT AND OUTPUT PORTS 

When using the 8086, we should remember that it has a l6-bit data bus. 
This means that the addresses of the ports must be consistent with the data 
byte (i.e., either high or low). When a byte port has an even address, it must 
be physically connected to the lower byte (DD-D7) of the 16-bit data bus. 
An odd address byte port must be physically connected to the upper byte 
(F8-D15) of the system data bus. A word port address should be specified 
as an even address, as shown in Figure 7.12. 

8088 INPUT AND OUTPUT PORTS 

Ifyou are using an 8088 CPU that has an 8-bit data bus, you can use both 
word and byte output ports. The same conventions that we discussed for 
the 8086 may be followed for the 8088. However, there is no need to be 
concerned about an even or odd addressed byte port, since there is only 
one way to connect the 8-bit data bus. 

If you are using a word output port, the lower byte of the word port 
should be at an even address and the upper byte at an odd address. This is 
consistent with the organization of the 8088 system memory, as seen in 
Figure 7.13. 

8086 
EVEN PORT # 

015-08 

07-DO 

000 PORT # 

F'JS1U8 7.12: A block diasmm indJc:atiDs that on an 8088 system, an &-bit port at 
an odd addraIIs must connect to the upper data lines (D8-D15], and an &-bit port at an 

address mllllt c:onnect to the lowardata lines (DO-D7]•.-----------' 



220 PROGRAMMING THE 8086/8088 

GENERATING A SIGNAL WITH SOFI'WARE 

Let's now apply the information learned about the 8086/8088 instruc­
tions and 110 to various general problems and interfaces used in micro­
computer systems. We will start by generating a signal that will turn on or 
off some piece of hardware, such as a relay. 

To generate a signal, the computer must turn an output device on or off. 
To accomplish this, the computer must change an electrical voltage level 
in the device from a logical 0 to a logical 1, or from a logical 1 to a logical O. 
For example, let us assume that an external relay is connected to bit 0 ofan 
a-bit output port we will call OUT1. (OUT1 is the variable name represent­
ing the address [8 or 16 bits] of the output port.) 

To tum the relay on, a logical 1 must be written to bit 0 of OUT1. To turn 
the relay off, a logical 0 must be written. Here is a program that will tum 
the relay on: 

MOV AL,OOOOOOOlB B = BINARY 
OUT OUT1,AL OUTPUT 1 TO BIT 0 OF PORT OUTl 

In this example, we have assumed that the states of the other bit posi­
tions of the output port are "don't cares." However, in a normal situation 
this may not be the case; they may be connected to other relays in the 
system. In that case, we would not want to change the logical state of these 

HIGH BYTE 
8088 ODD ADDRESS 

V1 
~ 

07-00 ) 
HI-BIT 
PORT 

) 
LOW BYTE 

EVEN ADDRESS 

Fipre 7.13: I/O ports in an 8088 system may have odd or even addresses. Ifa 1Mitport is 
fJied, the low byte Mould be at an even addIws and the lUsh byte at an odd address. 



INPUT AND OUTPUT FOR THE 808618088 221 

bits. We can insure that this does not happen by inserting an additional 
instruction into the program: 

IN AL,OUTl READ THE VALUE OF OUTPUT PORT 
OR AL,OOOOOOOlB SET BIT 0 ONLY, ALL OTHER BITS 

UNCHANGED 
OUT OUTl,AL OUTPUT TO PORT OUTl 

This program assumes that we can read the contents of the output port 
OUTl or that the contents have been saved in a memory location that we 
can access. Figure 7.14 shows a block diagram of the concept of turning a 
relay on and off. 

GENERATING A PULSE 

We can generate a pulse in the same way that we turn a relay on and off. 
We first set a bit in an output port to a logical 1. and then reset it to a logical 
oat some finite time later (see Figure 7.15). When the pulse is generated we 
must keep track of its width with software. To do this, we must generate a 
computed delay. 

DELAY GENERATION 

Delays can be generated using software or hardware. For now, let's use 
software. In a later example, we will generate a hardware delay using a 
programmable timer. Programmed delays are achieved by counting. To 
count, a counter register is first loaded with a value. then decremented. 
The program loops on itself and continues decrementing until the counter 
reaches the value o. The total length of time used by this process imple­
ments the required delay. 

To generate a specific delay, we must know how long each instruction 
takes to execute at a given clock frequency. An instruction takes a fixed 
number of clock cycles to execute. and it is this number that must be con­
verted to time. based on the period of the system clock. (Note: For this 
example, we will not be concerned with exact times.) 

Let's now generate a delay for the length of time required to decrement 
the AX register in the loop. Here is the program: 

MOV AX,OF45H WAD UP AX WITH COUNT 
BACK DEC AX AX=AX-l 

JNZ BACK IF NOT ZERO DEC AGAIN 

The first instruction line loads the AX register with the immediate value 



222 PROGRAMMING THE 8086/8088 

of F45H. The next one, labeled with "BACK," decrements the AX register 
by one. Following this, the JNZ Gump if not equal to zero) instructions 
initiates a jump to the instruction line labeled BACK if the result of the 
decrement is not equal to zero. If the value of the AX register equals zero, 
the program executes the instruction following the JNZ instruction. A 
flowchart showing this type of delay appears in Figure 7.16. 

BEFORE 

RELAY 

OFF o 
OUT1 

AFTER 

RELAY 

ON 

OUT1 

Figure 7.14: This bJocJc diagram shows how a signal line ofan output port can be used 
to turn a reJayon and off.--------------------' 



INPUT AND OUTPUT FOR THE 8086/8088 223 


OUTPUT PORT 
CPU REGISTER SIGNAL 

o 


o 


o 


o 


o 

..- NUSEC'" 

o 

Figure 7.15: A pulse can be senerated by setting a bit at an output port high for a fIXed 
length oftime, then resetting it to a logical O.-____________---l 

COUNTER = VALUE 

OUT 

L---Figure 7.18: AjJowchart showing how a software deJay can be generated. 



224 PROGRAMMING THE 8086/8088 

Figure 7.17 presents a program for generating a pulse at output port 
OUT1 bit O. Note that this program uses the delay program we just 
described. 

LONGER DELAYS 

With the 8086/8088 we can easily generate delays using either 8- or 16-bit 
registers. However, if we need a longer delay time, we can use two 16-bit 
registers and "nest" decrement loops (as shown in the flowchart in Figure 
7.18). A program to realize this flowchart is shown in Figure 7.19. 

USING AN 8255 PIO DEVICE WITH THE 8086/8088 

We will now show how the 8086/8088 can be used to control the 8255, a 
programmable input/output device. These devices are often used in a 
microprocessor system to allow the CPU to electrically control peripheral 
hardware. We will start with a brief overview of the 8255; we will then 
proceed to examine some sample software routines written in 8086/8088 
assembly language for control of the device. 

1 
2 PROGRAM TO GENERATE A DELAY 
3 AX IS USED 
4 
5 OUTPUT PORT OUT1 = 58H 
6 BIT 0 IS THE CONTROL BIT 
7 ; 
8 oun EQU58H 
9 

0000 B001 10 MOVAL,#01 ;SET CONTROL BIT 
ooo2E658 11 OUTOUT1,AL ;OUTPUT CONTROL BIT 
ooo4BBSA04 12 MOV BX,#045AH ;LOAD BX WITH COUNT VALUE 
ooo74B 13 BACK DECBX ;BX=BX-1 
ooo875FD 14 JNZBACK ;BX #- 0, DEC AGAIN 
oooAFEC8 15 DECAL ;AL = 0 
OOOCE658 16 OUTOUT1,AL ;CONTROL BIT = 0 

17 
18 ; PULSE RETURNED TO LOGICAL 0 

Fisw'e 7.17: This is an 8086/8088program to generate a pulse using the software 
alay technique shown in Figure 7.16 •.------------------' 



INPUT AND OUTPUT FOR THE 8086/8088 225 


LOAD AX .OO5AH 

LOAD 8X - FFFF 

NESTED 
LOOP 

OUTER 
LOOP 

YES 

DELAY OVER 
DELAY", (AX) x (8X) 

Figure 7.18: This flowchart shows how a longer delay may be generated using two 
internal registers ofthe cPu..-----------------....I 



226 PROGRAMMING THE 808618088 


OVERVIEW OF THE 8255 

The 8255 is a 40-pin, dual in-line package (DIP), LSI device that is 
designed to perform a variety of interface functions in a microprocessor 
system environment. Figure 7.20 shows a block diagram of the 8255 
device. Let's examine this diagram and discuss in general the function of 
each block. 

In the diagram there are four blocks that physically connect the 8255 to 
external hardware. These blocks have control lines labeled PAO-PA7, PBO­
PB7, PCO-PC3, PC4-PC7. The groups of signals from these blocks are logi­
cally divided into three different 110 ports labeled PORTA (PA), PORTB 
(PB) and PORTC (PC). These four port blocks (PC is divided into two 
groups) are connected to an internal data bus on the 8255 device. It is via 
this internal data bus that the ports are programmed. 

There are two blocks in Figure 7.20. These blocks, labeled group A con­
trol and group B control, define how the three I/O ports are to operate 
in the system. There are several different operating modes for the 8255, 
and these must be defined by the CPU writing control words to the device. 
Notice that group C of the 8255 consists oftwo 4-bit ports. One of the 4­
bit groups is associated with group A and the other with group B device 
signals. 

1 
2 PROGRAM TO GENERATE A DELAY 
3 USING TWO REGISTERS, AX AND BX. 
4 AX IS OUTER LOOp, BX IS INNER LOOP 
5 

OOOOB85AOO 6 MOV AX,#OOO5AH ;LOAO UP THE AX REGISTER 
0003BBFFFF 7 BACK MOV BX,#OFFFFH ;LOAD UP THE BX REGISTER 
00064B 8 BACK1 DEC BX ;BX = BX - 1 
000775FO 9 JNZ BACK1 ;INNER LOOP ¢ 0 
000948 10 OECAX ;AX =AX - 1 
OOOA 75F7 11 JNZ BACK ;OUTER LOOP" 0 

12 , 
13 ; DELAY LOOP APPROXIMATELY EQUAL TO AX TIMES BX 

Fisme 7.19: This is an 808818088 prosnun to realize the delay loop shown in Fisme 7.1B. 



INPUT AND OUTPUT FOR THE 8086/8088 227 

POWER I -----.. + 5V 

SUPPLIES GNDL ­

GROUP 

A 


CONTROL 


BIDIRECTIONAL 
DATA BUS 

GROUP 
e 

CONTROL 

GROUP 
A 

PORT 
A 

1/0 
PA7 - PAo 

(8) 

GROUP 
A 

PORTC 
UPPER 

110 
PC7 - PC 4 

(4) 

GROUP 
C 

GROUP 
e 

PORTe 
LOWER 

1/0 

PCJ - pea 

(4) 

1/0 
PB7 - PBo 

L---------------,Ffsunt 7.20: A block diasram showing the 8255 PIO. 



228 PROGRAMMING THE 8086/8088 


The final logic blocks in Figure 7.20 are labeled data bus buffer and read/ 
write control logic. These two blocks provide the electrical interface 
between the 8086/8088 microprocessor and the 8255. The data bus buffer 
buffers the data input and output lines to and from the CPU data bus. The 
read/write control logic routes the data to and from the correct internal 
registers with the appropriate timing. This timing depends on the type of 
operation being performed by the CPU; that is, it depends on whether or 
not it is an 110 read or write operation. 

PHYSICAL CONNECTION TO THE CPU SYSTEM 

Figure 7.21 presents a block diagram that shows how the 8255 is 
connected to the 8086/8088 system. Note that there are four internal ports 
accessed by address lines Ai and AD. We will use the port addresses 10H, 
llH, 12H, and 13H for the 8088, and 10H, 12H, 14H, and 16H for the 8086. 
The difference between these two sets of addresses lies in the fact that 
when an odd address is written to by the 8086, the system transfers the 
data on the upper data lines (08-015). Therefore, when we connect to the 
lower data lines (00-07) of the 8086, all port addresses must be even. 

8255 READ AND WRITE REGISTERS 

Let's now examine the register definitions and port addresses for the 
8255 system shown in Figure 7.21. We will assume that the CPU is an 8088. 
Here are the register definitions: 

PORT # DEFINITION DESCRIPTION 

10H Write PORT A data Output 

10H Read PORT A data Input 

llH Write PORT B data Output 

llH Read PORT B data Input 

12H Write PORT C data Output 

12H Read PORT C data Input 

13H Write control word Output 

13H Illegal read register 



8088 

INPUT AND OUTPUT FOR THE 8086/8088 229 


The function of registers 0-2 is defined by the word written to the con­
trol register 3 of the 8255. Figure 7.22 shows the bit definitions of the con­
trol register. We will be referring to these definitions as we write a program 
to use the 8255. 

BASIC INPUT AND OUTPUT WITH THE 8255 

To use the 8255 in the basic 110 mode, the programmer must first write a 
byte to the control register. This byte defines how the registers of the 8255 
device are to be used. The bits of the control register used to program the 
basic I/O function appear like this: 

1 0 0 0 0 000 

D7 D6 D5 D4 D3 D2 Dl DO 


8255 

DECODE 
CS PORTA 

LOGIC 

TO 
AO,A1 PORTB 	 EXTERNAL 

DEVICE 

DATA BUS DO - 07 
PORTC 

CONTROL BUS 

1/0 READ, 1/0 WRITE 

Figure 7.21: This diasnun shows how the 8255 connects to the 8088 CPU. Ifthe 8255 is to 
nnect to the 8066, you must decide which byte of the 16-bit data bus to connect it with. 



230 PROGRAMMING THE 8086/8088 


CONTROL WORD 

D7 I D6 D5 I D4 I D3 I D2 I D1 I DOII I 
L~ 

./ GROUPS 

PORT C (LOWER) "" - .... 1 = INPUT 
0= OUTPUT 


PORTS 

1 = INPUT 


0= OUTPUT 

MODE SELECTION 


0= MODE 0 

1 = MODE 1 


/ GROUPA 

PORT C (U PPER) 
1 = INPUT "'" 

O=OUTPUT 
PORTA 

>0 1 = INPUT 
0= OUTPUT 

MO£E=S~'cf~JbON 
01 = MODE 1 
1X = MODE2 

MODE SET FLAG 
1 = ACTIVE 

Figure 7.22: Bit de '.fini·tions fior prognunnuJ18 the control word 0f the 8255. 

Referring to Figure 7.22 we can see that bit D7 defines this byte as a con­
trol word to set the mode of operation. Let's examine each bit: 

Bits D6 and D5 define the mode of operation for the 8255 port A. 

This will be mode o. 
Bit D4 = 0 indicates that port A is an output. 

Bit D3 = 0 sets the upper four bits of port C as outputs. 



INPUT AND OUTPUT FOR THE 8086/8088 231 


Bit D2 sets the mode upper for port B. A logical 0 sets mode B as 
an output port. 

Bit D1 = 0 sets port B as an output port. 

Bit DO = 0 sets the lower four bits of port C as an output port. 

With this control word written to the 8255, all three ports (A, B, and C) 
are defined as output ports. This gives the 8255 twenty-four separate out­
put lines to use to interface to external devices. The 8086/8088 instructions 
for setting up the 8255 in this fashion are: 

MOV AL,10000000B CONTROL WORD TO AL 
OUT 13H,AL OUTPUT CONTROL WORD TO 8255 

Once the 8255 has been programmed with these two instructions, we 
can simply write data to any output port using the 8086/8088 output 
instructions. For example, let's suppose we wish to write 23H to port A 
outputs, 41H to port B outputs, and 73H to port C outputs. To accomplish 
this, we need an instruction sequence like the following: 

MOV AL,23H SET UP PORT A DATA 
OUT 10H,AL OUTPUT DATA TO PORT A 
MOV AL,41H SET UP PORT B DATA 
OUT IlH,AL OUTPUT DATA TO PORT B 
MOV AL,73H SET UP PORT C DATA 
OUT 12H,AL OUTPUT DATA TO PORT C 

When these instructions are executed, the output ports A, B, and C of the 
8255 will be programmed to the specified data values. This is a convenient 
way to have three individual output ports contained on a single chip. 

We could program the ports for a combination of input and output. For 
example, we could program ports A and C to be output ports, and port B to 
be an input port. Referring to Figure 7.22, the control word to set up the 
8255 in this configuration would be: 

D7 DO 
10000010 

After the control word is programmed into register 3 of the 8255, the 
device will be logically set up (as shown in Figure 7.23). An IN instruction 
could be used to read the data input from port B: 

IN AL,l1H READ DATA FROM PORT B 



232 PROGRAMMING THE 8086/8088 


Once the 8255 is set up in the correct configuration, data can be easily 
read or written at any device port. There are several different combina­
tions for setting up the 8255 in mode 0 basic 110 configuration. So far, we 
have mentioned only a few. 

EXAMPLE OF KEYBOARD SCANNING 

As an example of using the 8086/8088 with the 8255, let's now discuss a 
keyboard interface. Let's assume the keyboard is organized as a 4 x 4 
matrix of single-pole single-throw (SPST) switches, and let's use the 8255 
to interface the keyboard switches to the 8088. Figure 7.24 shows a block 
diagram of this system. 

Port B outputs are connected to the keyboard columns. Port A inputs are 
connected to the keyboard rows. The column lines are forced to a logical 0, 
one at a time. After each column line is set to a logical 0, the input port A is 

8255 

PORT A OUTPUT 

808618088 EXTERNAL 
SYSTEM DEVICES 

PORT B INPUT 

PORT C OUTPUT 

CONTROL WORD 
82H 

Figure 7.23: This block diagram shows the confJgW'Otion of the 8255 after the control 
word has been written foit..---------------------J 



INPUT AND OUTPUT FOR THE 8066/8088 233 


read. If any bit read from the input port is a logical 0, a key has been 
pushed. Based on the column line, which is a logical 0, and the bit in the 
input port, which is a logical 0, we can tell which key in the matrix has 
been pressed. Figure 7.25 shows a program that operates in the manner 
just described. 

Although this example was designed for a small (4 x 4) matrix, it can be 
easily expanded into a matrix of any size. Using an 8255 is an easy way of 
providing the necessary hardware for the interface. 

PBO 

PBl 

PB2 

PB3 

+5PAO 
10K 

+5PAl
8255 

10K 

+5PA2 
10K 

PA3 +5 
10K 

COLUMN 

rh __> SWI~ ROW 


'V ~I~ 


Fisw'e 7.24: A sc.hematic diasnun showins the interconnections for a simple 4 x 4 keyboard
yfnteJfaced to an B255•.----______________--l 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

234 PROGRAMMING THE 8086/8088 

PROGRAM FOR DETECTING A KEY PUSH FOR THE 
MATRIX SHOWN IN FIGURE 7·24 

PORT B IS THE OUTPUT PORT 
PORT A AND C ARE THE INPUT PORTS 

, 
PORTA 
PORTB 
PORTC 
CONP 
CONWD 

EOU 10H 
EOU11H 
EOU12H 
EOU 13H 
EOU 99H 

;CONTROL PORT 
;CONTROL WORD 

OOOOB099 
0002 E613 

MOVAL,#CONWD 
OUT CONp,AL 

;LOADCONWDINTOAL 
;CONWD TO 8255 CONTROL PORT 

0004 BA 1100 

0007B3FE 
00098808 
OOOBEE 
OOOCE410 
OOOEF6DO 
0010240F 
00123C00 
0014750A 
0016DOC3 
0018 80FBEF 
001B75EC 
0010 E9E7FF 

, 
COL 
COL1 

MOV DX,#PORT B 

MOV BL,#OFEH 
MOVAL,BL 
OUT DX,AL 
INAL,PORTA 
NOTAL 
ANDAL,#OFH 
CMPAL,#OOH 
JNZKEYIN 
ROLBL,1 
CMP BL,#OEFH 
JNZCOL1 
JMPCOL 

;DX =ADDRESS OF PORTB 

;COLUMN 0 ACTIVE 
;ACTIVE COLUMN TO AL FOR OUTPUT 
;ASSERT ACTIVE COLUMN 
;READ THE ROW LINES 
;COMPLEMENT INPUT WORD 
;MASK OFF UNUSED BITS 
;ANY ACTIVE 1'S7 
;IF YES, THEN KEY PUSHED 
;ROTATE ACTIVE COLUMN LEFT BY 1 BIT 
;LAST COLUMN ASSERTED? 
;NOT LAST COLUMN, ASSERT NEXT ONE 
; LAST COLUMN, ASSERT FIRST COLUMN 

THE FOLLOWING WILL HANDLE A KEY CLOSURE 

002088C1 
00228808 
0024F6DO 
0026240F 
0028C3 

KEYIN MOVCL,AL 
MOVAL,BL 
NOTAL 
ANDAL,#OFH 
RET 

;ROW POS = 1 IN CL REG 
;COLUMN POS IN A REG 
;COLUMN POS = 1 IN A REG 
;UNUSED BITS .. 0 
;RETURN FROM SCAN SUBROUTINE 

RETURN FROM ROUTINE WITH 
AL REG = COLUMN POS, 1 IN ACTIVE COLUMN BIT 
CL REG =ROW POS, 1 IN ACTIVE COLUMN BIT 

YJSUl'I! 7.25: This 8086/8088 prognun will control the 4 x 4 keyboanf mabix s.hown in Fisure 7.24. 



INPUT AND OUTPUT FOR THE 8086/8088 235 


PROGRAMMING THE 8253 TIMER CHIP 

In this section we will show how the 8086/8088 can be used to control a 
programmable timer chip. A programmable timer chip is used in many 
system applications where timing functions are needed. Recall that in 
an earlier section of this chapter we demonstrated how a pulse can be gen­
erated using software. We did this by using the microprocessor in a soft­
ware loop. 

Using a timer chip, the microprocessor only needs to write a few control 
bytes to set up the timing parameters, and the chip will do the rest of the 
work. This frees the microprocessor to perform other system tasks. 

BLOCK DIAGRAM OF THE 8253 TIMER CHIP 

Figure 7.26 shows a block diagram of the 8253. We can see in this figure 
that there are three independent, programmable counters. Because all the 
counters are identical, we will not discuss them individually here. Instead, 
we will concentrate on the programming ofa single counter. This informa­
tion can then be used to program any of the three counters. 

An important block in Figure 7.26 is the data bus buffer. This is the logic 
that buffers the system data bus to and from the microprocessor to the 
8253 internal registers. The block that controls the reading and writing of 
the counter registers is labeled read/write logic. 

The final block in Figure 7.26 is labeled control word register. This regis­
ter contains the programmed information sent to the device from the 
system microprocessor. In effect this register defines how the device oper­
ates logically. Figure 7.27 presents a block diagram showing how the 8253 
connects with the 8088 system. 

PROGRAMMABLE PULSE GENERATION 

Referring to the block diagram in Figure 7.27, we can see that the port 
addresses for the device are 30H, 31H, 32H, and 33H-where 33H is the 
control port, and 30H, 31H, and 32H are the counter registers 0, 1, and 
2, respectively. Let us now program the 8253 to generate a pulse of a fixed 
duration under program control. This action is sometimes called a one­
shot. 

In the programmable pulse mode, the 8253 device can be made to give 
an output pulse that is an integer number ofclock pulses. The one-shot will 
be triggered on the rising edge of the gate input. If the triggers occur 
during the pulse output, the device will be re-triggered. This is shown in 
Figure 7.28. 



236 PROGRAMMING THE 8086/8088 

DATA 
BUS 

BUFFER 

OO-D7--~~__~__~ 

COUNTER 
.. 0 

\4-- CLKO 

14--- GATEO 

OUTO 

RD 

WR 

AO 

A1 

READI 
WRITE 
LOGIC 

COUNTER 
.. 1 

CLK1 

GATE 1 

OUT1 

~ 

CONTROL 
WORD 

REGISTER 

COUNTER 
-2 

CLK2 

GATE 2 

OUT2 

INTERNAL 
BUS 

Figure 7.26: This block diognun shows the 8253 pJ"08J'OJIIJJIoble timer chlp•.---------' 



INPUT AND OUTPUT FOR THE 8086/8088 237 

SELECT = 30H, 31 H, 32H, 33H 

-'7-~ DECODE CS 
LOGIC 

8253 

AO-A1 ~ 
-V 

TIMER 

8088 

~ ~ DATA BUS 

-V 
{~ 

CONTROL BUS 

L-------.Figure 7.27: This diasnun shows1tow to connect the 8253 to the 8088 CPU. 

TRIGGER 
INPUT 

OUTPUT 

TIMEOUT 

TRIGGER u 

OUTPUT 

/1

NEW TIME OUT STARTS 

Figure 7.28: This timing diasnun mows1tow the 8253 can be used as a prognmunabJe one­
mot. When the triBBer input goes to a Jogicol 1, the output will go to a logical 0 for the pro­
grammed time of the counter. If the trigger is again applied before the counter times out, the 
time out count will bel'llbiggered.,----------------------J 



238 PROGRAMMING THE 8086/8088 

Let's assume that the input clock frequency to the 8253 is 1 megahertz. 
We will program the 8253 for an output pulse of exactly 75 microseconds. 
The 8086/8088 program to perform this setup is shown in Figure 7.29. In 
this figure, we are assuming that counter #1 is being used as the program­
mable one-shot. 

1 
2 PROGRAM TO SET UP THE 8253 
3 AS A PROGRAMMABLE ONE-SHOT 
4 , 
5 CNTR1 EQU 31H ;COUNTER 1 PORT ADDRESS 
6 CONP EQU33H ;CONTROL PORT ADDRESS 
7 

0000 B072 8 MOVAL,#72H ;CONTROL WORD TO AL 
0002E633 9 OUTCONp,AL ;CONTROL WORD TO 8253 

10 
11 CTR 1, RL = 3, M = 1, BINARY COUNT 
12 

0004 B04B 13 MOVAL,#75 ;DECIMAL 75 
0006 E631 14 OUT CNTR1 ,AL ;NUMBER TO COUNTER 1 LS BYTE 
ooo8Booo 15 MOVAL,#OO 
OOOAE631 16 OUT CNTR1 ,AL ;OUTPUT TO COUNTER 1 MS BYTE 

17 
18 
19 THE DEVICE IS NOW SET UP WAITING FOR A TRIGGER 
20 INPUT TO THE COUNTER 
21 

Figure 7.29: An 8086/8088 program for settins up the 8253 os 0 progrommoble one-sbot with 0 

pulse width of75 microseconds..---------------------" 

CHAPTER SUMMARY 

In this chapter we have presented the essential points of 8086/8088 input 
and output operations. We began by defining the terms input and output. 
We then discussed the two 8086/8088 I/O instructions IN and OUT. 
We learned that each of these instructions can be used in the fixed and 
variable port mode. Examples were given. Finally, we examined two 
examples of programming special LSI peripheral chips-chips that are 
quite common to many 8086/8088 systems. As we described each chip, we 
examined the port decoding and a block diagram of its connection with 
the system. 

In Chapter 8 we will continue our discussion of 8086/8088 applications 



INPUT AND OUTPUT FOR THE 8086/8088 239 

and we will write 8088 programs that can be used with the BIOS (Basic 
Input Output System) of the IBM Personal Computer. Understanding the 
concepts presented in this chapter will help you in writing the programs 
for the next chapter. 





8 MORE APPLICATIONS 
USING THE IBM 

PERSONAL COMPUTER 

INTRODUCTION 

In this chapter we will continue our dis­
cussion of useful applications for the 8086/ 
8088. We will prepare two complete 
software examples. These examples will 
involve writing code for the IBM Personal 
Computer-a system that employs the 8088 
microprocessor. 



242 PROGRAMMING THE 8086/8088 


BIOS (BASIC 110 SYSTEM) 

Before preparing actual assembly language programs, let's turn our 
attention to some of the details of the IBM PC. In particular, let's examine 
BIOS, the Basic Input and Output System. The term BIOS is used often in 
personal computer architecture and literature. 

A system BIOS refers to the manner in which the system allows access 
to the peripheral devices used by the computer. Typical input/output 
devices are: 

1. a floppy or hard disk drive 

2. aprinter 

3. a video display 

4. a keyboard input 

5. a serial communication link (RS-232) or teletype 

Note that every computer has its own unique set of peripheral devices 
which it controls. 

BIOS ADVANTAGE 

Ifwe were to examine the hardware interfaces to some of the peripheral 
devices previously listed, we would find them to be fairly complex. Let's 
take the floppy disk as an example. To control the hardware of a floppy 
disk (i.e., the head movement, and the read, write electronics), it is nec­
essary to know the minute details of the interaction between the system 
software and the system hardware. Such details are necessary for the per­
son writing the code to control the device at the lowest level. However, for 
the person who is simply interested in using the device, it is an enormous 
burden to have to learn all the intricate details of the system. The BIOS 
eliminates this step. The BIOS allows the programmer to pass high-level 
requests (such as reading a file from the disk) and not be burdened with all 
the details for fulfilling the request (such as checking if the read head is in 
position, or setting up the parameters for the controller chip). Some con­
troller chip parameters include formatting the data on the disk, specifying 
single- or double-density storage of data on the disk, etc. 

For example, in order to read a sector from a disk, the disk controller 
chip must be electrically informed of numerous details regarding such 
things as the configuration of the disk (i.e., how many bytes/sectors are 
single- or double-sided, etc.). With the BIOS, a programmer can pass a 



MORE APPLICATIONS USING THE IBM PC 243 

parameter (or binary codes) by simply indicating that a particular sector 
should be read, and then defining it. The BIOS then processes the request 
and performs all of the low-level software commands necessary to fulfill 
the request. See Figure 8.1. 

ACCESSING PERIPHERALS USING THE BIOS 

Each system has a different technique for accessing the BIOS, which is 
generally described in the system literature. For the IBM PC, access to the 
BIOS is through the interrupt structure of the 8088 CPU (discussed in 
Chapter 6). 

ASSEMBLY LANGUAGE 

BIOS
MAIN PROGRAM 


SOFTWARE 

~ TO INTERFACE 


PRINTER 
~ 

~ 


CALL PRINT BIOS 
PRINTER 

BIOS 

SOFTWARE 


TO INTERFACE 

DISK 


SAVE DATA ON DISK 

CALL DISK BIOS 


FLOPPY DISK 

~ 

~ 

~ 
BIOS 

SOFTWAREGET DATA FROM KEYBOARD 
CALL KEYBOARD BIOS TO INTERFACE 


KEYBOARD 

~ 

KEYBOARD 
~ 

~ 

F.isure 8.1: The main assembly language prosmm can _Uy can the BIOS routines shown 
n theleft..---------------------------' 



244 PROGRAMMING THE 8086/8088 


Recall that with the 8086/8088 CPU, interrupts may be generated 
through hardware and software. In the IBM PC, to access the BIOS rou­
tines we can use software to generate interrupts. Each peripheral device 
that the IBM PC communicates with has one or more interrupt types 
reserved for accessing it from a program. Figure 8.2 shows the 8088 vector 
types and the corresponding hardware they access. 

INTERRUPT VECTOR (0 - 7F) 

ADDRESS INTERRUPT FUNCTION 

HEX HEX 


0-3 0 DIVIDE BY ZERO 

4-7 1 SINGLE STEP 

8-B 2 NON-MASKABLE INTERRUPT (NMI) 

C-F 3 BREAK POINT INSTRUCTION (,C'Cx) 


10-13 4 OVERFLOW 
14-17 5 PRINT SCREEN 
18-1F 6,7 RESERVED 
20-23 8 TIMER (18.2 PER SECOND) 
24-27 9 KEYBOARD INTERRUPT 
28-37 A,B,C,D RESERVED 
38-3B E DISKETTE INTERRUPT 
3C-3F F RESERVED 
40-43 10 VIDEO 1/0 CALL 
44-47 11 EQUIPMENT CHECK CALL 
48-4B 12 MEMORY CHECK CALL 
4C-4F 13 DISKETTE 1/0 CALL 
50-53 14 RS232 1/0 CALL 
54-57 15 CASSETTE 1/0 CALL 
58-5B 16 KEYBOARD 1/0 CALL 
5C-5F 17 PRINTER 1/0 CALL 
60-63 18 ROM BASIC ENTRY MODE 
64-67 19 BOOK STRAP LOADER 
68-6B lA TIME OF DAY CALL 
6C-6F lB GET CONTROL ON KEYBOARD BREAK: NOTE 1 
70-73 1C GET CONTROL ON TIMER INTERRUPT: NOTE 1 
74-n 10 POINTER TO VIDEO INITIALIZATION TABLE: NOTE 2 
78-7B 1E POINTER TO DISKETTE PARAMETER TABLE: NOTE 2 
7C-7F 1F POINTER TO TABLE (~B) FOR GRAPHICS CHARACTER 

GENERATOR FOR ASCII 128-255. DEFAULTS TO 0.0 

NOTES: (1) INITIALIZED AT POWER UP TO POINT TO AN IRET INSTRUCTION. 
(2) INITIALIZED AT POWER UP TO POINTTO TABLES IN ROM . 

.Fipre B.2: A list showing the 808B intenupt tabJe and the corresponding hanlWOl'e of 
-theIBM PC thot these intenuptsgain access 10•.----------- ­



MORE APPLICATIONS USING THE IBM PC 245 


PASSING PARAMETERS TO A BIOS ROUTINE 

When using a routine in the BIOS, very often parameters need to be 
passed from the calling program to the routine. Such parameters might be 
data to be printed out, a baud rate being set for an RS-232 communication, 
or data input from a keyboard -just to name a few. In the IBM BIOS, all 
parameters are passed to and from the routines via the internal registers of 
the 8088. Figure 8.3 shows this action in block diagram form. 

A question that might arise at this point is "Which registers are used to 
pass parameters?" Furthermore, "Which parameters are passed?" In 
answer to these questions we'll examine the documentation of a BIOS rou­
tine. Included in this documentation is a section entitled PREAMBLE. 
The PREAMBLE is the section of the documentation that explains exactly 

MAIN PROGRAM 
BIOS 

MOVAL,25 
ALUSED

CALL BIOS 
IN THIS ROUTINE 

AHISRETURNED ~ 
TO MAIN PROGRAM 

MOVAH.50 

YJBW'8 8.3: Pammeters are passed to the BIOS via the internal registers ofthe 801:8. 

http:MOVAH.50


246 PROGRAMMING THE 8086/8088 

which parameters are passed and within what parameters. To learn more 
about the PREAMBLE, let's examine the following example. 

PREAMBLE FOR THE PRINTER I/O 

START OF PREAMBLE 

The following routine provides communication with the printer. 

(AH) = 0 Print the character in (AL]. 

On return from this routine, AH = 1 if the character could not be printed; 
that is, if a time out was reached. The other bits are set as in a normal status 
call. 

(AH) = 1 Initialize the printer port. 

On return, AH is set with printer status. 

(AH] = 2 Read the printer status into (AH). 

The bit definitions for the printer status are: 

D7 = 1 indicates printer is busy. 

D6 = 1 is the acknowledge bit. 

D5 = 1 means the printer is out of paper. 

D4 = 1 indicates the printer is selected. 

D3 = 1 indicates an I/O error. 

D2 = unused. 

Dl = unused. 

DO = 1 is an indication of a time out. 

END OF PREAMBLE* 

From this PREAMBLE of the printer BIOS, we can see that when a rou­
tine is called via the correct software interrupt, the AH register will direct 

•Adapted from Personal Computer Hardware Reference Library: Technical Reference. Copyright© 
International Business Machines Corporation. 



MORE APPLICATIONS USING THE IBM PC 247 


the routine action. Therefore, we must insure that the AH register is set 
prior to calling the routine. 

When we return from the routine, the calling program can test the value 
of the AH register to logically indicate the status of the printer, that is, 
whether or not the routine has performed its intended function. 

A FIRST EXAMPLE: USING THE PRINTER BIOS ROUTINE 

In this example, we will write an 8088 assembly language routine that 
uses the PRINTER BIOS just described. 

DESCRIPTION OF THE PROBLEM 

Before we write the actual program for using the printer BIOS, let's dis­
cuss the problem to be solved. In this particular application we want to 
print data stored in a software buffer. This data will be formed in the main 
program. When the buffer is full, it will be sent to the printer BIOS to be 
printed out. 

In this example, we will assume that the buffer has been filled, and we 
will show only the software required to print it. The memory location for 
the first element in the BUFFER will be labeled BUF _START. The last 
data in the buffer will be equal to OOH (or when the number of characters 
equals 80 decimal). A flowchart for this program appears in the next 
section. 

FLOWCHART FOR THE PROBLEM 

Figure 8.4 shows a flowchart for one solution to this problem. 

8088 PROGRAM TO REALIZE THE FLOWCHART 

Figure 8.5 shows an 8088 program that will implement the flowchart 
given in Figure 8.4. Let's examine it so that we completely understand 
what each instruction is used for. Before we begin, however, note that all of 
the steps referenced in the flowchart of Figure 8.4 are shown in the pro­
gram. This helps you to see how each step of the flowchart is realized with 
8088 mnemonics. The mnemonics shown in Figure 8.5 are for an 8088 
assembler only. Some of the expressions and number indicators may vary 
if you are using an assembler by a different manufacturer. 



248 PROGRAMMING THE 8086/S088 

(1) SET BX TO BUF_START 

~---------r--------~ 

(2) INITIALIZE SI = 0(CHARACTER COUNT) 

(3) 

(4) 

INITIALIZE CL = 0 (TRY COUNT) 

LOAD AL WITH CHARACTER FROM BUFFER 

(7) (8) 

(8) 

Fisw'e 8.4: A Jlowcl!mt for printing a buffer fuH ofdata using the printer BIOS.--------l 



5 

10 

15 

20 

25 

30 

35 

40 

45 

MORE APPLICATIONS USING THE IBM PC 249 

0800 B25B320B 

0803 BEOOOO 

0806B100 

OB088AOO 

OBOA3COO 
OBOC7501 

OBOEC3 

1 
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
3 
4 	 EXAMPLE ROUTINE FOR USING THE PRINTER 

BIOS ON THE IBM PC. 
6 
7 REG BX = STARTING LOC OF BUFFER TO PRINT 
8 SI =CHARACTER COUNT 
9 CL = NUMBER OF TRYS, MAX OF 5 

AL = CHARACTER TO BE PRINTED PASSED TO BIOS 
11 AH = PRINT CODE 0-2 PASSED TO BIOS 
12 
13 RETURN FROM SUBROUTINE WITH AL = 0, NO ERROR 
14 AL = 1, ERROR. THIS WILL BE CHECKED IN MAIN 

PROGRAM 
16 
17 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
18 
19 SET ORIGIN OF SUBROUTINE TO 0800H 

21 ORGOBOOH ;SETORIGIN 
22 
23 STEP 1 
24 

MOV BX,#BUF _START ;SET ADDRESS OF BUF IN BX 
26 
27 STEP 2 
28 
29 MOV SI,#OOOOH ;SET CHARACTER COUNT = 0 

31 STEP 3 
32, 
33 STEP3 MOV CL,#OOH ;SET TRY COUNT =0 
34 

STEP 4 
36 
37 MOV AL,[BX,SI) ; LOAD AL WITH CHARACTER 
38 
39 STEP 5 

41 CMPAL,#OOH ;LAST DATA 1717 
42 JNZSTEP7 ;IF NO THEN GO TO STEP 7 
43 
44 STEP 6 END OF DATA, RETURN WITH AL = 0, NO ERROR 

46 RET 	 ;AL = 0, RETURN 
47 

'--------Fipre8.5: An 8088 program to realize the flowchart shown in Fisure 8.4. 



250 PROGRAMMING THE 8086/8088 

48 , STEP 7 SET THE PRINT CODE FOR BIOS = 0 
49 

OBOFB400 50 STEP7 MOVAH,#OO 
51 
52 STEP 8 
53 

OB11 CD17 54 INT17H CALL BIOS ROUTINE 
55 
56 STEP 9 
57 

OB1380E401 58 ANDAH,#01H ;CHECK FOR TIMEOUT 
OB1674OD 59 JZ STEP14 ; GOOD TRANSFER 

60 
61 STEP 10 A TIMEOUT WAS RETURNED FROM THE BIOS 
62 

OB1880F905 63 CMPCL,#5 ;FIVE TRIES YET???? 
OB1B7405 64 JZ STEP12 ; YES MUST RETURN WITH ERROR 

65 
66 STEP 11 HAVE NOT TRIED 5 TIMES YET 
67 

OBlO FEC1 68 INCCL ;BUMP TRY COUNT 
OB1FE9EDFF 69 JMPSTEP7 ;DOITAGAIN 

70 
71 STEP 12 HAD AN ERROR MUST RETURN WITH AL =1 
72 ; 

OB22 B001 73 STEP12 MOVAL,#1 
74 
75 STEP 13 
76 

OB24C3 n RET ;RETURN TO MAIN PROGRAM 
78 
79 STEP 14 NO TIMEOUT, CHARACTER WAS PRINTED OK. 
80 

OB25 81 FE4FOO 81 STEP14 CMP SI,#79 ;LAST CHARACTER???? 
OB297404 82 JZSTEP 16 ;YES, RETURN WITH AL =0 

83 
84 STEP 15 
85 

OB2B46 86 INCSI ;BUMP THE CHARACTER COUNT 
OB2CE9D7FF 87 JMPSTEP3 ;PRINT THE NEXT CHARACTER 

88 
89 STEP 16 RETURN WITH NO ERROR, GOOD BUFFER PRINT 
90 , 

OB2FBOOO 91 STEP16 MOV AL,#O 

Figure 8.S: An 8088 program to realize the flowchart shown in Figure 8.4, continued.------' 



MORE APPLICATIONS USING THE IBM PC 251 


92 

93 STEP 17 RETURN 

94 


OB31 C3 95 RET 
96 
97 THE PRINT BUFFER IS LOCATED IMMEDIATELY AFTER 
98 THIS ROUTINE 
99 

100 BUF_START RSV 80 ;RESERVE 80 LOCATIONS FOR BUFFER 
101 

068290 102 NOP 

TOTAL ERRORS: o 

SYMBOL VALUE LINE # 

BUF_START B32 100 
STEP12 B22 73 
STEP14 B25 81 
STEP16 B2F 91 
STEP3 B06 33 
STEP7 BOF 50 

L.,...,8."AD_...................._""......... F(,ure8...~UD...... 


Step 1 In this step the address of the buffer (computed at the time of 
assembly) is moved into the BX register. BUF JTART is a label at the end 
of the program. The addressing mode is immediate; that is, the address 
value, rather than the data located at the memory address, is moved into 
the BX register. 

Steps 2 8.nd 3 In steps 2 and 3, the character count in the SI register and 
the number-of-tries count in the CL register are set to zero. The character 
count keeps track of the position in the buffer of the character being 
printed. A maximum value of 79 is used for this register. This is due to the 
fact that the count starts at zero. 

The number-of-tries register (CL) is used when a time out error is 
returned from the BIOS routine. A maximum of five tries is attempted to 
print the character. At the end of five tries, if there has not been a success­
ful print, the subroutine will return to the main program with the AL regis­
ter set to 1, thus indicating an error in the print routine. 



252 PROGRAMMING THE 8086/8088 

Step 4 In this step the character is moved from the buffer into the AL 
register. Note that the addressing mode will be indirect with a base, plus 
index. The base register is BX and the index register is SI. Recall that SI is 
the character count and BX is the starting address of the buffer. 

Step 5 In step 5, we examine the data that was in the buffer. If the data 
equals 00, it signifies the end of the data to print and we return from the 
subroutine (Step 6) with AL = 0, thus indicating a successful buffer print. 
IfAL does not equal 00, the character is printed (Step 7). 

Step 6 In this step, we return to the main program from this subroutine. 
It should be noted that this return is a NEAR intra-segment return. A 
NEAR intra-segment return determines how data is popped off the stack. 
See Chapter 5. 

Steps 7 and 8 These two steps set the print code for the BIOS routine 
and then call the routine. The call is accomplished via the INT 17H. This is 
a software interrupt. 

Step 9 When the program reaches this point, it has returned from the 
BIOS. We will mask off the upper bits of the AH register in order to check 
the time out bit DO for a logical 1. Ifthis bit is a logical 0, we proceed to step 
14. If it is a logical 1, a time out error has been returned. If this is the case, 
we proceed to step 10. 

Steps 10 and 11 These steps are used to check ifwe have tried to print 
the same character five times. Ifwe have, then we go on to step 12. Ifwe 
have not, we jump back to step 7, after incrementing the CL register. The 
character to print is still in the AL register. Only the AH register must be 
reinitialized prior to calling the BIOS routine. This is due to the fact that 
the printer BIOS routine will change the contents ofAH only. 

Steps 12 and 13 At step 12, we load the AL register with 01. This indi­
cates to the main calling program that there was an error in the buffer 
print routine. Step 13 returns to the main program. 

Step 14 Ifwe reach step 14, a single character has been printed success­
fully by the printer BIOS. We now check to see whether or not this was the 
last character to be printed; that is, does SI = 79? If this character is equal 



MORE APPLICATIONS USING THE IBM PC 253 


to 79, the last character in the buffer has been printed and we jump to step 
16 and set the AL register equal to o. The zero indicates that a successful 
print buffer has occurred. 

Step 15 Step 15 increments the SI register to point to the next character 
in the buffer to be printed. After incrementing the pointer, the program 
will jump to step 3. 

Steps 16 and 17 These two steps set the AL register equal to zero and 
then return to the main program. A zero in the AL register indicates that 
the buffer print was successful. 

PRINT BUFFER 

At the end of the subroutine shown in Figure 8.5, we can see that the 
print buffer has reserved 80 bytes. The buffer starts at the memory address 
OB32H, which is the address immediately after the RET instruction. The 
end of the buffer is at memory address OB81H, which is OB32H + 79 deci­
mal, which comes to 80 total locations. The starting address of the print 
buffer is labeled BUF -.START. 

Note that the symbol table appears at the end of the program. 

ANOTHER EXAMPLE USING THE KEYBOARD AND R8-232 BIOS 

Let's look at a second example. In this example, we will prepare a pro­
gram that uses both the RS-232 and the keyboard BIOS. This program will 
input a key stroke from the keyboard and output it over the RS-232 com­
munication line. This type of application program could be used as part 
of a larger program that would enable the IBM PC to act as a stand-alone 
terminal. 

In such an application you would receive characters from the RS-232 
port and display them on the video screen of the terminal. Figure 8.6 
shows a block diagram of the routines necessary to use the IBM PC as a 
stand-alone terminal. 

Figure 8.7 shows a block diagram of the two operations we will be per­
forming in this particular 8088 programming application. 

KEYBOARD PREAMBLE 
Before we can make use of the keyboard BIOS, we must understand 

how parameters are passed and sent to the routine. This information is 



254 PROGRAMMING THE 8086/8088 

IBM SYSTEM AS A STAND-ALONE TERMINAL 

RS232MAIN PROGRAM 
BIOS 

~ 

~ 

CALL KEYBOARD BIOS 

~ 
~ 

CALL RS-232 BIOS (XMIT) 

~ KEYBOARD 
BIOS 

CALL RS-232 BIOS (REC) 

~ 

CALL VIDEO DISPLAY BIOS 

~ 

I 
~ 

I 
I 

VIDEO 
DISPLAY 

BIOS 

FULL DUPLEX MODE 

- Figure B.B: 1b use the IBM PC as a stand-alone terminal, you will need to use the-­
BIOS routine shown above. 

MAIN PROGRAM 

~ 
KEYBOARD 

BIOS~ 

KEY VALUE INPUT 

~ 

~ 
KEY VALUE 


OUTPUT ON 

RS-232 


RS-232 

BIOS 


Figure B.7: Only the BS-232 BIOS and the keyboard BIOS will be used in this program. 
We will input a key from the keyboard and output if to the BS-232 communica­
donboard.----------------------------------------------~ 



MORE APPLICATIONS USING THE IBM PC 255 


given in the PREAMBLE of the keyboard BIOS, as shown below: 

START OF PREAMBLE 

Keyboard 1/0 INT 16H 

(AH) = 0 

(AH) = 1 

(ZF) = 1 
(ZF) = 0 

(AH) = 2 

reads the next ASCII character struck from the key­

board; then returns the result in AL; and returns the 

scan code in AH. 


sets the Z flag to indicate if an ASCII character is avail­

able to read. 


indicates that no code is available. 

indicates that no code is available. If ZF equals 0, the 

next character in the buffer to be read is in AX, and the 

entry remains in the buffer. 


returns the current shift status in the AL register. The 

bit settings for this code are indicated in the equates 

for the KBJag. These bit settings are: 


INSJTATE EQU80H; 

CAPSJTATE EQU40H; 

NUMJTATE EQU20H; 

SCROLLJTATE EQU 10H; 

CTLSHIFT EQU04H; 

LEFTJHIFT EQU02H; 

RIGHTJHIFT EQU01H; 

INSERT STATE IS ACTIVE 

CAPS LOCK STATE HAS 
BEEN TOGGLED 

NUM LOCK STATE HAS 
BEEN TOGGLED 

SCROLL LOCK STATE HAS 
BEEN TOGGLED 

CONTROL SHIFT KEY HAS 
BEEN DEPRESSED 

LEFT SHIFT KEY HAS 
BEEN DEPRESSED 

RIGHT SHIFT KEY HAS 
BEEN DEPRESSED 

Only the AX register and the flags are affected by this routine. All other 
registers are retained. 

END OF KEYBOARD PREAMBLE* 

Using this preamble, we are able to use the keyboard routine for input­
ting a keystroke . 

•Adapted from Personal Computer Hardware Reference Library: Technical Reference. Copyright© 
International Business Machines Corporation. 



256 PROGRAMMING THE 8086/8088 

RS-232 PREAMBLE 

We will use the RS-232 BIOS in this example. Here is the preamble for 
the RS-232 BIOS. 

START OF RS-232 PREAMBLE 

RS232~0 INT 14H 

This routine provides byte stream 110 to the communications port 
according to the parameters: 

(AH) = 0 	 Initialize the communications port. AL contains the 
bits for initialization. These bits are defined as: 

BITS 7,6,5 
000 
001 
010 
011 
100 
101 
110 
111 

Baud Rate 
110 
150 
300 
600 
1200 
2400 
4800 
9600 

BITS 4,3 
XO 
01 
11 

Parity 
none 
odd 
even 

BIT 2 stop bits 
o1 stop bit 
12 stop bits 

BITS 1,0 
10 
11 

word length 
7 bits 
8 bits 

On return from a routine with AH = 0, the conditions are set as in a call to 
comma (communication) status (AH = 3) as shown below. 

(AH = 1) 	 sends the character in (AL) over the comma line. The 
AL register is preserved. 

On exit, bit 7 of AH is set if the routine was unable to transmit the byte of 



MORE APPLICATIONS USING THE IBM PC 257 


data over the line. The remainder of AH is set as in a status request, thus 
reflecting the status of the line. 

(AH = 2) receives a character in (AL) from the commo line, 
before returning to the caller. 

On exit from this routine, AH has the current line status, as set by the sta­
tus routine, except that the only bits left on (or that are value) are the error 
bits (7,4,3,2,1). In this case, the time out bit indicates that the data set ready 
was not received. AH is non-zero only when an error has occurred. 

(AH) = 3 returns the commo port status in (AX). 

AH contains the line control status: 

bit 7 = time out 

bit 6 = trans shift register empty 

bit 5 == trans holding register empty 

bit 4 =break detect 

bit 3 == framing error 

bit 2 == parity error 

bit 1 = overrun error 

bit a = data ready 

AL contains the modem status: 

bit 7 == received line signal detect 

bit 6 = ring indicator 

bit 5 = data set ready 

bit 4 = clear to send 

bit 3 = delta receive line signal detect 

bit 2 == trailing edge ring detector 

bit 1 == delta data set ready 

bit a == delta clear to send 



258 PROGRAMMING THE 8086/8088 


AX is modified according to the parameters of the call. All other registers 

are unchanged. 

END OF RS-232 PREAMBLE* 


PROGRAM DEFINITION 

Using the preambles given for the RS-232 and the keyboard BIOS, let's 
now write an 8088 program to read a character from the keyboard and 
transmit it over the RS-232 communication line. The program will termi­
nate when a semicolon is typed at the keyboard. 

The data will be transmitted to another system with the following serial 
transmission parameters: 

baud rate = 2400 

parity = odd 

stop bit = 2 bits 

word length = 8 bits 

These parameters will be set up with the IBM PC RS-232 port, prior to the 
transmission of any characters. 

FLOWCHART FOR THE PROGRAM 

Figure 8.8 shows a flowchart for this program. Let's discuss this flow­
chart before we realize it with 8088 software. The first step is to initialize 
the RS-232 port. 

Next, the program calls the keyboard BIOS. When a key is returned from 
the BIOS, it is sent to the RS-232 BIOS. At this point the character is trans­
mitted out of the IBM PC over the RS-232 bus. In the transmit loop of the 
flowchart, we will try to transmit the character up to 10 times. If the char­
acter has not been successfully transmitted after 10 tries, an error code will 
be set. 

To terminate the program, type a semicolon. The flowchart of Figure 8.6 
checks for a semicolon, prior to transmission. 

8088 PROGRAM 

A complete, assembled 8088 program to realize the flowchart of Figure 
8.8 is shown in Figure 8.9. 

'Adapted from Personal Computer Hardware Reference Library: Technical Reference. Copyright© 
International Business Machines Corporation. 



MORE APPLICATIONS USING THE IBM PC 259 

START 

SETAL - 10101111 

2400 BAUD. 000 PARITY 


2STOP BITS. 8 BlTSICHAR 


SETAH-O 

CALL R8-232 BIOS 
INT14H 

BL - O(COUNT) 

YES 

TRANSMIT NEXT CHARACTER 

INITIALIZE 
R8-232PORT 

SUCCESSFUL 

}...-_---'__ RETURN 

'----- ­

Figure B.B: A jlowcluutfor reading a charac:terfrom the keyboard and then sendiJJs the chCIJ'Ucter 
ver the HS-232 communication line.------------------------' 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

260 PROGRAMMING THE 8086/8088 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

SUBROUTINE TO USE THE KEYBOARD AND R8-232 
BIOS FOR THE IBM PERSONAL COMPUTER 
KEYBOARD BIOS = INT 16H 
R8-232 BIOS = INT 14H 

BL =NUMBER OF TIMES TO XMIT BEFORE ERROR 

AL RETURNED =0, NO ERROR IN XMISSION 
AL RETURNED = 1, ERROR IN XMISSION 

THE SUBROUTINE WILL READ A CHARACTER FROM THE 
KEYBOARD AND THEN XMIT THE CHARACTER OVER THE 
RS-232 BUS. A SEMICOLON WILL TERMINATE THE 
SUBROUTINE 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

ORGOBOOH 

;EQUATES FOR THE SUBROUTINE 
, 
RS----232 EQU 14H ;INTERRUPT TYPE FOR R8-232 
KEY_BOARD EQU 16H ;INTERRUPT TYPE FOR KEYBOARD 
MAX-COUNT EQU 10 ;MAXIMUM NUMBER OF TRIES TO XMIT 
SEMI_COLON EQU 3BH ;ASCII FOR SEMICOLON 

INITIALIZE THE R8-232 PORT 

OBOO8OAF MOV AL,#1 01 01111 P ;2400 BAUD,ODD PARITY 
2 STOP BITS, 8 BITS/CHAR 

08028400 MOV AH,#OO ;SET CODE FOR R8-232 
OB04CD14 INT RS----232 ;CALL R8-232 BIOS 

NOW TO READ THE KEYBOARD CHARACTER 

FIRST INITIALIZE THE XMIT COUNT 
, 

OB068300 G01 MOV BL,#OO ;COUNT = 0 
OB088400 MOVAH,#QO ;CODE FOR KEYBOARD BIOS 
08OACD16 INTKEY_BOARD ;CALL KEYBOARD BIOS 

CHECK FOR SEMICOLON 

Figure 8.9: An 8088 progrom to realize the flowchart shown in Figure 8.8.---------1 



-----------------------

MORE APPLICATIONS USING THE IBM PC 261 


OBOC3C3B 48 CMP AL,#SEMI_COLON ;CHECK FOR SEMICOLON TO END 
OBOE7503 49 JNZ TRANSMIT ;NOT EQUAL END THE CHAR 

50 
51 IF A SEMICOLON STOP PROGRAM 
52 

OB10Booo 53 MOV AL,#OO ;SET AL = 0, INDICATES NO ERROR 
OB12C3 54 RET ;RETURN TO MAIN PROGRAM 

55 
56 TRANSMIT SECTION OF SUBROUTINE 
57 , 

OB13 B401 58 TRANSMIT MOVAH,#01H ;SET CODE FOR RS-232 BIOS 
OB15CD14 59 INTRS-.232 ;CALL RS-232 BIOS 
OB17F6C480 60 TEST AH,#80H ;BIT7SET?? 
OB1A 74EA 61 JZG01 ;NOT SET, LOOP AGAIN 

62 
63 AT THIS POINT, THE CHARACTER WAS NOT ABLE TO XMIT 
64 

OB1C BOFBOA 65 CMP BL,#MAX-COUNT ;TEN TRIES YET?? 
OB1F 7405 66 JZ ERROR-END ;YES, RETURN WITH ERROR 
OB21 FEC3 67 INC BL ;BUMP TRY COUNT 
OB23 E9EDFF 68 JMP TRANSMIT ;TRANSMIT AGAIN 

69 , 

70 ; ERROR RETURN SECTION 

71 , 


OB26B001 72 ERROR-END MOV AL,#01 H ;SET ERROR CODE 

OB28C3 73 RET ;RETURN TO MAIN PROGRAM 


74 


TOTAL ERRORS: o 

SYMBOL VALUE LlNE# 

ERROR-J:ND B26 72 

G01 BOO 42 

KEY_BOARD 16 25 

MAX-COUNT A 26 

RS-.232 14 24 

SEMI_COLON 3B 27 

TRANSMIT B13 58 


'-------,FJgUre 8.9: An 8088 PnJBl'OlII to realize theJlowchort shown in Fipre 8.8, continued. 

CHAPTER SUMMARY 
In this chapter we have shown two complete examples of application 

programs involving the 8088 CPU. These programs have made use of the 
special BIOS (Basic Input and Output System) contained in the IBM PC. If 
you have access to an IBM PC, these examples should help you get started 
in writing your own 8086/S088 applications programs. 





9 PROGRAM 
DEVELOPMENT 

INTRODUCTION 

So far in this text, we have examined the 
internal architecture of the CPU; we have 
discussed the use of the 8086/8088 instruc­
tion set; and we have shown examples of 
programs in assembled form. In this final 
chapter, we will discuss the important topic 
of program development. There are several 
levels ofhardware and software resources to 
consider when developing programs. Deter­
mining the appropriate level depends on the 
individual application. In this chapter, we 
will present and evaluate different available 
resources. 



264 PROGRAMMING THE 8086/8088 


PROGRAMMING CHOICES 
A program may be written in binary or hexadecimal, an assembly-level 

language, or a high-level language. Figure 9.1 shows the different levels of 
programming. Let's discuss them. 

HEXADECIMAL CODING 

Some programs are written using assembly-level mnemonics. The 
actual translation of such mnemonics into the corresponding binary code 
requires an assembler. When there is no assembler, the translation must be 
done by hand. Because translation into binary is tedious and error-prone, 
users often use hexadecimal code instead. There are some single-board 
microcomputers that will only accept programs entered in hexadecimal 

POWER OFTHE LANGUAGE 

C 

LISP 

ADA 

APL 

COBOL r-- HIGH-LEVEL 

FORTRAN 

PLJM 

PASCAL 

BASIC 

MINI-BASIC 

MACRO 

SYMBOLIC r-- ASSEMBLY-LEVEL
CONDITIONAL 

ASSEMBLY 

HEXAOECIMAU OCTAL ~ MACHINE-LEVEL 

BINARY 

Figure 9.1: A block diasmm showing the different levels ofprognmuning[or a microp~ 
..w~.----------------------------____________~ 



PROGRAM DEVELOPMENT 285 


code. Generally, translating instructions into the corresponding code is 
only reasonable for a small number of instructions-and this number var­
ies from programmer to programmer. 

In summary, hexadecimal coding is not a desirable way to enter a pro­
gram into a computer-it is simply an economical one. The cost of an 
assembler and the required alphanumeric keyboard is traded-off against 
the increased time and effort required to enter the program in the system 
memory. Therefore, if it is necessary to use hexadecimal coding, it is wise 
to first write the program in assembly-language mnemonics, then convert 
it into hexadecimal code. This is because a program written in assembly 
language is easier to understand and debug. 

ASSEMBLY-LANGUAGE PROGRAMMING 

Assembly-level or assembly-language programming includes both those 
programs entered into the system in hexadecimal form and those entered 
in symbolic assembly-level form. We will now examine the direct entry of a 
program in its assembly language representation. 

When a program in assembly language is entered, there must be an 
assembler program available that will read the mnemonic instructions of 
the program. The purpose of an assembler is to translate the instructions 
into the required bit patterns, using 1 to 6 bytes, as specified by the en­
coding of the instructions. A good assembler also offers a number of addi­
tional facilities for writing a program. 

Later on in this chapter, we will review the various software resources 
normally available on a system. But first, let's examine the third program­
ming alternative: high-level language programming. 

HIGH-LEVEL LANGUAGE PROGRAMMING 

An 8086/8088 program may also be written in a high-level language, 
such as BASIC, PUM-86, or Pascal, to name a few. A high-level language 
offers powerful instructions that make programming faster and easier 
than with assembly language. But high-level instructions must be trans­
lated by a complex program inside the computer into the final binary 
representation that a microcomputer can execute. 

Typically, each high-level instruction is translated into many individual 
binary instructions by a program called a compiler, or by an interpreter. A 
compiler translates all the instructions of a program into object code. By 
contrast, an interpreter interprets a single instruction, executes it, and 
then translates the next one and executes it. 

The BASIC language uses an interpreter, while the Pascal language uses 



266 PROGRAMMING THE 8086/8088 

a compiler. An interpreter offers the advantage of interactive response. 
This enables the programmer to check the instructions, one at a time, 
while entering them into the computer. Further, a single instruction may 
be executed as soon as it is entered into the computer. A disadvantage of 
an interpreter is the speed at which it executes instructions. A compiled 
program runs much faster than an interpreted one-the speed difference 
does, however, vary from system to system. 

SOFrWARE SUPPORT 

Let's begin our examination of software support by reviewing the main 
software facilities available in a complete system. As we proceed, we will 
summarize the definitions we introduced previously. Furthermore, we 
will define important programs available in a software development 
system. 

Let's begin with the assembler. The assembler translates the mnemonic 
representation of instructions into their binary equivalent. It normally 
translates one symbolic instruction into one binary instruction, which 
occupies from one to six bytes of data. The resulting binary code, called 
the object code, is directly executable by the microcomputer. An assem­
bler will also produce a complete mnemonic listing as well as a symbol 
definition list of the program, as shown in Figure 9.2. An assembler will 
also list syntax errors, such as misspelled or illegal instructions, branching 
errors, or duplicate or missing labels. 

The monitor is the main program for using the hardware resources 
of the system. It continuously monitors the input devices for input; in 
addition, it manages the reset of the devices. As an example, a minimal 
monitor for a single-board microcomputer equipped with a keyboard and 
LEDs will continuously scan the keyboard for user inputs. When inputs 
are detected, the monitor will display the appropriate alphanumeric data 
on the LED readouts. 

In addition to the previously mentioned tasks, the monitor program 
must recognize a number of limited commands from the keyboard. Exam­
ples of these commands are commands that start, stop, continue, load 
memory, or examine memory. On a large system that provides complex 
file management or task scheduling, the monitor is often qualified as the 
executive program. The overall set of facilities is called the operating sys­
tem. If the files reside on disk, the operating system may be called a disk 
operating system (or OOS). 

An editor facilitates the entry and modification of text or programs. It 
allows the user to conveniently enter, append, and insert characters in the 



PROGRAM DEVEWPMENT 267 


text. Furthermore. the editor enables the user to add and remove lines of 
text. as well as search for characters or strings. The editor is an important 
resource for convenient and effective text entry of source code. 

The term debugger refers to a facility used in debugging programs. If 
a program does not work properly the first time, a debugger may prove 
useful. It allows the user to insert breakpoints to suspend execution of a 
program at specified addresses in order to examine registers and/or mem­
ory locations. 

A loader or linking loader places various blocks of object code at speci­
fied positions in the memory and adjusts their respective symbolic 
pointers, so that they can reference each other. 

A simulator or an emulator program simulates the operation of a 

1 
2 PROGRAM TO SET UP THE 8253 
3 AS A PROGRAMMABLE ONE-SHOT 
4 , 
5 CNTR1 EQU 31 H ;COUNTER 1 PORT ADDRESS 
6 CONP EQU 33H ;CONTROL PORT ADDRESS 
7 

00008072 8 MOVAL,#72H ;CONTROL WORD TO AL 
ooo2E633 9 OUTCONp,AL ;CONTROL WORD TO 8253 

10 
11 CTR 1, RL =3, M == 1, BINARY COUNT 
12 

0004B04B 13 MOVAL,#75 ;DECIMAL75 
0006E631 14 OUT CNTR1,AL ;NUMBER TO COUNTER 1 LS BYTE 
00088000 15 MOVAL,#OO 
OOOAE631 16 OUT CNTR1 ,AL ;OUTPUT TO COUNTER 1 MS BYTE 

17 
18 
19 THE DEVICE IS NOW SET UP WAITING FOR A TRIGGER 
20 INPUT TO THE COUNTER 
21 

TOTAL ERRORS: 0 

SYMBOL VALUE LINE # 

CNTR1 31 5 ......f-----SYMBOL TABLE 
CONP 33 6 

F'JgW'8 9.2: A complete listing ofan assembled program. The symbol table is Jiven at the end 
f~assemhly.------------------------------------------~ 



268 PROGRAMMING THE 8086/8088 


device, usually the microprocessor, when developing a program for a 
microprocessor-controlled system. Using this approach, it is possible to 
suspend the program, modify it, and keep it in RAM memory. A disadvan­
tage of a simulator is that its execution speed is slower than a normal 
microprocessor. Therefore, it is not possible to test "real time" devices. 
These are devices whose operation depends on the microprocessor sys­
tem operating at normal speed. 

An emulator is essentially a simulator in real time. An emulator uses one 
processor to simulate another one. 

Utility routines are general-purpose routines which every user has 
access to. Examples of these routines can be examining memory data or 
interpreting a keyboard input. These routines are not difficult to write, but 
since users normally will make use of them, the manufacturer provides 
them. Figure 9.3 shows a memory map for a typical development system. 

THE SOFTWARE DEVELOPMENT SEQUENCE 

We will now examine a typical sequence for developing an assembly­
level program. We will assume that all the usual software facilities are 
available so that we may demonstrate their value. If they are not available 

RAMROM 

ASSEMBLER OR COMPILER
BOOTSTRAP 

OR INTERPRETER 

KEYBOARD DRIVER DOS 

EDITOR OR DEBUGGER 
DISPLAY DRIVER OR SIMULATOR 

SYSTEM WORKSPACE 
TTY DRIVER (AND STACK) 

CASSETTE DRIVER USER PROGRAM 

COMMAND INTERPRETER USER WORKSPACE 

UTILITY ROUTINES 

ELEMENTARY 

DEBUGGER 


ELEMENTARY 

EDITOR 


Figme 9.3: A memory mapfor a typical development system, snowing the available 
sojlworepackages.,-------____________---l 



PROGRAM DEVELOPMENT 269 


in a particular system, we can still develop programs, but the convenience 
will be decreased. Also the amount of time to do the development will 
likely increase. 

Recall that the normal approach for developing an assembly-level pro­
gram is to design an algorithm for the problem to be solved. Next, it is 
important to develop a comprehensive set of flowcharts that represent the 
program flow. Finally, the flowcharts are translated into an assembly-level 
language for the microprocessor. Once the program has been written, the 
next step is to enter it into a computer. A program can be entered in the 
RAM memory of the system under the control of the editor. 

Prior to testing the program, the assembler must translate it into binary 
code. If the assembler does not already reside in the system, the program­
mer must load it from an external storage device, such as a disk. 

The assembly process provides an object program that is ready to be exe­
cuted. After the assembly process, instructions are in machine code or 
object code. The machine or microprocessor can execute this type of code 
directly. 

Next, to verify the operation of a program, the debugger can be used to 
set a number of breakpoints at crucial locations in order to test intermedi­
ate results. 

An in-circuit emulator can be used to test the program. This emulator is 
equipped with a cable that is terminated by a 4D-pin connector identical to 
the pinout of the 8086/8088. If we insert this connector on the application 
board we are developing, the signals generated by the emulator will be 
exactly like those of the 8086/8088, only perhaps a little slower. 

The advantage of using an in-circuit emulator is that the program 
can continue to reside in RAM (random access memory), thus making it 
easier to make changes than if the program were in the EPROM (a type of 
ROM). Further, the emulator can communicate with all I/O devices of the 
development board. This advantage, and the fact that all of the system 
debugging resources are available, makes the in-circuit emulator an 
extremely attractive tool in program development. 

This completes our description of the usual sequence of events involved 
in developing a program. We will now review the hardware alternatives 
for developing programs. 

HARDWARE ALTERNATIVES 
There are many different hardware systems available for program devel­

opment, and these systems vary in cost and capabilities. Usually the more 
expensive the system, the more tools it provides for developing programs. 



270 PROGRAMMING THE 8086/8088 

SINGLE·BOARD MICROCOMPUTER 

A single-board microcomputer offers the lowest cost approach to pro­
gram development. It is normally equipped with a hexadecimal keyboard, 
plus some function keys and LEDs, which display information. On most 
single-board microcomputers there is no assembler available. Single-board 
microcomputers have a small monitor with limited debugging and editing 
facilities. Based on these limitations, programs are entered in hexadecimal 
form, and displayed in hexadecimal form on the system LEDs. 

A single-board microcomputer has, in theory, the same hardware and 
power as any other computer. However, because of its restricted memory 
size and keyboard, it can not support the usual facilities of a larger system. 
This makes program development a much slower process. Due to the pro­
gram development limitations of a single-board microcomputer, this type 
of microcomputer is best-suited for use as a training and educational tool. 
Single-board computers are probably the least expensive way to learn pro­
gramming through actual practice. 

THE DEVELOPMENT SYSTEM 

A development system is a microcomputer system specifically designed 
to make the development of programs an easier task. It is usually equipped 
with the following items: 

1. a RAM memory (a large amount) 

2. a CRT display 

3. aprinter 

4. a disk I/O 

5. a PROM programmer 

6. an in-circuit emulator (sometimes) 

A development system normally offers all or most of the software 
capabilities listed in the previous section. In the best case, it is the ideal 
software development tool. 

HOBBY·TYPE MICROCOMPUTERS 

The hobby-type microcomputer hardware is similar to that of a develop­
ment system. However, its software capabilities are not as sophisticated as 
those of an industrial-type development system. Such a system is like the 



PROGRAM DEVELOPMENT 271 

one described in the previous section. As an example, most hobby-type 
microcomputers offer only elementary assemblers, and minimal editors 
and file systems. These systems represent an intermediate step between 
the single-board microcomputer and the full microprocessor development 
system. For a user who wishes to develop programs of modest complexity, 
these systems are probably the best compromise. Even with their limita­
tions, they still offer the advantages of low cost, and a reasonable array of 
software development tools. 

SUMMARY OF HARDWARE RESOURCES 

We can distinguish three broad catagories of hardware systems: 

1. single-board microcomputers 

2. full development systems 

3. hobby-type microcomputers 

The single-board microcomputer is available for those who have a mini­
mal budget and want to learn how to program. You can use this type of 
system to develop all the programs given in this text, as well as many oth­
ers. If it is ever necessary to develop programs longer than a few hundred 
lines, you may find the single-board microcomputer to be inadequate. 

A full development system is available for the industrial user. Any solu­
tion short of a full-development system will cause an increase in program 
development time. The trade-off is clear: hardware resources versus pro­
gramming time. Naturally, if the programs being developed are simple, 
there are less expensive approaches; but if the programs are complex, it is 
difficult to justify any hardware savings, since the programming costs are 
generally the dominant cost of a project. 

A hobby-type microcomputer development system offers sufficient, 
although minimal, facilities. This is changing, however. Very good soft­
ware development tools are becoming available for personal computer 
systems. 

THE ASSEMBLER 

Let us now examine in more detail one very useful development tool: the 
assembler. An assembler allows the convenient symbolic representation 
of a user program. From this symbolic or mnemonic representation, the 
assembler produces a binary or object form of the instructions. 



272 PROGRAMMING THE 8086/8088 


ASSEMBLER FIELDS 

When typing in a program for the assembler, three fields are used: 

1. 	 Label Field (This field is optional, and may contain a sym­
bolic address for the instruction that follows.) 

2. 	 Instruction (This field includes the opcode and any oper­
Field ands.) 

3. 	 Comment (This field is optional and intended to make the 
Field program easier to read and understand.) 

Figure 9.4 presents a diagram showing these fields. 

SYMBOLIC 

LABEL INSTRUCTION FIELD COMMENTS 
./'-..

/" ....... 

Opcode Operand 

F"J8lU8 9.4: The aSBeJDblerfrelds from left to right are label, instruction, and comment. 



PROGRAM DEVEWPMENT 273 


Once a program is input to the assembler, a listing is produced. As the 
listing is generated, three new fields are added on to the extreme left 
column of the paper or display. These new fields are the memory address, 
the bytes of the object code, and the line number. Figure 9.5 shows an 
example of an assembler output that show these new fields. 

TABLES 

When the assembler translates the mnemonics into the object code, it 
also translates the symbols used for addresses and constants into their 
binary equivalent. To help in program debugging, the assembler shows 

MEMORY 
ADDRESS 

1 
2 PROGRAM TO SET UP THE 8253OBJECT 
3 AS A PROGRAMMABLE ONE·SHOT CODE 
4 
5 CNTR1 EOU 31 H ;COUNTER 1 PORT ADDRESS 
6 CONP EOU 33H ;CONTROL PORT ADDRESS ~ 7 

0000 B072 8 MOV AL,#72H ;CONTROL WORD TO AL 
0002 E633 9 OUT CONp,AL ;CONTROL WORD TO 8253 

10 
11 CTR 1, RL =3, M =1, BINARY COUNT 
12 

0004 B04B 13 MOVAL,#75 ;DECIMAL75 
0006 E631 14 OUT CNTR1,AL ;NUMBER TO COUNTER 1 LS BYTE 
0008 BOOO 15 MOVAL,#OO 
OOOA E631 16 OUT CNTR1,AL ;OUTPUT TO COUNTER 1 MS BYTE 

17 
18 
19 THE DEVICE IS NOW SET UP WAITING FOR A TRIGGER 
20 INPUT TO THE COUNTER 
21 

+ 
PROGRAM LINE NUMBER 

F.isw'e 9.5: Three newfields are generated during the a88llJJ1bly process. Thesefields are 
memory address, object code, andprogmm linenumber.,-----------' 



274 PROGRAMMING THE 8086/8088 

each symbol, and it shows where it is referenced in the program. This is 
called the symbol table. Figure 9.6 shows an example of a symbol table. 

ERROR MESSAGES 

During the assembly process, the assembler may detect syntax errors. It 
will include them as part of the final listing. Typical diagnostics include: 
undefined symbols, label already defined, illegal opcode, illegal address, 
and illegal addressing mode. Many additional diagnostics are desirable 
and are usually provided. Such features will vary with each assembler. Fig­
ure 9.7 shows a listing with error messages generated by the assembler. 

SYMBOL VALUE LINE# 
ACCUM 2C10 1611 
AOOREG F4 36 
ALPHA 300 535 
ALPHA1 317 540 
ALPHA2 31E 544 
AX-REG 2C31 1615 
BI 20 39 
BLKRAT 3E8 24 
BO 10 40 
BOOT 702 1423 
BooT1 705 1424 
BP-REG 2C3B 1620 
BREAK 604 1299 
BRKOAT 2C2B 1613 
BRKFLG 2C3O 1614 
BS 8 16 
BUFENO 2C80 1630 
BUFFER 2C40 1629 
BUMP 305 517 
BUMPO 304 516 
BX-REG 2C37 1618 
CAPKEY 6 262 
CAPS 2COO 1606 
CHAR 2C10 1609 
CLRLlN 23F 370 
CLRLN1 24B 375 
CMOREG F3 35 

Figunl 9.6: An example ofa symbol foble generated by the assembler.--------I 



PROGRAM DEVEWPMENT 275 


THE ASSEMBLY LANGUAGE 
We have previously discussed opcodes. We will now define the symbols, 

constants, and operators that can be used as part of the assembler syntax. 

SYMBOLS 

Symbols are used to represent numerical values, either data or 
addresses. Symbols may vary in their legal length. Usually a symbol starts 
with an alphabetic character. Symbols may not appear the same as the 
mnemonics used for the 8086/8088. For example, you may not choose 
a symbol that is labeled DX, as this would cause confusion between the 
symbol and the DX register of the CPU. Documentation for an assembler 
gives valid descriptions for symbols. 

There is a special assembler directive, EQU or equate, that can be used 
to assign a value to a symbol. This directive serves as an instruction to the 

1 
2 PROGRAM TO SET UP THE 8253 
3 AS A PROGRAMMABLE ONE·SHOT 
4 ; 
5 CNTR1 EQU31H ;COUNTER 1 PORT ADDRESS 
6 CONP EQU33H ;CONTROL PORT ADDRESS 
7 

0000 A07200 8 MOVAL,72H ;CONTROL WORD TO AL 
9 OUTCONP,BL ;CONTROL WORD TO 8253 

***** INVALID OPERAND ***** 
10 
11 CTR 1, RL = 3, M= 1, BINARY COUNT 
12 

0003 B04B 13 MOV AL,#75 ;DECIMAL 75 
0005 E643 14 OUT CNTR1,AL ;NUMBER TO COUNTER 1 LS BYTE 

15 MVI AL,#OO 
* * * * * INVALID MNEMONIC * * * * * 

16 ; 
0007 E631 17 OUT (CNTR1) + 1,AL ;OUTPUT TO COUNTER 1 MS BYTE 
* * * * INVALID EXPRESSION * * * * 

18 
19 
20 THE DEVICE IS NOW SET UP WAITING FOR A TRIGGER 
21 INPUT TO THE COUNTER 
22 

'-------------.FJsure9.7: An assembJer Jisting showing error m888OJes. 



276 PROGRAMMING THE 8086/8088 

assembler only and will not be translated into object code. Figure 9.8 gives 
an example of symbols used in programming and values assigned by the 
EQU statement. 

LABELS 

Labels are special symbols with values that do not need to be defined by 
the programmer. These values are automatically defined by the assembler 
at the time of program assembly. (A value is assigned the memory location 
of the line on which it appears.) Figure 9.9 shows a label that has been 
given a value by the assembler. When the program is assembled, the mem­
ory address of ADDRl will be used for the MOV instruction. 

Constants or Literals 

Constants may be expressed in decimal, hexadecimal, octal, binary, or 
as alphanumeric strings. Symbols used to represent the number bases vary 
from assembler to assembler. Figure 9.10 shows the different ways to rep­
resent data with one 8086/8088 assembler. 

1 
2 PROGRAM TO SET UP THE 8253 
3 AS A PROGRAMMABLE ONE-8HOT 
4 
5 CNTR1 EQU 31 H ;COUNTER 1 PORT ADDRESS 

,---::6:-=C,;::;O,:.,oN""P_--.::E::;:Q::..:U:....:33::::....:H......I ;CONTROL PORT ADDRESS 
7 

00008072 8 MOV AL.#72H ;CONTROL WORD TO AL 
ooo2E633 9 OUT CONp,BL ;CONTROL WORD TO 8253 

10 
11 CTR 1, RL =3. M =1. BINARY COUNT 
12 

0004B04B 13 MOVAL,#75 ;DECIMAL75 
0006E631 14 OUTCNTR1,AL ;NUMBER TO COUNTER 1 LS BYTE 
0006Booo 15 MOVAL,#OO 
OOOA E631 16 OUT CNTR1,AL ;OUTPUT TO COUNTER 1 MS BYTE 

17 
18 
19 THE DEVICE IS NOW SET UP WAITING FOR A TRIGGER 
20 INPUT TO THE COUNTER 
21 

Fisure 9.B: Examples ofsymbols that are assigned values by the EQU statement..----' 



PROGRAM DEVELOPMENT 277 

OPERATORS 

To make the writing of assembly language programs easier, the assem­
bler allows the use of operators. At a minimum, an assembler allows the 
use of plus and minus; for example: 

MOV AX,ADRl + 2 
MOV AX,ADRl - 5 

1 
2 PROGRAM TO SET UP THE 8253 
3 AS A PROGRAMMABLE ONE-SHOT 
4 
5 CNTRl EOU31H ;COUNTER 1 PORT ADDRESS 
6 CONP EOU33H ;CONTROL PORT ADDRESS 
7 

0000 B072 8 SUB1 MOVAL,#72H ;CONTROL WORD TO AL 
0002 E633 9 OUTCONp,AL ;CONTROL WORD TO 8253 

10 
11 CTR 1, RL = 3, M = 1 , BINARY COUNT 
12 

0004 B04B 13 MOVAL,#75 ;DECIMAL 75 
0006 E631 14 OUT CNTR 1 ,AL ;NUMBER TO COUNTER 1 LS BYTE 
0008 BOoo 15 MOVAL,#OO 
OOOA 16 OUT CNTRl ,AL ;OUTPUT TO COUNTER 1 MS BYTE 
OOOC 17 MOV AL,ADDRl ;LOAD DATA AT ADDRl TO AL 

OOOF 18 RET ;RETURN FROM SUB 
19 

.------' 20 DATA LOCATION FOLLOWS 

DB 01 

'------------Figure9.9: ADDRl is used by the MOV instruction as an address. 

1 
2 DIFFERENT WAYS TO REPRESENT DATA 
3 WITH ONE 8086/8088 ASSEMBLER 
4 

0000 B031 5 MOVAL,#OOl10oolP ;BINARY NOTATION 
0002 B031 6 MOVAL,#31H ;HEXADECIMAL NOTATION 
0004B031 7 MOVAL,#49 ;DECIMAL NOTATION 
0006 B031 8 MOVAL,#610 ;OCTAL NOTATION 

9 
10 

'--------Fisure 9.10: Assemblers aHow different ways to represent data. 



278 PROGRAMMING THE 808618088 

It is important to understand that the expression ADRl + 2 or ADRl - 5 
is computed by the assembler at the time ofassembly. Figure 9.11 shows an 
example of operator use. 

ASSEMBLER DIRECTIVES 

Directives are special orders given by the programmer to the assembler. 
Directives do not get translated into object code for the microprocessor. 
Let us review some of the common directives for an assembler. Let's start 
with: 

ORG nn 

This directive sets the assembler address counter to the value nn. In 
other words, the first executable instruction encountered after the ORG 
will begin at memory address nn. You can use the ORG statement at any 
point in the program to change the value of the assembler memory 
address. A second assembler directive is EQU: 

MY-.-ADD EQU nn 

The label MY-.-AOD is equated to the numerical value nn at the time of 
assembly. 

To form a single byte the directive DB (for define byte) is used, for exam­
ple: 

ONE DB 01 

The label ONE is assigned an S-bit quantity, 00000001. Ifwe wish to define 

1 
2 PROGRAM TO SHOW HOW + AND -
3 OPERATORS WORK 
4 
5 ADDR1 Eau 0123H 
6 

00008B1E2301 7 MOV BX. ADDR1 ;DATA AT ADDR1 IS MOVED TO BX 
00048BO 501 8 MOVeX,ADDR1 +2 ;DATA AT ADDR1 + 21S MOVED TO ex 

9 

T 
Figure 9.11: Most assemblers aHow the use of8Xp1'8SSions that are evaluated at the time of 

~~aD~c~.,________________________________________________--J 



PROGRAM DEVELOPMENT 279 


a label as a 16-bit quantity, we can use the directive DW (for define word). It 
looks like this: 

TWO DW 02 

The label TWO equals the 16-bit value of 0000 0000 0000 0010. 
We can also define a double word (or 32 bits) by using the directive DD 

(for define double word). We could use it in the following way: 

BIG-.NUMBER DD 45860912H 

The binary value of BIG-.NUMBER requires four bytes of memory to 
completely specify its value. 

Ifwe wish to define a string constant for a message that may be printed 
out, we could also use the directive DB. For example, let's suppose we 
wish to store the message "ERROR 5 - ILLEGAL VALUE." We could 
include it in the program like this: 

ERR5 DB 'ERROR 5 - ILLEGAL VALUE' 

The assembler will set the ASCII equivalent of each character into mem­
ory. There will be 23 bytes of memory used for the storage of this message. 
Depending on how your system operates, there may be one extra byte used 
to terminate or show the end of the message. Some assemblers use differ­
ent directives for this activity. Popular directive symbols are DS (for define 
storage) and DT (for define text). 

The END directive is used to inform the assembler that there will be no 
more instructions to assemble. The assembler will not look for any state­
ments, following this directive. 

CHAPTER SUMMARY 

In this chapter we have examined the techniques, and hardware and 
software tools required to develop programs. We have also discussed 
different trade-offs and alternatives for the tools available for program 
development. Thetechniqueswehave discussed have ranged from asingIe­
board microcomputer to a full development system. We have concluded 
the discussion with an examination of some common points about micro­
processor assembler programs. 

CONCLUSION 
In this book, we have covered the important aspects of program­

ming the 8086/8088. The first chapter began with a discussion of the basic 



280 PROGRAMMING THE 8086/8088 

deftnitions and concepts of programming. We then went on to explore and 
discuss the specifics of the 8086/8088 CPU. Next, we examined the use of 
110 devices and various software development tools.1 

What then is the next step? After reading this book, you should now be 
ready to go off on your own and write your own programs on the 8086/ 
8088. As you continue to do this, you will discover that the instruction set 
for these microprocessors is very powerful. As you gain more and more 
experience in using the various instructions, you will discover new and 
creative ways to solve your application problems. This is when the real fun 
begins. 

So good luck and productive programming!!! 

lThere is an 606616066 microprocessor trainer available from Creative Microprocessor Systems (P.O. 
Box 1536, Los Gatos, CA 95030). This trainer employs a single-line assembler that allows you to pro­
gram in assembly language. It is a unique and valuable tool for gaining experience in programming the 
606616068. 







APPENDIX A 
HEXADECIMAL 

CONVERSION TABLE 
o 2 3 4 5 6 7 8 9 ABC 0 00 000 

o 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 0 
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 <1096 
2 ~ 33 ~ ~ 36 ~ ~ ~ ~ ~ ~ G ~ ~ ~ ~ 512 8192 
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288 
4 64 65 66 67 68 69 70 71 72 73 74 75 76 n 78 79 1024 16384 
5 8O~~mM~86~00~~~92nN% 1280 20480 
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576 
7 112113114115116117118119120 121 122123124125126127 1792 28672 
8 128129 130 131 132133 134 1~ 136 137 138 139 1~ 141 142 lG 2048 32768 
9 1~1~1~1~1481fil501~ 1~1~1~1~156191~1~ 2304 36864 
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 <10960 
B lnlnl~I791801~1~lmlMl~I861~1001~1~1~ 2816 45056 
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205206207 3072 49152 
o 	 208 209 210 211 212213214215216217218219220 221 222223 3328 53248 

224 225 226 227 228 229 230 231 232 233 234 2~ 236 237 2~ 239 3584 57344 
2~ 241 242 243 244 245 2~ 247 248 249 250 251 252 253 254 255 3840 61440 

5 4 3 2 1 0 

HEXI DEC HEX I DEC HEXI DEC HEX I DEC HEXJ DEC HEX l DEC 

0 0 0 0 0 0 0 0 0 0 0 0 

1 1,048,96 1 65,536 1 4,096 1 256 1 16 1 1 


2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2 

3 3,145,728 3 196,608 3 12,200 3 768 3 48 3 3 


4 4,194,304 4 262,1~ 4 16,384 4 1,024 4 64 4 4 

5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5 


6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6 

7 7,340,032 7 ~,752 7 28,672 7 1,792 7 112 7 7 


8 8,388,608 8 524,288 8 ~,768 8 2,048 8 128 8 8 

9 9,437, 1M 9 ~,824 9 36,864 9 2,304 9 1~ 9 9 


A 10,485,760 A ~,360 A ~,96O A 2,560 A 160 A 10 

B 11,~,336 B 720,896 B 45,056 B 2,816 B 176 B 11 


C 12,~2,912 C 786,G2 C 49,152 C 3,072 C 192 C 12 

0 13,631,_ 0 851,968 0 53,248 0 3,328 0 208 0 13 


E 14,680,064 E 917,504 E 9,344 E 3,584 E 224 E 14 

F 15,728,640 F 9m,040 F 61,~ F 3,840 F 240 F 15 






APPENDIXB 
ASCII CONVERSION 

TABLE 
HEX MSD o 1 2 3 4 5 6 7 
LSD BITS 000 001 010 011 100 101 110 111 

o 0000 NUL DLE SPACE @ P p 
1 0001 SOH DC1 ! A Q q 
2 0010 STX DC2 B R r 
3 0011 ETX DC3 # C S s 
4 0100 EOT DC4 $ D T t 
5 0101 ENQ NAK % E U u 
6 0110 ACK SYN & F V v 
7 0111 BEL ETB G W w 
8 1000 BS CAN H X x 
9 1001 HT EM I Y i y 
A 1010 LF SUB J Z i z 
B 1011 VT ESC K [ k { 
C 1100 FF FS < L \ I 
D 1101 CR GS M 1 m 
E 1110 SO RS > N n 
F 1111 SI US I ? o o DEL 

+ 

THE ASCII SYMBOLS 

NUL - Null DlE - Data link Escar 
SOH - Start of Heading DC - Device Contra 
STX - Start of Text NAK - Negative Acknowledge 
ETX - End of Text SYN - Synchronous Idle 
EOT - End of Transmission ETB - End of Transmission Block 
ENQ - Enquiry CAN - Cancel 
ACK - Acknowledge EM - End of Medium 
BEL - Bell SUB - Substitute 
BS - Backspace ESC - Escape 
HT - Horizontal Tabulation FS - Fi Ie Separator 
lF - line Feed GS - Group Separator 
VT - Vertical Tabulation RS - Record Separator 
FF - Form Feed US - Unit Separator 
CR - Carriage Return SP - Space (Blank) 
SO - Shift Out Del - Delete 
SI - Shift In 





APPENDIXC 
DECIMAL TO BCD 

CONVERSION TABLE 

DECIMAL BCD DEC BCD DEC BCD 

0 0000 10 00010000 91 10010000 
1 0001 11 00010001 91 10010001 

2 0010 12 00010010 92 10010010 
3 0011 13 00010011 93 10010011 
4 0100 14 00010100 94 10010100 
5 0101 15 00010101 95 10010101 
6 0110 16 00010110 96 10010110 

7 0111 17 00010111 97 10010111 
8 1000 18 00011000 98 10011000 

9 1001 19 00011001 99 10011001 





APPENDIX D 8086/8088 
INSTRUCTION SET 
REFERENCE DATA 

Operands Clocks Transfers· Bytes Coding Example 

4 AAA 

AAD (no operands) ODITSZAPC
Flags

ASCII adjusl for division U X X U X U 

Operands Clocks Transfers· Bytes Coding Example 

60 2 AAD 

AAM (no operands) FI 0 0 ITS ZAP CAAM ASCII adjust for multiply ags U X X U X U 

Operands Clocks Transfers· Bytes Coding Example 

83 AAM 

FI 0 0 ITS ZAP C 
ags U U U X U X 

Operands Bytes Coding Example 

1 AAS 

ADC destination,source FI 0 D ITS ZAP C 
Add with carry ags X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 2 ADC AX, SI 
register, memory 9+EA 1 2·4 AOC OX, BETA ISII 
memory, register 16+EA 2 2·4 ADC ALPHA IBXIISIj, DI 
register, immediate 4 3·4 ADC BX,256 
memory, immediate 17+ EA 2 3·6 AOC GAMMA,30H 
accumulator, immediate 4 2·3 ADC AL,5 

-For the 8086, add four ckJcks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16--blt word transfer. 



290 PROGRAMMING THE 8086/8088 


IADD destination, source 	 ODITSZAPCADD 	 Flags
Addition 	 X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 ADD CX, OX 
register, memory 9+EA 1 2-4 ADD DI, [BXI.AlPHA 
memory, register 16+EA 2 2-4 ADD TEMP,Cl 
register, immediate 4 - 3-4 ADD Cl,2 
memory, immediate 17+EA 2 3-6 ADD AlPHA,2 
accumulator, immediate 4 - 2-3 ADD AX, 200 

lAND destination,source 	 ODITSZAPCAND 	 Flags
logical and 	 0 X X U X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 AND Al,Bl 
register, memory 9+EA 1 2-4 AND CX,FlAG_WORD 
memory, register 16+EA 2 2-4 AND ASCII [DIJ,Al 
register, immediate 4 - 3-4 AND CX,OFOH 
memory, immediate 17+EA 2 3-6 AND BETA. 01 H 
accumulator, immediate 4 - 2-3 AND AX,01010000B 

CALL 	 I~All target Flag. 
ODITSZAPC 

Call a procedure 

Operands Clocks Transfers· Bytes Coding Examples 

near-proc 19 1 3 CAll NEAR_PROC 
far-proc 28 2 5 CAll FAR_PROC 
memptr 16 21 +EA 2 2-4 CAll PROC_TABlE [SI] 
regptr 16 16 1 2 CAll AX 
memptr 32 37+EA 4 2-4 CAll [BX].TASK [SI] 

I~BW (no operands) 	 ODITSZAPCCBW 	 FlagsConvert byte to word 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CBW 

I ~LC (no operands) 	 ODITSZAPCCLC 	 FlagsClear carry flag 0 

Operands I Clocks ITransfers· I Byte. Coding Example 

(no operands) 2 - 1 ClCI I I 
I CLD (no operands) 	 ODITSZAPCCLD 	 FlagsClear direction flag 0 

Operands I Clocks ITransfers· I Bytes Coding Example 

(no operands) 2 - 1 ClDI I I 
*For the 8086, add four clocks for each 16-blt word transfer with an odd addrell8. For the 8088, add four clocks for each 16-bit word transfer. 

Mnemonics @ Intel. 1978 



X 

APPENDIX D: REFERENCE DATA 291 


CLI (no operands) ODITSZAPCCLI I FlagsClear interrupt flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 CLI 

,CMC (no operands) ODITSZAPCCMC I FlagsComplement carry flag 

Operands Clocks Transfers· I Bytes Coding Example 

(no operands) 2 - CMCI , 

ICMP destination,source ODITSZAPCCMP Flags
Compare destination to source X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 CMP BX, CX,register, memory 9+EA 2-4 CMP DH, ALPHA,memory, register 9+EA 2-4 CMP IBP+2],SI 
register, immediate 4 - 3-4 CMP BL,02H ,memory, immediate 10+ EA 3-6 CMP IBXI·RADAR IDII. 3420H 
accumulator, immediate 4 - 2-3 CMP AL,00010000B 

CMPS ICMPS dest-string,source-string Flags 
ODITSZAPC 

Compare string X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

dest-string, source-string 22 2 1 CMPS BUFF', BUFF2 ,(repeat) dest-string, source-string 9+22/rep 2/rep REPE CMPS ID, KEY 

ICWO (no operands) ODITSZAPCcwo Flags
Convert word to doubleword 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 5 - 1 CWO 

ODITSZAPCI~AA (no operands) OAA Flags
Decimal adjust for addition X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 DAA 

ODITSZAPCI~AS (no operands) OAS Flags
Decimal adjust for subtraction U X X X X X 

Operands I Clocks Transfers· Bytes Coding Example 

(no operands) 4 - 1 DASI 
-For the 8088, add four cfocks for each l6-bit word transfer with an odd address. Forthe 8088, add four docks for each l6-bit word transfer. 

Mnemonics © Inlel,1978 



292 PROGRAMMING THE 8086/8088 


DEC 

Operands 

reg16 
reg8 
memory 

DIY 
Operands 

reg8 
reg16 
mem8 

mem16 

ESC 
Operands 

immediate, memory 
immediate, register 

HLT 

Operands 

(no operands) 

IDlY 
Operands 

reg8 
reg16 
mem8 

mem16 

IDEC destination 
Decrement by 1 

Clocks Transfers' Bytes 

2 - 1 
3 - 2 

15+EA 2 2-4 

I~IV source 
Division, unsigned 

Clocks Transfers' Bytes 

80-90 - 2 
144-162 - 2 
(86-96) 1 2-4 
+EA 

(150-168) 1 2-4 
+EA 

I
ESC external-opcode,source 
Escape 

Clocks Transfers' Bytes 

8+EA 1 2-4 
2 - 2 

I
HLT (no operands) 
Halt 

Clocks Transfers' Bytes 

2 - 1 

~ IDIV source 
Integer division 

Clocks Transfers' Bytes 

101-112 - 2 
165-184 - 2 

(107-118) 1 2-4 
+EA 

(171-190) 1 2-4 
+EA 

ODITSZAPC
Flags 

X XXXX 

Coding Example 

DEC AX 
DEC AL 
DEC ARRAY [51] 

ODITSZAPC
Flags 

U U U UU U 

Coding Example 

DIV CL 
DIVeX 
DIV ALPHA 

DIV TABLE [SIJ 

ODITSZAP C
Flags 

Coding Example 

ESC 6,ARRAY [SIJ 
ESC 20,AL 

ODITSZAPC
Flags 

Coding Example 

HLT 

ODITSZAPC
Flags 

U U U U U U 

Coding Example 

IDIV BL 
IDIVeX 
IDIV DIVISOR_BYTE [511 

IDIV [BXJ.DIVISOR_WORD 

•For the 8086, add four docks for each 16-bitword transfer with an odd address. For tM 8088, add four clocks for each 18-bit word transfer. 
Mnemonics@lntel, 1978 



APPENDIX D: REFERENCE DATA 293 

IMUL jlMUL source 
Integer multiplication 

Flags 
ODITSZAPC 
X U U U U X 

Operands Clocks Transfers' Bytes Coding Example 

reg8 80-98 - 2 IMUL CL 
reg16 128-154 - 2 IMUL BX 
mem8 (86-104) 1 2-4 IMUL RATE BYTE 

+EA 
mem16 (134-160) 1 2-4 IMUL RATE WORD [BP[ [DII 

+EA 

IN liN accumulator,port 
Input byte or word 

Flags 
ODITSZAPC 

Operands Clocks Transfers' Bytes Coding Example 

accumulator, immed8 10 1 2 IN AL.OFFEAH 
accumulator, DX 8 1 1 IN AX.OX 

INC IINC destination 
Increment by 1 

Flags 
ODITSZAPC 
X X X X X 

Operands Clocks Transfers' Bytes Coding Example 

reg16 2 - 1 INC CX 
reg8 3 - 2 INC BL 
memory 15+EA 2 2-4 INC ALPHA [DII [BXI 

INT liNT interrupt-type 
Interrupt 

Flags 
ODITSZAPC 

o 0 

Operands Clocks Transfers' Bytes Coding Example 

immed8 (type = 3) 52 5 1 INT 3 
immed8 (type,;. 3) 51 5 2 INT 67 

INTRt IINTR (external maskable interrupt) 
Interrupt if INTR and IF=1 

Flags 
ODITSZAPC 

o 0 

Operands 

(no operands) 

Clocks 

61 

I Transfers' I Bytes 

I 7 I N/A N/A 

Coding Example 

INTO IINTO (no operands) 
Interrupt if overflow 

Flags 
ODITSZAPC 

o 0 

Operands 

(no operands) 

I Clocks 

I 53 or 4 

I Transfers' I Bytes

I 5 I 1 INTO 

Coding Example 

• For the 8088, add four clocks for each 1 ~bIt word transfer with an odd address. For the 8088, add four clocks for each 1 ~bit word transfer. 


tlNTA is not an instruction; it Is included only for timing information. 


Mnemonics © Intel, 1978 




294 PROGRAMMING THE 8086/8088 

IIRET (no operands) ODITSZAPCIRET Flags
Interrupt Return RRRRRRRRR 

Operands Clocks Transfers' I Bytes Coding Example 

(no operands) 24 3 1 IRETI 
I JA/JNBE short·label ODITSZAPCJA/JNBE Flags
Jump if above/Jump if not below nor equal 

Operands Clocks Transfers' Bytes Coding Example 

short·label 16 or 4 - 2 JA ABOVE 

IJAE/JNB short·label ODITSZAPCJAE/JNB Flags
Jump if above or equal/Jump If not below 

Operands I Clocks I Transfers· 1 Bytes Coding Example 

1 2short·label 1 160r4 - JAE ABOVE EQUAL
1 

I JB/JNAE short· label ODITSZAPCJB/JNAE Flags
Jump if below/Jump if not above nor equal 

Operands 1Clocks 1 Transfers· 1 Bytes Coding Example 

short·label I 16 or 4 I - 2 JB BELOWI 
IJBE/JNA short·label ODITSZAPCJBE/JNA Flags
Jump if below or equal/Jump if not above 

Operands I ClOCkS. 1 Transfers' Bytes Coding Example 

short-label - 2 ,INA NOT ABOVEI 160r4 I 
I JC short-label ODITSZAPCJC Flags
Jump if carry 

Operands Clocks J Transfers· J Bytes Coding Example 

short-label 16 or 4 - 2 JC CARRY SETI 
 I 
I JCXZ short-label ODITSZAPCJCXZ FlagsJump if CX is zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 18 or 6 - 2 JCXZ COUNT DONE 

JEIJZ short-label ODITSZAPCJE/JZ I Flags
Jump if equal/Jump if zero 

Operands I Clocks J Transfers· J Bytes Coding Example 

short-label - 2 JZ ZERO1 160r4 J 1 
•For the 8088. add lour clock. for each 1_word transfer with an odd add_. For the 8088, add lour _loroach 16-bI1_transfer. 

Mnemonlcl © In18I, 1978 



APPENDIX D: REFERENCE DATA 295 

JG/JNLE IJG/JNLE short-label 
Jump if greaterlJump if not less nor equal 

Flags 
ODITSZAPC 

Operands I Clocks I Transfers' I Bytes Coding Example 

short-label 116 or 4 1 -
1 

2 JG GREATER 

JGE/JNL IJGE/JNL short-label 
Jump if greater or equal IJump if not less 

Flags 
ODITSZAPC 

Operands Clocks Transfers' Bytes Coding Example 

short-label 160r 4 - 2 JGE GREATER_EQUAL 

JL/JNGE IJL/JNGE short-label 
Jump if lessl Jump if not greater nor equal 

Flags 
ODITSZAPC 

Operands Clocks Transfers' Bytes Coding Example 

short-label 16or4 - 2 ,IL LESS 

JLE/JNG IJLE/JNG short-label 
Jump if less or equal/Jump if not greater 

Flags 
ODITSZAPC 

short-label 

Operands I Clocks I Transfers· I Bytes

I 16or4 I -
1 

2 

Coding Example 

JNG NOT_GREATER 

JMP lJMPtarget 
Jump 

Flags 
ODITSZAPC 

Operands Clocks Transfers· Bytes Coding Example 

short-label 15 - 2 JMP SHORT 
near-label 15 - 3 JMP WITHIN_SEGMENT 
far-label 15 - 5 JMP FAR_LABEL 
memptr16 18+EA 1 2-4 JMP [BXI.TARGET 
regptr16 11 - 2 JMP CX 
memptr32 24+EA 2 2-4 JMP OTHER.SEG [511 

JNC IJNC short-label 
Jump if not carry 

Flags 
ODITSZAPC 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or 4 - 2 JNC NOT _CARRY 

JNE/JNZ I JNE/JNZ short-label 
Jump if not equal/Jump if not zero 

Flags 
ODITSZAPC 

OperandI I Clocks Transfers· Bytes Coding Example 

short-label 1 16or4 - 2 JNE NOT_EQUAL 

"For the 8088, add four cfockI for each 18-bit word transfer with an odd address. For the 8088, add four clocks tor each 16-bit word transfer. 

Mnemonlco © Intal. 1878 



296 PROGRAMMING THE 8086/8088 

I~NO short-label ODITSZAPCJNO Flags
Jump if not overflow 


Operands Clocks I Transfers' I Byles Coding Example 


short-label 2 JNO NO_OVERFLOW
16 or 4 J ­ I 
I~NP/JPO short-label ODITSZAPCJNP/JPO Flags
Jump if not parity / Jump if parity odd 


Operands Clocks Transfers' Bytes Coding Example 


short-iabel 160r4 - 2 JPO ODD_PARiTY 


ODITSZAPCJJNS short-labelJNS Flags
Jump if not sign 


Operands Clocks I Transfers' Byles Coding Example 


short-label 16 or 4 I - 2 JNS POSITIVE 


JO IJO short-label Flags 
ODITSZAPC 

Jump if overflow 

Operands Clocks Transfers' Bytes Coding Example 

short-label 160r4 - 2 JO SIGNED~OVRFLW 

I JP/JPE short-label ODITSZAPCJP/JPE Flags
Jump if parity/Jump if parity even 


Operands Clocks I Transfers' Bytes Coding Example 


short-label 16 or 4 1 - 2 JPE EVEN_PARITY 


JS short-label ODITSZAPCJS I FlagsJump if sign 


Operands IClocks I Transfers' I Byles Coding Example 


short-label j - JS NEGATIVE
1 160r4 2I 
LAHF ILAHF (no operands) Flags 

ODITSZAPC 
Load AH from flags 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 4 - 1 LAHF 

LOS ILOS destination.source Flags 
ODITSZAPC 

Load pointer using OS 

Operands Clocks Transfers Bytes Coding Example 

reg16, mem32 16+EA 2 2-4 LOS SI.DATA.SEG [DIJ 

'For the 808II.1dd four clocks for each III-bit _ transfer with an Odd Idd..... For the 8088. add four clocks for each 16-bH word transrer. 

M_ica © Intel. 1978 



APPENDIX D: REFERENCE DATA 297 

ILEA destination,source 	 ODITSZAPCLEA 	 FlagsLoad effective address 

Operands Clocks Transfers· Bytes Coding Example 

reg16, mem16 2+EA - 2-4 LEA BX, [BP] [DI] 

LES ILES destination,source Flags 
ODITSZAPC 

Load pointer using ES 

Operands Clocks Transfers· Bytes Coding Example 

reg16, mem32 16+EA 2 2-4 LES DI, [BX].TEXT_BUFF 

LOCK ILOCK (no operands) Flags ODITSZAPC 
Lock bus 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 LOCK XCHG FLAG,AL 

LODS I	LODS source-string Flags 
ODITSZAPC 

Load string 

Operands Clocks Transfers· Bytes Coding Example 

source-string 12 1 1 LODS CUSTOMER__ NAME 
(repeat) source-string 9+13/rep llrep 1 REP LODS NAME 

LOOP ILOOP short-label Flags ODITSZAPC 
Loop 

Operands Clocks Transfers· Bytes Coding Example 

short-label 17/5 - 2 LOOP AGAIN 

lLOOPE/LOOPZ short-label 	 ODITSZAPCLOOPE/LOOPZ 	 Flags
Loop if equal/Loop if zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 18 or 6 - 2 LOOPE AGAIN 

ODITSZAPCLOOPN EI LOO PNZ ILOOPNE/LOOPNZ short-label FlagsLoop If not equal/ Loop If not zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 19 or 5 - 2 LOOPNE AGAIN 

NMlt INMI (external nonmaskable interrupt) Flags 
OSITSZAPC 

Interrupt if NMI; 1 o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 50· 5 N/A N/A 

-For the 8086. add four clocks for each 16-blt word transfer with an odd address. For the 8088, add four docks tor each 16-bh word transfer. 


tNMI is not an instruction; it is included only for timing information. 

Mnemonics © Intel, 1978 




298 PROGRAMMING THE 8086/8088 

IMOV destination,source ODITSZAPCMOV Flags
Move 

Operands Clocks Tran,f.r,· Byte. Codjng Example 

memory, accumulator 10 1 3 MOV ARRAY [SI], AL 
accumulator, memory 10 1 3 MOV AX, TEMP _RESU L T 
register, register 2 - 2 MOV AX,CX 
register, memory 8+EA 1 2-4 MOV BP, STACK__TOP 
memory, register 9+EA 1 2-4 MOV COUNT [DI], CX 
register, immediate 4 - 2-3 MOV CL,2 
memory, immediate 10+EA 1 3-6 MOV MASK [BXJ [SIJ, 2CH 
seg-reg, reg16 2 - 2 MOV ES,CX 
seg-reg, mem16 8+EA 1 2-4 MOV DS, SEGMENT_BASE 
reg16, seg-reg 2 - 2 MOV BP,SS 
memory, seg-reg 9+EA 1 2-4 MOV [BXJ_SEG_SAVE, CS 

IMOVS dest-string,source-string ODITSZAPCMOVS Flags
Move string 

Operand. Clock, Transfers· Byte, Coding Example 

dest-string, source-string 18 2 1 MOVS LINE EDIT_DATA 
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER 

IMOVSB/MOVSW (no operands) ODITSZAPCMOVSB/MOVSW Flags
Move string (byte/word) 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 18 2 1 MOVSB 
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW 

ODITSZAPCIMUL sourceMUL FlagsMultiplication, unsigned X U U U U X 

Operands Clocks Transfers· Bytes Coding Example 

reg8 70-n - 2 MUL BL 
reg16 118-133 - 2 MUL CX 
mem8 (76-83) 1 2-4 MUL MONTH [SIJ 

+EA 
mem16 (124-139) 1 2-4 MUL BAUD_RATE 

+EA 

INEG destination ODITSZAPCNEG FlagsNegate X X X X X l' 

Operands Clocks Transfers· Bytes Coding Example 

register 3 - 2 NEG AL 
memory 16+EA 2 2-4 NEG MULTIPLIER 

·0 if destination =0 

·For the 8088, add four clocks for each 1f5.bit word transfer with an odd add,.... For the 8088, add four clocks for each 16-bit word tran ...... 

Mnemonics © Intel, 1978 



APPENDIX D: REFERENCE DATA 299 

NOP INOP (no operands) Flags OOITSZAPC 
No Operation 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 3 - 1 NOP 

NOT destination OOITSZAPCNOT I FlagsLogical not 

Operands Clocks Transfers· Bytes Coding Example 

register 3 - 2 NOT AX 
memory 16+EA 2 2-4 NOT CHARACTER 

lOR destination, source OOITSZAPCOR Flags
Logical inclusive or 0 X X U X 0 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 OR AL, BL 
register, memory 9+EA 1 2-4 OR OX, PORT .101011 
memory, register 16+EA 2 2-4 OR FLAG 9YTE.CL 
accumulator, immediate 4 - 2-3 OR AL,011011009 
register, immediate 4 - 3-4 ORCX,01H 
memory, immediate 17+EA 2 3-6 OR [BX].CMO WORO,OCFH 

lOUT port,accumulator OOITSZAPCOUT Flags
Output byte or word 

Operands Clocks Transfers· Bytes Coding Example 

immed8, accumulator 10 1 2 OUT 44. AX 
OX, accumulator 8 1 1 OUT OX. AL 

POP destination OOITSZAPCPOP I Flags
Pop word off stack 

Operands Clocks Transfers· Bytes Coding Example 

register 8 1 1 POP DX 
seg-reg (CS illegal) 8 1 1 POP OS 
memory 17+EA 2 2-4 POP PARAMETER 

I~OPF (no operands) OOiTSZAPCPOPF Flags
Pop flags off stack RRRRRRRRR 

Operands I Clocks I Transfers· I Bytes Coding Example 

(no operands) 8 1 POPFI I I 1 

-For the 8086, add four clocks for each 1~bhword transfer with an odd address. For the 8088. add four clocks for each 16-bit word tranlfer. 
Mnemonics © Intel, 1978 



300 PROGRAMMING THE 8086/8088 


ODITSZAPCIpUSH source PUSH Flags
Push word onto stack 

Operands Clocks Transfers' Bytes Coding Example 

register 11 1 1 PUSH SI 
seg-reg (CS legal) 10 1 1 PUSH ES 
memory 16+EA 2 2-4 PUSH RETURN_CODE [SIJ 

IpUSHF (no operands) ODITSZAPCPUSHF Flags
Push flags onto stack 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 10 1 1 PUSHF 

~CL destination,count ODITSZAPCRCL I Flags
Rotate left through carry X X 

Operands Clocka Transfers' Bytes Coding Example 

register, 1 2 - 2 RCL CX,1 
register, CL 8+4/bit - 2 RCL AL, CL 
memory, 1 15+EA 2 2-4 RCL ALPHA,1 
memorY,CL 2O+EA+ 2 2-4 RCL [BPJ.PARM, CL 

4/bit 

ODITSZAPCI~CR designation, count RCR Flags
Rotate right through carry X X 

Operands Clocks Transfers' Bytes Coding Exsmple 

register, 1 2 - 2 RCR BX,1 
register, CL 8+4/bit - 2 RCR BL,CL 
memory, 1 15+EA 2 2-4 RCR [BXJ.STATUS,1 
memory,CL 20+EA+ 2 2-4 RCR ARRAY [OIJ, CL 

4/bit 

~EP (no operands) ODITSZAPCREP I Flsgs
Repeat string operation 

Operands Clocks Transfera' Byt.s Coding Exampl. 

(no operands) 2 - 1 REP MOVS DEST, SRCE 

REPE/REPZ I ,REPE/REPZ (no operands) Flags 
ODITSZAPC 

Repeat string operation while equal/while zero 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 REPE CMPS DATA, KEYI 

-For the 8086, add four clocks for each 16-bit word transfer with an odd addreae. For the 8088, add four clocks for each 160bit word transfer. 

Mnemonics © Intel, 1978 



APPENDIX D: REFERENCE DATA 301 

REPNE/REPNZ (no operands) ODITSZAPCREPNE/REPNZ I 
Flags

Repeat string operation while not equall not zero 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 REPNE SCAS INPUT LINE 

RET optional-pop-value ODITSZAPCRET I Flags
Return from procedure 

Operands Clocks Transfers' Bytes Coding Example 

(intra-segment, no pop) 8 1 1 RET 
(intra-segment, pop) 12 1 3 RET 4 
(inter-segment, no pop) 18 2 1 RET 
(inter-segment, pop) 17 2 3 RET 2 

ROL destination,count ODITSZAPCROL I Flags
Rotate left X X 

Operands Clocks Transfers Bytes Coding Examples 

register, 1 2 - 2 ROL BX,l 
register, CL 8+4/bit - 2 ROL DI, CL 
memory, 1 1S+EA 2 2-4 ROL FLAG _ BYTE IDIJ,l 
memory, CL 20+EA+ 2 2-4 ROL ALPHA, CL 

41bit 

IROR destination,count ODITSZAPCROR Flags
Rotate nght X X 

Operand Clocks Transfers' Bytes Coding Example 

register, 1 2 - 2 ROR AL,1 
register, CL 8+4/bit - 2 ROR BX,CL 
memory, 1 15+ EA 2 2-4 ROR PORT_STATUS, 1 
memory, CL 20+EA+ 2 2-4 AOA CMD _ WORD, CL 

4/bit 

I~AHF (no operands) ODITSZAPCSAHF Flags
Store AH into flags R A A A A 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 4 - 1 SAHF 

I~AL/SHL destination,count ODITSZAPCSAL/SHL Flags
Shift arithmetic Ie-ft/Shift logical left X X 

Operands Clocks Transfers' Bytes Coding Examples 

register,l 2 - 2 SAL AL,l 
register, CL 8+4lbit - 2 SHL DI, CL 
memorY,l 15+ EA 2 2-4 SHL IBX].OVEADRAW,1 
memory, CL 20+ EA+ 2 2-4 SAL STORE COUNT, CL 

4/bit 

•For the 8088, a<k:I four ckJcks for each 16-b1t word transfer with an odd address. For the 8088. add four clocks for each 16-blt word transf.r. 

Mnemonics © Intel. 1978 



302 PROGRAMMING THE 8086/8088 

I SAR destination,source OOITSZAPCSAR Flags
Shift arithmetic right X X X U X X 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 SAR OX,1 
register, CL 8+4/bit - 2 SAR 01, CL 
memory, 1 15+EA 2 2-4 SAR N BLOCKS, 1 
memory, CL 20+ EA+ 2 2-4 SAR N BLOCKS, CL 

4/bit 

I
SBB destination,source OOITSZAPCSBB Flags
Subtract with borrow X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3 - 2 SBB BX, CX 
register, memory 9+EA 1 2-4 SBB 01, [BXJ.PAYMENT 
memory, register 16+ EA 2 2-4 SBB BALANCE. AX 
accumulator, immediate 4 - 2-3 SBB AX,2 
register, immediate 4 - 3-4 SBB CL.l 
memory, immediate 17+EA 2 3-6 SBB COUNT [SII. 10 

I
SCAS dest-string OOITSZAPCSeAS Flags
Scan string X X X X X X 

Operands Clocks Transfers· Bytes Coding Example 

dest-string 15 1 1 SCAS INPUT LINE 
(repeat) dest-string 9 + 15/rep l/rep 1 REPNE SCAS BUFFER 

I~EGMENTOVerride prefix OOITSZAPCSEGMENTt Flags
Override to specified segment 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2 - 1 MOV SS:PARAMETER, AX 

SHR I SHR destination,count 
Shift logical right Flags 

OOITSZAPC 
X X 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2 - 2 SHR SI,1 
register, CL 8+4/bit - 2 SHR SI, CL 
memory, 1 15+EA 2 2-4 SHR 10 BYTE [SIJ IBXI. 1 
memory, CL 20+ EA+ 2 2-4 SHR INPUT WORO,CL 

4/bit 

I SINGLE STEP (Trap flag interrupt) OOITSZAPCSINGLE STEPt FlagsInterrupt if TF = 1 o 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 50 5 N/A N/A 

°For the 8086, add fOlK clocks for _h 1&bit word1l'8nSfor with on odd add_. For lhe 8088, add fou'cIocks for each 1&on word I,"""",. 
tABM-88 _par_ the segment __prefl.lnto lhe operand opecIfiCItion and not II. oeperote 1_. SEGMENT 1,lncluded 
only for timing Information. 

tSINGLE STEP I. not an inotructlon. n1,lncIuded only for timing information. 

Mnemonic8 © Intel, 1978 



1 

APPENDIX D: REFERENCE DATA 303 

ISTC (no operands) ODITSZAPCSTC Flags
Set carry flag 

Operands I Clocks Transfers' I Bytes Coding Example 

(no operands) 2 - 1 STCI l 
~STD (no operands) ODITSZAPCSTO Flags
Set direction flag 1 

Operands I Clocks Transfers' l Bytes Coding Example 

(no operands) 2 - 1 STDI l
lSTI (no operands) ODITSZAPCSTI Flags
Set interrupt enable flag 1 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2 - 1 STI 

ISTOS dest-string ODITSZAPCSTOS Flags
Store byte or word string 

Operands Clocks Transfers' Bytes Coding Example 

dest-string 11 1 1 STOS PRINT LINE 
(repeat) dest-string 9+10/rep llrep 1 REP STOS DISPLA Y 

ISUB destination, source ODITSZAPCSUB Fllgs
Subtraction X X X X X X 

Operands Clocks Trlnsf.rs- Bytes Coding Example 

register, register 3 - 2 SUB CX, BX 
register, memory 9+EA 1 2-4 SUB OX, MATH_TOTAL [SIJ 
memory, register 16+EA 2 2-4 SUB [BP+2J,CL 
accumulator, immediate 4 - 2-3 SUB AL.l0 
register, immediate 4 - 3-4 SUB SI,5280 
memory, Immediate 17+EA 2 3-6 SUB [BPJ.BALANCE,loo0 

ITEST destination,source ODITSZAPCTEST Fllgs
Test or non-destructive logical and 0 X X U X 0 

Operands Clocks Transf.rs· Bytes Coding Example 

register, register 3 - 2 TEST 51,01 
register, memory 9+EA 1 2-4 TEST SI, END_COUNT 
accumulator, immediate 4 - 2-3 TEST AL, 00100000B 
register, immediate 5 - 3-4 TEST BX,OCC4H 
memory, Immediate 11+EA - 3-6 TEST RETURN_CODE,OIH 

•For the 8088, add four clock' for each 18-bit word transfer with an odd address. For the 08, add four cfocks for each 16-bit word traneler. 

lAnemonleo © Intel, 1978 

http:Transf.rs


304 PROGRAMMING THE 8086/8088 

WAIT 

Operands 

(no operands) 

XCHG 

Operands 

accumulator, reg16 
memory, register 
register, register 

XLAT 

Operands 

source-table 

XOR 

Operands 

register, register 
register, memory 
memory, register 
accumulator, immediate 
register, immediate 
memory, immediate 

IWAIT (no operands) 
Wait while TEST pin not asserted 

I Clocks J Transfers· 

I 3 + 5n I ­

IXCHG destination,source 
Exchange 

Clocks Transfers· 

3 -
17+EA 2 

4 -

IXLAT source-table 
Translate 

Clocks Transfers· 

11 1 

IXOR destination, source 
Logical exclusive or 

Clocks Transfers· 

3 ­
9+EA 1 
16+EA 2 

4 ­
4 ­

17+EA 2 

I Bytes 

I 1 

Bytes 

1 
2-4 
2 

Bytes 

1 

Byles 

2 
2-4 
2-4 
2-3 
3-4 
3-6 

ODITSZAPC
Flags 

Coding Example 

WAIT 

ODITSZAPC
Flags 

Coding Example 

XCHG AX, BX 
XCHG SEMAPHORE, AX 
XCHG AL, BL 

ODITSZAPC
Flags 

Coding Example 

XLA T ASCII_TAB 

ODITSZAPC
Flags 

0 X X U X 0 

Coding Example 

XOR CX, BX 
XOR CL, MASK_BYTE 
XOR ALPHA [SI). OX 
XOR AL,010oo010B 
XOR SI,OOC2H 
XOR RETURN_CODE,OD2H 

*For the 8086, add four docks for each 18--bit word transfer with an odd address. For the 8088, add four clocks for each 18-bit word transfer. 
Unemona © Intel. 1978 





306 

INDEX 


AAA (ASCII adjust for addition), 68 

AAD (ASCII adjust for division), 69 

AAM (ASCII adjust for multiply), 70 

AAS (ASCII adjust for subtrac­

tion),71 

ADC (add with carry), 72 


ADD (addition), 73 

AF (auxilliary carry flag), 42 

AH register, 40 

AL register, 40 

ALU, definition of, 31 

AND (and logical), 74,75 

AX register, 40 

Accessing 8 bits at an even 


address,49 

Accessing 8 bits at an odd address, 50 

Accessing 16 bits at an even 


address,49 

Accessing 16 bits at an odd 


address, 50, 51 

Addition, BCD 8 bit, 180-184 

Addition, 8 bit, 176-179 

Addition, 16 bit, 179-180 

Address generation, 52 - 54 

Addressing, direct, 56, 57 

Addressing, fixed port 110. 216. 217 

Addressing, immediate, 55, 56 

Addressing, I/O, 213-215 

Addressing, register indirect, 57 

Addressing. register indirect with a 


base and index register, 57, 58 


Addressing, register indirect with a 

base + index + displacement, 58 


Addressing, register indirect with 

displacement, 57 


Addressing, variable port 1/0, 216. 


217 

Aligned and non-aligned words, 51, 


52 

Alphanumeric data, 20, 21 

Architecture, internal 


microprocessor, 30-34 

Architecture, microprocessor 


system, 28-30 

Arithmetic programs, 176-188 

Arithmetic, BCD,180-184 

ASCII conversion table, 285 

Assembler, 271-279 

Assembler directives, 278 

Assembler fields. 272, 273 

Assembly language, 275-279 


constants or literals, 276 

labels, 276 

operators, 277, 278 

programming in, 265 

symbols, 275, 276 


BCD addition, 8 bit, 180-184 

BCD arithmetic, 180-184 

BCD representation, 17, 18 

BCD subtraction, 8 bit, 184, 185 

BHE,48 




INDEX 307 


BIOS 

definition of. 242 

parameter passing. 245. 246 

preamble. 246 

using. 243 - 245 


BIU.37-39 

BP register. 40 

BX. BL. BH register. 40 

Base pointer. 40 

Basic 110 system. definition of. 242 

Binary coded decimal. example. 17. 


18 

Binary data. 6-10. 21 


signed,8.9 

Binary division. 186. 187 

Bit. D. 60. 61 

Bit. Mod. 60. 61 

Bit. W. 59. 60 

Block diagram of 8086/8088, 38 

Block diagram of flags and 


registers. 43 

Bus interface unit. 38. 39 


CALL (call procedure). 76. 77 

CALL. inter-segment. 191 

CALL. intra-segment. 191 

CBW (convert byte to word). 78 

CF (carry flag). 42 

CLC (clear carry). 79 

CLD (clear direction flag). 80 

CLI (clear interrupt enable flag). 81 

CMC (compliment carry flag). 82 

CMP (compare), 83 

CMPS (compare string). 84 

CPU. resetting of. 206 

CS (code segment). 40 

CWD (convert word to double 


word). 85 

CX. CH. CL register. 40 

Call-return mismatch. 191. 192 

Carry. examples of. 13-16 


Code. object. 58-62 

Connecting a PIO to the CPU. 228. 


229 

Conversion table 


ASCII. 285 

decimal to BCD. 287 

hexadecimal. 283 


Creative Microprocessor 

Systems. 280 


Cycle. instruction (definition of), 

34-37 


D bit. 60. 61 

DAA (decimal adjust for addition). 86 

DAS (decimal adjust for subtraction). 


87 

DEC (decrement). 88 

DF (direction flag). 42 

DIV (divide). 89 

DS (data segment). 40 

DX. DH. DL register. 40 

Data 


alphanumeric. 20.21 

binary. 6-10. 21 

hexadecimal. 22-24 

numeric. 5. 6 

octal. 22 - 24 

one's complement. 9. 10 

signed binary. 8. 9 

two·scomplement.10-13 


Decimal-to-BCD conversion 

table. 287 


Decimal-to-Binary conversion. 6 

Delay generation, software for, 221. 


222 

Destination index register. 40 

Development sequence. software 


for. 268. 269 

Development system. 270 

Device, 110. 215. 216 

Direct addressing. 56. 57 




308 PROGRAMMING THE 8086/8088 

Directives, assembler, 278 

Division 


binary, 186, 187 

with the 808618088,187, 186 


Eight-bit addition, 176-179 

BCD, 180-184 


Eight-bit subtraction, BCD, 184, 185 

Error messages, assembler, 274 

ESC (escape), 91 

EU,38,39 

EX (extra segment), 40 

Execution unit, 37-39 


Fetching, definition of, 35 

Field, RIM, 50, 61 

Field, reg, 59, 60 

Fixed-port addressing, 216, 217 

Flags and registers, block 


diagram,43 

Flags for 8086/8088, 41-43 

Floating-point representation, 18 - 20 

Flowcharting, definition of, 3, 4 


General registers, 8086/8088,39-45 

Generating a signal with software, 


220 

Generating the address, 52- 54 


HLT (halt), 92 

Hardware alternatives, 269-271 

Hardware resources, summary 


of,271 

Hexadecimal conversion table, 283 

Hexadecimal data, 22 -24 

High-level programming, 265, 266 


I/O, 210-239 

I/O addressing, 213-215 

I/O, definition of, 212, 213 

I/O device, definition of, 215, 216 

110 example, 8255, 224-234 


I/O, reserved space, 215 

IDIV (integer divide), 93 

IF (interrupt enable flag), 42 

IMUL (integer multiply), 95 

IN (input), 96 

INC (increment), 97 

INT (interrupt), 98 

INTO (interrupt on overflow), 99 

INTR, 202, 203 

IRET (interrupt return), 100 

Immediate addressing, 55 

Index register, definition of, 33 

Information representation, 4-25 

Input and output, 210-239 

Input and output addressing, 


213-215 

Input and output, definition 


of, 212, 213 

Input and output, reserved 


space,215 

Input instruction, example of, 216 

Input ports, 8086, 219 

Input ports, 8088, 219 

Instruction address generation, 


52-54 

Instruction cycle, general definition, 


34-37 

Instruction pointer, 41 

Instructions, summary of 8086/8088, 


289-305 

Inter-segment call, 191 

Interfacing the 8253 to the CPU, 


235-238 

Internal interrupts, 203, 205 

Internal microprocessor 


architecture, 30-34 

Internal organization of 8086/8088, 


37-45 

Interrupt table, 197 - 201 

Interrupt, definition of, 196 

Interrupts, general information, 196,197 




INDEX 309 

Interrupts, internal, 203, 205 

Interrupts, intr, 202, 203 

Interrupts, non-maskable, 197, 202 

Interrupts, reserved, 202 

Interrupts, return from, 205, 206 

Interrupts, software, 203-205 

Intra-segment call, 191 


JA (jump on above), 101 

JAE (jump on above or equal), 102 

JB (jump on below), 103 

JBE (jump on below or equal), 104 

JC (jump on carry), 105 

JCXZ (jump if CX register zero), 106 

JE (jump on equal), 107 

JG (jump on greater than), 108 

JGE (jump on greater than or 


equal),l09 

JL (jump on less), 110 

JLE (jump on less than or equal), 111 

JMP (jump unconditionally), 112, 113 

JNA (jump on not above), 104 

JNAE (jump on not above or equal), 


103 

JNB (jump on not below), 102 

JNBE (jump on not below or 


equal),101 

JNC (jump on not carry), 114 

JNE (jump on not equal to), 115 

JNG (jump on not greater than), 111 

JNGE (jump on not greater than or 


equal),110 

JNL (jump on not less), 109 

JNLE (jump on not less or equal), 108 

JNO (jump on not overflow), 116 

JNP (jump on not parity), 118 

JNS (jump on not sign), 117 

JNZ (jump on not zero), 115 

JO (jump on overflow), 119 

JP (jump on parity even), 120 

JPE (jump on parity equal), 120 


JPO (jump on parity odd), 118 

JS (jump on sign), 121 

JZ (jump on zero), 107 


Keyboard scanning program, 

232-234 


Keyboard, I/O, 253-255 


LAHF Ooad register AH from 
flags),122 

LDS (load pointer using DS), 123 

LEA (load effective address), 124 

LES (load pointer using ES), 125 

LOCK (lock the bus), 126 

LODS (load string), 127 

LOOP (loop if CX not zero), 128 

LOOPE (loop while equal), 129 

LOOPNE (loop while not equal), 130 

LOOPNZ (loop while not zero), 130 

LOOPZ (loop while zero), 129 


Memory organization for 8086/8088, 
48-54 


Microcomputer, hobby type, 270, 271 

Microcomputer, single board, 270 

Microprocessor system architecture, 


28-30 

Mismatch, call-return, 191, 192 

Mod bit, 60, 61 

MOV (move byte or word), 131, 132 

MOVS (move string), 133 

MUL (multiply), 134 

Multiplication, 185, 186 


NEG (negate-form 2's complement), 
135 


NMI, 197 -202 

NOP (no operation), 136 

NOT (logical not), 137 

Non-aligned words, 51, 52 




310 PROGRAMMING THE 8086/8088 

Non-maskable interrupts, 197 -202 

Numeric data, representation of, 5, 6 


OF (overflow flag), 42 

OR (logical OR), 138, 139 

OUT (output), 140 

Object code, 58-62 


for index and base register, 62 

Octal data, 22 - 24 

One's complement data, 9, 10 

Operators, assembly language, 277, 


278 

Output instruction, example of, 218 

Output port, 8086, 219 

Output ports, 8088, 219 

Overflow, examples of, 13-16 


PF (parity flag), 42 

PIO, 8255, 224-234 

PIO. overview, 226 

POP (pop stack). 144 

POPF (pop flags), 142 

PUSH (push data on top of stack). 143 

Parameter passing, BIOS, 245, 246 

Port addressing 


fixed. 216, 217 

variable port, 217. 218 


Preamble, BIOS, 246 

Printer, I/O 246 

Program counter, definition of, 33 

Program,8088,261 

Programming a PIO. 229-234 

Programming choices, general, 


264-266 

Programming, assembly language, 


265 

Programming. definition of, 2 

Programming, high level, 265, 266 

Programs, arithmetic. 176-188 

Pulse generation, software, 221 


RIM field, 50, 61 

RCL (rotate through carry left), 145 

RCR (rotate through carry right). 146 

REP (repeat). 147 

REPE (repeat while equal), 147 

REPNE (repeat while not equal), 148 

REPNZ (repeat while not zero), 148 

REPZ (repeat while zero), 147 

RET (return). 149 

ROL (rotate left), 151 

ROR (rotate right), 152 

RS-232, I/O. 246-258 

Reading 8 bits at an even address. 49, 


50 

Reading 8 bits at an odd address, 49, 


50 

Reading 16 bits at an even address, 


49-50 

Reg field. 59, 60 

Register addressing, 55. 56 

Register indirect addressing, 57 

Register indirect with a base and 


index register addressing, 57, 58 

Register indirect with base + index 


+ constant. 58 

Register indirect with displacement, 


57 

Registers and flags. block diagram, 


43 

Registers. internal for 8086/8088, 


39-45 

Representation of information, 4-25 

Reserved 1/0 space, 215 

Reserved interrupts, 202 

Resetting the CPU. 206 

Return from interrupts. 205, 206 


SAHF (store register AH into 

flags). 153 


SAL (shift arithmetic left), 154 

SAR (shift arithmetic right), 156 




SBB (subtract with borrow). 158 

SCAS.159 

SCAS (scan string). 159 

SF (sign flag). 42 

SHL (shift logical left). 154 

SHR (shift logical right). 160 

SP register. 40 

SS (stack segment). 40 

STC (set carry). 162 

STD (set direction flag). 164 

STI (set interrupt enable flag). 164 

STOS (store string). 165 

SUB (subtract) 166 

Signed binary data. 8. 9 

Single board microcomputer. 270 

Sixteen-bit addition. 179 -180 

Sixteen-bit multiplication. 185. 186 

Sixteen-bit subtraction. 180 

Software development sequence. 


268.269 

Software interrupts. 203. 205 

Software support. 266-268 

Software. assembler. 271-279 

Source index register. 40 

Space reserved for 110. 215 

Stack pointer register. 40 

Stack pointer. definition of. 33 


INDEX 311 

Stack. definition of. 33 

Subroutines. 188-193 

Subtraction. 16 bit. 180 

Subtraction. BCD 8 bit. 184. 185 

Summary of 8086/8088 instructions. 


289-305 

Support. software. 266-268 

Symbols. assembly language. 275. 


276 

System. training. 280 


TEST (test bits). 167 

TF (trap flag). 42 

Table. interrupt. 197. 201 

Timer chip. 8253. 235-238 

Training system. 280 

Two's complement data. 10-13 


Variable port addressing. 217. 218 


Wbit. 59. 60 

WAIT (wait). 169 

Word. aligned. 51-52 


XCHG (exchange). 170 

XLAT (translate). 171 

XOR (exclusive or), 172 


ZF (zero flag), 42 






The SYBEX Library 


INTRODUCTION TO COMPUTERS 

DON'T (or How to Care for Your Computer) 

by Rodnay Zaks 214 pp., 100 illustr., Ref. 0-065 

The correct way to handle and care for all elements of a computer system, 

including what to do when something doesn't work. 


YOUR FIRST COMPUTER 

by Rodnay Zaks 258 pp., 150 illustr., Ref. 0-045 

The most popular introduction to small computers and their peripherals: what 

they do and how to buy one. 


INTERNATIONAL MICROCOMPUTER DICTIONARY 
120 pp., Ref. 0-067 
All the definitions and acronyms of microcomputer jargon defined in a handy 
pocket-size edition. Includes translations of the most popular terms into ten 
languages. 

FROM CHIPS TO SYSTEMS: 
AN INTRODUCTION TO MICROPROCESSORS 
by Rodnay Zaks 552 pp., 400 illustr., Ref. 0-063 
A simple and comprehensive introduction to microprocessors from both a 
hardware and software standpoint: what they are, how they operate, how to 
assemble them into a complete system. 

FOR YOUR APPLE 

THE EASY GUIDE TO YOUR APPLE II® 

by Joseph Kaaemer 160 pp., illustr., Ref. 0-0122 

A friendly introduction to using the Apple II, II plus, and the new lIe. 


BASIC EXERCISES FOR THE APPLE® 

by J. P. Lamoitier 250 pp., 90 illustr., Ref. 0-084 

Teaches Apple BASIC through actual practice, using graduated exercises 

drawn from everyday applications. 


APPLE II® BASIC HANDBOOK 

by Douglas Hergert, 144 pp., Ref. 0-115 

A complete listing with descriptions and instructive examples of each of the 

Apple II BASIC keywords and functions. A handy reference guide, organized 

like a dictionary. 




APPLE II® BASIC PROGRAM IN MINUTES 

by Stanley R. Trost 150 pp., illustr., Ref. 0-121 

A collection of ready-to-run programs for financial calculations, investment 

analysis, record keeping, and many more home and office applications. These 

programs can be entered on your Apple II plus or lIe in minutes! 


YOUR FIRST APPLE II® PROGRAM 

by Rodnay Zaks 150 pp. illustr., Ref. 0-136 

A fully illustrated, easy-to-use introduction to APPLE BASIC programming. 

Will have the reader programming in a matter of hours. 


THE APPLE CONNECTION 

by James W. Coffron 264 pp., 120 illustr., Ref. 0-085 

Teaches elementary interfacing and BASIC programming of the Apple for con­

nection to external devices and household appliances. 


FOR YOUR ATARI 

YOUR FIRST ATARI® PROGRAM 

by Rodnay Zaks 150 pp. illustr., Ref. 0-130 

A fully illustrated, easy-to-use introduction to ATARI BASIC programming. 

Will have the reader programming in a matter of hours. 


BASIC EXERCISES FOR THE ATARI® 

by J.P. Lamoitier 251 pp., illustr., Ref. 0-101 

Teaches ATARI BASIC through actual practice using graduated exercises 

drawn from everyday applications. 


FOR YOUR COMMODORE 64/VIC 20 

THE COMMODORE 64™ BASIC HANDBOOK 
by Douglas Hergert, 144 pp., Ref. 0-116 
A complete listing with descriptions and instructive examples of each of the 
Commodore 64 BASIC keywords and functions. A handy reference guide, 
organized like a dictionary. 

THE EASY GUIDE TO YOUR COMMODORE 64™ 

by Joseph Kascmer 160 pp., illustr., Ref. 0-0126 

A friendly introduction to using the Commodore 64. 


YOUR FIRST VIC 20™ PROGRAM 

by Rodnay Zaks 150 pp. illustr., Ref. 0-129 

A fully illustrated, easy-to-use, introduction to VIC 20 BASIC programming. 

Will have the reader programming in a matter of hours. 


THE VIC 20™ CONNECTION 

by James W. Coffron 260 pp., 120 illustr., Ref. 0-128 

Teaches elementary interfacing and BASIC programming of the VIC 20 for 

connection to external devices and household appliances. 




FOR YOUR IBM PC 
THE ABC'S OF THE IBM® PC 
by Joan Lasselle and Carol Ramsay 100 pp., illustr., Ref. 0-102 
This is the book that will take you through the first crucial steps in learning to 
use the IBM PC. 

THE BEST OF IBM® PC SOFTWARE 
by Stanley R. Trost 144 pp., illustr., Ref. 0-104 
Separates the wheat from the chaff in the world of IBM PC software. Tells you 
what to expect from the best available IBM PC programs. 

IBM® PC DOS HANDBOOK 
by Richard King 144 pp., illustr., Ref. 0-103 
Explains the PC disk operating system, giving the user better control over the 
system. Get the most out of your PC by adapting its capabilities to your specific 
needs. 

BUSINESS GRAPHICS FOR THE IBM® PC 
by Nelson Ford 200 pp., illustr., Ref. 0-124 
Ready-to-run programs for creating line graphs, complex illustrative multiple 
bar graphs, picture graphs, and more. An ideal way to use your PC's business 
capabilities! 

THE IBM® PC CONNECTION 
by James W. Coffron 200 pp., illustr., Ref. 0-127 
Teaches elementary interfacing and BASIC programming of the IBM PC for 
connection to external devices and household appliances. 
BASIC EXERCISES FOR THE IBM® PERSONAL 
COMPUTER 
by J.P. Lamoitier 252 pp., 90 illustr., Ref. 0-088 
Teaches IBM BASIC through actual practice, using graduated exercises drawn 
from everyday applications. 

USEFUL BASIC PROGRAMS FOR THE IBM® PC 
by Stanley R. Trost 144 pp., Ref. 0-111 
This collection of programs takes full advantage of the interactive capabilities 
of your IBM Personal Computer. Financial calculations, investment analysis, 
record keeping, and math practice-made easier on your IBM PC. 

FOR YOUR TIMEX/SINCLAIR 1000/ZX81 
YOUR TIMEX/SINCLAIR 1000™ AND ZX81™ 
by Douglas Hergert 159 pp., illustr., Ref. 0-099 
This book explains the set-up, operation, and capabilities of the Timex/Sinclair 
1000 and ZX81. Includes how to interface peripheral devices, and introduces 
BASIC programming. 

THE TIMEX/SINCLAIR l000™ BASIC HANDBOOK 
by Douglas Hergert 170 pp., illustr. Ref. 0-113 
A complete alphabetical listing with explanations and examples of each word 
in the TIS 1000 BASIC vocabulary; will allow you quick, error-free program­
ming of your TIS 1000. 



TIMEX/SINCLAIR 1000™ BASIC PROGRAMS IN MINUTES 
by Stanley R. Trost 150 pp., illustr., Ref. 0-119 
A collection of ready-ta-run programs for financial calculations, investment 
analysis, record keeping, and many more home and office applications. These 
programs can be entered on your TIS 1000 in minutes! 

MORE USES FOR YOUR TIMEX/SINCLAIR 1000™: 

Astronomy On Your Computer 

by Eric Burgess 176 pp., illustr., Ref. 0-112 

Ready-to-run programs that turn your TV into a planetarium. 


FOR YOUR TRS-80 

YOUR COLOR COMPUTER 

by Doug Mosher 350 pp., illustr., Ref. O..(J97 

Patience and humor guide the reader through purchasing, setting up, 

programming, and using the Radio Shack TRS-80/TDP Series 100 Color Com­

puter. A complete introduction. 


THE FOOLPROOF GUIDE TO SCRIPSITTM 
WORD PROCESSING 
by Jeff Berner 225 pp., illustr., Ref. 0-098 
Everything you need to know about SCRIPSIT -from starting out, to mastering 
document editing. This user-friendly guide is written in plain English, with a 
touch of wit. 

BUSINESS £7 PROFESSIONAL 

COMPUTER POWER FOR YOUR LAW OFFICE 
by Daniel Remer 225 pp., Ref. 0-109 
How to use computers to reach peak productivity in your law office, simply 
and inexpensively. 

GETTING RESULTS WITH WORD PROCESSING 

by Martin Dean & William E. Harding 250 pp., Ref. 0-118 

How to get the most out of your SELECT word processing program. 


INTRODUCTION TO WORD PROCESSING 

by Hal Glatzer 205 pp., 140 illustr., Ref. 0-076 

Explains in plain language what a word processor can do, how it improves 

productivity, how to use a word processor and howto buy one wisely. 


INTRODUCTION TO WORDSTARTM 

by Arthur Naiman 202 pp., 30 illustr., Ref. 0-077 

Makes it easy to learn how to use WordStar, a powerful word processing pro­

gram for personal computers. 


PRACTICAL WORDSTARTM USES 

by Julie Anne Arca 200 pp., illustr., Ref. 0-107 

Pick your most time-consuming office tasks and this book will show you how to 

streamline them with WordStar. 




MASTERING VISICALC® 

by Douglas Hergert 217 pp., 140 illustr., Ref. 0-090 

Explains how to use the VisiCalc "electronic spreadsheet" functions and pro­

vides examples of each. Makes using this powerful program simple. 


DOING BUSINESS WITH VISICALC® 

by Stanley R. Trost 260 pp., Ref. 0-086 

Presents accounting and management planning applications-from financial 

statements to master budgets; from pricing models to investment strategies. 


DOING BUSINESS WITH SUPERCALCTM 

by Stanley R. Trost 248 pp., illustr., Ref. 0-095 

Presents accounting and management planning applications-from financial 

statements to master budgets; from pricing models to investment strategies. 


VISICALC® FOR SCIENCE AND ENGINEERING 

by Stanley R. Trost & Charles Pomernacki 225 pp., illustr., Ref. 0-096 

More than 50 programs for solving technical problems in the science and engi­

neering fields. Applications range from math and statistics to electrical and 

electronic engineering. 


BASIC 
YOUR FIRST BASIC PROGRAM 

by Rodnay Zaks 15Opp. illustr. in color, Ref. 0-129 

A "how-to-program" book for the first time computer user, aged 8 to 88. 


FIFTY BASIC EXERCISES 

by J. P. Lamoitier 232 pp., 90 illustr., Ref. 0-056 

Teaches BASIC by actual practice, using graduated exercises drawn from 

everyday applications. All programs written in Microsoft BASIC. 


INSIDE BASIC GAMES 

by Richard Mateosian 348 pp., 120 illustr., Ref. 0-055 

Teaches interactive BASIC programming through games. Games are written in 

Microsoft BASIC and can run on the TRS-80, Apple II and PET/CBM. 


BASIC FOR BUSINESS 

by Douglas Hergert 224 pp., 15 illustr., Ref. 0-080 

A logically organized, no-nonsense introduction to BASIC programming for 

business applications. Includes many fully-explained accounting programs, 

and shows you how to write them. 


EXECUTIVE PLANNING WITH BASIC 

by X. T. Bui 196 pp., 19 illustr., Ref. 0-083 

An important collection of business management decision models in BASIC, 

including Inventory Management (EOQ), Critical Path Analysis and PERT, 

Financial Ratio Analysis, Portfolio Management, and much more. 


BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS 

by Alan R. Miller 318 pp., 120 illustr., Ref. 0-073 

This book from the "Programs for Scientists and Engineers" series provides a 

library of problem-solving programs while developing proficiency in BASIC. 




CELESTIAL BASIC 
by Eric Burgess 300 pp., 65 ilIustr., Ref. ()'()87 
A collection of BASIC programs that rapidly complete the chores of typical 
astronomical computations. It's like having a planetarium in your own home! 
Displays apparent movement of stars, planets and meteor showers. 

PASCAL 
INTRODUCTION TO PASCAL (Including UCSD Pascal™) 

by Rodnay Zaks 420 pp., 130 ilIustr., Ref. 0-066 

A step-by-step introduction for anyone wanting to learn the Pascal language. 

Describes UCSD and Standard Pascals. No technical background is assumed. 


THE PASCAL HANDBOOK 

by Jacques Tiberghien 486 pp., 270 ilIustr., Ref. ()'()53 

A dictionary of the Pascal language, defining every reserved word, operator, 

procedure and function found in all major versions of Pascal. 


APPLE@ PASCAL GAMES 

by Douglas Hergert and Joseph T. Kalash 372 pp., 40 ilIustr., Ref. ()'()74 

A collection of the most popular computer games in Pascal, challenging the 

reader not only to play but to investigate how games are implemented on the 

computer. 


INTRODUCTION TO THE UCSD p-SYSTEMTM 

by Charles W. Grant and Jon Butah 300 pp., 10 ilIustr., Ref. 0-061 

A simple, clear introduction to the UCSD Pascal Operating System; for begin­

ners through experienced programmers. 


PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS 

by Alan R. Miller 374 pp., 120 ilIustr., Ref. ()'()58 

A comprehensive collection of frequently-used algorithms for scientific and 

technical applications, programmed in Pascal. Includes such programs as 

curve-fitting, integrals and statistical techniques. 


DOING BUSINESS WITH PASCAL 

by Richard Hergert & Douglas Hergert 371 pp., ilIustr., Ref. ().()91 

Practical tips for using Pascal in business programming. Includes design con­

siderations, language extensions, and applications examples. 


OTHER LANGUAGES 

FORTRAN PROGRAMS FOR SCIENTISTS 

AND ENGINEERS 

by Alan R. Miller 280 pp., 120 ilIustr., Ref. ()'()82 

In the "Programs for Scientists and Engineers" series, this book provides spe­
cific scientific and engineering application programs written in FORTRAN. 

A MICROPROGRAMMED APL IMPLEMENTATION 
by Rodnay Zaks 350 pp., Ref. 0-005 
An expert-level text presenting the complete conceptual analysis and design of 
an APL interpreter. and actual listing of the microcode. 



UNDERSTANDING C 

by Bruce Hunler 200 pp., Ref 0-123 

Explains how to use the powerful C language for a variety of applications. 

Some programming experience assumed. 


CP/M 

THE CP/M® HANDBOOK 

by Kodnay Zaks 320 pp., 100 illustr., Ref. 0-048 

An indispensable reference and guide to CP/M-the most widely-used operat­

ing system for small computers. 


MASTERING CP/M® 

by Alan K. Miller 398 pp., Ref. 0-068 

For advanced CP/M users or systems programmers who want maximum use of 

the CP/M operating system ... takes up where our CP/M Handbook leaves off. 


THE BEST OF CP/M® SOFTWARE 

by Alan K. Miller 250 pp., illustr., Ref. 0-100 

This book reviews tried-and-tested, commercially available software for your 

CP/M system. 


ASSEMBLY LANGUAGE PROGRAMMING 

PROGRAMMING THE 6502 
by Kodnay Zaks 386 pp., 160 illustr., Ref. 0-046 
Assembly language programming for the 6502, from basic concepts to 
advanced data structures. 

6502 APPLICATIONS 

by Kodnay Zaks 278 pp., 200 illustr., Ref. 0-015 

Real-life application techniques: the input/output book for the 6502. 


ADVANCED 6502 PROGRAMMING 

by Kodnay Zaks 292 pp., 140 illustr., Ref. 0-089 

Third in the 6502 series. Teaches more advanced programming techniques, 

using games as a framework for learning. 


PROGRAMMING THE Z80 

by Kodnay Zaks 624 pp., 200 illustr., Ref. 0-069 

A complete course in programming the Z80 microprocessor and a thorough 

introduction to assembly language. 


ZOO APPLICATIONS 

by James W. Coffron 288 pp., illustr., Ref. 0-094 

Covers techniques and applications for using peripheral devices with a Z80­
based system. 


PROGRAMMING THE 6809 

by Kodnay Zaks and William Labiak 362 pp., 150 illustr., Ref. 0-078 

This book explains how to program the 6809 in assembly language. No prior 

programming knowledge required. 




PROGRAMMING THE Z8000 

by Richard Mateosian 298 pp., 124 illustr., Ref. 0-032 

How to program the Z8000 16-bit microprocessor. Includes a description of the 

architecture and function of the Z8000 and its family of support chips. 


PROGRAMMING THE 8086/8088 

by James W. Coffron 300 pp., illustr., Ref. 0-120 

This book explains how to program the 8086 and 8088 in assembly language. 

No prior programming knowledge required. 


HARDWARE 

MICROPROCESSOR INTERFACING TECHNIQUES 
by Rodnay Zaks and Austin Lesea 456 pp., 400 illustr., Ref. 0-029 
Complete hardware and software interconnect techniques. including D to A 
conversion. peripherals. standard buses and troubleshooting. 



S·COMPUTERBOOKS 

are different. 

Here is why. • • 
At SYBEX, each book is designed with you in mind. Every manuscript is 
carefully selected and supervised by our editors, who are themselves com­
puter experts. Programs are thoroughly tested for accuracy by our techni­
cal staff. Our computerized production department goes to great lengths 
to make sure that each book is designed as well as it is written. We publish 
the finest authors, whose technical expertise is matched by an ability to 
write clearly and to communicate effectively. 

In the pursuit of timeliness, SYBEX has achieved many publishing firsts. 
SYBEX was among the first to integrate personal computers used by 
authors and staff into the publishing process. SYBEX was the first to 
publish books on the CP/M operating system, microprocessor interfacing 
techniques, word processing, and many more topics. 

Expertise in computers and dedication to the highest quality in book pub­
lishing have made SYBEX a world leader in microcomputer education. 
Translated into fourteen languages, SYBEX books have helped millions of 
people around the world to get the most from their computers. We hope 
we have helped you, too. 

FOR A COMPLETE CATALOG 
OF OUR PUBLICATIONS 

U.S.A. FRANCE GERMANY 
SYBEX,Inc. SYBEX SYBEX-VERLAG 
2344 Sixth Street 4 Place F~Iix-Ebou~ Heyestr.22 
Berkeley, 75583 Paris Cedex 12 4000 DUsseldorf 12 
California 94710 France West Germany 
Tel: (800) 227-8233 Tel: 1/347-30-20 Tel: (0211) 287066 
Telex: 336311 Telex: 211801 Telex: 08 588 163 



Programming the 
8086/8088 
~ / 

Imagine yourself programming, controlling, and using one of 
the most powerful and versatile 16-bit microprocessors in the 
computer industry today. 

This book will teach you how to get the most from the 8086 and 
8088 microprocessors-from the internal architecture to the 
advanced addressing modes. 

Specifically, you will learn : 

• basic concepts of microprocessor programming 
• the internal structure 
• memory organizations 
• the complete interrupt structure 
• input and output techniques 
• how to use the 8088 to control the IBM PC 

and much more. 

Sample programs make the instructions provided easy to 
understand. 

The specific differences and similarities between the 8086 and 
the 8088 are covered in detail. 

ABOUT THE AUTHOR: 

James W. Coffron is a computer systems engineer special­
izing in the design and testing of microprocessor-based 
systems. He has taught seminars in both academic and indus­
trial settings, and is the author of several books about 
microprocessors. He holds an MSEE degree from Santa Clara 
University. 

ISBN O~89588-120-9 


	Contents 
	Introduction

	1. Basic Concepts

	2. Inside the 8086/8088

	3. Memory Organisation & Addressing Modes

	4. Instruction Set: Individual Descriptions

	5. Basic Programming Techniques

	6. Interrupts

	7. Input and Output

	8. More Applications Using the IBM Personal Computer 

	9. Program Development

	Appendix A: Hexidecimal Conversion Table

	Appendix B: ASCII Conversion Table

	Appendix C: Decimal to BCD Conversion Table

	Appendix D: 8086/8088 Instruction Set Reference Data

	Index

	[ The SYBEX Library ]

	[ Rear Cover ]




