
THE

PROGRAMMER'S

GUIDE TO SCSI

The Programmer's Guide
to SCSI

Brian Sawert

...
.......

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts • Harlow, England • Menlo Park, California

Berkeley, Cal ifornia • Don Mills, Ontario • Sydney

Bonn • Amsterdam • Tokyo • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. W here those designations appear in this book, and Addison

Wesley was aware of a trademark claim, the designations have been printed in initial capi

tal letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or omis

sions. No liability is assumed for incidental or consequential damages in connection with

or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For

more information please contact:

Corporate, Government, and Special Sales Department

Addison Wesley Longman

One Jacob Way

Reading, Massachusetts 0 I867

Copyright © I998 by Brian Sawert

Library of Congress Cataloging-in-Publication Data

Sawert, Brian

The programmer's guide to SCSI I Brian Sawert.

p. em.

Includes bibliographical references and index.

ISBN 0-20I-I8538-5

I. Microcomputers-Programming.

(Computer bus) I. Title.

2. Computer interfaces. 3. SCSI

QA 76.6.S29 I998

004.6'4--dc2I 97-44773

CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy

ing, recording, or otherwise, witl10ut the prior consent of the publisher. Printed in the

United States of America. Published simultaneously in Canada.

ISBN: 0-20I-I8538-5

Text printed on acid-free paper
I 2 3 4 5 6 7 8 9-MA--020 1009998

First printing, February I998

This book is lovingly dedicated to my wife Mary.

Thank you for your endless encouragement and support.

Contents

Preface
Intended Audience

Xlll

Xlll

XIV

XV

How This Book Is Organized
What You Will Need

Acknowledgments xvi

About the Authors xvn

Introduction

Chapter 1 An Overview of SCSI Technology
The SCSI Solution
SCSI- 1

xix

1

2
SCSI- 1 Features 4

Intelligent Devices 4

Multitasking 110 4

Synchronous Data Transfer 4

Multiple Device Types on a Single lntelface 5
The Birth of SCSI-2 5

v

vi Contents

New Features in SCSI-2 5

Fast SCSI 5

Wide SCSI 6

Fast Wide SCSI 6

Queued 110 Processes 6

New Command Sets 7

Improved SCSI- 1 Features 7

Data Parity Required 7

Message Support Required 7

Terminator Power Provided by Initiator 7

SCSI-3 on the Horizon 8

Fast-20 and Fast-40 SCSI 8

Serial SCSI Standards 9

Fibre Channel 1 0

Serial Standard Architecture 1 0

P/394 II
Layered Architecture 1 1

Plug and Play SCSI 1 2

Chapter 2 SCSI Fundamentals 1 5
SCSI Transactions: an Overview 1 5

Chapter 3 SCSI Phases 1 7
SCSI Phases 1 8

Bus Free 1 8
Arbitration 1 8
Selection 1 9
Reselection 1 9
Message Out 1 9
Command 20
Data In and Data Out 20
Status 2 1
Message In 2 1
Phase Sequence 22

Chapter 4 SCSI Messages 23
Message Types 24

The Identify Message 24
Extended Messages 25

Synchronous Data Transfer Request 25
Wide Data Transfer Request 26

Contents vii

Other Common Messages 27
No Operation 27
Abort 28
Bus Device Reset 28
Disconnect 28
Ignore Wide Residue 28
Queue Tag Messages 29

Simple Queue Tag 29
Head of Queue Tag 29
Ordered Queue Tag 30

Chapter 5 SCSI Commands 3 1
Command Structure 3 1

Operation Codes 32
Logical Unit Number 32
Command Parameters 32
Control Field 32
Parameter Lists 33

Byte Order 33
Mandatory SCSI Commands 33

Test Unit Ready 34
Inquiry 34

Example: Iomega Zip Drive 37
Optional Commands 38

Device Type-Specific Commands 39

Mode Select 39

Mode Sense 40

Mode Sense Data Format 4 1

Example: Iomega Zip Drive 42

Reading and Writing 44

Read 45

Write 45

Other Commands 46

Chapter 6 Status, Sense, and Errors 47
Status 48

Status Codes 48

Sense Data 49

Sense Key 5 1
Unit Attention 52

Additional Sense Codes 52
Example: Iomega Zip Drive 52

viii Contents

Chapter 7 ASPI: The Advanced SCSI
Programming Interface 55

What Is ASPI? 56

Why Should I Use ASPI? 56
ASPI Concepts 57

Adapter and Device Addressing 57

Issuing SCSI Commands 58

Building the SCSI Request Block 58
Sending an SRB to the ASP! Manager 60
Waiting for an SRB to Complete 60

Processing Returned Status Information 63
Adapter-Specific Properties 64
Connecting to the ASP/ Manager 64

ASPI Commands 69
Host Adapter Inquiry (SC HA INQUIRY) 7 1

Get Device Type (SC_GET_DEV_TYPE) 76

Execute SCSI Command
(SC_EXEC_SCSI_CMD) 78

Abort SRB (SC _ABORT _SRB) 83
Reset SCSI Device (SC _RESET_ DEV) 86
Rescan SCSI Bus (SC_RESCAN_SCSI_BUS) 89

Get/Set Timeouts (SC_GETSET_TIMEOUTS) 90

ASPI Error and Status Codes 93

ASP/ SRB Status (SRB :_Status) 93
SS PENDING 94
SS COMP 94
SS ERR 94
SS INVALID CMD 95 - -

SS INVALID HA 95 - -

SS NO DEVICE 95
SS INVALID SRB 95 - -

SS FAILED /NIT 95 - -

SS ASP/ IS BUSY 95 - - -

SS B UFFER TOO BIG 96 - - -

SS B UFFER ALIGN 96 - -

SS SECURITY VIOLATION 96 - -

SS ABORTED 96
SS ABORT FAIL 96 - -

SS NO ASP! 96
SS ILLEGAL MODE 96 - -

SS MISMATCHED COMPONENTS 97 - -

SS NO ADAPTERS 97

Chapter 8

Chapter 9

SS INSUFFICIENT RESOURCES
Host Adapter Status (SRB _ HaStat)

HASTAT OK
HASTAT SEL TO
HASTAT DO DU
HASTAT BUS FREE - -

HASTAT PHASE ERR - -

HASTAT TIMEOUT
HASTAT COMMAND TIMEOUT - -

HASTAT MESSAGE REJECT -

HASTAT BUS RESET - -

HASTAT PARITY ERROR - -

HAST AT_ REQUEST_ SENSE _FAILED
Target Device Status (SRB _TargStat)

Additional ASPI for Win32 Functions

Low-Level SCSI Programming
with SCRIPTS

Working with SCRIPTS

An Overview of SCRIPTS

SCRIPTS Instructions
Logical Operators and Conditional Tests

Embedding SCRIPTS in C Code
Changing Run-Time Parameters

Patching
Tahle Indirect Addressing

Detecting SCRIPTS Program Completion
Polling for Completion
Hardware Interrupt on Completion

Initialization and Housekeeping
PC/ BIOS Functions
Initializing SCSI Control Registers

Sample Code
Generic SCRIPTS Code

SCSI Target-Mode Programming
Hardware
Handl ing SCSI Phases
Target-Mode API

Contents

97
97
97

97
98
98
98
99
99
99
99
99
99
99

1 00

1 03
1 03

1 04

1 05
1 07
1 07
1 09
1 09

1 1 0
1 1 2

1 1 3

1 1 3
1 1 4
1 1 4
118

1 1 9
1 20

1 27
1 28
1 29
1 36

Adapter Inquiry (TSPI_CMD _Adapterlnjo) 1 39
Attach LUN (TSPI _ CMD _ AttachLUN) 1 41

ix

X Contents

Chapter 10

Chapter 11

Chapter 12

Detach LUN (TSPI _ CMD _DetachLUN)
Get Event (TSP I_ CMD _ GetEvent)
Read Data From Host

(TSPI _ CMD _ ReadFromHost)
Write Data To Host

(TSPI_CMD _ WriteToHost)
Complete Command

(TSPI _ CMD _ CompleteCommand)
Send Message To Host

(TSPI_CMD _SendMessage)
Get Message From Host

(TSPI _ CMD _ GetMessage)
Disconnect (TSPI_CMD _Disconnect)
Reconnect (TSPI _ CMD _Reconnect)

Connecting to the TSPI Manager
Using the TSPI Interface

SCSI Support under Windows
ASPI for Windows 3 .x
ASPI for Win32 (Windows 95 and NT)
The Windows 95 and NT SCSI Model
Windows NT SCSI Pass-Through Interface

IOCTL _SCSI_ GET _INQUIRY _f) ATA
IOCTL SCSI GET CAPABILITIES - - -

IOCTL SCSI GET ADDRESS - - -

IOCTL SCSI RESCAN BUS - - -

IOCTL SCSI PASS THROUGH and - - -

IOCTL SCSI PASS THROUGH DIRECT - - - -

Unix SCSI Implementations
A Brief Description of UNIX Device Drivers

Comparison of UNIX Implementations
The Linux SCSI Disk Driver
The Linux SCSI Pass-Through Driver

Example SCSI Pass-Through Application
Program

Summary
Acknowledgments

Troubleshooting and Common Mistakes
Start with a Clean Hardware Layer

SCSI Bus Termination

1 4 1

1 42

1 44

1 46

1 47

1 48

1 50
1 52
1 53

1 53
1 55

1 6 1

1 6 1
1 62

1 63
1 65
1 67

1 69
1 69

1 70

1 7 1

1 75
1 76

1 79
1 89
2 1 2

229
229
229

23 1
23 1
232

Contents xi

SCSI Termination Power 232
Be Cautious with Cables 232
Don 't Take Documentation at Face Value 233
Watch Out for Platform Dependencies 233

SCSI Byte Order 233
ASP! Byte Order 233
Structure Alignment 234
Buffer Alignment 234

Debugging Tools 234
Interactive Command Utilities 234
Virtual Devices 235
SCSI Bus Analyzers 235

Keep a Record 236

Chapter 13 Sample Application: SCSI Snooper 237
An Overview of the SCSI Snooper 238
The ASPI Class Library 243

The ScsilnteJface Class 244

The ScsiDevice Class 245
The ScsiCmdB/ock Class 246
Initializing the Scsi!nte1jace Class 247
Executing a ScsiCmdBlock 254

Using the ASPI Class Library 256
Derh·ing SCSI Device Types 256
The SCSI Snooper Application Framev.·ork 260
SCSI Snooper Application Structure 260

Appendix A Glossary of Acronyms 263

General Terms 263
SCSI-2 Definitions 264

SCSI-2 Protocols 264
SCSI-3 Definitions 264

SCSI-3 Architecture 264
SCSI-3 Command Sets 264
SCSI-3 Protocols 265

SCSI Software Interfaces 265

Appendix B SCSI Resources 267
Books 267
Magazines and Journals 269

xii Contents

Online Information 269

Web Sites 269

Usenet Newsgroups 27 1

Ftp Sites 27 1

Bulletin Board Systems 27 1

Manufacturer Contacts 272

Appendix C Installing the Windows NT
ASPI32 Service 273

Appendix D Companion CD-ROM Contents 275

Sample Code 275

SCRIPTS Sample Code 275

SCSI Snooper Application 276
TSPI Target-Mode SCSI Programming

Interface 276
SCSI Specifications 276
SCSI Frequently Asked Questions 276

Symbios SCRIPTS Support 276
Linux SCSI Documentation 277

Index 279

Preface

In the years since the Small Computer Systems lntel face (SCSI) first
appeared, it has gained wide acceptance as the interface standard for

high-performance computer peripherals . Once confined to mainframes
and high-end workstations, SCSI devices are now supported by most
desktop operating systems running on personal computers .

There i s a reason for this near universal support. The SCSI standard

was designed as a h igh-performance interface to a wide range of devices

types . Disk drives, optical and tape drives, scanners , and printers all come

equipped with SCSI interfaces. As faster machines become more com
mon, the demand for faster peripherals follows. SCSI technology offers a

way to meet this demand.
Though manufacturers and end users have embraced the Small Com

puter Systems Interface, information about programming SCSI devices is
sti l l scarce. This book attempts to fill that gap by describing SCSI from a

programmer's point of v iew.

Intended Aud ience

This book is intended as a tutorial and a reference for programmers writ
ing software to support SCSI peripherals . Whether you are writing low
level code for a SCSI device driver or high-level code for an application,
you wi l l find information you can use.

xiii

xiv Preface

Maybe you have waded through the details of the ANSI specification
documents . Maybe you have tried to decipher another programmer's
source code. There i s no doubt that learning the fundamentals of SCSI

programming through trial and error can be a source of endless frustration.
Our goal i s to plant a few guideposts to steer you in the right direction, so

as to flatten the learning curve for this complex but fascinating technology.

The presentation is slanted toward software development. Information

about s ignal characteristics , timing protocols , and hardware details only

appear when they directly relate to a programming task. We assume that if
you are reading this book, you 're more comfortable with a keyboard than
a soldering iron . We also assume some experience with C, C++, and
assembly language .

How This Book Is Organized

This book begins with an overview of SCSI. We describe the design phi
losophy behind the standard, and how it has evolved to incorporate new
features and capabilities . We also describe variations of the SCSI standard
that offer faster transfers , wider data paths, or other features .

Anyone working with SCSI must understand some fundamental con

cepts. How do SCSI devices communicate? How are commands executed

and data transferred? What roles do the initiator and the target play? We

address these questions by describing the SCSI transaction model. This

provides a foundation for a more detailed discussion of the elements of a
SCSI transaction.

Next we present a layered approach to SCSI programming, starting
with high-level programming interfaces. We explore the Advanced SCSI
Programming lnteJface (ASPI) under DOS and Windows, and ASPI32

extensions under Windows 95 and NT.

Windows NT offers its own built-in SCSI support. We explore how it
works by examining the Windows NT device model and how the ASPI
layer uses it.

Then we tackle more advanced material as we look at low-level pro
gramming using common SCSI I/0 processors and scripting languages
such as Symbios Logic 's SCRIPTS . We demonstrate both initiator and
target operations.

SCSI enjoys wide support on UNIX systems . Unfortunately, the specif
ics of SCSI support differ greatly between UNIX implementations. The
UNIX chapter highlights SCSI support under different systems, then
focuses on SCSI under Linux. This platform is widely available, and open
enough to encourage experimentation.

Preface xv

Last of al l , we develop a SCSI class l ibrary and use it to develop a
sample application under Windows. This should encourage you to use and
extend the l ibrary for your own projects .

The final chapter offers advice in troubleshooting and debugging.
Appendix B lists SCSI resources in print and electronic form.

What You Wi l l Need

The sample code in this book was designed for portability. We developed

most of the code using Microsoft Visual C++. The SCRIPTS sample code
uses Borland 's C++ compiler and Turbo Assembler. Either should port
with little effort. The sample application uses Microsoft 's Foundation
Classes l ibrary, also available with other compilers . The Linux code uses
the compiler that comes with the operating system.

We recommend using an Iomega Zip drive as a test device for the sample
code. Some of the samples demonstrate disk drive operations. When testing

these, it 's nice to have something besides your system disk to work with.

Zip drives come in SCSI or parallel port versions. The parallel port

device uses an ASPI compatible driver.
The low-level code uses the Symbios Logic SCRIPTS compiler and

host adapters equipped with 53C8XX family processors. The compiler is
available from the Symbios Logic FTP site. The code should be compatible
with other adapters in the same family. If your host adapter uses a chip

from another manufacturer, you wil l not be able to use this code. If you

wish to contact Symbios Logic, refer to the manufacturer l i sting in

Appendix B .
The ASPI code wil l work with almost any host adapter that comes with

an ASPI compatible driver. For more advanced work, you may wish to

purchase the ASPI Developer's Kit from Adaptec. To contact Adaptec ,
refer to the manufacturer l isting in Appendix B .

For any serious work with SCSI, you wi l l need a copy of the ANSI

SCSI-2 specification document. Though we cover SCSI fundamentals in

this book, and probe the depths of some programming issues, we can ' t
duplicate all the detai ls that the specification covers. Consider this book a
supplement to the ANSI document, which is avai lable from Global Engi
neering Documents . You ' l l find them listed in Appendix B .

xvi Preface

Acknowledgments

This book would not have been possible without contributions from many
people. Kathleen Tibbetts , formerly an editor at Addison-Wesley, had faith
in the project from the beginning.

Pamela Thompson at Earle Associates and Lauren Uddenberg at Sym

bios Logic went above and beyond the call of duty to provide support and
information about Symbios products.

Thanks go to Mike Berhan and Dan Polfer of Adaptec for reviewing

the ASPI-related material . Thanks also to John Lohmeyer, chairman of
the T l O Technical Committee, for his comments and critiques of the
material covering the SCSI specifications .

Special thanks go to contributing authors Larry Martin and Gary Field.

Larry shares his invaluable programming experience in the chapters on

ASP!, Windows device support, and SCSI target mode. Gary, who main

tains the SCSI FAQ for the comp.periphs.scsi newsgroup, shares his

considerable knowledge of UNIX support for SCSI in a chapter devoted
to the subject.

Most important, I wish to acknowledge the inspiration and encourage

ment that my wife, Mary, provided throughout this project.

About the Authors

Brian Sawert

Brian Sawert earned his physics degree from Northern Arizona Univer

sity. He has worked with the Small Computer Systems Interface for

several years , developing applications and drivers for SCSI devices rang

ing from optical drives to scanners . His publications include articles for
Dr. Dobb's Journal and Windows!DOS Developer's Journal. An article
entitled "The Advanced SCSI Programming Interface" explored SCSI
programming using ASPI.

In real l ife Brian enjoys bike riding, collecting Jan and Dean records,
and spending time with his wife, Mary, and their two pugs , Poco and

Rocky.

Larry Martin

Larry Martin has been programming since the arrival of his first IBM PC
in 1 982. He used that marvelous machine to pay his way through college

writing software for local businesses . S ince then he has focused on the
hardware-software interface, especially in embedded systems. Larry has
been working with SCSI interfaces since his stint at Flagstaff Engineering
in the late 1 980s, where he wrote dev ice drivers for adapter cards, scan

ners , and disk- and tape drives . He has also written target-mode code for

xvii

xviii About the Authors

different SCSI peripherals , and has even written a few ASPI-compliant
drivers that make non-SCSI devices mimic their more popular counter
parts. Larry 's current focus is the emerging IEEE 1 394 "FireWire" Serial

Bus interface, and he is working with 3A International to develop 1 394

test equipment that is useful to real-world programmers .
Larry 's hobbies include skiing, scuba diving, and turning red in the

face while cursing at inaccurate data sheets.

Gary Field

Gary Field has a computer science degree from Northeastern University
and has worked with device-level software since 1 978 . In 1 985 he became

involved with SCSI at Wang Laboratories on MS-DOS platforms and
later led the development of an ANSI CAM subsystem for several UNIX

platforms . He has also maintained the usenet comp.periphs.scsi FAQ list
for several years . Since 1 996 Gary has worked at Digital Equipment Cor

poration in their UNIX I/0 development group.

In his home life, he is a scout leader and in spare moments enjoys ham

radio, electronic tinkering, and photography, as well as camping, boating,

and fishing with his wife and son.

Introduction

Programming SCSI peripherals is as much an art as a science. Many of
the details are obscure or undocumented, forcing newcomers to learn the
craft the way other artists do-through oral tradition passed down by other
programmers . How do you handle a particular message? Why doesn 't a
certain command work the way you expect it to? Sometimes only a battle

scarred veteran of SCSI programming can provide an answer.
For those of you who have never worked with SCSI before, we hope

this book can provide the same kind of advice and insight. You who have
already experienced the joy of programming SCSI devices may find new

information or a different slant on what you already know that can make
you a more effective programmer.

Newcomers may wish to ease into the material , starting with the chap
ters that describe the SCSI specification and present an overview of how
SCSI works. If you already are famil iar with SCSI, or just impatient, skip
ahead to chapters on specific topics l ike ASPI or SCRIPTS programming,

or SCSI under UNIX. This book is meant to be a working reference as
much as a textbook.

Once your appetite has been whetted, explore some of the other
resources l isted in Appendix B. With the growing popularity of SCSI,
more information is available daily.

So ease in to the material or plunge in boldly, but enjoy the journey!

xix

Chapter 1

An Overview of SCSI Technology

In the dark ages before SCSI, the world of computer peripherals was a
confusing place. In particular, small computers came equipped with a

bewildering assortment of interfaces and communications protocols for

disk drives, printers , and other devices . The ST506 and ESDI interfaces
fought for dominance in the disk drive market. Proprietary standards for
parallel and serial interfaces caused widespread compatibil ity problems .
Each new device introduced for the small computer market brought

another support challenge for software developers .

The SCSI Soluti on

The Small Computer System Intelface (SCSI) was an attempt to create a
standard interface and communications protocol for computer peripher
als . SCSI defined cabling requirements, electrical s ignal standards, a

transaction protocol , and a common command set. The ideal represented

by SCSI was that a single device interface could host a variety of periph
erals from storage devices l ike disk- and tape drives to output devices l ike

printers . The specification was broad enough to encompass a wide range
of devices on the same bus , and also offered the prospect of device com
patibility across different platforms and operating systems .

In practice, early SCSI devices failed to l ive up to this lofty ideal . In
areas where the specification was vague or loosely defined, manufacturers

1

2 An Overview of SCSI Technology

SCSI-1

interpreted it differently. Early SCSI devices had a reputation for working
only with certain host adapters . Combining different types or makes of
devices on the same bus was an exercise reserved for only the most stub
born systems integrators with the time and expertise to make them work
together.

SCSI, also referred to as SCSI - 1 , was defined in the ANSI specification
X3 . 1 3 1 - 1 986 in 1 986. This document, over 200 pages long, outlined a
new interface on several levels . It spelled out cabling requirements and
connectors, and electrical requirements for signal voltages , timing, and

bus termination at the physical-transport level. Beyond the physical inter

face specification, it outlined a communications protocol for SCSI
devices to employ. Last of all , it defined a set of mandatory and optional
device commands.

Figure 1 - 1 shows a graphic representation of the Small Computer Sys
tem Interface.

The SCSI- I specification did not define a programming interface. Later
standards for software layering, such as Adaptec 's Advanced SCSI Pro
gramming Intelface (ASPI) and the Common Access Method (CAM),

Application Layer

�--------
'
---------1 I

1 Programming Interface I

I I

--------,---------

SCSI Command Layer

SCSI Protocol Layer

Physical Transport Layer

Figure 1 -1 . Elements of SCSI Specification

SCS/-1 3

arose to fill this gap (represented by the dotted box in Figure 1-1) . As with
most de facto standards, the marketplace chose its favorite . CAM has
been updated for use with SCSI-3, but generally is ignored in favor of
ASPI in the PC market. CAM still finds support on many UNIX operating

systems.
Many of the problems that arose in implementing SCSI centered on the

physical and electrical components of the interface. Problems with cable
lengths and signal termination were common . Different manufacturers
used the same connector with different signal pinouts . In one case, Future

Domain and Apple Computer both used cables with DB25 connectors .

Because they were wired differently, using the wrong cable could damage
a SCSI device .

The SCSI- 1 specification left room for ambiguity in its definition of
these layers . For instance, although the terminator power characteristics
were defined, there was no requirement for which device would provide
this . As a consequence, some SCSI host adapters supplied a TERMPWR

signal, while others did not. Problems would appear when neither a host
adapter nor any of the attached devices supplied terminator power.

Bus termination was a frequently misunderstood feature . Perhaps the
specification was vague, or perhaps readers simply misinterpreted it.
Whatever the reason, some of the most common questions in supporting
SCSI and troubleshooting SCSI installations dealt with termination of
devices in a SCSI chain.

At the command level, SCSI -1 left much open to interpretation . It
defined a minimal command set, declaring some commands mandatory,

some optional, and many vendor-specific. The mandatory commands

dealt with device identification, status and error reporting, and error

recovery. Most of the other commands fell under the optional or vendor
specific categories . While this made it easy for manufacturers to imple

ment SCSI in their devices, the lack of standard command sets for
different device types caused headaches for software developers . A pro
grammer who wanted to support SCSI scanners in an application needed

to know the command set for each scanner. If he wanted to use any of the
optional commands, he had to know which devices supported them. SCSI
had simplified things for hardware designers, but programmers were still
waiting to see the benefits of a standard device interface.

The lack of a common command set wasn 't an oversight on the part of
the ANSI X3T9.2 committee. SCSI peripherals had appeared on the mar
ket even before the specification was approved. This created some
pressure to declare the standard complete, rather than tie it up with further
revisions . An interim working group developed a Common Command Set

4 An Overview of SCSI Technology

(CCS), oriented toward disk drives. Command sets for many other classes

of SCSI devices would not appear until the SCSI-2 specification.

SCSI-1 Features

Though it had its shortcomings, the SCSI standard brought features to

small computers that were not available with other interfaces.

Intelligent Devices

Under the SCSI model, peripheral devices use intelligent onboard con

trollers. This moves the burden of command processing from the system

processor to the device itself. Each device is responsible for error report

ing and recovery. Commands for direct access devices, such as disk

drives, use logical block addressing. The devices themselves map logical

addresses to physical addresses, compensating for defective sectors or

unusual geometries. Compare this to the old ST506 interface under DOS,

which forced the operating system to keep track of bad sectors and could

support only a limited range of disk drive configurations.

Multitasking 110

SCSI-1 offered something new to small computers in its support for multi

tasking I/0. The disconnect/reconnect feature, especially effective for

disk drive operations, gives devices the ability to disconnect from the bus

during long operations, reconnecting when they are ready to complete

them. When a disk drive receives a read request, it can disconnect while it

locates and reads the data. During this time the bus is free for other

devices or operations. When the device is ready to transfer its data, it

reconnects to the initiator and completes the operation. Coupled with a

multitasking operating system, this approach can drastically boost

throughput.

Synchronous Data Transfer

The default data transfer method under SCSI is asynchronous, which
relies on handshaking to acknowledge each byte transferred. This yields

transfer speeds of about 1.5MB per second over the 8-bit-wide SCSI bus.

SCSI-I defined a synchronous transfer option that boosted the transfer

rate to nearly 5MB per second. Perhaps slow by today's standards, it rep

resented an improvement over the prevailing technology.

New Features in SCS/-2 5

Multiple Device Types on a Single Interface

SCSI-1 defined an interface that supported up to eight devices in a chain

configuration. System designers using SCSI-I could connect up to seven

peripherals to a single host adapter. In addition, these peripherals were not

restricted to a single device type. A unique feature of SCSI is its ability to

support disk drives, tape drives, scanners, and other devices on a common

interface. In practice, this was difficult to achieve under SCSI-I because

of device incompatibilities and other factors.

The Birth of SCSI-2

As innovative as SCSI-I was, it had its limitations. The standard allowed

some exceptions in the way parity, messages, and commands were han

dled. Manufacturers who took advantage of these exceptions often found

their products incompatible with others.

As with any standard in the computer industry, speed also was an issue.

An 8-bit standard seemed out of date once the industry embraced a 16-bit

architecture for personal computers. With the newer architecture, proces

sor performance had also increased, so that even the 5MB per second

synchronous transfer rates couldn't keep up with the newer CPU speeds.

B y the time the SCSI-I standard became official, improvements

already had been proposed and implemented in the marketplace. These

improvements were incorporated in the standard that became SCSI-2. It is

important to note that devices billed as SCSI-2-compatible appeared

before an official SCSI-2 standard existed. Many incompatibilities can be

traced to these early implementations of unapproved features. As others

have found out when working with new standards, cm·eat implementor.

New Features in SCSI-2

The updated specification for SCSI-2 addressed some of the shm1comings

of SCSI- 1, offered some improvements, and included some new features,
including the following.

Fast SCSI

SCSI-2 improved synchronous transfer speeds with an optional fast

transfer rate. This feature, known as Fast SCSI, raised the maximum syn

chronous data rate to I 0 million transfers per second. The stricter timing

6 An Overview of SCSI Technology

requirements that make Fast SCSI possible also place greater demands on
cabling and electrical requirements .

Two wiring alternatives have been available since the first SCSI speci

fication. S ingle-ended wiring is intended for short runs, with a maximum
cable length of 6 meters . Differential SCSI is designed for longer hauls,

with a maximum length of 25 meters . In general, differential wiring pre
serves signal integrity and timing better, and is a better choice for fast

transfer speeds. However, single-ended SCSI devices are more common

than differential .

Wide SCSI

SCSI-2 introduced options for a 1 6-bit- and a 32-bit-wide data bus . Wide
SCSI addressed the single byte transfer limitations of SCSI - 1 , instant! y
doubling or quadrupling transfer speeds. With the Wide SCSI option
came new cable definitions to accommodate it. The old SCSI- 1 cable was
designated the A cable. A second cable, the B cable, provides additional

signal lines that widen the data bus to 1 6 or 32 bits .

A consequence of having additional data lines is the ability to address

more devices. Theoretically, a 1 6-bit bus can support 16 devices , and a
32-bit bus can support 32 . However, electrical and other factors limit the

actual number of devices a single bus can support. In practice, only 1 6-bit
Wide SCSI seems to have penetrated the market-few manufacturers

have implemented the 32-bit variation. This scarcity makes it safe to
assume that the term "Wide SCSI" generally refers to the 1 6-bit version.

Fast Wide SCSI

What happens when you combine Fast SCSI with Wide SCSI? The SCSI-2
specification defined a Fast Wide SCSI option, boasting transfer speeds of
20 or 40MB per second, depending on the bus width . The same cabling

restrictions apply as for Fast SCSI.
As is the case with Wide SCSI, 1 6-bit implementations of Fast Wide

SCSI abound, but 32-bit Fast Wide SCSI is more of a paper standard than
a working standard.

Queued 110 Processes

SCSI-2 added an option for two types of l/0 process queuing : untagged
and tagged. Untagged queuing permits a device to accept commands from
an initiator while executing 1/0 processes from another. Tagged queuing
gives targets the ability to accept a series of I/0 processes from the same

Improved SCS/-1 Features 7

or different initiators. These are executed according to a queue manage

ment algorithm, or in a specified order.

Queuing should not be confused with command linking, which was sup

ported in SCSI-1. With command linking, several commands are executed

in sequence in a single I/0 operation. A linked command sequence for a

disk drive might include a seek operation followed by a read command.

Linked commands are stored as a single entity in an I/0 process queue.

New Command Sets

SCSI-2 defined command sets for devices that were not included in the

original specification. Support for CD-ROM drives, scanners, optical

media, medium changers, and communications devices were all spelled

out in the SCSI-2 document. All command sets were extended and

enhanced to reflect demand for more sophisticated featrues.

Improved SCSI-1 Features

Several years of experience with SCSI-I had helped to expose both its

strengths and its shortcomings. With this experience to guide them, the

ANSI X3T9.2 task group proposed some incremental improvements in

the standard. Several new low-level requirements were put into place.

Data Parity Required

SCSI-2 required the use of data parity. It was optional under SCSI-1.

Message Support Required

SCSI-2 devices were required to support messages as part of the transac

tion protocol. SCSI-I made them optional, but the advanced features in

SCSI-2 required a means of negotiation between initiators and targets.

SCSI-2 uses the Identify message to negotiate disconnect rights

between an initiator and a target. Synchronous and wide data transfers,

queue operations, and other features are negotiated through messages

passed beween the initiator and target.

Terminator Power Provided by Initiator

SCSI-2 solved the issue of terminator power by mandating that the initia

tor provide it. It also outlined a method of active termination that is more

effective than the passive termination scheme in common use.

8 An Overview of SCSI Technology

Overall, the new specification closed loopholes in the original , enforced

stricter compatibility requirements, and added support for newer devices
and features .

SCSI-3 on the Horizon

The SCSI specification is dynamic, changing to reflect the needs of newer

and faster computer peripherals . With SCSI-2 finalized in ANSI docu
ment X3 . 1 3 1 - 1 994 in 1 994, work began on the next revision almost

immediately. Although the entire SCSI-3 specification has not yet been

approved, SCSI-3 features and SCSI-3 compatible hardware already has
appeared on the market.

Like the transition from SCSI- 1 to SCSI-2, the dividing line between
SCSI-3 and SCSI-2 isn ' t always clear. Some features of SCSI-3 seem to
be extensions of SCSI-2 features that didn 't emerge in time to become

part of the older standard. Other features are brand new approaches to

SCSI architecture that ensure the interface will be alive and healthy for
years to come. Once again, improvements have focused on increasing

transfer speeds, and also on extending the SCSI architecture. As with its

predecessor, much of SCSI-3 is designed to maintain hardware and soft
ware compatibility with older standards.

Under SCSI-2, cabling was a confusing issue. Wide data paths were
provided by an additional data cable that supplied the extra signal lines

for 1 6-bit or 32-bit transfers . SCSI-3 proposes a single 1 6-bit cable for
Wide SCSI implementations . This unofficial SCSI-3 feature already has

been adopted by many peripheral manufacturers , and is much more com
mon than the official SCSI-2 configuration.

Fast-20 and Fast-40 SCSI

SCSI-3 offers new Fast SCSI protocols . Fast-20, also known as Ultra
SCSI, boosts the synchronous transfer rate to 20MB per second for 8-bit
transfers , double the rate under SCSI-2. A Fast-40 protocol known as
Ultra2 SCSI quadruples the rate to 40MB per second. The option exists, as

in SCSI-2, to couple these fast protocols with a wide data bus . Wide Ultra
SCSI and Wide Ultra2 SCSI can achieve rates of 40 and 80MB per second
for 1 6-bit transfers . These higher rates require much tighter standards for
bus timing and electrical parameters to maintain signal integrity. As with
the older variety of Fast SCSI, they work more reliably using the differen
tial SCSI alternative. In fact, Fast-40 requires the use of the new Low
Voltage Differential (LVD) option. Many devices now offer multimode

SCS/-3 on the Horizon 9

support that includes LVD, but to reach peak Fast-40 speeds requires that

all connected devices support LVD. An added benefit of this differential
option is that it can support more devices and longer cable lengths.

Table 1 - 1 compares the characteristics of the different parallel SCSI

standards.

Table 1 -1 . Parallel SCSI Standards

�a me Transfer Speed Da� Width 1
Asynchronous SCSI 1 .5MB/second 8 bits

Synchronous SCSI 5MB/second 8 bits

Fast SCSI 1 OMB/second 8 bits

Wide- 1 6 SCSI 1 OMB/second 1 6 bits

Wide-32 SCSI 20MB/second 32 bits

Fast Wide- 1 6 SCSI 20MB/second 1 6 bits

Fast Wide-32 SCSI 40MB/second 32 bits

Fast-20 (Ultra SCSI) 20MB/second 8 bits

Fast-40 (Ultra2 SCSI) 40MB/second 8 bits

Wide Ultra SCSI 40MB/second 16 bits

Wide U ltra2 SCSI 80MB/second 16 bits

Serial SCSI Standards

Though the 80MB per second rate offered by Wide Ultra2 SCSI repre

sents an eightfold increase over the old standard, it pales in comparison to
rates promised by a new set of standards defined in SCSI-3. Collectively,

they are called the Serial SCSI standards. Unl ike the current SCSI stan

dard, which is l imited to a parallel data interface, these three standards

define different implementations of SCSI over a serial interface.
Several advantages of a serial architecture are apparent immediately.

As parallel data busses become wider, cabling becomes more complex
and unwieldy. In the worst case, a Wide SCSI installation would require a
50-pin and a 68-pin cable. The serial standards drastically reduce the
number of conductors needed.

Serial data transfer offers other advantages. Longer cable lengths are
possible with a serial connection. The cable length l imit for a parallel
SCSI connection using the differential alternative is about 25 meters. By
comparison, the serial standards measure cable length over fi ber optic
media in kilometers.

1 0 An Overview of SCSI Technology

Data integrity i s improved, too. While the parallel interface relies on
parity checking and handshaking, the serial standards all use a Cyclic
Redundancy Check (CRC) to ensure reliable data transfers .

But the greatest improvement is in transfer speed. Draft specifications

quote speeds of I OOMB per second, with extensions that may double or

quadruple that rate . Options for reserving bandwidth will increase the

effective throughput even further.
The Serial SCSI standards comprise three separate standards, each

with its own advantages: Fibre Channel, Serial Storage Architecture, and
P l 394.

Fibre Channel

The Fibre Channel (FC) standard was designed for flexibility. Despite the

name, Fibre Channel supports both optical and copper media. Potentially,
Fibre Channel SCSI could share the same cable with a fiber optic LAN or
twisted pair telephone lines.

The protocol also defines different levels of service. Dedicated service

reserves the entire bandwidth of the connection for the connected SCSI

devices . A frame switched service level provides multiplexed service that

may be shared with other protocols . Another level provides multiplexed
service without confirming receipt of data packets .

Fibre Channel SCSI borrows many concepts from data networking. At
its most complex, the standard defines a Fibre Channel switched fabric

similar to a switched network, with simultaneously active connections .
This topology could theoretically support millions of devices . A simpler
topology call arbitrated loop allows up to 1 27 devices to communicate, two
at a time. Fibre Channel promises to be the speed demon of the serial pro

tocols , offering full duplex transfer speeds of 1 OOMB per second or greater.

Serial Standard Architecture

Serial Standard Architecture (SSA) grew out of an IBM serial SCSI stan
dard. Designed for twisted pair copper wiring, a fiber optic implementa
tion is also in the works. Its great advantage lies in its support for full

duplex communications and spatial reuse.
Like the Fibre Channel switched implementation, SSA permits multi

ple simultaneous connections over the same media. This design removes
the limitation that only one initiator/target pair at a time can occupy the
data bus .

P1394

SCS/-3 on the Horizon 1 1

P1394 is more commonly known by its Apple implementation, Fire Wire.

Its design goals focused on simplicity and multimedia capabilities. It

offers an isochronous transfer mode that can reserve bandwidth for timing

sensitive transfers such as video or audio data. P1394 is not yet defined

for optical media.

Layered Architecture

With the addition of the Serial SCSI standards, the SCSI specification is

in danger of growing enormous and unwieldy. In this latest revision, the

X3Tl 0 Committee decided to break the standard into smaller units.

Responsibility for some of the units passed to other committees, with the

result that entire standard should be approved more quickly than in the past.

The X3 Committee itself also underwent some changes, becoming the

National Committee for Information Technology Standards (NCITS).

With the change in its parent organization, the X3Tl 0 Committee became

the TlO Technical Committee. Technically, NCITS and its committees are

not part of the ANSI organization, although they develop standards that

ANSI publishes.

The SCSI-3 standard adopts a layered model similar to the OSI model

used in data communications. This structure helps to separate the hardware

and software functions of the interface. Command sets and programming

interfaces will be similar across different architectures, simplifying the

programmer's task of porting from one to another.

Figure 1-2 shows the architecture of the SCSI-3 standard.

The standard defines three layers. The command layer includes new

and extended command sets for SCSI devices. The protocol and physical

layers include a parallel protocol and physical layer analagous to the

SCSI-2 parallel model, and the new serial SCSI standards.

This model, called the SCS/-3 Architecture Model (SAM), defines not

only the physical implementation of SCSI but also the transport mecha

nisms and protocols that accompany them. With all these new command

sets, transports, and protocols comes an alphabet soup of acronyms to

identify each one. A complete list appears in the Glossary in Appendix A.

Revisions to this model are already underway. SCSI Parallel /ntercon
nect-2 (SPI-2) will incorporate and replace the SCS/-3 Interlocked
Prototocol (SIP), SCS/-3 Parallel lntelface (SPI), and SCSI-3 Fast-20

and Fast-40. The Serial B us Protocol will be divided into the Serial Bus
Protocol-2 (SB P-2) and SCSI Transport via SBP-2 (STS). This change

1 2 An Overview of SCSI Technology

SCSI-3
Block

Commands

I
mand Com

La

SCSI-3
SCSI-3

Stream
Medium

Commands
Changer

Commands

I

SCSI-3
Multimedia
Commands

yer
SCSI-3

ocol Prot
La yer

sica I
sport
yer

Phy
Tran

La

SCSI-3
Interlocked

Protocol

I

SCSI-3
Parallel

Interface

Primary
Commands

I
Serial Bus

Protocol

0 94

Figure 1 -2. SCSI-3 Layered Architectu re

I
Fibre

Channel
Protocol

I

Fibre
Channel

SCSI-3 SCSI-3
Controller Enclosure

Commands Services

I

Serial
Storage
Protocol

Serial
Storage

Architecture

allows for transport of non-SCSI command sets over IEEE 1 394
hardware.

As mentioned earlier in this chapter, CAM offers access to the com
mand sets, which are grouped by function. CAM has been updated for
SCSI-3 and is now cal led CAM-3. It has not received wide support in the

personal computer industry.

Plug and Play SCSI

With advances in PC architecture and operating systems , it was only a
matter of time before the SCSI industry turned to self-configuring periph
erals . An annex to the SCSI-3 draft standard defines SCSI Configured
AutoMagically (SCAM) . Host adapters using this protocol can dynami
cally assign SCSI ID numbers to devices on system startup, while still
accommodating older SCSI hardware with fixed addresses. This feature is
a cornerstone of Plug and Play (PnP) SCSI, a standard put forward by
several SCSI manufacturers in conjunction with Microsoft .

SCS/-3 on the Horizon 1 3

Configuring SCSI dev ices manually, deal ing with ID numbers , termi
nation , and cabling requirements has long been considered an arcane
craft. PnP SCSI takes over those responsibilities, assigning ID numbers at

boot time through SCAM, and ensuring proper electrical termination and

signal timing as devices are added to or removed from the SCSI bus .
The PnP standard defines two levels of serv ice: Level 1 for basic Plug

and Play operation, and Level 2 to support multiple initiators and ID
assignments for hot-swapped SCSI devices. Plug and Play SCSI host
adapters and peripherals are already on the market, though operating sys

tem support for SCAM lags behind. Software that assigns drive letters or
boot devices based on a SCSI ID will have problems with devices that

change their addresses . Even Microsoft, an early champion of the SCAM
standard, has yet to built support for it into any operating system products.

Chapter 2

SCSI Fundamentals

All types of transactions , whether between humans or computer peripher

als , rely on sets of rules or protocols to make them effective and efficient.
As an example of chaotic interactions among humans, picture the floor of
the New York Stock Exchange on a busy market day. At the other end of the
spectrum, a debate on the floor of the U.S . Senate might serve as a model

of orderly interactions , provided it 's not an election year.

What 's the difference? In the latter case, a strict set of rules guides the
participants . Participants ask to be recognized by a chairman, who grants
them permission to speak in turn. Parl iamentary procedure and Robert 's

Rules of Order define the protocol for these transactions, just as the SCSI
specification defines a protocol for data exchange among SCSI devices.

Perhaps the analogy is strained, but it does illustrate that SCSI transac
tions are orderly procedures with well-defined steps. Many programmers

are confused by their first exposure to SCSI protocol , when they are con

fronted with complex phase diagrams. We 'l l get to those later, but first
let 's cover the basics .

SCSI Transactions: an Overview

When there is no activity on the SCSI bus , a bus-free condition exists. A
SCSI device acting as initiator may claim control of the bus through a pro
cess called arbitration. It stakes its claim, checking for other devices also

1 5

1 6 SCSI Fundamentals

trying to gain control. If a device with a higher SCSI ID is competing for

the bus , it has precedence-the lower numbered device must try again later.
Once the initiator has control , a target is selected for a transaction. If

the target is present and ready to accept commands, it acknowledges its
selection.

While the connection between initiator and target exists, the target con
trols the process by dictating transaction phases . In some instances , the
initiator may request a particular phase, but the target controls the bus s ig
nal s that determine it.

A message phase follows selection. The initiator signals to request this

phase after selection, and the target responds . The messages that pass
between initiator and target identify the devices to each other and negoti
ate parameters and ground rules for the transactions that follow.

Message phases may occur almost anywhere in the course of a SCSI
transaction. The protocol uses messages to report errors , command status ,
and a variety of other information. I t also uses them to send control
information.

With the messages out of the way, the transaction moves into the

command phase. This is where the initiator sends a block of data with

command instructions and parameters to the target. Another message

phase may follow if the target needs to report errors in the command block
format or parameters .

Often a command may take some time to execute. This may be the case
if the device has to rewind or reposition a mechanical element. If the initi
ator and target have negotiated disconnect privileges, the target will break

the connection, freeing the initiator for other operations . When the target

is ready to resume, it connects again with the initiator in a reselection
phase. This is similar to the selection phase, with the target as the active

device instead of the initiator.
Depending on the command issued, a data phase follows. The com

mand determines the direction of data flow, whether the initiator sends or
receives. The target sets the SCSI bus for transfer in the proper direction.

Messages may follow the data phase, but a status phase marks the end
of command execution. The status code indicates the outcome of the com
mand. If errors occurred, the status code indicates whether extended

information, known as sense data, is available.
The final phase in a normal transaction is another message phase. The

target sends a message to the initiator, telling it the command is complete
and a status code has been sent. Once this message goes out, the target
releases the data bus , returning it to a bus-free condition.

This is a simplified overview of a transaction. In the next chapter, we 'l l
dig into the detail s of the different phases.

Chapter 3

SCSI Phases

A target and initiator move through several phases over the course of a
SCSI transaction . How are these phases orchestrated, and what signals the
transitions between them?

A SCSI transaction is similar to a courting ritual . When one of the par
ties in the relationship is ready to move on to the next phase, a signal is
sent to the other. Thankfully, phases and signals in SCSI transactions are

easier to decipher than their counterparts in human relations .

In a simple SCSI transaction , an initiator arbitrates for control of the
bus . Once it gains control, it selects a target device to communicate with .
The target responds , and the initiator exchanges messages with it to estab
lish ground rules for the upcoming transaction . Disconnect privileges,
data transfer width, and synchronous transfer timing are negotiated
through messages. When these negotiations are complete, the initiator
may send commands to the target, and data transfer may take place. On
completion of a command, the target sends a status code to the initiator
indicating the outcome. More messages may fol low before the bus is

released.
This process takes place in orderly transitions from one phase to

another. Although the initiator begins the process , it i s the target that con
trols the current bus phase. The initiator may request a change to a
particular phase, but the target determines the transitions from one to
another. What are these phases, and what do they represent?

1 7

1 8 SCSI Phases

SCSI Phases

The SCSI protocol defines eight distinct phases :

1 . Bus Free phase

2. Arbitration phase
3. Selection phase
4. Reselection phase
5. Command phase
6 . Data phase
7. Status phase
8. Message

These phases don 't necessarily occur in the order listed above. As men
tioned before, Message phases can occur almost anywhere. Support for
Reselection depends on whether a target device has disconnect privileges.

Data phases apply only to operations that transfer data.
Each of these phases is characterized by a different combination of sig

nals on the SCSI bus , and a specific type of data exchanged. Six signals
on the SCSI bus determine the state it is in, and the type and direction of

data transfer. These signals are:

1. BSY (Busy)-a signal that indicates the bus is in use

2. SEL (Select)-a signal that indicates selection of a target or rese
lection of an initiator

3 . C/0 (Control/Data)-a signal that indicates control or data
information

4. 1/0 (Input/Output)-a signal that indicates direction of data trans
fer relative to the initiator

5 . MSG (Message)-a signal that indicates a Message phase

6 . ATN (Attention)-a signal used by an initiator to request a Mes
sage phase

Bus Free

In Bus Free phase, there is no activity on the bus . No I/0 processes are
pending, no device has staked its claim, and the bus is up for grabs. None
of the signals l isted above are active.

Arbitration

In Arbitration phase, an initiator negotiates for control of the bus . It
asserts the BSY signal , indicating that the bus is in use, and drives the

SCSI Phases 1 9

data line corresponding to its SCSI ID. For an 8-bit data bus, the data
lines are numbered DB(O) through DB(7). An initiator with ID 7 would
assert DB(7) true to stake its claim on the bus.

After a specified delay period, the initiator examines the bus to deter
mine if another device is trying to claim it. How does it know? If another
data line corresponding to another device ID is asserted, that device also
is trying to gain control. The device with the highest ID wins the arbitra
tion in that case. Generally, SCSI host adapters are assigned higher ID
numbers to assure their success in arbitration.

Once the initiator gains control of the bus , it signals the end of arbitra
tion by asserting the SEL signal to move to the Selection phase.

Selection

The initiator selects a target by asserting the SEL signal while the BSY

signal is still true. I t then asserts the data lines corresponding to i ts own
SCSI ID and the ID of the target it is selecting. The 1/0 signal is negated

to distinguish this phase from reselection.

The initiator also sets the ATN signal true to request a Message Out
phase following Selection. This step, optional under SCSI- 1 , became
mandatory with SCSI-2.

Last of all , the initiator releases the BSY signal.
The target determines that it is being selected when both the SEL sig

nal and its ID bit are true, and the BSY and l/0 signals are false. It
responds by setting the BSY signal true within a specified period of time.
The initiator then confirms its selection by releasing the SEL signal.

Reselection

If a target has disconnected from the bus while processing a command, it
reestablishes the connection by switching to Reselection phase. This is
the mirror image of Selection, but the target takes the active role in arbi

tration and setting the bus signals instead of the initiator. In Reselection,

the target also asserts the l/0 signal along with the SEL signal. The initia
tor responds to reselection by asserting the BSY signal. Once the target
responds by also asserting the BSY signal and releasing the SEL line, the
initiator then releases the BSY signal , and the connection resumes.

Message Out

Because the initiator raised the ATN signal during Selection, the target
next changes to the Message Out phase. It does this by asserting the MSG

20 SCSI Phases

and C/0 signals , and negating the l/0 signal . Under SCSI-2 it became
mandatory for the Message Out phase to follow device selection.

Only a few messages are valid in this initial Message Out phase. Under
normal conditions, the initiator will send an Ident i fy message. This
message establishes a connection between the initiator and a logical unit
within the target device. This connection is referred to as an I_ T _L nexus .

In devices that support optional target routines instead of logical units , an
I_T_R nexus may be established. Support for target routines , although
present in SCSI-2, has been phased out in SCSI-3 .

Other messages may follow the Identify message. Requests for
tagged queuing occur here, as well as synchronous or wide data transfer
requests.

Chapter 4 discusses SCSI messages in more depth.

Command

When the Message Out phase ends, the target moves to Command phase.
It signals this phase by raising the C/0 line and negating the l/0 and MSG
lines. This tells the initiator that the target is ready to receive a Command
Descriptor Block (COB) .

The size of the COB varies according to which group the command

belongs to. The SCSI-2 specification defines eight different command
groups called, conveniently enough, Group 0 through Group 7. Com
mands defined in the SCSI specification fall into Groups 0, 1 , 2 , and 5 .
Groups 3 and 4 are reserved, and Groups 6 and 7 are set aside for vendor
specific commands .

The group code tells the target how many bytes to expect in the COB .
Once it has received the entire block, several things may happen.

If there is an error in the size or format of the COB , the target may
switch to Message In phase to report the error. If the command requires

data transfer, the target changes to Data Out or Data In, depending on the

command issued. If no data transfer is required, the target changes to Status
phase and reports the outcome of the command by sending a status byte
to the initiator.

The sections below cover these three possibil ities.

Data In and Data Out

If a SCSI command requires data transfer when it is ready to begin send
ing or receiving data, the target participating in the transfer will set the
bus state to Data In or Data Out. In the simplest case, the target remains
connected to the initiator between the Command and Data phases. In

SCSI Phases 2 1

more complex cases, the target may disconnect, then reconnect with the
initiator when the data is ready. This requires that the initiator has granted
disconnect priv i leges in the Identify message it sent the target after

Selection .
For example, a disk drive may disconnect while it seeks and reads a

requested sector. This frees the initiator for other transactions while the
target is occupied.

The target s ignals Data phase by negating the C/D and MSG lines . It
raises or lowers the I/0 l ine depending on the direction of data transfer

relative to the initiator. It asserts 1/0 to indicate a Data In phase, and
negates it for a Data Out phase.

In the asynchronous model the initiator and target pace their data transfer
with a series of REQ/ACK handshakes. If they negotiated a synchronous
transfer, the timing between data bytes and the number of REQ pulses that
can be sent in advance have already been established. In either case, the
number of REQ and ACK pulses must be equal .

Status

When the command and any associated data transfer are complete the tar
get switches to Status phase. It asserts the C/D and 1/0 signals and
negates the MSG signal . A Status phase follows the completion of each
command unless it terminates abnormally. This occurs if a message
causes a process to abort, if a device resets or disconnects unexpectedly,
or if the bus resets .

The status code is a single byte that indicates the success or fai lure of a

command. It may show that a target is busy or reserved by another initia
tor. It may indicate the success of an intermediate command in a series . It
may also alert the initiator that extended information known as sense data
is available.

Refer to Chapter 6, on status codes and sense data, for more detail .

Message In

The final phase in a SCSI transaction is the Message In phase. The target
asserts the C/D and MSG lines to signal a Message phase, and asserts the
1/0 l ine to indicate that the message is inbound toward the init iator.

Most often , the target will send a Command Complete message to
show that it is done processing the command and has sent a status byte . It
may also send messages to indicate error conditions or to alert the initia
tor before it disconnects from the bus whi le processing.

22 SCSI Phases

Phase Sequence

The flow from one phase to another is strictly defined, but can be com
plex. The description above covered a typical transaction in somewhat
simplified form. In reality, once an initiator selects a target the phase
sequence can follow a number of paths

Figure 3- 1 illustrates the possible transitions between phases.

� I

r---+l
Message Out

i �
Rese t - Selection) n Command h

i �
(H) �

'_

Bus Free Arbitration
Data In or
Data Out

...1

� �
r Reselection) J Status r-l l I

i �
y Message In h-

f I
Figure 3-1 . SCSI Phase Transitions

Chapter 4

SCSI Messages

SCSI transactions are complicated affairs . Designed into the SCSI proto
col, however, is a messaging system that helps keep things on track. This
message system handles the details of interface management by providing

a mechanism for error reporting and recovery, negotiating data transfer
parameters , managing the process queue, and other functions .

Message phases can occur at almost any time after device selection. An

initiator sends an Identify message to a target to establish an I_T_L
nexus and indicate disconnect privileges . It may also send messages to
negotiate synchronous or wide data transfers . If the target supports tagged
queuing, an initiator sends messages to manage the queue.

A target may send a message to an initiator announcing its intent to

disconnect from the bus . It precedes this message with a message request

ing that the initiator save pointers to the command, data, and status

information for the current process .
A target also informs an initiator of the outcome of a command using

messages . It may send a Command Complete message to tell the initiator
that a process is finished. Or it may send a Linked Command Complete
message to report that an intermediate command in a series of linked
commands has completed.

Both initiators and targets may indicate errors through messages . The
Mes s age Re j ect message indicates that a preceding message is not
implemented or is not appropriate .

23

24 SCSI Messages

The target controls the state of the data bus, and can change to Message

In phase whenever i t needs to send a message to the initiator. The init ia

tor, on the other hand, cannot force a Message Out phase when i t needs to
communicate with the target. Instead, it raises the ATN signal to request

that the target change to Message Out phase.

Message Types

Most messages consist of only one or two bytes. Extended messages con

tain three or more bytes, and may include arguments. The SCSI

specification makes support for some messages mandatory, and others
optional .

Table 4- 1 l ists the mandatory messages for initiators and targets.

Table 4-1 . Mandatory SCSI Messages

�essage Code Message Name Supported By

OOH Command Comp lete Target and Initiator

05H Initiator Detected E rror Target and Initiator

06H Abort Target

07H Me s s age Re j ect Target and Initiator

08H No Operation Target and Initiator

09H Me s s age Parity E rror Target and Initiator

OCH Bus D evice Re s et Target

SOH - FFH Ident i fy Target and Initiator

Message code OOH, C ommand C omp l et e , is the workhorse of the SCSI
message set. Under normal conditions the target sends thi s message at the
conclusion of a SCSI transaction. Message codes 02H through l FH are
single-byte messages. Message codes 20H through 2FH are 2-byte mes

sages, with a s ingle argument byte fol lowing the message code.

The Identify Message

The I de n t i f y message is a single byte, with bit encoded options.
Because i t i s a mandatory message, l et 's examine it more closely.

The Ident i f y message is sent by either an initiator or a target, usually
after the Selection phase. This message establ ishes an I_ T _L or I_ T _R

Table 4-2. Identify Message

Identify

Bit 6 Bit 5

D i scPriv LUNTAR

Bits 3-4

Reserved

Extended Messages 25

Bits 0-2

LUNTRN

nexus by identifying a logical unit or target routine in the LUNTRN field. If
the LUNTAR bit i s set, LUNTRN specifies a logical unit number. The D i s c

Pr i v b i t indicates that the , initiator has granted disconnect privileges to

the target. This bit is undefined when a target sends this message .

Extended Messages

A message code of O l H indicates an extended message. Table 4-3 shows

the general structure of an extended message.

Table 4-3. Extended Message

0

1

2

yte #

3 - (n+ 1)

Field Description

Extended message flag (O l H)

Extended message length (n)

Extended message code

Optional arguments

The second byte of an extended message is the length of the extended

message code and any arguments. A value of 0 here indicates a length of
256 bytes.

Only three extended messages are defined under SCSI-2. Two of these,
Sync hronous Data Trans f e r Request and Wide Data Tran s fe r

Reque s t , deserve a closer look.

Synchronous Data Transfer Request

The Sync hronou s Data Trans f e r Request message is sent by an ini

tiator or a target to negotiate timing for synchronous data transfer. Under
SCSI-2, the timing l imits expanded to accommodate Fast SCSI.

Table 4-4 shows the structure of the Synchronous Data Trans f e r

Requ e s t message.

26 SCSI Messages

Table 4-4. Synchronous Data Transfer Request

pyte # Field Description

0 Extended message flag (Ol H)

Extended message length (03H)

2

3

4

S ynchronous Data Trans fer Request code (O l H)

Transfer period factor

REQ/ ACK offset

In setting up a synchronous transfer, two pieces of information are cru

cial . The transfer period factor is one-fourth the value of the transfer

pe�iod. The transfer period is defined as the time between leading edges

of successive REQ pulses. This is the time, measured in nanoseconds, that

a data byte or word wi l l remain on the bus.
A synchronous transfer permits the number of REQ pulses to lead the

number of ACK pulses by the number given in the REQ/ACK offset. Dur

ing asynchronous transfer, s ingle REQ and ACK pulses alternate as data

is sent. In synchronous transfer, a series of REQ pulses i s acknowledged
with a corresponding series of ACK pulses. The number of REQ and ACK

pulses i s equal, but the REQ pulse count may lead by the REQ/ACK off

set before the ACK pulses are sent. This offset effectively determines the
size of the data block transferred during a synchronous burst. A value of 0

in this field i s equivalent to asynchronous transfer. A value of FFH indi
cates an unlimited offset.

The originating device sends the Synchronous Data Tran s fe r

Reque s t . If the responding device agrees to the parameters, i t returns the

identical message. Otherwise, it will set the transfer period factor and

REQ/ACK offset to values it can support.
Either device is free to send a Me s s age Re j ec t message in response

to a synchronous request. In that case, the devices fal l back to asynchro
nous transfer. Once they have negotiated synchronous parameters, they
stay in effect unti l a device or bus reset, or until one of the participating
devices renegotiates .

Wide Data Transfer Request

With the advent of Wide SCSI came the Wide Data Tran s f e r Request

message. This message sets the transfer width for devices that support 1 6-bit
or 32-bit data paths.

Other Common Messages 27

Table 4-5 shows the structure of the Wide Data Tran s fe r Requ e s t

message.

Table 4-5. Wide Data Transfer Request

pyte #

0

3

4

Field Description

Extended message flag (0 1 H)

Extended message length (02H)

Wide Data Transfer Request code (03H)

Data transfer width exponent

The transfer width in bytes is equal to 2 raised to the transfer width

exponent. Exponent values of 0, 1 , and 2 yield transfer widths of 8 bits,

1 6 bits, and 32 bits. As you may have guessed, values above 2 are not

defined.

The procedure for negotiating transfer width is the same as for syn

chronous transfer negotiation. The originating device sends the message

with the exponent set to a value it supports. The responding device may

accept or reject that value. If negotiation fai ls, both devices fall back to

narrow 8-bit data transfer. The negotiated value stays in effect until a

device or bus reset, or unt i l a renegotiation.

Other Common Messages

The SCSI specification defines other messages besides the Command

Comp l e t e , Ident i fy, and Extended messages. The remainder fall into

1 -byte and 2-byte message fami l ies. Message codes 02H through 1 FH

correspond to 1 -byte messages. The 2-byte messages are numbered 20H

through 2FH.

We ' l l cover the more useful or interesting of these in the rest of this
chapter. For a complete l ist, refer to the SCSI-2 specification document.

No Operation

A device may send a No Operation message (08H) when a message i s
required (but n o other message is valid).

28 SCSI Messages

Abort

An initiator sends the Abort message (06H) to a target to c lear any active
I/0 processes for an I_T_L or I_T_R nexus. This does not affect pro

cesses for other logical units or routines on the target.

Bus Device Reset

It's tempting for programmers to send Bus Device Res e t messages
(OCH) to clear enor conditions, but this is a drastic measure. This message

tel ls a target to clear all I/0 processes and forces a hard reset of the device.
It also creates a Unit Attent ion condition that must be dealt with.

Disconnect

A target needs a way to notify an initiator that it intends to disconnect

while an I/0 process is underway. The D i s connect message (04H) pro

vides that. An initiator can also send this message to instruct a target to

send a D i s connect message back.
A target may precede a D i s c onnect message with a S ave Data

Pointers message (02H), instructing the initiator to save the current

data buffer offset. On reconnecting, a Restore Pointers message

(03H) tells the initiator to resume data transfer from the previous offset.

Ignore Wide Residue

What happens in wide data transfers if an odd number of bytes is
requested? There is a 2-byte message that deals with this situation. A tar

get sends the I gnore Wide Res idue message to indicate how many

bytes in a wide data transfer to discard.

Table 4-6 shows the structure of this message.

Table 4-6. Ignore Wide Residue Message

pyte # Field Description

0 Message code (23H)

Ignore count

The I gnore count tells how many bytes of the previous wide data
transfer to discard. Val id numbers are 1 , 2, and 3. A target sends this mes
sage immediately fol lowing a Data In phase.

Queue Tag Messages

Other Common Messages 29

If a device supports tagged queuing, it must support queue tag messages.

There are five messages for managing queue operations. Two of them,

Abort Tag (ODH) and C lear Queue (OEH), are single-byte messages.

The Abort Tag message aborts the current I/0 process without affecting

other processes in the queue. C lear Queue clears all queued I/0 pro
cesses and aborts the active process.

The other tag messages, S imp l e Queue Tag, Head of Queue Tag,

and Ordered Queue Tag, are 2-byte messages that tell a target how to

queue an I/0 process for execution.

Table 4-7 shows the general structure of the 2-byte queue tag messages.

Table 4-7. Queue Tag Message
�yte # Field Description

0 Queue tag message code (20H - 22H)

Queue tag (OOH - FFH)

The Queue tag field contains an identifier that establishes an I_T_L_Q

nexus. It uniquely identifies a process queued for a logical unit in a target.
An initiator sends a queue tag message to a target immediately fol low

ing an Iden t i f y message, in the same Message Out phase. The target
may reject this message if it does not support tagged queuing. A target

also may send this message when it reconnects to continue a tagged 1/0

process.

Tagged command queuing should not be confused with l inked com

mands. Linked commands are executed as a s ingle 1/0 process.
Queue tag messages come in three varieties.

Simple Queue Tag

A S imp le Queue Tag (20H) tells the target to execute a command
according to a preset queue management algorithm. Restrictions on queue
algorithms are specified in a command to the target device.

Head of Queue Tag

A Head o f Queue Tag (2 1 H) tells the target to place a command at the
head of its command queue. It has no effect on the active I/0 process .

30 SCSI Messages

Ordered Queue Tag

The Ordered Queue Tag (22H) tells the target to execute a command in
the order received. This simply places it in the queue after any other pend
ing commands.

Chapter 5

SCSI Commands

It used to be that the hardest part of supporting SCSI peripherals was find
ing documentation on the command set supported by a particular dev ice.
The SCSI- I specification defined a minimal set of mandatory commands
for querying device information and reporting errors . Almost everyth ing

else fell under the ominous category of "vendor-specific" commands .
The SCSI-2 specification does an admirable job of spel l ing out the

command sets supported by different classes and types of dev ices . The
increased length of the document over its predecessor is due largely to the
commands that it adds and the painstaking detail in which it describes
them. It may make the document cumbersome to work w ith , but having
standard command sets makes a programmer's job much simpler.

This chapter gives an overview of SCSI command sets , how to use
them, and what kind of data they return. It does not attempt to condense in
a few pages what the SCSI document requires several hundred pages to

present. For a complete reference to command sets for different device
types, the SCSI specification is still the best place to tum.

Command Structu re

SCSI commands and parameters are packaged in structures cal led Com
mand Descriptor Blocks , or COBs . As was the case with messages,
different command groups correspond to command descriptors of differ
ent lengths . A Group 0 COB is 6 bytes long. A COB from Group 1 or 2 is

3 1

32 SCSI Commands

1 0 bytes long, and a Group 5 CDB occupies 1 2 bytes. The other groups

are reserved for future use, or vendor-specific commands.

Operation Codes

The first byte of a CDB contains an operation code that describes the
command. The 3 high bits of this code indicate the command group with

possible values ranging from 0 to 7 . The lower 5 bits contain the com

mand code.

Table 5 - l shows the structure of the operation code.

Table 5-1 . Operation Code

�its 5-7 Bits 0-4

Group code Command code

Logical Unit Number

The second field in a Command Descriptor B lock contains a Logical Unit

Number (LUN) in the upper 3 bits. Depending on the command group,
the lower 5 bits may be reserved or contain part of the fol lowing field.

Table 5-2. Logical Unit Number

Bits 5-7 Bits 0-4

Logical Unit Number Reserved or other data

Command Parameters

The fields that fol low the Logical Unit Number generally contain com
mand parameters. They may contain logical block addresses for direct
access devices, transfer lengths for commands that transfer data, or other

values related to specific commands or device types.

Control Field

The last field in every command descriptor is the Control field. This
byte contains contains bit flags used in l inked command operations. The
L ink flag indicates whether this CDB is part of a l inked series of com
mands. The F l ag bit determines the status code that the target returns on

Mandatory SCSI Commands 33

successful completion of a l inked command. We' l l l ook more c losely at
command l inking later in this chapter.

Table 5-3 shows the structure of the Control field.

Table 5-3. Control Field

its 6-7 Bits 2-5 Bit l Bit O

Vendor-specific Reserved Flag Link

Parameter Lists

Some commands require parameter l ists to fol low the Command Descrip
tor B lock. If this is the case, one of the parameter fields in the CDB may

indicate the length of the data to fol low.

Byte Order

It is important to note that values in multibyte fields are specified in big
endian order. That is , the most s ignificant byte appears first, and the least

s ignificant byte appears last. This causes some confusion for program

mers on Intel p latforms, where numbers are stored in l i ttle-endian order

with the lowest byte fi rst.

Mandatory SCSI Commands

The SCSI specification defines both mandatory and optional commands
that apply to all devices. Each device type also has its own set of com

mands, some mandatory, others optional. We' l l start by looking at the
commands that apply to all device types.

There are four mandatory commands that all devices must support.

Table 5 -4 l ists these commands.

Table 5-4. Mandatory SCSI Commands

fode Command Name

OOH Test Unit Ready

03H Request Sense

1 2H I nquiry

I DH Send Diagnostic

34 SCSI Commands

These commands a l l deal with device identification, status, and error
reporting. Many of the optional commands perform functions related to

device configuration and reporting.

Test Unit Ready

The s implest of the mandatory commands, Test Unit Ready, s imply

reports whether a device is ready to execute commands. Table 5-5 shows

the CDB for this command.

Table 5-5. Test Unit Ready

tByte # Bit 1 I Bit 6 I Bit 5 I Bit 4 I B it 3 I Bit 2 I Bit l I Bit 0 I
0 Operation code (OOH)

1 Logical Unit Number I Reserved

2 Reserved

3 Reserved

4 Reserved

5 Control field

This is an uncomplicated command structure. The Control field is

laid out as described previously, though there is l i ttle use for the L ink

field with this command.

T e s t unit Re ady returns a status code of Good if the device is ready.
It returns Check Condit i on if the device is not ready. In this case, sense

infonnation is available with more details . Interpreting status and sense infor

mation is an mt in itself, which we explore in Chapter 6.

Inquiry

The I nquiry command causes a SCSI device to send information that
identifies its manufacturer, model information, and supported features.
The CDB for the I nquiry command looks l ike this.

Table 5-6. Inquiry

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Operation code (l 2H)

Logical Unit Number I Reserved I EVPD
(Continued)

Mandatory SCSI Commands 35

Table 5-6. Inquiry (Continued)

I Byte # Bit 7 J Bit 6 I Bit 5 J B it 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
2 Page code

3 Reserved

4 Allocation length

5 Control field

The EVPD flag tel ls the target device to return vital product data instead

of the standard inquiry information. The Page c ode field specifies which

v ital product data to return. Support for the EVPD flag is optional. The
A l location length tel l s the target how much space is allocated for the

returned data.
The information produced by a standard query command is returned in

the format shown in Table 5-7 .

Table 5-7. Inqu iry Data Structure

I Byte # Bit 7 I Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Peripheral qual ifier Device type code

l RMB I Device type modifier

2 ISO version ECMA version I ANSI approved version

3 AENC I TrmiOP Reserved I Response data format

4 Additional data length

5 Reserved

6 Reserved

7 RelAdr I WBus32 WBus l 6 Sync I Linked IReservediCmdQuel SftRe

8-1 5 Vendor identification string

1 6-3 1 Product identification string

32-35 Product revision level string

36-55 Vendor-specific information string

56-95 Reserved

96-end Vendor-specific data

The inquiry data contains valuable nuggets of information about a
device. To begin with, the Peripheral qu a l i f i e r field tells whether

36 SCSI Commands

the device is actual ly connected to the logical unit queried. The Device

type field indicates the type of device at this address. The SCSI specifi
cation l i sts several device type codes.

Table 5-8. Peripheral Device Type Codes

'ode

OOH

O l H

02H

03H

04H

05H

06H

07H

08H

OAH-OBH

I FH

Device Description

Direct access device (disk drive)

Sequential access device (tape drive)

Printer device

Processor device

Write-once device (WORM drive)

CD-ROM device

Scanner device

Optical memory device (optical disk drive)

Medium changer device Uukebox)

Graphic prepress device

Unknown device type

If there is no device connected to the specified target and LUN, the first
byte in the inquiry data is set to 07FH, corresponding to a peripheral qual i

fier of 03H and a device type of O l FH.
The RMB flag indicates whether this device supports removable media.

The devi c e type mod i f i e r is only defined for backward compatibil ity
with the SCSI- 1 specification.

The third byte contains information about this device's compl iance

with different standards. Probably the most useful of these is the ANSI

version field, which tel l s what version of the SCSI standard is supported.
The AENC and TrmiOP flags show support for asynchronous event

notification and the Terminate I / O Proce s s message. The Respon s e

data format field indicates whether the inquiry data structure conforms

to SCSI- 1 , SCSI-2, or an intermediate standard. A value of 02H here indi
cates conformance to SCSI-2.

The Add i t ional data l e ngth field tell s how much data fol lows the

standard inquiry data header. Note that this shows how much data is avail
able, not how much actual ly was transferred.

Interesting things happen in byte number 7. A series of bit flags show
what capabi l ities this device supports. In order of appearance, they show

Mandatory SCSI Commands 37

support for relative addressing (RelAdr), 32-bit Wide SCSI (WBus32),

1 6-bit Wide SCSI (WBus l 6) , synchronous data transfer (Sync), command

l inking (Link), command queuing (CmdQue), and soft reset (SftRe) .

The following three fields contain vendor and product information.

These are ASCII strings padded with blanks to the width of their fields.
The remaining fields are reserved or contain vendor-specific info1mation.

Example: Iomega Zip Drive

Let 's look at an example of inquiry data returned by a peripheral dev ice.

The device in question is an Iomega Zip drive. This drive i s a SCSI direct

access device with removable media. The data returned from an I nqu i ry

command is shown in Table 5-9.

Table 5-9. Iomega Zip Drive Inquiry Data

I Byte #

0

I

2

3

4

5

6

7

8- 1 5

1 6-3 1

32-35

36-55

56-95

96-end

Bit 7 I Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit O I
Peripheral qualifier (0) Device type code (0)

RMB (1)1 Device type modifier (0)

ISO version (0) ECMA version (0) I ANSI approved version (2)

AENC I TrmiOP
(0) (0)

Reserved I Response data format (2)

Additional data length (1 1 7)

Reserved

Reserved

RelAdr I WBus32
(0) (0)

WBus l 6
(0)

Sync I Linked
(0) (0)

Vendor identification string ("IOMEGA")

Product identification string ("ZIP 1 00")

Product rev ision level string ("N.38")

Vendor-specific information string ("05/09/96")

Reserved

'Reserved I CmdQuel SftRe
(0) (0)

Vendor-specific data ("(c) Copyright IOMEGA 1 995")

The inquiry data shows that, indeed, this is a direct access device with
removable media. It conforms to the ANSI standard for SCSI-2, and the
data format also conforms to SCSI-2. It does not support 32-bit or 1 6-bit
Wide SCSI, synchronous data transfer, li nked commands, or command
queumg.

38 SCSI Commands

The Vendor and P roduct ident i f i c at ion fields confi1m the make

and model, and the revision string reveals the product revision level. The

vendor-speci fic fields contain a manufacture date and a copyright notice.

An inquiry w ith the EVPD flag set and a page code of OOH shoul d
return a l i st of v ital product information code pages the drive supports.
However, the command fails with error codes indicating an i l legal
request. This device does not support the vital product data feature.

Optional Commands

Other commands defined for all device types are optional. Table 5- 1 0 l i sts

these commands.

Table 5-1 0. Optional SCSI Commands

Command Name

1 8H Copy

l CH Receive Diagnostic Re sults

39H Compare

3AH Copy and Verify

3BH Write Bu f fer

3CH Read Bu f fer

40H Change Def inition

4CH Log Select

4DH Log Sense

The Copy, Copy and Ve r i f y, and Compare commands provide a

means to copy and compare data between logical units on a target device.
Parameters for these commands vary between device types, but speci fy
source and destination addresses and transfer lengths.

The Log S e n s e and Log S e lect commands provide a mechanism for

managing statistical i nformation for target devices. The SCSI specifica
tion defines page code parameters for logging threshold and cumulative
values, but does not dictate the type of data logged.

The Read B u f fer and Write Buf fer are used to test buffer memory
on a device. In addition to this diagnostic function, they can reveal how
much memory a particular device has.

Device Type-Specific Commands 39

The Change D e f i n i t ion command, where supported, permits an ini

t iator to change the operating mode of a target. The init iator may request
that the target adopt a SCSI- 1 , SCSI-2, or Common Command Set defini
tion for compatibi l ity.

Device Type-Specific Commands

There are four commands defined for al l devices, but support i s manda
tory only for certain types. The Mode Sense and Mode S e lect commands
come in 6-byte and 1 0-byte variations.

Table 5·1 1 . Device Type-Specific SCSI Commands

fode Command Name

1 5H Mode Select (6-byte)

l AH Mode Sense (6-byte)

55H Mode Select (1 0-byte)

5AH Mode Sense (I 0-byte)

These commands let an initiator read or set a wide range of device

parameters. Parameters are organized by pages, identified by page codes.

Many of the page codes are device-specific, while some pertain to common
SCSI parameters l ike disconnect control and command queue algorithms.

Mode Select

The Mode S e l e c t command lets an init iator set operational parameters

for a target or logical unit on a target. The CDB for the 6-byte Mode

S e l e c t command is shown in Table 5 - 1 2 .

Table 5·1 2. Mode Select (6-byte)

I Byte # Bit 7 I Bit 6 I Bit 5 ° I Bit 4 I Bit 3 I Bit 2 I Bit l I Bit 0 I
0 Operation code (1 5H)

1 Logical Unit Number I PF I Reserved I SP

. 2 Reserved

3 Reserved

4 Parameter list length

5 Control field

40 SCSI Commands

The PF fl ag specifies the page format of the parameter l i st . Thi s flag

should be set to indicate the pages conforming to the SCSI-2 specifica

tion. Clearing this flag indicates that the page formats are vendor-specific
as in SCSI- 1 .

The S P flag requests that the target save pages to memory. The actual
pages saved vary, but can be queried through the Mode S e n s e command.

The Parameter l i s t length specifies the total length of a l l the

mode pages and information that fol lows. We ' l l examine the actual for

mat of the returned data when we look at the Mode S e n s e command.

Mode Sense

The Mode S e n s e command requests information describing a target's

operational parameters. This command can query default parameters, cur
rent parameters, or those that can be changed using the Mode S e l e c t

command.

The CDB for the 6-byte Mode Sense command is shown in Table 5 - 1 3 .

Table 5-1 3. Mode Sense (6-byte)

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Operation code (l AH)

1 Logical Unit Number !Reserved! DBD I Reserved

2 PC I Page code

3 Reserved

4 Allocation length

5 Control field

The DBD fl ag tel l s the target to disable block descriptors in the returned

data (block descriptors and data format are discussed below). The PC

value specifies the type of parameters requested. It ranges from 0 to 3 for
current values, changeable values, default values, and saved val ues.

Probabl y the most important field i s the P age code. The value speci
fies which set of parameters to return. A value of 3FH in this field

instructs the target to return a l l available mode pages.
What kind of i nformation does Mode Sense return? The SCSI specifi

cation defines mode pages for specific device types. For example, direct
access devices can return information on medium types and disk geometries,
caching parameters, error recovery, and a wide range of other operational
detail s .

Mode Sense Data Format

Device Type-Specific Commands 41

Devices that return mode information in page format fol low a data struc
ture outlined in the SCSI document. A mode parameter header leads the
data, fol lowed by block descriptors and mode pages. The header varies
with the 6-byte and 1 0-byte mode commands. The header for the 6-byte

Mode S e n s e command is shown below.

Table 5-1 4. Mode Parameter Header (6-byte)

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Mode data length

Medium type

2 Device-specific parameter

3 B lock descriptor length

The Mode data length gives the total length of the remaining data.

The Medium type code varies with device type, but generally describes
medium density or format. The Block d e s c r iptor l e ngth gives the

total length of the block descriptors that fol low, at 8 bytes each.

B lock descriptors give more specific information about the current or

default medium supported by a device.

Table 5-1 5. Mode Parameter Block Descriptor

f Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Density code

1-3 Number of blocks

4 Reserved

5-6 Block length

Once again, the Dens ity c ode varies among device types. The Num

ber o f blocks indicates how many blocks the length pertains to. It is set
to 0 if the b lock length applies to the entire medium.

A l ist of mode pages fol lows the block descriptors. Table 5 - 1 6 shows
the general layout of a mode page.

The PS flag shows whether a mode page can be saved. The Page c ode

identifies the informat ion returned. Some codes apply to all device types,

42 SCSI Commands

Table 5-1 6. Mode Page Format

j Byte # Bit 7 Bit 6 Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 PS Reserved Page code

1 Page length

2-end Mode parameters

while others are device-specific. The Page length is the length of the
mode parameters in the remainder of the page.

Example: Iomega Zip Drive

Let 's revisit the Iomega Zip drive for a s imple example of mode page

information. We ' l l use the 6-byte Mode Sense command to query the

drive for default information, requesting all available mode pages. The

CDB looks l ike this :

Table 5-1 7. Iomega Zip Drive Mode Sense

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Operation code (l AH)

1 Logical Unit Number (0) IReservedl DBD I Reserved
(1)

2 PC (2) I Page code (3FH)

3 Reserved

4 Allocation length

5 Control field

The command returns the data shown in Table 5- 1 8 .

Table 5-1 8. Zip Drive Mode Parameter Header

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 j Bit 0 I
0 Mode data length (25H)

Medium type (0)

2 Device-spec ific parameter (0)

3 Block descriptor length (8)

Device Type-Specific Commands 43

What does it mean? The Data length te l ls us that 37 bytes fol low.

The 0 in the Medium type field tel l s us the information is for the default
medium type. The block desc r iptor length tel l s us that a s ingle 8-

byte block descriptor follows .

For the Zip drive , a direct access device, the dev ice-specific parameter
consists of coded bit fields.

Table 5-1 9. Zip Drive Device-Specific Parameter

I
Bit 7 Bits 5-6 Bit 4 Bits 0-3 I
WP Reserved DPO/ Reserved

FUA

The WP flag indicates whether the medium is write-protected. The DPO /

FUA flag indicates whether the unit supports certain caching options for

read requests.

A block descriptor follows the header (Table 5-20).

Table 5-20. Zip Drive Block Descriptor

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Density code (0)

1 -3 Number of blocks (0)

4 Reserved

5-6 Block length (200H)

The D e n s i t y c ode is not defined for direct access devices, so i t con

tains no useful information. Because the Number of blocks field is 0,

we know that the information in this descriptor appl ies to all the remain

ing blocks on the medium.

The Block l e ngth is 5 1 2 bytes, according to this descriptor. This
field appears in big-endian order, as 20H OOH in bytes 5 and 6. A common
pitfal l in SCSI programming on Intel platforms is forgetting to correct
byte order when reading data fields.

Three mode pages follow the descriptor. The first is an error recovery
page (0 l H) , fol lowed by a disconnect-reconnect page (02H) and a vendor
specific page (2FH) . Let 's look at the error recovery page.

44 SCSI Commands

Table 5-21 . Zip Drive Error Recovery Mode Page

r Byte # B it 7 Bit 6 Bit 5 Bit 4 Bit 3

0 PS (0) Reserved Page code (0 l H)

1 Page length (6)

2 AWRE ARRE TB RC EER
(l) (1) (0) (0) (1)

3 Read retry count (0)

4 Correction span (0)

5 Head offset count (0)

6 Data strobe offset count (0)

7 Reserved

Bit 2 Bit 1 Bit 0 I

PER DTE DCR
(0) (0) (0)

The PS field value of 0 tel l s us this page cannot be saved in nonvolatile

memory. The Zip drive does not support saved pages, and a Mode S e n s e

query requesting saved pages wi l l return an error.
The normal page length for error recovery data is 1 0 bytes. Here, the

length is only 6 bytes.

The third byte in this page contains an assortment of bit flags for

error recovery options. Automat ic read and wr ite r e a l location

(AWRE and ARRE) is supported for defective data blocks. The Enable

E ar l y Recovery (EER) flag indicates that the device wil l use the most

expedient error recovery method available. The other fields tel l us that

this device does not report recovered errors, terminate a data phase when

an error occurs, or use error correction codes for recovery.
From a programmer's perspective, this is important information.

Knowing how a device deals with errors drives the kinds of error handling

code you bui ld into your software.

Read ing and Writing

We ' l l c lose this chapter with a look at the workhorse functions of the
SCSI command set-the Read and Write commands. These commands
vary with device type, so we' l l examine how to use them with direct
access devices.

As with other commands, Read and Write come in 6-byte and 1 0-byte
versions corresponding to their Group 0 and Group 2 implementations.
The 1 0-byte versions al low for larger numbers in addresses and transfer
lengths specified in the Command Descriptor Blocks. They also contain
extra fields that dictate cache handl ing and relative addressing.

Reading and Writing 45

Direct -access Read and Wr ite commands are block oriented. They

begin at a logical block address, with transfer lengths g iven by a block
count. You need the block length as reported by Mode S e n s e or other

commands to determine the number of bytes in a data transfer.

Read

The 6-byte Read command has a s imple structure. Its fields identify the

first logical block to read, and the number of blocks to transfer. Table 5-22
shows the CDB for the Read command.

Table 5-22. Read (6-byte)

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Operation code (08H)

1 Logical unit number I Logical block addr e s s

2 Logical block addr e s s (continued)

3 Logical block addr e s s (continued)

4 Tran s f e r l ength

5 Control field

The L o g i c a l b l o c k addr e s s is spread across three fields, with the

Most Significant Byte (MSB) appearing first. Trans f e r l en g t h occupies
a single byte.

Write

The CDB for the Wr i t e command is nearly identical to that of the Read

command. Only the operation code is different.

Table 5-23. Write (6-byte)

I Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit O I
0 Operation code (OAH)

1 Logical unit number I Lo gical block addre s s

2 Log i c a l block addr e s s (continued)

3 Log i c a l b l ock addre s s (continued)

4 Tran s fer l e ngth

5 Control field

46 SCSI Commands

OUoer Commawods

We've barely touched on all the commands supported by the different

SCSI device types. The SCSI-2 specification document contains the com
plete list for those who wish to experiment.

Chapter 6

Status, Sense, and Errors

In a perfect world, there would be no need to receive feedback from SCSI
devices . They always would be ready to communicate, every command
would execute successfully, and programming SCSI peripherals would be
a simple exercise. In real ity, commands execute completely, partially, or
not at all. Devices wait patiently offline because they are out of paper, and
operations fail because a tape cartridge is write-protected. Even if every

thing else works perfectly, errors in the SCSI bus may prevent commu
nications .

The SCSI specification is a comprehensive document that deals with

many different types of devices. Each device type has its own collection
of things that can go wrong, of errors to report, of changes in conditions
that affect how the device responds to commands. If error handling under
SCSI seems complicated or confusing, this is why.

The authors of the SCSI document did an admirable job of unifying

support for different device types. They defined different levels of feed
back in the specification. On a gross level, a status code reports the results

of commands sent to devices . On a finer level , a detailed set of sense
information pinpoints where errors occur.

47

48 Status, Sense, and Errors

Status

Every command phase that ends normally is fol lowed by a status phase.

In the status phase, a target sends a single byte back to the init iator that

indicates the outcome of the command. Table 6- 1 shows the structure of

the status byte.

Table 6-1 . Status Byte

�its 6-7 Bits 1-5

Reserved Status code

Bit O I
Reserved

The status byte can be cumbersome to work with, s ince the lowest bit
i s reserved. It i s easy to forget that the actual status code starts with bit num

ber one.

Status Codes

Only nine status codes are defined under the SCSI-2 specification. A l l

others are reserved.

Table 6-2. Status Codes

�tatus Code Description

OOH Good

O l H Check Condition

02H Condition Met

04H Busy

08H I ntermediate

OAH I ntermediate-Condition

OCH Res ervation Con f l ict

l l H Command Terminated

1 4H Queue Fu l l

Met

Targets return the Good status on successful completion of a command.
Some data search or prefetch commands return C o nd i t i o n Met i nstead.

Sense Data 49

The B u s y status indicates that a device is engaged in another process
or otherwise unable to accept a command until l ater. R e s e rvat ion

Con f l ic t occurs when trying to access a device reserved by another ini

t iator. If a device supports tagged command queuing, i t may return Queue

F u l l to indicate that its command queue cannot accept any more entries.
Some of the status codes pertain to l inked commands . I nt ermediate

and I nt e rmediate-Condit ion Met are retumed after each l inked
command where Good or Cond i t i on Met would normally apply.

The most interesting status code is Check Cond i t i o n . This code,

along with Command Terminated, indicates that a contingent allegiance

condition exists. A contingent allegiance condition occurs when a target
has extended error information, known as sense data, avail able. It pre
serves this data unti l the initiator retrieves it or another action clears the

contingent allegiance condition. If the device can only maintain sense
data for a single initiator, it wil l return a Busy status to other devices that

attempt to access i t .

Sense Data

Sense data contains detailed information about error conditions. It is orga
nized into major categories called sense keys and subcategories called

additional sense codes (ASC) and additional sense code qualifiers

(ASCQ). The combination of these pices of data can convey finely

detailed information about error conditions.
Before interpreting these numbers, we must retrieve them. The

Requ e s t S e n s e command performs this function. Requ e s t S e n s e i s a

mandatory command for a l l device types. Table 6-3 shows the CDB for

this command.

Table 6-3. Request Sense

l Byte # Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Operation code (03H)

1 Logical Unit Number [Reserved

2 Reserved

3 Reserved

4 Allocation length

5 Control field

50 Status, Sense, and Errors

The A l l o c at ion l ength tells the target how much sense data to

return.
The data returned by this command fol lows a form defined by the SCSI

specification. The form is the same for all devices , but some fields pertain

only to certain types. It is also legal for a target to use a vendor-specific

format for sense data.

Table 6-4. Sense Data Format

I Byte # Bit 7 Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Valid Error code (70H or 7 1 H)

1 Segment number

2 Filemark EOM I ILl !Reserved! Sense key

3-6 Information

7 Additional sense length

8-1 1 Command-specific information

1 2 Additional sense code (ASC)

1 3 Additional sense code qualifier (ASCQ)

1 4 Field replaceable unit code

1 5 SKSY Sense key-specific

1 6- 1 7 Sense key-specific (continued)

1 8-end Additional sense data

This data conveys a plethora of information about errors that have

occurred. The Val id bit indicates that the fol lowing data conforms to the

structure defined above. Only two Error c odes are defined: 70H for

current errors, and 7 1 H for deferred errors . Support for deferred errors i s

optional . The segment number, F i l emark, and E n d o f Medium (EOM)
fields apply to specific commands or device types.

If the I ncorrect Length I ndicator (ILl) i s set, the amount of data
a command requested did not match the amount available from the target.
The I n f ormat ion field contains the difference in blocks for direct
access or tape devices, or bytes for devices l ike scanners that are not
block oriented.

The I n f ormat ion field may contain different data depending on the
command or device type it pertains to. The same appl ies to the Command

spec i f ic i n f ormation field.

Sense Key

Sense Data 5 1

The S e n s e K e y reveal s the broad category under which the reported error

fal l s . These categories report hardware errors, write protect errors, i l legal

requests, and an assortment of other conditions. The SCSI specification

defines the fol lowing sense keys. Other values are reserved.

Table 6-5. Sense Keys

Sense Key Description

OOH No Sense

O l H Recovered Error

02H Not Ready

03H Medium Error

04H Hardware Error

OSH Il legal Request

06H Unit Attention

07H Data Protect

08H Blank Check

09H Vendor-speci fie

OAH Copy Aborted

OBH Aborted Command

OCH Equal

ODH Volume Overflow

OEH Miscompare

Some of these require further explanation . For instance, the I l legal

Requ e s t key indicates that a CDB contained an inval id field or para

meter. If this occurs , the Sense Key Spec i f ic Value (S KSV) flag is set
in the sense data, and the sense key-specific fields contain pointers to the
offending values in the CDB or parameters. This information comes in
handy when debugging SCSI software.

For Recovered E rror, Hardware E rror, and Medium E rror, the
sense key-specific field contains a retry count if the S KSV flag is set.

52 Status, Sense, and Errors

Unit Attention

The Unit Attent ion key appl ies when something occurs that may

change a device's operating parameters. A reset or power cycle, a medium
change, or a change in mode parameters can al l trigger a unit attention

condition. In this condition the device will only respond to I nquiry and
Requ e s t S e n s e commands, returning a Check Condit ion status for
other commands. In this state, only a Request S e n s e command wi l l

clear the un i t attention condition. If a contingent al legiance also exists,

any command from the initiator wi l l clear the unit attention condition.
A device enters th is state on power up, which means that the first

command issued may return a Check Condition status. This can be par
ticularly troublesome for programmers unfamil iar with the ways of SCSI.

Additional Sense Codes

In many cases the sense key alone provides enough information for enor

recovery. When it does not, the ASC and ASCQ provide the missing
detai ls . The ASC gives additional information about the source of the

error, and the ASCQ gives more specific detai ls . Together the ASC and

ASCQ pinpoint exact ly what errors occur in SCSI operations. Some of
these errors apply only to particular device types.

The complete list of ASC and ASCQ assignments occupies several
pages of the SCSI document. A browse through this l ist wi l l give you an

idea of the kinds of errors your software may need to handle.

Example: Iomega Zip Drive

Let 's look once again at the Iomega Zip drive for an example of sense

data. We ' l l force a Unit Attention condition by changing the disk, and
examine the result of a Request Sense command.

Table 6-6. Iomega Zip Drive Sense Data

l Byte # Bit 7 Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I
0 Val id Error code (70H)

(0)

I Segment number (0)

2 Filemark EOM I ILl I Reserved I Sense key (06H)
(0) (0) (0)

3-6 Information (0)

(Continued)

Sense Data 53

Table 6-6. Iomega Zip Drive Sense Data (Continued)

I Byte #

7

8- 1 1

1 2

1 3

1 4

1 5

1 6- 1 7

1 8-end

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 I

Additional sense length (1 7)

Command-specific infonnation (0)

Additional sense code (ASC) (28H)

Additional sense code qualifier (ASCQ) (0)

Field replaceable unit code (0)

SKSV I Sense key-specific (0)
(0)

Sense key-specific (continued) (0)

Additional sense data (FFH, FEH, O I H, 02H, l CH, 0, 0)

The sense key conesponds to Unit Attention, which is what we

would expect . The ASC and ASCQ point to a message, "Not ready to

ready transi tion, medium may have changed." This indicates that a device
that was unavailable is now onl ine, which is what we would expect.

Some curious things to note are that the Valid flag is not set, and the

Add i t ional s e n s e data field seems to contain vendor-specific data.

This is a good rem inder that not all SCSI devices conform completely to
the standard. When working with a particular device, information from

the manufacturer can be critical.

Chapter 7

ASP/: The Advanced SCSI
Programming Interface

In the early days of SCSI most software developers hard-coded support

for SCSI adapter cards directly into their applications. Adding support for
a new SCSI adapter or chipset was a tedious and error-prone task, typi

cally undertaken by programmers whose primary focus was (properly) on
the application itself rather than on the SCSI interface code. Therefore
applications tended to require specific combinations of host adapter and
peripheral devices , often those matching the system of the programmer
responsible for the SCSI interface code. Because the code was tied so
closely to specific devices and adapters , constant maintenance upgrades
were required to keep pace with changing hardware .

The chal lenges involved in developing SCSI code generally break
down into two areas : generating the proper SCSI commands for the vari
ous peripheral (target) devices, and interfacing with the SCSI host adapter
to send these commands to the devices. As described in Chapter 1, the

. first issue was addressed by the CCS and SCSI-2 improvements to the

SCSI standards. These improvements helped device manufacturers imple
ment a common set of commands appropriate to the type of their device,

which in turn al lowed programmers to write generic code for a given
device type and have a reasonable expectation that their code would work
with most other devices of that type. The second issue was addressed by
the definition of standard programming interfaces that pass commands to
devices, regardless of the particular host adapter being used. We ' l l be

55

56 ASP/: The Advanced SCSI Programming Interface

describing one of the most popular of these interfaces for PC platforms ,
the Advanced SCSI Programming Interface, in this chapter.

What Is ASPI?

The Advanced SCSI Programming lntelface (ASPI) was developed by
Adaptec, a leading manufacturer of host adapter cards. Adaptec published
their Adaptec SCSI Programming Interface, renamed it, and encouraged
other manufacturers to support it. ASPI was defined and available on most
PC-based operating systems including DOS , Windows, OS/2, and Novell
Netware, and was immediately supported by Adaptec 's own popular line
of SCSI host adapters . As programmers began to embrace ASPI, most
other SCSI host adapter manufacturers introduced ASPI-compliant inter
faces to their hardware, especially for the MS-DOS operating system.
ASPI soon became a standard for PC-based SCSI programming and

helped open the way to the widespread acceptance of SCSI devices on the

PC platforms .
ASPI 's success is due partly to its relative simplicity. I t forgoes some

SCSI features, such as tagged queueing and asynchronous event notifica
tion, in favor of a simpler interface model and easier implementation (as
do many peripherals and operating systems) . In addition, ASPI is prima

rily focused on the application viewpoint and handles only initiator, or
host adapter, requests. This means that ASPI can send commands to a
SCSI device, but it is not designed to deal with commands received from
another initiator (host adapter) . Most PC-based applications are interested

in controlling peripheral devices , so the lack of this target mode support
hasn ' t been a significant handicap for AS PI.

Why Should I Use ASPI?

Let 's take a look a t what ASPI actually does for a programmer. First , i t
insulates you from the hardware interface of SCSI host adapters . In the
ory (and largely in practice) you can write code using one ASPI manager
and host adapter, and that code will run with any other host adapter sup
ported by a compliant ASPI manager. All of the hardware-specific
interface code is handled by the ASPI manager itself. Each different SCSI
host adapter design has a corresponding ASPI manager, often developed
by the manufacturer itself.

In addition to providing hardware independence, ASPI also provides a
great deal of operating system independence. Application programmers

ASP/ Concepts 57

using ASPI typically don 't need to worry about interrupt handlers and
other operating system specific details related to device driver program
ming. Page locking and swapping are still a concern under older operating
systems like Windows 3 . 1 or DOS , but much less a concern under Win
dows 95 and NT. Aside from small details like this, ASPI interface itself is
quite consistent across all operating system platforms , though the imple
mentation details differ. From an application programmer's perspective
the major difference in ASPI under different operating systems is the
mechanism used to connect to the ASPI manager itself. On MS-DOS sys
tems , for example, ASPI usually is implemented as a device driver loaded
via the CONFIG.SYS file, while under Windows ASPI is implemented as
a Dynamic Link Library (DLL) . There are also small differences in the
alignment and order of fields within structures passed to the ASPI man
ager on 1 6-bit versus 32-bit implementations. The examples that follow
use the ASPI for Win32 structures and definitions , which are used on
Windows 95 and Windows NT systems . If you are using ASPI on another
platform, make sure you are using the structure definitions appropriate for
that system.

ASPI Concepts

The next few sections describe some important ASPI concepts to explore
before looking at the ASPI commands and structures themselves . These
concepts include device addressing, issuing SCSI commands and waiting
for them to complete, and some adapter-specific details that you need to
know. While reading this you may get the impression that ASPI is much

more complicated than it really is. In practice, ASPI is very simple and

easy to use, and we 'll be providing plenty of examples and sample code
just a bit later. For now, you should note that an ASPI manager has one
main routine that you call to issue most ASPI commands. This routine
takes a pointer to a structure that contains all of the information necessary
to execute a given ASPI command. In the examples below this routine is
called SendASPI 3 2 Command () , and we ' ll show you how to use it a bit
later. Feel free to look ahead if you are curious about the commands or
structures.

The latest revisions of the ASPI specification have added other routines
to support Plug and Play SCSI and large buffers .

Adapter and Device Addressing

The SCSI specification identifies devices by a SCSI device ID, and by a
Logical Unit Number (LUN) that may identify a particular subunit on a

58 ASP/: The Advanced SCSI Programming Interface

device. Typical SCSI device IDs range from 0 to 7, and LUNs also range
from 0 to 7. Given these two pieces of information, any unit or subunit on
a single SCSI bus can be uniquely identified. However, it is possible to
connect two or more different SCSI host adapters to a single system, so
the ASPI manager requires one more piece of information-the host
adapter number. It may help to think of a host adapter as an I/0 channel,
since some host adapter cards can support more than a single channel .

Host adapters are numbered consecutively, starting a t 0. The first (or

only) host adapter ID will be 0, the second will be 1, and so on. So under
ASPI, SCSI devices can be uniquely identified by a host adapter number,
a SCSI ID, and a logical unit number. Every ASPI command dealing with
a specific SCSI device contains these three pieces of information
(HA: ID:LUN) .

Issuing SCSI Commands

Now that we can address a SCSI device we usually want to issue com
mands making it do something useful. This involves four basic steps :
building the command, sending it to the ASPI manager, waiting for the
command to complete, and then interpreting any status or error codes
returned by the ASPI manager.

All ASPI commands use a data structure called a SCSI Request Block
(SRB) . The first few fields of the SRB are common to all ASPI com
mands , but the remaining fields depend on the specific command being
executed. Before sending the SRB to the ASPI manager, an application

must initialize the SRB with data appropriate to the command being
issued. After the SRB has completed it will contain any data and status
codes returned by the ASPI manager or the target device.

Building the SCSI Request Block

The first step required to issue an ASPI command is initializing the SRB
structure. For the most part, you simply fill in the required field values .
We' ll describe the fields later in this chapter, but right now let 's take a
quick look at a common example-sending a SCSI I nquiry command
to a target device. The first thing you must do is allocate an SRB and
specify which ASPI command it describes. We also allocate a small data
buffer to receive the inquiry data from the device.

SRB_Exec S C S I Cmd srb ;
unsigned char bu f [l 2 8] ;
mems et (& s rb , O , s i zeof (s rb)) ;
s rb . SRB Cmd SC_EXEC_SCS I_CMD ;

I I al locate the SRB
I I alloc ate data buffer
II c lear a l l f ields
II spec ify ASP I command

ASP/ Concepts 59

Next, you must provide the address of the SCSI device that will receive
the command. Assuming you know the host adapter number, SCSI ID,
and logical unit number of the device, this is straightforward:

s rb . SRB_Haid = Hos tAdapterNumber ;
s rb . SRB_Target = TargetSc s i i d ;
s rb . SRB_Lun = 0 ;

We also need to provide the SCSI Command Descriptor Block (CDB)

itself. For our example of an I nquiry command, this i s done as follows :

srb . SRB_CDBLen = 6 ; I I I nquiry cmd i s 6 bytes
s rb . SRB_CDBByte [O) O x 1 2 ; I I I nqu iry cmd opcode
srb . SRB_CDBByte [l] 0 ; I I LUN and page f l ags
s rb . SRB_CDBByte [2] 0 .

, I I I nqu iry Page code
s rb . SRB_CDBByte [3] 0 ; I I Reserved
s rb . SRB_CDBByte [4) s i z eo f (buf) ; I I Alloc ation length
s rb . SRB_CDBByte [5] 0 ; I I Contro l byte

Refer back to the description of the SCSI I nqu iry command in Chap
ter 5 for a description of this CDB .

Next, since the I nquiry command returns data to us, we must tel l the
ASPI manager where to put the data. We also set the SRB _DATA_ IN flag
to tel l the ASPI manager that we are expecting to receive data from the

device. If we were sending data to the device we would set the SRB _
DATA_ OUT flag.

s rb . SRB_BufLen = s i zeof (buf) ;
s rb . SRB BufPointer = buf ;
srb . SRB=Flags I = SRB_DATA_IN ;

I I bu f f er length
II addre s s
I I tran s fer direct ion

And finally we need to tell the ASPI manager how much sense data
should be returned to us in the event of a SCSI check condition. The

SRB_ExecSCSICmd structure contains a buffer for the sense data, but we

still need to specify its size. This can be tricky-bugs in both Windows 95
and NT limit the practical size of the sense buffer to 1 4 bytes. It 's com
mon to use the defined value SENSE_LEN, which is set to 1 6 bytes .

srb . SRB_SenseLen = SENSE_LEN ;

That 's it . We 're now ready to send the SRB to the ASPI manager. (If
you peeked ahead at the SRB definitions, you may have noticed that we
skipped the SRB _Po s tProc field. We ' l l cover that a bit l ater.)

60 ASP/: The Advanced SCSI Programming Interface

Sending an SRB to the ASPI Manager

Once the SRB is properly initialized, you simply pass its address to the
ASPI manager, and the ASPI manager will handle all phases of the actual

SCSI command and data transfer. This is quite simple-you just call the
ASPI manager's entry point, passing the address of the SRB as a
parameter:

SendASPICommand ((LPSRB) & s rb) ;

ASPI makes the actual execution of the command as simple as issuing

a function cal l . Well , almost that simple . . . in the interest of performance,
the ASPI manager usually just places the SRB in a queue and returns to
the caller immediately, before the command has even started. This allows

your application to prepare the next command while the last one is still

executing. The ASPI manager handles all of the details involved in exe

cuting the command in the background, and then updates a status field in
the SRB when the command finally completes.

Waiting for an SRB to Complete

Since the ASPI manager may return before an SRB has been completed,
your application must not deallocate the SRB or rely on any returned data

until the SRB is finished. The simplest way to guarantee this is to simply

sit in a loop, waiting for the SRB_Status field to indicate that the SRB

has completed.

while (s rb . SRB_Status SS_PENDING) I I while s t i l l pending
I I do nothing

Polling the status field is an inefficient way to wait for a command to
complete . Under MS-DOS this isn 't much of an issue because there is

only one application running at any given time. On a multitasking operat

ing system, however, polling wastes CPU time that could be better spent
running other threads or applications . Fortunately ASPI provides another
method of waiting, called posting , which is simply a callback to a routine
that you specify in the SRB . When the ASPI manager finishes processing
the SRB it will call your routine, passing the address of the SRB on the
stack. This callback routine can inspect the SRB 's status fields, and possi
bly execute another SRB immediately. The callback routine is called as
soon as possible after the SRB completes, even from within the ASPI
manager's interrupt handler in some implementations . Because of this ,
you should keep your callback routines short and simple. Also, because
the callback might occur at interrupt time, you should not use any operat-

ASP/ Concepts 6 1

ing system services that aren 't completely reentrant. This means that your
callback routine is usually restricted to inspecting the just completed
SRB , and possibly sending a new SRB to the ASP! manager for process

ing. This is an easy and efficient way to receive ASP! notifications , but

under Win32 it requires the ASP! manager to create a background thread
to manage the callback. There is another method you can use in this envi
ronment that we ' l l discuss later.

One common problem encountered when using callback routines

involves the calling convention used by the ASP! manager. The ASP! man

agers for Windows 95 and Windows NT expect the callback routine to use
the standard CDECL calling convention, which equates to the _stdcall
calling convention for most Win32 compilers . Under Windows 3 .x you
should use the FAR PASCAL convention, just l ike most 1 6-bit Windows

callbacks and entry points. Under MS-DOS things are a bit more compli
cated. The ASP! manager pushes the address of the just completed SRB
onto the stack and then makes a FAR call to the callback routine, as
follows:

push [S rbO f f set]
push [SrbSegment]
c a l l dword ptr [SRB_Po stProc]
add sp , 4

pu sh o f f set o f SRB
push s e gment of SRB
c a l l c a l lback rout ine
c lean up s tack

This corresponds to the C language calling convention used by most
MS-DOS compilers . However, the ASP! specification for MS-DOS also
requires that the callback routine preserves the values of all registers .
Therefore, a callback routine under MS-DOS might look like the
following :

C a l lbackRout ine :
pu sh bp
mov bp , sp
pus h a
pu s h d s
pu s h e s
l e s bx , dword ptr [bp+ 6]

; Now E S : BX has the addre s s of the SRB

pop e s
pop ds
pop a
pop bp
retf

62 ASP/: The Advanced SCSI Programming Interface

Fortunately, most MS-DOS C compilers have implemented extensions

allowing you to specify these requirements to the compiler automatically.

Check your compiler documentation for details, but most will support the

following :

void
{
}

cdec l __ s averegs loadds Cal lbackRout ine (SRB far *p)

If you are using another programming language, or if your compiler
doesn ' t support these extensions, you can write a small assembly lan

guage subroutine like the one above that simply translates the call into the
format required by your compiler.

With that behind us, let 's take a look at how you can use a callback rou
tine under Windows 95 and NT. Our example will simply signal a Win32
EVENT object. This example is rather artificial, but it does show how to
set up a callback.

The first thing we need to do is create the event object and the cal lback

routine itself:

HANDLE EventHandle ;

void Cal lbackRoutine (SRB *p)
{
SetEvent (Handle) ;

}

Let 's assume we 've already initialized an SRB to execute a SCSI

I nquiry command as shown earlier, and simply fill in the missing pieces

and send it to the ASPI manager.

srb . PostProc = Cal lbackRoutine ;
srb . Flags I = SRB_POST ING ;
Re s etEvent (EventHandle) ;
dwStatus = SendASP I 3 2 Command ((LPSRB) & s rb) ;
i f (dwStatus == S S_PEND ING)

WaitForSingleOb j ect (EventHandle , INFINITE) ;

We use the Windows 95/NT WaitForSingleObject() service to block
our thread until the SRB completes. At that point the ASPI manager will
call our callback routine, which will in tum signal the event that our
thread is blocking on. The net result is the same as for polling, but we
haven 't wasted any processor time.

Callback routines are also very useful when controlling streaming
devices like tape drives and CD-ROM recorders , where the media is

ASP/ Concepts 63

constantly moving and you must issue the next read or write command
within a very short period of time. If the next command is issued too late,
the tape drive will need to reposition (costing time) , or the CD-ROM
recorder wil l run out of data to write (wasting the CD) . One common

means of dealing with this i s to prepare SRBs and place them in a queue
in the foreground, and then rely on a callback routine to send the next

pending SRB to the ASPI manager in the background, as soon as the pre

vious command completes. This provides a simple but very useful form of
multitasking.

Callback routines can be intimidating and difficult to debug, so they
aren 't often used unless performance is a critical issue. Many applications
still s imply poll for completion, wasting CPU time. To make things easier
for programmers, the ASPI implementations for Windows 95 and NT pro

vide a third method for waiting, called Event Notification . Instead of
specifying the address of a callback routine, you can provide the handle of a
Win32 event object that will be signalled automatically when the com
mand completes. After starting the SRB you can then simply wait for the
event, and your thread won 't hog CPU time. Modifying our example above:

s rb . Pos tProc = EventHandle ;
s rb . Flags I = SRB_EVENT_NOTIFY ;
ResetEvent (EventHandle) ;
dwStatus = SendASP I 3 2 Command ((LPSRB) & s rb) ;
i f (dwStatus == S S_PEND ING)

WaitForSingleOb j ect (EventHandle , INFINITE) ;

Note that callback routines and event notification are mutually exclu
s ive. Never set both the SRB EVENT NOT IFY and SRB POST ING bits in
an SRB _F l ags field. Given the choice between callbacks and event noti
fication, the latter i s simpler and more efficient.

Processing Returned Status Information

The final step in processing an SRB involves checking the returned status

fields. For SCSI I/0 commands , this can involve up to four separate fields :
SRB_Statu s , SRB_HaStat, SRB_TargStat , and the SRB_SenseArea
buffer. We describe the different values returned in these fields later in this
chapter, in the ASPI Error and Status Codes section. Right now you

should just remember that things can go wrong, and these fields wil l tell
you what happened.

Another thing to note is that if you use callback functions or event noti
fication, the status field is not necessarily val id until the SRB has finished
executing. This means that you should not poll the status field for infor
mation until the callback has executed or the event has triggered.

64 ASP/: The Advanced SCSI Programming Interface

Adapter-Specific Properties

The ASPI interface tries to manage most hardware-specific details for
you, but some cards have data buffer alignment or maximum transfer size
restrictions that must be accommodated by the application. For example,
many PC-based SCSI adapters can transfer a maximum of 65 ,536 bytes

of data with a single command. Applications must be able to recognize
this limitation and make sure they stay within it. Unfortunately, the origi
nal ASPI specification did not provide a way to determine this
information for specific adapter cards. A February 1 994 addendum to the
ASPI specification details a method of gathering hardware-specific infor

mation, but you must take care to determine if a specific ASPI manager

supports this extension. The ASPI for Win32 specification (Windows 95
and Windows NT) redefines portions of the Host Adapter Unique field
for standard sets of adapter-specific information, which simplifies the
detection process but isn 't necessarily compatible with older ASPI man
agers under other operating systems. See the description of the Host
Adapter I nquiry command for additional information.

Connecting to the ASP/ Manager

As mentioned earlier, the actual implementation of the ASPI manager

varies between operating systems. MS-DOS and OS/2 ASPI managers are
implemented as device drivers , while Windows ASPI managers are imple
mented as DLLs. Different Windows implementations may also use
additional components (VxDs or device drivers) to handle low-level oper
ating system and hardware interface functions . For the most part, the

differences in the implementation are insignificant to the application pro

grammer, except for the method of connecting to the ASPI manager. On
Windows systems you simply link your application to the ASPI man
ager's import library (WINASPI.LIB or WNASPI32.LIB) , and rely on the

Windows dynamic link mechanism to make the connection. For MS-DOS
and OS/2 systems you must open the device driver and issue an IOCTL
call to get the address of the ASPI manager's entry point.

Don 't worry if this sounds complicated. It 's actually quite simple. On
1 6-bit Windows systems you can use the following code to connect to the
ASPI manager:

ASP/ Concepts 65

Listing 7·1 . Connecting to ASPI under 1 6-Bit Windows

WORD AspiStatus ;
BYTE NumAdapters ;

AspiStatus = GetAS P I Support info () ;

switch (H I BYTE (Aspi Status))
{
c a s e SS COMP :

I * ASP ! i s properly initiali zed and running * I
I * The low byte of the status contains the * I
I * number of host adapters installed under * I
I * ASP ! . * I
NumAdapters = LOBYTE (AspiStatus) ;
break ;

c a s e S S I LLEGAL MODE :
I * ASP ! i s not supported on the current ly running * I
I * Windows mode (real , standard , or enhanced) * I
NumAdapters = 0 ;
break ;

c a s e S S OLD MANAGER :
I * The instal led MS-DOS ASP ! manager doe s not * I
I * support Windows . Some MS-DOS ASP ! manager s * I
I * may be u s ed under Windows , but many do not * I
I * s upport Virtual DMA Service s , or are other- * I
I * wi s e incompatible with Windows . * I
NumAdapters = 0 ;
break ;

de f ault :

}

I * Something i s not right , so don ' t even try * I
NumAdapters = 0 ;

The most common problem here is forgetting to link the WINASPI.LIB
import library into your application, so the l inker complains that it can 't
find the GetAS P I Support i n f o () routine. The process is similar for
32-bit Windows systems, except you link to the WNASPI32.LIB import
library, call the GetASPI 3 2 Supportinfo () routine, and you don 't have
to worry about compatible MS-DOS ASPI managers :

66 ASP/: The Advanced SCSI Programming Interface

Listing 7-2. Connecting to ASPI u nder 32-Bit Windows

DWORD AspiStatus ;
BYTE NumAdapters ;

AspiStatus = GetAS P I 3 2 Support info () ;

switch (H I BYTE (LOWORD (AspiStatus)))
{
c a s e SS COMP :

I * ASP I i s properly initial i z ed and running . * I
I * The low byte o f the status contains the * I
I * number of host adapters instal led . * I
NumAdapters = LOBYTE (AspiStatus) ;
break ;

de f ault :

}

I * No ASP I manager i s currently installed * I
NumAdapters = 0 ;

These examples assume you are linking the WINASPI.LIB or
WNASPI32.LIB import library to your application. If not, you can still
use the ASPI manager, but you must explicitly load it with the Windows
LoadLibrary () routine, and get the address of the GetASPI Support
Info () routine with the GetProcAddre s s () routine. This process is a
bit more complicated, but it lets your program start even if the ASPI man
ager isn 't installed, allowing you to provide the user with more specific
information than the standard Windows "couldn 't find a required DLL"
message. You can dynamically load the Win32 ASPI manager as shown
below:

Listing 7-3. Dynamically Loading ASPI under 1 6-Bit Windows

DWORD (* GetAS P I 3 2 Support info) () ;
DWORD (* SendAS P I 3 2 Cornrnand (LPSRB lpSrb) ;
HANDLE WnAspiHandle ;

I * ptr to function * I
I * ptr to function * I

DWORD AspiStatus ;
BYTE NumAdapters ;

WnAspiHandle = LoadLibrary (" WNASP I 3 2 . DLL ") ;
i f (WnAspiHandle)

(Continued)

ASP/ Concepts 67

Listing 7-3. (Continued)

e l s e

{
GetASP I 3 2 Supportinfo = GetProcAddre s s (" GetAS P I 3 2 Support info ") ;
SendAS P I 3 2 Command = GetProcAddre s s (" SendAS P I 3 2 Command ") ;
i f (GetAS P I 3 2 Support info & & SendASP I Command)

{
Asp i S t atus = GetASP I 3 2 Support info () ;
switch (H I BYTE (LOWORD (Aspi Status)))

}

{
c a s e S S COMP :

I * ASPI i s init i a l i z ed and running . * I
I * The low byte o f the status contains * I
I * the number o f host adapter s . * I
NumAdapters = LOBYTE (Aspi Status) ;
break ;

default :

}

I * No ASP I manager i s current ly instal led * I
NumAdapters = 0 ;

e l s e
{

}
}

{

I *
I *
I *
I *

Cannot retrieve addre s s of * I
GetAS P I 3 2 Support i n fo () or * I
SendAS P I 3 2 Command () . The ASP I * I
may not be properly instal led . * I

I * C annot load WNASP I 3 2 . DLL * I
I * make sure it i s properly installed . * I

}

On MS-DOS systems, you must first open the ASPI manager's device
driver and get the address of the ASPI manager 's entry point. This is done
by the fol lowing code sample:

68 ASP/: The Advanced SCSI Programming Interface

Listing 7-4. In itial izing ASPI under MS-DOS

DD 0
DW 0

. DATA
AspiEntryPoint
AspiHandle
AspiDriverName DB " SCS IMGR$ " , 0

. CODE
GetAspiEntryPoint PROC

push ds
mov ax , @ DATA
mov ds , ax
lea dx , AspiDr iverName
mov ax , 3 D 0 0 h
iny 2 1 h
j c f a i led
mov [AspiHandle] , ax

mov bx , [AspiHandle]
lea dx , AspiEntryPoint
mov cx , 4
mov ax , 4 4 0 2 h
int 2 1 h
j c f a i led

mov bx , [AspiHandle]
mov ax , 3E 0 0 h
int 2 1 h

mov ax , word ptr [AspiEntryPoint]

address of entry point
file handle
name o f ASP ! devic e

save current data s e gment
load local data s e gment

load o f f s e t of driver name
MS-DOS open f i l e

s ave file handle

load f i l e handle
address o f bu f fer
length = 4 bytes
MS-DOS IOCTL read

load f i l e handle
MS-DOS c lose f i l e

return the addr e s s
mov dx , word ptr [AspiEntryPoint+2] of ASP ! entry point
pop ds
ret

failed :
mov ax , O return NULL for error
mov dx , O
pop ds
ret

GetAspiEntryPoint ENDP

An application can then use the following sequence to connect to the
ASPI manager:

ASP/ Commands 69

Listing 7-5. Connecting to ASPI under MS-DOS

BYTE NumAdapters ;
WORD (FAR * SendASPICommand) (void FAR *pSrb) ; I * ptr to function * I

SendASPICommand = GetAspiEntryPoint () ;
i f (SendASPICommand)

e l s e

{
SRB_HA_I nquiry Hos tAdapter i n f o ;
memset (& Ho s tAdapterinfo , 0 , s i zeof (HostAdapte r i n f o)) ;
HostAdapte r i n f o . SRB_Cmd = SC_HA_INQUIRY ;
HostAdapterinfo . SRB_Haid = 0 ; I * first ho st adapter * I
SendASPICommand ((LPSRB) & HostAdapterinfo) ;
switch (Ho s tAdapter i n f o . SRB_Status)

}

{

{
NumAdapters = Hos tAdapter info . HA_Count ;
break ;

de f ault :

}

I * Something is wrong * I
NumAdapters = 0 ;

I * ASP I manager i s not installed * I
NumAdapters = 0 ;

}

The MS-DOS example above actually uses the ASPI manager to exe
cute a Host Adapter I nquiry command to retrieve the number of host

adapters installed. This was done to make the MS-DOS code mimic the
behavior of the Windows GetASPI Support i n fo () routine, which

returns the number of host adapter installed (in the least significant byte
of the return value) .

ASPI Commands

As mentioned above, a l l requests to an ASPI manager are routed through a

single SendASPICommand () function that takes a pointer to a generic
SCSI Request Block (SRB) as its only parameter. The first few fields in an
SRB are common to all ASPI commands . These fields include a command
code, a host adapter number, a status field, and a field for various control
flags. The remaining fields in an SRB are specific to the type of command,

70 ASP/: The Advanced SCSI Programming Interface

and contain information and values that are appropriate to that command.

The common SRB fields are:

BYTE
BYTE
BYTE
BYTE
DWORD

SRB_Crnd ;
SRB_Statu s ;
SRB_Haid ;
SRB_Flags ;
SRB_Hdr_Rsvd ;

I * Command spec ific fields fol low * /

The SRB _ Cmd field defines the ASPI command, and the format of any

command-specific data. The SRB_S t atus field returns the status of the

command, whether it is pending, completed, or encountered an error. The

possible values returned in the SRB _S t atus field are described l ater in

the ASPI Error and Status Codes section. The S RB H a i d field i ndicates
which host adapter w i l l process the request, and the SRB _F l ag s field

contains any bit-flags that apply to the command.
The possible ASPI command values for the S RB _ Cmd field are:

Table 7-1 . ASPI Command Values

0

1

2

3

4

s

6

alue Command
SC_HA_INQUIRY

SC GET DEV TYPE

SC E XEC SCSI CMD

SC ABORT SRB

SC RESET DEV

SC SET HA INFO
(Not valid on Windows 95
or NT)

SC GET D I S K I NFO - - -
(Not valid on Windows NT)

Description

Retrieve information on the installed host adapter
hardware, including the number of host adapters
installed.

Identify devices available on the SCSI bus.

Execute a SCSI I/0 command.

Request that a pending SRB be aborted.

Sends a SCSI bus device reset to a particular
target.

Sets host adapter-specific information or operat
ing parameters. (This command is specific to a
particular host adapter/ASP! manager combina
tion, and is not typically issued by application
programmers.)

Retrieve information about a SCSI disk device's
INT 1 3h drive and geometry mappings. (This
command is available only under MS-DOS com
patible operating systems that support the BIOS
lnt 1 3h services for disk drives.)

(Continued)

ASP/ Commands 71

Table 7-1 . ASP! Command Val ues (Continued)

iValue Command Description

7

8

SC RESCAN SCSI BUS

SC GETSET T IMEOUTS

Rescan the SCSI bus attached to a given host
adapter. This causes the ASPI manager to note
any newly attached or removed devices and
update its internal tables accordingly. (This com
mand is available only under the ASPI for Win32
implementation in Windows 95 and NT.)

Set or retrieve SCSI command timeout values for
a given target device. (This command i s available
only under the ASPI for Win32 implementation
in Windows 95 and NT.)

The SC _ HA _I NQUIRY and SC _GET_ DEV _TYPE commands are used to

obtain information about the installed host adapters and SCSI devices.
These are typ ically used to determine which devices are avai lable on a
system. The sc _EXEC _S C S I_ CMD command is used for a l l SCSI transac

tions, and is the most frequently used command. The sc _ABORT_ SRB and

sc _RE SET_ DEV commands are used when trying to recover from timeout

and error conditions. The S C SET HA INFO and S C GET D I S K I NFO - - - - - -
commands aren ' t typically used by appl ication programmers, so they

aren 't discussed further.

Host A dapter Inquiry (SC_HA_/NQUIRY)

The Host Adapter I nqu iry command is used to retrieve information

about an instal led SCSI host adapter and the ASPI manager itself. Your

fi rst few calls to the ASPI manager should be H o s t Adapter I nqu iry

commands to determine the number of installed SCSI host adapters and
their capabi l ities . The adapter is specified by the 0-based number passed

in the S RB _H a i d field, and information is returned in the HA _ * fields, as

described below :

Listing 7-6. Host Adapter Inquiry SRB

typedef struct {
BYTE SRB_Cmd ;

BYTE SRB_Statu s ;

BYTE SRB_Hald ;
BYTE SRB_F l ags ;

I I command code = SC_HA_INQUIRY
II command status byte
I I host adapter number (0 - N)
I I request flags , s hould be 0

(Conrinued)

72 ASP/: The Advanced SCSI Programming Interface

Listing 7-6. (Continued)

DWORD SRB_Hdr_Rsvd �
BYTE HA_Count �
BYTE HA_SCS I_ID �
BYTE HA_Managerid [l 6] �
BYTE HA_Identifier (l 6] �
BYTE HA_Unique [l 6] �
BYTE HA_Rsvd l �
} SRB_HAinquiry �

I I reserved , must be 0
I I total number of host adapters
II SCS I ID of the spec ified host adapter
II ASC I I string de scribing ASP! manager
II ASCII string de scribing host adapter
II host adapter unique parameters
II reserved

The first Host Adapter I nquiry command you issue should specify
host adapter number (SRB_Haid) of 0. This will retrieve information

about the first SCSI host adapter, and it will also give you the total num
ber of host adapters installed in the system. If there is more than one
adapter present, you can issue additional Host Adapter I nquiry com
mands for the other host adapters .

Listing 7-7. Host Adapter Inquiry Call

SRB_HAi nquiry HostAdapterinfo �

memset (&HostAdapte r i n f o , 0 , s i zeof (Hos tAdapterinfo)) �

HostAdapter i n f o . SRB_Cmd = SC_HA_INQUI RY �
Hos tAdapter i n f o . SRB_Haid = 0 � I * first host adapter * /

SendASPICommand ((LP SRB) & HostAdapterinfo) �

switch (HostAdapter i n f o . SRB_Status)
{
c a s e S S COMP :

}

I * ASP I manager i s instal led and running * /
NumAdapters Hos tAdapter i n f o . HA_Count �
break �

de f au l t :
I * Something i s wrong * I
NumAdapters = 0 �

Let 's take a closer look at the fields in this SRB structure :

ASP/ Commands 73

Table 7-2. Host Adapter Inquiry Fields

field Description
SRB Cmd

SRB Status

SRB Haid

SRB_F l ags

SRB Hdr Rsvd

HA Count

HA S C S I I D

ASPI Command Code

This field must contain SC _ HA _INQUIRY to retrieve the informa
tion that fol lows.

ASPI Command Status

This field is used to hold the pending and completed ASPI com
mand status. On return, this field wil l contain one of the following
values:

ss _ COMP-completed without error

SS _INVALI D_ HA-invalid host adapter number

(Refer to the ASPI Error and Status Codes section for additional
infmmation about this field.)

Host Adapter Index

This field specifies which installed host adapter wil l be queried by
this command. A value of 0 indicates the first installed host adapter,
1 is the second, and so forth. Some host adapters support multiple
SCSI busses, and in this case, the value specified by this field is
actually a logical bus index rather than a physical host adapter
index. If you specify an index that is out of range the S RB _Status
field wil l return an ss INVALI D HA status code. You can deter-- -
mine the total number of host adapters available under the ASPI
manager by setting this field to 0 and looking at the value returned
in the HA Count field.

ASPI Command Flags

No flags are valid for this command, and this field should be set to 0.

This field is reserved and should be set to 0.

Host Adapter Count

This field returns the total number of host adapters available under
the ASPI manager. Some host adapters support multiple SCSI bus
ses, and in this case the value returned is actually the total number
of logical SCSI busses installed rather than the number of physical
host adapter cards. In most cases this distinction is unimportant,
since you can simply treat multiple SCSI busses on a single card as
if they were actually on separate cards.

Host Adapter SCSI ID

This field returns the SCSI ID of the specified host adapter.

(Continued)

74 ASP/: The Advanced SCSI Programming Interface

Table 7-2. Host Adapter Inquiry Fields (Continued)

field Description

HA_Manager id ASPI Manager Identifier String

The AS PI manager returns an ASCII string in this field describing
the AS PI manager. Typically this string describes the developer of the
ASPI manager. (Note that this string may not be null terminated.)

HA I denti f ier Host Adapter Identifier String

This field returns an ASCII string describing the specified host
adapter. This string typically describes the adapter type or model
number. (Note that this string may not be null terminated.)

HA_Unique Host Adapter Unique Parameters

This field returns a variety of information describing the specified
host adapter's characteristics and requirements. See the text below
for additional information.

The HA _Unique field was originally reserved for information specific
to a particular ASPI manager implementation. Under Windows 95 and

NT, portions of this field are used to return information about the capabi l
ities of the host adapter.

Table 7-3. Host Adapter Unique Parameters

0- 1

Description
Buffer Alignment Mask

This value specifies the host adapter's buffer alignment requirements.

0 = no alignment requirements

1 = word alignment

3 = dword alignment

7 = quadword alignment

and so forth. The alignment of the buffer can be checked by ANDing the buffer
address with this mask value. The buffer is properly aligned if the result is 0.

You must make sure any data buffer that you send to the ASPI manager meets
this alignment.

(Continued)

ASP! Commands 75

Table 7-3. Host Adapter Unique Parameters (Continued)

1 yte #
2

3

Description
Adapter Unique Flags

B it 0--reserved

B it ! -residual byte count reporting is supported

Bits 2-7-reserved

If bit 1 is set, the specified adapter supports residual byte count reporting. This
means that after a SCSI I/0 transfer (via the sc _EXEC_ S C S I_ CMD command)
the SRB _ BufLen field can be updated to indicate the number of bytes remain
ing in a transfer. This can be useful in buffer underrun situations, since you can
then determine how much data was actually transferred by the command. See
the SC _EXEC_ S C S I_ CMD description for additional information.

Maximum SCSI Targets Supported

This value indicates the maximum number of SCSI targets that are supported
by the given adapter. If this value is 0, you should assume that there are a maxi
mum of 8 targets.

4-7 Maximum Transfer Length

This field specifies the maximum number of bytes that can be transfened by a
single SCSI I/0 command on the specified adapter. Byte 7 is the most signifi
cant byte.

8-1 5 Reserved

It is very important to use the HA _Unique information when it is avail

able. Some host adapters and drivers have l i mitations on the maximum
amount of data that can be transferred with a s ingle SCSI command, and

this l imit i s reflected in the Maximum Trans f e r Length field w ithin the
HA _Unique data. A 64K l imitation is common on many PC-based host
adapters, and this l imit may be further reduced by the operating system

you are using. Be aware that you may have to break up transfers into

smaller chunks to accommodate such l imitations.

The Buffer A lignment Mask is becoming more important on newer
hardware platforms. In the never-ending quest for speed, many system
bus and host adapter designs use sophisticated schemes to improve data
transfer times when data is properly aligned. Many system memory
caches and busses are optimized for 64-bit, 1 28-bit, or even larger data
burst transfers. When your data buffers are aligned on these natural bus
s ize boundaries, transfers can be blazingly fast. However, data that is not

properly al igned often requires additional bus cycles to move across the
bus, s lowing things down considerably.

76 A SP/: The Advanced SCSI Programming Interface

Get Device Type (SC_GET_DEV_ TYPE)

The Get Device Type command is used to retrieve basic information
about a specific target device attached to a host adapter. The adapter is
specified by the 0-based number passed in the SRB _ Haid field, the SCSI
ID of the target device is specified in the SRB _Target field, and the tar
get device 's LUN is specified in the SRB_Lun field. If the specified

logical unit exists on the target, its device type identifier will be returned
in the SRB_DeviceType field. This command allows you to quickly
determine if a specific target device is available.

Listing 7-8. Get Device Type SRB

typede f s truct {
BYTE SRB_Cmd ;
BYTE SRB_Status ;
BYTE SRB_H ai d ;
BYTE SRB_Flags ;
DWORD SRB_Hdr_Rsvd ;
BYTE SRB_Target ;
BYTE SRB_Lun ;
BYTE SRB_Devic eType ;
BYTE SRB_Rsvd l ;

} SRB_GDEVBloc k ;

I I command code = SC GET DEV TYPE
I I command status byte
I I host adapter number
II reque st f l ags , should be 0
I I reserved , must be 0
I I SCSI ID of device (typic a l l y 0 - 7)
I I Logical Unit Number o f device
II returns the SCSI devic e type
I I reserved for a l i gnment

You should use this command to determine whether a specific target/

LUN device exists . Most ASPI managers will scan the SCSI bus when
they are first loaded and save information about each device found on a
system. The Get Device Type command typically uses this saved infor
mation, and doesn't actually have to query the device again (possibly
timing out on target/LUN devices that aren 't attached). Applications can

issue the Get Device Type command in a loop, once for each adapter/
target/LUN combination possible, to build a list of devices attached to
your system.

Listing 7-9. Get Device Type Call

SRB_GDEVB lock srb ;
int adapter , target ;
for (adapter= O ; adapter<NumAdapters ; adapter++)

{
for (target= O ; target<NumDevice s ; target++)
I * u s e NumDevices from Host Adapter I nquiry * I

(Continued)

ASP/ Commands 77

Listing 7-9. (Continued)

}

{
memset (& s rb , O , s i zoef (s rb)) ;
srb . SRB_Cmd = SC_GET_DEV_TYPE ;
srb . H a i d = adapte r ;
srb . Target = t ar get ;
srb . Lun = 0 ;
SendAS P I 3 2 Command ((LPSRB) & s rb) ;
i f (s rb . SRB_Status = = S S_COMP)

e l s e

{
I * We found a device , it ' s type is * I
I * in the srb . SRB_Devic eType f ie l d * I

{
I * The device doesn ' t e x i st , or is * I

I * not responding . * I

Let 's look at the SRB fields for the S RB GET DEV TYPE command i n

more detail :

Table 7-4. Get Device Type Fields

SRB Cmd

SRB S t a t u s

Description

ASPI Command Code

This field must contain sc GET DEV TYPE to retrieve
the information that follows.

ASPI Command Status

This field is used to hold the pending and completed
ASPI command status. On return, this field will contain
one of the following values:

ss COMP-without error

ss _INVALI D_ HA-host adapter number

S S NO DEVICE--device not installed

(Refer to the ASPI En·or and Status Codes section for
additional information about this field.)

(Continued)

78 ASP/: The Advanced SCSI Programming Interface

Table 7-4. Get Device Type Fields (Continued)
'
field Description

SRB Haid

SRB_F l ags

SRB Hdr Rsvd

SRB_Target

Host Adapter Index

This field specifies which installed host adapter wil l be
queried by this command. A value of 0 indicates the
first installed host adapter, 1 is the second, and so forth.
See the description of the Host Adapter I nquiry
command for additional information.

ASPI Command Flags

No flags are valid for this command, and this field
should be set to 0.

This field is reserved and should be set to 0.

Target Device SCSI ID

This field specifies the SCSI ID of the device in ques
tion. Typical values are 0-7. Some host adapters allow
more than eight target devices on a single bus, so be
sure to check the information returned by the H o s t
Adapter I nquiry command to determine the largest
possible value for this field on each host adapter.

SRB Lun Target Device Logical Unit Number

This field specifies the Logical Unit Number (LUN) of
the device in question. Some SCSI peripherals gang sev
eral individual device units on a single SCSI ID. These
subunits are identified by their LUN and this field i s
used to select one of them. If a device has only a single
logical unit, set this field to 0.

SRB _DeviceType Device Type ID

SRB Rsvdl

This field returns the SCSI peripheral device type identi
fier for the specified target/LUN. This value is usually
the same as the peripheral device type returned by the
S C S I Inquiry command. You may want to issue an
I nquiry command to be certain.

Reserved for alignment.

Set this field to 0.

Execute SCSI Command (SC_EXEC_SCSI_CMD)

The Execute S C S I Command command sends a SCSI I/0 command to a
target device. You provide a SCSI Command Descriptor B lock (CDB) and
a data buffer, and the ASPI manager wil l take care of the rest. All of the
complexity of the SCSI bus is h idden behind this one ASPI command.

ASP/ Commands 79

Listing 7-1 0. Execute SCSI Command SRB

typedef struct {
BYTE SRB_Cmd ;
BYTE

BYTE

BYTE

DWORD

BYTE

BYTE
WORD

DWORD

BYTE

BYTE

BYTE

SRB_Status ;

SRB_Ha i d ;

SRB_Flags ;

SRB_Hdr_Rsvd ;

SRB:_Targe t ;

SRB_Lun ;
SRB_Rsvd l ;

SRB_Bu fLen ;

* SRB_Bu fPointer ;

SRB_Sens eLen ;

SRB_CDBLen ;

BYTE SRB_HaStat ;

BYTE SRB_TargStat ;

I I command code = SC EXEC S C S I CMD
I I command status byte

II host adapter number to query (0 - N)

I I reque st flags , see below

II reserved , must be 0
I I SCSI ID of target (typic a l ly 0 - 7)
I I Logical Unit Number o f device

II reserved for alignment
II Data buffer length

II Data buffer addres s

I I Sense buffer length

II CDB length
II Host adapter status (returned)

I I Target status (returned)
void (.* SRB _PostProc) (LPSRB) ; I I Post routine addres s

BYTE SRB_Rsvd2 [2 0] ;

BYTE SRB_CDBByte [l 6] ;

I I reserved

I I SCSI CDB

BYTE SRB_SenseAre a [l 6] ; I I Buf fer for SCSI sense data

} SRB_Exec SCSICmd ;

Let 's examine these fields in more detail :

Table 7-5. Execute SCSI Command Fields

field

SRB Cmd

SRB Status

Description

ASPI Command Code

This field must contain sc EXEC SCSI CMD to exe
cute a SCSI l/0 command.

ASPI Command Status

This field is used to hold the pending and completed
ASPI command status. On return, this field will contain
one of the following values:

ss _PENDING--is still in progress

SS COMP-without error

ss _INVALI D_ HA-host adapter number

ss ABORTED-was aborted

ss _ERR--completed with an error

(Continued)

80 ASP/: The Advanced SCSI Programming Interface

Table 7-5. Execute SCSI Command Fields (Continued)

SRB Status
(Continued)

SRB Haid

SRB_F lags

SRB Hdr Rsvd

SRB_Target

Description
SS INVALI D_ SRB-SRB field or flag is invalid

SS _INVALI D _PATH_ ID-the target lD or LUN is
invalid

SS _BUFFER_ TOO_ BIG--the ASP I manager cannot
handle the specified data buffer length

SS _BUFFER_ ALIGN-the AS PI manager cannot han
dle the alignment of the specified data buffer address.

SS SECURITY VIOLATION-the caller does not have
the necessary security privileges to execute the SCSI I/

0 command on the specified device

(Refer to the ASPI Error and Status Codes section for
additional information about this field.)

Host Adapter Index

This field specifies which installed host adapter wil l be
accessed by this command. A value of 0 indicates the
first installed host adapter, 1 is the second, and so forth.
See the description of the Host Adapter I nquiry
command for additional inf01mation.

ASPI Command Flags

Thjs field contains a set of bit flags that control the exe
cution of this SRB. The flags valid for this command are:

SRB DIR IN

SRB DIR OUT

(For data transfer commands, either SRB _ D I R IN or
SRB _ DIR _OUT must be set.)

SRB EVENT NOTIFY

SRB POSTING

SRB ENABLE RES I DUAL COUNT

This field is reserved and should be set to 0.

Target Device SCSI ID

This field specifies the SCSI ID of the device accessed
by this command. Typical values are 0-7. Some host
adapters allow more than eight target devices on a single
bus, so be sure to check the information returned by the
Host Adapter I nquiry command to determine the
largest possible value for this field on each host adapter.

(Continued)

ASP/ Commands 8 1

Table 7-5. Execute SCSI Command Fields (Continued)

S RB LUN

SRB Rsvd l

S R B BufLen

S RB BufPointer

SRB Sens eLen

Description

Target Device Logical Unit Number

This field specifies the Logical Unit Number (LUN) of
the device accessed by this command. Some SCSI
peripherals gang several individual device units on a sin
gle SCSI ID. These subunits are identified by their LUN
and this field is used to select one of them. If a device
has only a single logical unit, set this field to 0.

Reserved for alignment.

Set this field to 0 for compatibility with future ASPI
versions.

Data Buffer Length

Set this field to the size of the data buffer used for the
SCSI 1/0 command. For wr ite commands, this is the
number of data bytes that will be sent to the target
device. For read commands, this is the maximum num
ber of data bytes that will be read from the target
device. If the SCSI I/0 command does not involve a
data transfer, set this field to 0. If residual byte count
reporting is supported and enabled, this field returns the
number of bytes NOT transferred by the SCSI I/0 com
mand. You can think of this field as a counter that is
decremented once for every data byte transferred to/
from the target device. If you try to read 1 00 bytes from
a target device but the device only returns 1 0 bytes, this
field will return with a value of 90 (if residual byte
count reporting is supported and enabled).

Data Buffer Pointer

Set this field to the address of the data buffer used for
the SCSI I/0 command. For write commands, data
will be sent from this buffer to the target device. For
read commands, data will be sent from the target
device to this buffer.

Sense Data Length

Set this field to the size of the SRB Sens eArea field
available at the end of this structure. When a target
device generates a check condition status, the ASPI
manager automatically issues a Request Sense com
mand and places the sense data in the S RB _
SenseArea field. Most applications simply set the size
to 1 4, with a 1 6-byte buffer allocated for alignment.

(Continued)

82 ASP/: The Advanced SCSI Programming Interface

Table 7-5. Execute SCSI Command Fields (Continued)

SRB C DBLen

SRB HaStat

SRB_TargStat

Description

CDB Length

Set this field to the size of the CDB contained in the
SRB _ CDBByte [] field. This value will vary depending
on the SCSI I/0 command being issued, but typical val
ues are 6, 1 0, and 1 2. The ASPI manager sends this
many command bytes from the SRB _ C DBByte [] field
to the target device during the command phase of a
SCSI transaction.

Host Adapter Status

This field returns a host adapter status value, which indi
cates any error conditions encountered by the host
adapter during the execution of this SRB. Possible val
ues are:

HASTAT OK

HASTAT SEL TO

HASTAT DO DU

HASTAT BUS FREE

HASTAT PHASE ERR

HASTAT T IMEOUT

HASTAT COMMAND T IMEOUT

HASTAT MES SAGE REJECT

HASTAT BUS RE SET

HASTAT PARITY ERROR

HASTAT_REQUE ST
_

SENSE_FAILED

(Refer to the ASPI Error and Status Codes section for
additional information.)

Target Status

This field returns the status value sent by the target
device at the end of a SCSI I/0 command. The possible
values returned in this field are defined in the SCSI
specifications.

OxOO Good

Ox02 Check Condition

Ox04 Condition Met

Ox08 Busy

(Continued)

ASP/ Commands 83

Table 7-5. Execute SCSI Command Fields (Continued)

S RB_TargStat
(Continued)

SRB Pos tProc

SRB Rsvd2

S RB Rsvd3

S RB_CDBByte

S RB S e n s eArea

Description

Ox 1 0 Intermediate

Ox l 4 Intermediate-Condition Met

Ox 1 8 Reservation Conft ict

Ox22 Command Terminated

Ox28 Task Set Full

Ox30 Auto Contingent Allegiance Active

(Refer to the ASPI Error and Status Codes section for
additional information.)

Post Procedure

Set this field to the address of your post procedure if
you are using command posting, or to the handle of a
Win32 event semaphore if you are using event notifica
tion. If you are using either of these, you must also set
the appropriate bit flag in the SRB _F l a g s field (SRB _
POST ING or SRB _EVENT_ NOT I F I CATI ON).

Reserved; you should set this field to 0.

Reserved; you should set this field to 0.

Command Descriptor B lock

This field contains the SCSI Command Descriptor

Block (CDB) which is sent to the target device during
the command phase of a SCSI transfer.

Sense Data Buffer

When the target device returns a Check Condition
status, the ASPI manager automatically retrieves the
device's sense data and places it in this field. The sense
data describes the error or exception that caused the
C h e c k Condition status. Refer to Chapter 6 for
additional information.

Abort SRB (SC_ABORT_SRB)

The Abo r t S RB command is used to abort a pending SRB. You m ight
need to use this if a command hasn't completed within a reasonable
amount of time. Older versions of ASPI didn 't enforce or support time
outs directly, but the latest Win32 implementations feature a G e t / S e t
T imeout function.

84 ASP/: The Advanced SCSI Programming Interface

The execution times of SCSI commands can vary widely. If you don 't
use the timeout function, your application is responsible for determining
when a command has taken too long to complete. When you decide that
enough is enough, you can issue the Abort SRB command to request that

the ASPI manager gracefully stop the command and release any resources

it may be using.

Listing 7-1 1 . The SRB for the Abort SRB Command

typede f s truct {
BYTE SRB_Cmd ;
BYTE
BYTE
BYTE
DWORD

SRB_Statu s ;
SRB_H a i d ;
SRB_Flags ;
SRB_Hdr_Rsvd ;

I I command code = SC ABORT SRB
I I command status byte
I I host adapter number
I I reque st f l ags , should be 0
I I reserved , must be 0

void * SRB_ToAbort ;

} SRB_Abort ;
I I addre s s of SRB to abort

The SRB _ Haid field must be set to the same host adapter number as
specified in the SRB you wish to abort, and the SRB _ ToAbort field must

point to that SRB . This command will always complete before the ASPI

manager returns to your application, although the SRB you are aborting

might not complete until later. If the original SRB is successfully aborted,

its SRB_Status field will eventually be set to SS_ABORTED. Note that
you must still wait for the original SRB to complete. Be very careful not
to deallocate or reuse it until its SRB _Status field is no longer ss _
PENDING. Remember also that unless you are using polling, you should
not check this field until the command is complete.

Listing 7-1 2. Abort SRB Cal l

HANDLE EventHandle ;
SRB_Exec S C S I Cmd Original Srb ;

I * As sume OriginalSrb has already been initia l i z ed * I
OriginalSrb . Pos tProc = EventHandle ;
OriginalSrb . F lags I = SRB_EVENT_NOTIFY ;
Res etEvent (EventHandle)
SendASP I 3 2 Command ((LPSRB) & OriginalSrb) ;
i f (WaitForS ingleOb j ect (EventHandle , t imeout) WAIT_TIMEOUT)

{
SRB_Abort AbortSrb ;
AbortSrb . SRB Cmd = SC_ABORT_SRB ;
AbortSrb . SRB Haid Original Srb . SRB_Haid ;

(Continued)

ASP/ Commands 85

Listing 7-1 2. (Continued)

AbortSrb . F lags = 0 ;

AbortSrb . Hdr Rsvd = 0 ;

AbortSrb . SRB_ToAbort = &Original Srb ;
SendASP I 3 2 C ommand ((LPSRB) &AbortSrb) ;
i f (AbortSrb . SRB_Status ! = S S_COMP)

e l s e

{
I * Something is terribly wrong * I

}

{
whi l e (Or i ginalSrb . SRB_Status == S S_PENDING)

{
I * Wait for OriginalSrb to c omplete . * I

I * You s hould have an additional * I
I * t imeout here as a f a i l - s a f e in * I
I * c a s e o f catastrophic fai lure . * I

}

Note that the above code i s not guaranteed to work under Windows 95
and NT. Once a request has been passed to the miniport driver under these
platforms, it cannot be aborted.

Table 7-6. Abort SRB Fields

ield
SRB Cmd

SRB Status

Description
ASPI Command Code

This field must contain sc ABORT SRB to execute the Abort SRB
command.

ASPI Command Status

This field is used to hold the pending and completed ASPI command sta
tus. On return, this field will contain one of the following values:

ss _ COMP--completed without error

ss _INVAL I D_ HA-invalid host adapter number

S S _ I NVAL I D_ SRB-an SRB field or flag is invalid

If this field returns ss _ C OMP, the ASPI manager will attempt to abort the
specified SRB. If any other value is returned the ASPI manager will not
attempt to abort the SRB.

(Continued)

86 ASP/: The Advanced SCSI Programming Interface

Table 7-6. Abort SRB Fields (Continued)

ield Description

SRB H a i d Host Adapter Index

This field must contain the same host adapter number that was specified
in the SRB you wish to abort.

SRB_F l a g s ASPI Command Flags

No flags are valid for this command, and this field should be set to 0.

SRB Hdr Rsvd This field is reserved and should be set to 0.

SRB ToAb o r t SRB To Abort

This field contains the address of the SRB you wish to abort. This
should be the same pointer passed to the S endAS P I 3 2 C ommand () that
started the original SRB.

Reset SCSI Device (SC_RESET_DEV)

The Re s et S C S I Device command is used to send a S C S I B u s Device

R e s et message to a target device. This causes the target to abandon al l

I/0 processes that may be pending and reset al l of its operating parame
ters to their power-on values. Note that this command is specific to a

particular device, and does not involve strobing the SCSI bus RST s ignal .

Rather, the host adapter wi l l try to send the B u s Device R e s et message

via a normal SCSI bus transaction. This command doesn ' t work properly
under Windows 95 and NT at this time, but is supported to maintain com

patibi lity with other ASPI implementations.

Listing 7-1 3. Reset SCSI Device SRB

typede f struct {
BYTE SRB_Cmd ;
BYTE SRB_Status ;
BYTE
BYTE
DWORD

SRB_Hai d ;
SRB_F l ags ;
SRB_Hdr_Rsvd ;

BYTE SRB_Targe t ;
BYTE SRB_Lun ;
BYTE SRB_Rsvd l [l 2] ;
BYTE SRB_H aStat ;
BYTE SRB_TargStat ;
void (* SRB_PostProc) (LPSRB) ;
BYTE SRB_Rsvd2 [3 6] ;
} SRB_Bu sDeviceRe s et ;

I I command code = SC RESET DEV
I I command status byte
I I host adapter number
I I request flags , should be 0

I I reserved , mus t be 0

ASP/ Commands 87

Note that the fields are very similar to those in the SRB_Exec
SCSICmd structure. They have the same meaning for the R e s e t S C S I

Device command as they do for Execute S C S I command. The ASPI

manager will typically queue this command and return an ss _PENDING

status. You must wait for the SRB to complete, and you can specify a cal l

back routine or event handle just l ike you would for an Execute S C S I

C ommand sequence.

Listing 7-1 4. Reset SCSI Device Call

HANDLE EventHand l e ;
SRB_Bus DeviceReset srb ;
rnernset (& s rb , O , s i zeof (s rb)) ;
srb . SRB_Crnd = SC_RE SET_DEV ;
s rb . SRB_Ha i d = Hos tAdapterNurnber ;
srb . SRB_Target = TargetS c s i i d ;
srb . SRB_Lun = 0 ;
srb . Pos tProc = EventHandle ;
srb . F lags = SRB_EVENT_NOTI FY ;
Re setEvent (EventHand le) ;
dwStatus = SendAS P I 3 2 Cornrnand ((LPSRB) & s rb) ;
i f (dwStatus == S S_PENDING)

WaitFor S i n g l eEvent (EventHandle , INFINITE) ;

Table 7-7. Reset SCSI Device Fields

ield Description
SRB Crnd ASPI Command Code

S RB S t a t u s

This field must contain sc RES E T D E V to execute this command.

ASPI Command Status

This field is used to hold the pending and completed ASPI command
status. On return, this field will contain one of the following values:

s s _PENDING-request is still in progress

ss _ COMP-completed without error

ss INVALI D_ HA-invalid host adapter number

S S ABORTED-command was aborted

ss _ERR-command completed with an error

(Cominued)

88 ASP/: The Advanced SCSI Programming Interface

Table 7-7. Reset SCSI Device Fields (Continued)

field Description

SRB Status
(Cont.)

SRB H a i d

SRB_F l a g s

S S INVAL I D_ SRB-an SRB field or flag is invalid

SS INVAL I D _PATH_ ID-the target ID or LUN is invalid

(Refer to the ASPI Error and Status Codes section for additional infor
mation about this field.)

Host Adapter Index

This field specifies which installed host adapter will be accessed by this
command. A value of 0 indicates the first installed host adapter, 1 is the
second, and so forth. See the description of the Host Adapter
I nquiry command for additional information.

ASPI Command Flags

This field contains a set of bit flags that control the execution of this
SRB. The valid flags for this field are:

SRB EVENT NOTIFY

SRB POST ING

SRB Hdr R svd This field is reserved and should be set to 0.

SRB _T ar get Target Device SCSI ID

SRB Lun

S RB Rsvdl

SRB HaStat

This field specifies the SCSI ID of the device to be reset by this
command.

Target Device Logical Unit Number

This field is defined for this command, but it isn't really used. SCSI Bus
Device Resets are performed on the target device itself, and encompass
all logical units on the device.

Reserved; you should set all bytes in this field to 0.

Host Adapter Status

This field returns a host adapter status value, which indicates any error
conditions encountered by the host adapter during the execution of this
SRB. (Refer to the ASPI Error and Status Codes section for additional
information .)

SRB _ TargStat Target Status

This field returns the status value sent by the target device at the end of
a SCSI I/0 command. (Refer to the ASPI Error and Status Codes sec
tion for additional information.)

(Continued)

Table 7-7. Reset SCSI Device Fields (Continued)

fJetd Description
S RB P o s tProc Post Procedure

ASP! Commands 89

Set this field to the address of your post procedure if you are using com
mand posting, or to the handle of a Win32 event semaphore if you are
using event notification. If you are using either of these, you must also
set the appropriate bit flag in the SRB _F l a g s field (SRB _POST ING or
SRB _EVENT_ NOT I F I CAT ION).

SRB Rsvd2 This field is reserved and should be set to 0.

SRB Rsvd3 Reserved; you should set all bytes in this field to 0.

Rescan SCSI Bus (SC_RESCAN_SCSI_BUS)

The R e s can s c s I Bus command causes the ASPI manager to check the

specified host adapter's SCSI bus for any changes. Newl y attached

devices wi l l be recognized and supported by the ASPI manager. This
command is available only under the ASPI for Win32 implementation in
Windows 95 and NT. Under Windows NT, the ASPI manager will detect

new devices, but wi l l not remove existing targets if they are disabled or
exchanged. Under Windows 95, this command works w ith the plug and

play serv ices to add or remove dev ices. Therefore devices may not appear

until several seconds after the rescan command is issued.

Listing 7-1 5. Rescan SCSI Bus SRB

typedef struct {
BYTE SRB_Cmd ;
BYTE SRB_Status ;
BYTE SRB_Haid ;
BYTE SRB_Flags ;
DWORD SRB_Hdr_Rsvd ;
} SRB_RescanPort ;

Listing 7-1 6. Rescan SCSI Bus Call

int adapter ;

I I command code = SC RESCAN SCSI BUS
I I command status byte
I I host adapter number
I I request f l ags , s hould be zero
I I reserved , must be zero

for (adapter= O ; adapter<NumAdapters ; adapter++)
{
SRB_RescanPort srb ;
memset (& sr b , O , s i zeof (s rb)) ;

(Conrinued)

90 ASP/: The Advanced SCSI Programming Interface

Listing 7-1 6. (Continued)

srb . SRB_Cmd = SC_RESCAN_SCS I_BUS ;
srb . SRB_Haid = adapter ;
SendAS P I 3 2 Command ((LPSRB) & s rb) ;
}

Sleep (l O O O OL) ; I I Wait 1 0 seconds for devices to appear
I I Now we c an use sc GET DEVICE TYPE to find any new devices

Table 7-8. Rescan SCSI Bus Fields
I rield Description
SRB Cmd ASPI Command Code

This field must contain SC RESCAN SCSI BUS to execute this command.

SRB S t at u s ASPI Command Status

This field is used to hold the pending and completed ASPI command status.
On retum, this field will contain one of the following values:

SS _ COMP-completed without error

S S _INVAL I D_ HA-invalid host adapter number

SS_INVAL I D_SRB-an SRB field or flag is invalid

(Refer to the ASPI Error and Status Codes section for additional informa
tion about this field.)

SRB H a i d Host Adapter Index

This field specifies which installed host adapter will be rescanned by this
command. A value of 0 indicates the first installed host adapter, 1 is the sec
ond, and so forth. See the description of the Host Adapter I nquiry
command for additional information.

SRB _F l ag s ASPI Command Flags

No flags are defined for this command, and this field should be set to 0.

Get/Set Timeouts (SC_ GETSET_ TIMEOUTS)

The Get / S et Timeout s command allows you to set or retrieve timeout
values for SCSI commands sent to a particular device. This command i s
avail able only under the ASPI for Win32 implementation in Windows 95
and NT. Timeouts are specified in one-half second i ncrements, with a
maximum timeout value of 1 08000 (30 hours). The SRB _F l ags field
determines whether you are getting or setting the timeout value.

ASP/ Commands 9 1

Listing 7-1 7. Get/Set Timeouts SRB

typedef struct {
BYTE SRB_Cmd ; I I command code = SC GETSET TIMEOUTS

I I command status byte BYTE
BYTE
BYTE
DWORD
BYTE
BYTE
DWORD
} SRB

SRB_Status ;
SRB_Hai d ;
SRB_Flags ;
SRB_Hdr_Rsvd ;
SRB_Target ;
SRB_Lun ;
SRB Timeout

_GetSetTimeout s ;

I I host adapter number , or OxFF for all
II SRB DIR IN or SRB DIR OUT
I I reserved , mus t be zero
II target ID , or OxFF for all
II target LUN , or OxFF for a l l
I I Timeout value , in 1 1 2 sec onds

Listing 7-1 8. Get/Set Timeouts Call

SRB_GetSetT imeouts srb ;
DWORD old_t imeout = 0 ;
mems et (& s rb , O , s i zeof (s rb)) ;
s rb . SRB_Cmd = SC_GETSET_T IMEOUTS ;
srb . SRB_Haid = Hos tAdapterNumber ;
srb . SRB_Target = Target S c s i i d ;
s rb . SRB_Lun = 0 ;
s rb . SRB_F l a g s = SRB_D I R_IN ; I I retr ieve current t imeout
SendAS P I 3 2 Command ((LPSRB) & s rb) ;
i f (s rb . SRB_Status == S S_COMP)

old_t imeout = SRB . Timeout ;
srb . F l ags = SRB_D I R_OUT ;
srb . SRB_T imeout = 1 0 ;
SendAS P I 3 2 Command ((LPSRB) & s rb) ;

I I set new timeout value
I I 5 seconds

Timeouts are specific both to the device and the application . One appli
cation can set different timeout values for different devices, and other

applications can set other timeouts for the same devices. Once a timeout

has been set, it applies to all subsequent SC_EXEC_SCS I_CMD commands
sent to the ASPI manager.

You must be very careful when setting a timeout value for your appli
cation. When a SCSI command does timeout, the entire SCSI bus will be
reset. Note that this is a real SCSI bus reset via the RST signal , not just a
Reset Device message sent to the device. All pending SCSI commands
and SRBs on every device attached to that bus will be aborted, not just the
command that timed out. Therefore your timeouts should be long enough
to not occur during normal operation . Also note that your SCSI com
mands can be interrupted by a timeout from another application 's SRB .

92 ASP/: The Advanced SCSI Programming Interface

Your application should be able to handle this condition, retrying the
operation as necessary.

Table 7-9. Get/Set Timeout Fields

field

SRB Crnd

SRB Status

SRB Haid

SRB_Flags

Description

ASPI Command Code

This field must contain SC GET SET TIMEOUTS to execute this
command.

ASPI Command Status

This field is used to hold the pending and completed ASPI command sta
tus. On return, this field will contain one of the following values:

SS _ COMP-completed without error

SS _INVALI D_ HA-invalid host adapter number

SS _INVALI D_ SRB-an SRB field or flag is invalid

SS _INVALI D _PATH_ I D-the target ID or LUN is invalid

(Refer to the ASPI Error and Status Codes section for additional infor
mation about this field.)

Host Adapter Index

This field specifies which installed host adapter will be rescanned by
this command. A value of 0 indicates the first installed host adapter, I is
the second, and so forth. You may also specify a special wildcard value
of OxFF to indicate that the timeout applies to the specified target/LUN
combination on all host adapters.

ASPI Command Flags

This field specifies whether you are getting or setting the timeout value.
Use SRB _ DIR _IN to retrieve the current timeout value for a given
device, or SRB _DIR _OUT to set a new timeout value. When setting a
timeout, the SRB _Hard, SRB _Target, and SRB _ Lun fields may con
tain wildcard values of OxFF, which indicate that the timeout applies to
all matching adapters, targets, or LUNs, respectively.

SRB Hdr Rsvd This field is reserved and should be set to 0.

SRB_Target Target Device SCSI ID

This field specifies the SCSI ID of the device that the timeout value
affects. If you are setting a timeout value, this field may be set to OxFF,
which indicates that the timeout applies to all SCSI devices with match
ing adapter and LUN numbers.

(Continued)

ASP/ Error and Status Codes 93

Table 7-9. Get/Set Timeout Fields (Continued)
I
Field Description
SRB Lun Target Device Logical Unit Number

This field specifies the Logical Unit Number (LUN) of the device that
the timeout value affects. If you are setting a timeout value, this field
may be set to OxFF, which indicates that the timeout applies to all logi
cal units on the dev ice.

SRB T imeout Timeout Value

This field returns or specifies the timeout value in one-half second incre
ments. Its value can be 0-1 08000 (30 hours). A value of 0 is treated as a
special case indicating the maximum timeout available. For compatibi l
ity with older applications, the default setting is the maximum allowed.

ASPI Error and Status Codes

If you look c losely at the SRB_ExecSCSICmd structure you wi l l see

three separate status fields: SRB _S t atus, SRB _ HaStat, and S RB _ Targ

Stat. Each of these contain status information pertaining to different

stages during the execution of a SCSI I/0 command. SRB _S t atus indi
cates the processing status of the SRB itself, including any errors in the
SRB structure, fields, or execution. SRB _HaSt at returns the status from

the host adapter, describing any problems with the SCSI bus transfer.

S RB _ TargStat is the status returned by the target device, and describes

any problems with the SCSI I/0 command or its execution on the target

device.

ASP/ SRB Status (SRB_Status)

S RB _S tatus contains the processing status of the SRB . The values
returned in this field are related to the processing of the SRB itself, and
general ly are independent of the host adapter and target device. For exam
ple, SRB _S t atus can indicate whether a command is sti l l pending,
completed, aborted, or inval id. One value, ss _E RR, indicates that the host
adapter encountered a problem with a SCSI I/0 command sent to the
target device. In this case you must look at the S RB _H a S tat and S RB _
TargStat fields to determine the cause of the error. If the SRB_S t atus

i s s s _ COMP, the values of S RB _ HaStat and S RB _ TargStat are not
guaranteed to be val id. Do not rely on them for information about com
mands that complete normally.

94 ASP/: The Advanced SCSI Programming Interface

During the execution of an SRB , the SRB_Status field will contain a
value of S S_PENDING, indicating that the ASPI manager has not yet fin
ished processing the SRB . When the SRB completes, the ASPI manager
will write the completion status of the SRB into this field. The value writ
ten indicates whether the ASPI manager encountered any problems
pertaining to the SRB itself.

SS PENDING

This value indicates that the SRB has not yet completed. This status value

is only returned for the SC_EXEC_SCS I_CMD and SC_RESET_DEV com

mands, and indicates that the SRB has been queued or started, but has not
yet finished. Typically a host adapter will generate an interrupt when a
SCSI I/0 command completes, and the ASPI manager will trap that inter
rupt to complete its processing. This includes updating any relevant return
fields in the SRB , and possibly retrieving SCSI sense data from the target
device. Then the ASPI manager will set the SRB _Status field to another

value indicating the completion status of the SRB .

SS COMP

This value indicates that the SRB has completed without an error. You
should know that some ASPI managers and host adapter drivers don 't

consider a data buffer underrun an error when reading data from the target
device. This is because a data buffer underrun is a common condition

when working with certain device types . For example, when reading a
tape containing variable length blocks, you typically issue a SCSI read
command with a data buffer big enough to hold the largest block you

expect to encounter. If the actual tape block read is smaller, you may get a
data buffer underrun indication (HAST AT _DO _DU) in the SRB _ HaStatus
field, and you will certainly get a check condition indication in the SRB _
TargStat field. Again, these fields are not reliable for commands that

complete successfully. The officially sanctioned way to check for data
overruns and underruns it to enable residual byte reporting.

SS ERR

This value indicates that the SRB had completed, but that an error or
exception condition was encountered. There are several possible causes
for this status being returned, and you must check the SRB _HaS tat and
SRB _ TargStat fields to determine exactly what happened. Getting an
SS_ERR status for an SRB doesn ' t necessarily mean that anything terrible
happened. It often means simply that the target device returned a check
condition status , which is a common indication for many device types .

ASP/ Error and Status Codes 95

See the description of the SRB _ Targstatus check condition value for
additional information.

SS INVALID CMD - -

This value is returned if the SRB Crnd field contains a value that is not a

valid ASPI command. If you see this status code, you are almost certainly
not initializing the SRB correctly.

SS INVALID HA - -

This value is returned if the SRB Haid field indicates a nonexistent host
adapter number. Host adapters are numbered consecutively, starting with
0. You can determine the number of host adapters installed by issuing an
sc _ HA _INQUIRY command with the SRB _ Haid field set to 0. Upon return,
the HA _Count field will contain the number of host adapters available via

the ASPI manager.

SS NO DEVICE

This value indicates that the SCSI ID specified in the SRB _Target field

is not available on the host adapter's SCSI bus . This typically means that
there is no target device at that SCSI ID number. Use the sc _GET_
DEVICE_ TYPE command to determine whether a particular SCSI ID is

available on a given host adapter's SCSI bus .

SS INVALID SRB - -

This value indicates that the SRB contains an invalid value in one or more
fields . If you see this status code, you should double-check your SRB ini
tialization code. Setting mutually exclusive bit flags in the SRB _F lags
field is one common cause of this error.

SS FAILED INIT - -

This value is returned if the ASPI manager failed to initialize properly.

ASPI managers for some operating systems (Windows) will return this
error if they are unable to attach to an underlying device driver required
for proper operation. If you see this status code, you should check for
problems with your ASPI manager installation .

SS ASPI IS BUSY - - -

This value is returned if the ASPI manager cannot accept the SRB for pro
cessing. This can happen if you start a large number of SRB requests and
the ASPI manager runs out of space to queue them. Most applications
have only one or two pending SRB requests, so this rarely is a problem. If

96 ASP/: The Advanced SCSI Programming Interface

you see this status code, you should pace your requests . One possible
solution would be to maintain your own queue of SRB requests, and send
them to the ASP! manager only as others complete .

SS BUFFER TOO BIG
- - -

This value indicates that the host adapter could not handle the SRB
because its data buffer was too large (SRB_BufLen). If you see this status
code, you should break your data transfers into smaller chunks .

SS BUFFER ALIGN
- -

This value indicates that the data buffer address in the SRB BufPointer
field was not properly aligned for the host adapter. Some host adapter

require data buffers to be aligned on certain hardware-imposed bound

aries . If you see this status code, you should change the alignment of your
data buffer to the alignment value returned by the sc _ HA _INQUI RY
command.

SS SECURITY VIOLATION
- -

This value indicates that you don 't have permission to access the specified

target device. This may happen if you try to issue commands to a SCSI
hard disk that is controlled by the operating system.

SS ABORTED

This value indicates that the SRB was aborted before it was able to com
plete normally. You may see this status if you issued an sc_ABORT_SRB
command to abort the SRB , or if the SRB was aborted due to a SCSI bus
reset. You should not rely on any other return fields, since they may not

have been updated before the command was aborted.

SS ABORT FAIL - -

This value indicates that a sc ABORT SRB command failed.

SS NO ASPI

The ASP! Manager DLL is present, but it could not establish a link to a

required device driver or VxD. You should reinstall the ASP! manager.

SS ILLEGAL MODE - -

You are trying to run ASP! for Win32 from the Win32s environment,
which is not supported. You can only use the 1 6-bit ASP! for Windows
components under Windows 3 .x .

SS _MISMATCHED_ COMPONENTS

ASP/ Error and Status Codes 97

The ASPI Manager DLL is present, but a required device driver or VxD
has a version number that doesn 't match. You should reinstall the ASPI
manager.

SS NO ADAPTERS

This value can be returned by GetASP I 3 2 Support info () if there are
no SCSI host adapters installed on a system. Older versions of ASPI
treated this as a fatal error and refused to load, but with Plug and Play it i s

possible that a SCSI PCMCIA adapter may be inserted at a later time.

SS INSUFFICIENT RESOURCES

This value indicates that the ASPI manager cannot allocate enough sys
tem resources to initialize properly. This usually indicates that the system
is low on memory.

Host Adapter Status (SRB_HaStat)

The SRB _HaS tat field returns the host adapter status . The SRB _HaS tat
field is defined only for the SC _EXEC_ SCSI_ CMD and SC _RE SET_ DEV
commands, since these are the only ASPI commands that actually use the

host adapter to manipulate the SCSI bus . The value returned in the SRB _
HaStat field tells you of any problems that occurred transferring a com
mand or data to the target device. Problems here generally involve

hardware issues or timeouts .

HASTAT OK

This value indicates that the SCSI transaction completed normally. You
must still check the SRB _ TargStat field for possible target errors . The
HAST AT_ OK value simply means that the SCSI bus transfer was success
ful . The SRB _ TargStat field contains the status of the SCSI command

itself. For example, the host adapter will successfully transfer an invalid
CDB to a target device, but the target will then reject it. In this case the
SRB _HaS tat field will contain HAST AT_ OK, but the SRB _ TargStat
field will contain Ox02, indicating a check condition. Further examination
of the sense data will show the exact cause of the problem.

HASTAT SEL TO - -
This value indicates that the target device didn 't respond to a selection on
the SCSI bus . This usually means that there is no device at the specified
SCSI ID. It may also indicate a problem with the SCSI bus itself, such as

98 ASP/: The Advanced SCSI Programming Interface

missing or incorrect termination . In any case, there isn 't much you can do
about this from your application. If the device won 't respond to a selec
tion, it can ' t accept any SCSI commands, and you 're stuck. You can try
sending the ASPI manager a sc _RESET_ DEV command, but this typically
only sends a "device reset" message to the target device. S ince the target
isn 't responding to the SCSI bus selection, it won 't get the reset message.
However, some ASPI managers will detect that a previously responding
device has disappeared, and may issue a SCSI bus reset (via the RST sig
nal) in an attempt to get the wayward device back online.

HASTAT DO DU

This value indicates that the actual length of the SCSI data transfer was

larger than the length specified in the SRB _ BufLen field. For example,

the CDB for a write command may specify a length of 1 024 bytes , but
your data buffer length is 5 1 2 bytes. In this case, the target will ask the host
adapter to transfer all 1 024 bytes, but the host adapter only has 5 1 2 bytes to

send. Most ASPI managers will alert you to this problem by returning
HASTAT_DO_DU in the SRB_HaStat field. If you detect this condition,
you should double-check your buffer length and CDB . You should also
check the SRB _ TargStat field, since there may have also been a check
condition status for the SCSI command.

HASTAT BUS FREE - -

This value is returned if the target device unexpectedly disconnects from
the SCSI bus . This might be due to a cabling or signal problem, and is
most likely to occur during or just after selection. If the target encounters
a problem with the SCSI bus or phase changes , it will typically abort the
SCSI transaction and let go of the bus . This condition is detected by the
host adapter and reported with the HASTAT_BUS_FREE status code. You
can retry the command in hopes that this is a transient problem, but if

you see the HASTAT_BUS_FREE error frequently, you should check your
SCSI bus cabling and termination.

HASTAT PHASE ERR - -

This value is returned if the target device enters a SCSI bus phase that
wasn 't expected by the host adapter. This could be a transitory condition,
or it may indicate an incompatibility between the host adapter and the tar
get device. SCSI-2 defines the allowable bus phase transitions , so this
shouldn ' t be a problem with newer adapters and target devices.

HASTAT TIMEOUT

ASP/ Error and Status Codes 99

This value i s returned if a transaction times out during processing. It indi

cates a timeout while waiting for a bus transaction , which may be due to a

phase or protocol error. An ASPI manager or host adapter's device driver
may implement their own timeout mechanism for SRBs , and this status
code is used to reflect the timeout condition.

HASTAT COMMAND TIMEOUT - -

This value is returned if a host adapter detects that an SRB has expired. It

may indicate a device error, or a phase or protocol error. This return value
differs from the HASTAT TIMEOUT value in that the HASTAT COMMAND
TIMEOUT code usually indicates that the SCSI transaction has been

started, but did not complete within a given length of time.

HAST AT_ MESSAGE_ REJECT

This value indicates that the target sent a SCSI Me s s age Re j ect mes
sage code to the host adapter. This message code is sent to indicate that

the target could not accept a message code sent by the host adapter, or
that the message code is not implemented by the target. This status code
may indicate an incompatibility between the host adapter and the target

device.

HASTAT BUS RESET - -

This value indicates that a SCSI bus reset was detected.

HASTAT PARITY ERROR - -

This value is returned when a parity error is detected on the SCSI bus .
This means that the command or data transferred may be corrupt. As
usual , you should check your cabling and termination.

HAST AT_ REQUEST_ SENSE_ FAILED

This value indicates that the ASPI manager or host adapter couldn 't
retrieve the target device 's sense data after receiving a check condition
status from the target. If you see this condition , you should ignore any
data in the SRB

_
SenseArea [] field in the SRB .

Target Device Status (SRB _ TargStat)

The SRB _ TargSta t field contains the SCSI status value returned by the
target device during the final status phase of a SCSI command. These val
ues are defined by the SCSI specification, rather than ASPI, but I ' ll
discuss them here because they logically fit in with the other error and

1 00 ASP/: The Advanced SCSI Programming Interface

status codes described above. I ' ll only describe the values that are l ikely
to be returned by an ASPI manager. I f you encounter a value not

described below, you should check the latest SCSI specification for
detail s .

Table 7-1 0. Target Device Status Codes
'
�alue Description
OxOO Good

This value is returned when there are no errors or exceptional conditions that
require servicing.

Ox02 Check Condition

This value indicates that an auto contingent allegiance condition has occurred. In
human te1ms, this means that something has happened that you should know
about. You can find out exactly what happened by inspecting the sense data. When
the ASPI manager detects a check condition, it will automatically retrieve the
sense data from the target device, and copy it to the SRB _ SenseArea [) field in
the SRB. You should check the sense code, sense key, and the ASC/ASQ values in
the sense data to determine the cause of the check condition. Note that a check
condition isn't necessarily an error, but it does indicate something you should
check.

Ox08 Busy

This status value indicates that the target device (actually the logical unit) is busy
and cannot accept a command. This can happen if a previous SCSI command has
started but not yet completed on the device. You can periodical ly reissue the com
mand until the target accepts it.

Ox 1 8 Reservation Conflict

This value is returned whenever the logical unit you tried to access has been
reserved by another initiator. This should only happen if there are multiple initia
tors (host adapters) connected to the same SCSI bus. (SCSI defines the Res erve
and Release commands to obtain and release exclusive access to a logical unit.)
You should see this target status code only if another init iator has reserved the log
ical unit.

Additional AS PI for Win32 Functions

The ASPI for Win32 specification has recently been revi sed to extend
support for large data buffers (greater than 64K) on a wider variety of host
adapters. The ASPI for Win32 specification has always al lowed for large
data buffers , but many host adapters and drivers were not abl e to support

Additional ASP/ for Win32 Functions 1 0 1

them due to special buffer alignment and paging restrictions . (With the
use of virtual memory and paging in Windows , user-allocated buffers
are often too fragmented for many host adapters to use.) The new

GetASP I 3 2 Bu f fer () and FreeASP I 3 2 Bu f fer () routines allow an
application to allocate a data buffer that meets all necessary requirements

for use by these host adapters . These routines are exported by the ASPI

for Win32 DLL in the same manner as the GetASPI 3 2 Support i n f o ()
and SendASPI 3 2 Conunand () routines .

BOOL GetASP I 3 2 Bu f fer (ASP I 3 2 BUFF *p) ;
BOOL F reeASP I 3 2 Bu f fer (ASP I 3 2 BUFF *p) ;

They each take a pointer to a data structure that describes the allocated

data buffer.

Listing 7-1 9. ASPI32BUFF Structure

typedef s t ruct {
LPBYTE AB_Bu fPointer ;
DWORD AB_Bu fLen ;
DWORD AB_Z eroFi l l ;
DWORD AB_Re s e rved ;

} ASP I 3 2 BUFF ;

I I Po inter to a l l o c ated data bu f f er
II Length of data bu f f e r (in byte s)
I I if 1 , bu f f e r wi l l be z ero- f i l led
II Re served , mu s t be 0

When allocating a buffer you fill in the AB _ BufLen and AB _ z era
F i l l fields, and pass the structure to the GetASP I 3 2 Bu f fer () routine.
When releasing the data buffer you fill in the AB _ Bu fPoin ter and AB _
BufLen fields with the values returned by the allocation , and pass the
structure to the FreeASP I 3 2 Buf fer () routine.

There is a maximum buffer size of 5 1 2K. If the ASPI manager cannot

allocate the requested amount, it will return FALSE. You should assume
that this call may fail , and your application should be prepared to break
transfers down into smaller chunks.

The ASPI for Win32 specification has one final function
Tran s l ateASP I 3 2Addres s () -which translates SCSI device addresses
from Windows 95 DEVNODEs and ASPI adapter/unit/LUNs. This func
tion is useful for determining the ASPI target address associated with Plug
and Play events.

BOOL Tran s l ateASP I 3 2Addre s s (DWORD * a s p i_path , DWORD * devnode) ;

1 02 ASP/: The Advanced SCSI Programming Interface

The first parameter is a pointer to a DWORD representing the ASPI
device address . The least significant byte contains the LUN, the next byte
contains the SCSI ID, and the third byte contains the host adapter number.

Or in C terms, the expression ((adapter << 1 6) I (target << 8) I
lun) . The second parameter is a pointer to a DWORD that contains the
Windows 95 DEVNODE ID that should be translated.

On return from the Trans lateASP I 3 2Addres s () routine, the
DWORD specified by the first parameter will be updated with the ASPI
address indicated by the Windows 95 DEVNODE ID. You can perform
the opposite translation by specifying a valid ASPI address for the first

parameter, and using a DEVNODE ID of zero for the second parameter.
In this case the Windows 95 DEVNODE ID corresponding to the given
ASPI address will be placed into the second parameter.

Chapter 8

Low-Level SCSI
Programming with
SCRIPTS

Programmers who worked with early SCSI protocol chips are fond of tell
ing stories about how difficult it was . Like your grandfather's tales of
trudging through blizzards to get to school, these stories illustrate the
hardships the teller encountered, struggling with assembly language,
manipulating registers and I/0 ports, and building strict timing constraints
into the code. Thankfully, we 've come a long way since then. The tools
now available for programming at the chip level make the old ones seem
as primitive as stone knives .

As SCSI protocol chips and I/0 controllers become more sophisticated,

they also become easier to work with. Many have built-in processors,
scripting engines that are programmed with a high-level language to handle
the gritty details of SCSI protocol. In this chapter we 'll examine one of the
more popular and powerful of these, Symbios Logic 's SCRIPTS language.

Symbios Logic is the successor to NCR Microelectronics, a pioneer
maker of SCSI hardware. If you understand the fundamentals of the SCSI
protocol (which you should if you 've read this far) , reading a SCRIPTS
listing is simple.

Worki ng with SCRIPTS

Programming at this low level is not appropriate for most application soft
ware. It requires access to hardware ports and physical memory addresses.

1 03

1 04 Low-Level SCSI Programming with SCRIPTS

Most modem operating systems shield the hardware from poorly behaved
programs . Direct access is reserved for device drivers or code running
with greater privileges than normal applications .

The sample code we present in this chapter runs under DOS , which has

no such restrictions. This will better illustrate how to use SCRIPTS by
keeping system calls and overhead as simple as possible. If you 're devel
oping under Windows 95, you can boot up at a command prompt only, or
exit and restart in MS-DOS mode. The code will not work from a DOS
box within Windows .

When working with SCRIPTS you need to arm yourself with two
important tools : the Programming Guide and the Software Development
Kit (SDK) for your particular chipset. Both are available through Sym
bios Logic distributors .

The Programming Guide contains extensive documentation on the

SCRIPTS language and the NASM compiler for SCRIPTS . It also lists
chip registers and their functions, feature sets and capabilities, and lots of
other information. The guide comes in different versions for different
chipsets, so make sure you have the right one for your hardware.

The SDK comes on a disk that accompanies the Programming Guide.
It consists of sample code, utilities, and the NASM compiler. The SDK is
also available on the Symbios Logic ftp site, along with more sample
code and utilities .

The sample code in this chapter uses utility routines found in the SDK.

The target hardware is a Symbios Logic SYM825 1 S SCSI host adapter.
This is a PCI adapter with Wide SCSI support. The code uses inline
80386 assembly code to access extended CPU registers for the PCI func
tion calls . The SDK and the sample code require Borland C++ and Turbo
Assembler because they support this type of inline code. If you are using
a different compiler, you will need to break out the assembly code and
build it separately.

An Overview of SCRI PTS

The philosophy behind SCRIPTS is simple: start with a SCSI controller
core and support circuitry, then add a dedicated RISC processor for pro
gramming capability; create a programming language with high-level
support for arbitration, phase management and comparison, interface con
trol, and logical functions ; and execute the compiled programs in the
SCRIPTS engine, shifting the processing burden from the CPU.

The SCRIPTS processor is dedicated to SCSI operations. It functions
independently of the operating system. This can be inconvenient when

An Overview of SCRIPTS 1 05

you need to pass it the address of a buffer. SCRIPTS deals only in physi
cal memory addresses, rather than segmented or virtual addresses .

Symbios Logic provides the NASM compiler for SCRIPTS programs .

The output from this program is a file containing C language arrays of long
hexadecimal integers that represent SCRIPTS opcodes and constants . You
include the file as a header in your C source code, which declares the arrays
as global variables .

These arrays are small program units for SCSI operations . To execute
them, you simply pass them to the SCRIPTS engine by writing the physi
cal address of the array to a register on the chip. Some of the more

advanced chips come equipped with onboard RAM for SCRIPTS storage.
These chips can execute a SCRIPTS program without the overhead of
fetching instructions from system memory.

SCRIPTS Instructions

The SCRIPTS language contains instructions for I/0, transfer of control,
memory moves, and other functions . The I/0 functions deal with funda
mental SCSI operations. For instance,

SELECT ATN s c s i_id , REL (do_re s e lect)

selects the target encoded in s c s i_id, raising the ATN flag to request a
Message Out phase afterward. If the initiator is selected or reselected by a
target, execution jumps to the relative address do_ res e lect. It's a fairly

simple one-line command for a complex operation .
Move instructions are common. Messages, commands, status , and data

are all transferred between data buffers and the SCSI bus using some form
of move command.

MOVE 1 , ms g_bu f , WHEN MSG OUT
MOVE FROM cmd_bu f , WHEN CMD
MOVE FROM msgin_bu f , WHEN MSG_IN

In the first instruction, the processor waits until it detects Message Out
phase, then moves a single byte from ms g_bu f onto the SCSI bus . In the
second, the processor waits for Command phase, then reads a table entry
at cmd _ buf for a byte count and buffer address . The last instruction waits
for Message In phase, reads from the SCSI bus , and stores the data at the
location pointed to by the table entry ms gin_bu f .

Some instructions transfer control to other parts o f the script.

1 06 Low-Level SCSI Programming with SCRIPTS

JUMP REL (handle_phase)
JUMP s end cmd
CALL get_data WHEN DATA_IN

The JUMP instructions transfer control to a specified location. The loca
tion may be relative to the current instruction, or an absolute location. The
CALL instruction works as you might expect, executing a subroutine that
returns control to the next instruction. It also supports relative or absolute
addressing.

Some instructions perform specific SCSI operations.

SELECT FROM s c s i_id , rese lect_addr
WAI T RE SELECT , s e lect_addr
WAI T D I SCONNECT
CLEAR ATN

The first instruction tries to select the device at s c s i_ id, jumping to
reselect_addr if it is first reselected by another device. The second
instruction is the opposite, telling the chip to wait for reselection, jumping

to s e l ect_ addr if it is first selected by another device. The third instruc
tion waits until the device disconnects from the SCSI bus . The last simply
clears the ATN flag.

Another set of instructions handles register operations .

LOAD SCNTL3 1 , de f_s cntl3
STORE ! S TAT 1 , cur istat
MOVE SCNTL3 I O x 0 8

-
TO SCNTL3

MOVE SWIDE TO SFBR

The LOAD and STORE instructions transfer data between registers and
memory locations . The first example loads the SCNTL3 register with a
single byte from de f_sctnl 3 , while the second stores the contents of
!STAT in the buffer at cur i s tat.

The MOVE command is useful for operations that read, modify, and
write back the contents of a register. The third example illustrates setting
bit 3 in the SCNTL3 register.

The last example illustrates a special case. Moves between registers are
only valid if one of the registers is SFBR, the SCSI First Byte Received

register. This register receives special treatment because of another pur
pose it serves--data comparisons in conditional instructions operate
against the value stored in SFBR.

There are other variations of these register commands that move data,
manipulate bits , or perform mathematical operations. They provide the
only means to manipulate registers when a SCRIPTS program is running.

Embedding SCRIPTS in C Code 1 07

With a few exceptions, you cannot access the registers from your C code
during SCRIPTS execution.

Logical Operators and Conditional Tests

Most of the SCRIPTS instructions support logical tests of SCSI phase,
data, or other conditions .

JUMP addres s WHEN DATA IN
JUMP addre s s I F DATA OUT
JUMP addre s s I F ATN
JUMP addre s s I F O x O l
JUMP addre s s I F O x O MASK OxFF

The WHEN operator waits until the given condition is true, but the IF
operator performs an immediate comparison. You ' ll usually use WHEN to
test for a SCSI phase. Conditions you can test for include SCSI phases,
flags, and data values . The data comparisons test the contents of the SFBR
register, which holds the first byte received in the most recent I/0 opera

tion . This may be a message byte, an opcode in a Command Descriptor
Block, or the first byte of a data block. The MASK operator lets you apply a
filter to the data before comparison.

We 've used the JUMP operator to illustrate logical tests , but most of the
control instructions and many of the move instructions also support them.

For example :

MOVE FROM data_bu f , WHEN DATA_IN
CALL addr e s s WHEN DATA OUT
INT err_bad_phase IF NOT ME SSAGE_OUT

Embedd i n g S C R I PTS i n C Code

What happens after you 've compiled your SCRIPTS code and created an
output file? Somehow, you have to tell the SCRIPTS engine to execute it,
and tell it where the code is.

The NASM output file contains a DWORD array with the compiled
SCRIPTS code . By default, it calls this array SCRIPT, and it looks some

thing like this .

ULONG SCRIPT [] = {

(array o f DWORD values . . .)

} ;

1 08 Low-Level SCSI Programming with SCRIPTS

Executing this code is simple. The Symbios Logic chip has a DMA
SCRIPTS Pointer (DSP) register. When you set this register to the physi

cal address of your SCRIPTS code, it begins execution . There 's only one
small catch-the address must be DWORD aligned.

That 's fairly easy to do in your C code. Just allocate a buffer slightly
larger than your SCRIPTS array, find the first DWORD aligned address in
the buffer, and copy the array to the new address.

Listing 8·1 . SCRIPTS Code Alignment

DWORD *my_script ; I I pointer to script

DWORD * a l loc_s cript (WORD s i z e)
{

}

BYTE * ptr ;
WORD seg , o f f ;
DWORD * newptr = NULL ;

ptr = mal loc (s i z e + 4) ;

i f (ptr) {

I I temporary pointer
I I pointer part s

I I al located s c r ipt memory
I I DWORD al ign the bu f fer

}

s e g = FP_SEG (ptr) ;
o f f = FP_OFF (ptr) ;
o f f += (4 - (o f f & O x 0 3)) ;
newptr = (DWORD *) MK_FP (s eg , of f) ;

return newptr ;

my_s cript = al loc_script (s i z e o f (SCRIPT)) ;

i f (my_s cript ! = NULL) {
I I allocated s c ript memory
I I copy s c r ipt array

}

memcpy (my_sc ript , SCRIPT , s i zeof (SCRIPT)) ;

To pass this new address to the SCRIPTS engine, write to the DSP
register.

I OWrite 3 2 (io_base + DSP , getPhysAddr (my_s cript)) ;

Embedding SCRIPTS in C Code 1 09

Changing Run- Time Parameters

SCRIPTS is a self-contained language. It runs on a dedicated processor

and the only access to system resources is through the memory bus and
the interrupt controller. You cannot pass arguments to a SCRIPTS routine,
or call it as you would a normal C function . Once a SCRIPTS program is
compiled it resides in memory, a discrete unit of code embedded in your
data segment. How do you communicate with it? How do you direct its

operation?

Patching

The output file that NASM generates contains, in addition to the compiled
SCRIPTS array, several other components. NASM also lists information
about absolute values, entry points , addresses, and other named elements .
For instance, you might declare and use a value called DATA_ COUNT in
your SCRIPTS source file.

ABSOLUTE DATA COUNT = 6

The output file will contain something similar to the following.

#def ine A DATA COUNT Ox 0 0 0 0 0 0 0 6 L

ULONG A_DATA_COUNT_Used [] = {

O x O O O O O O l lL ,
O x 0 0 0 0 0 0 1 8 L

} ;

The array A _DATA_ COUNT_ Used lists the offsets into the compiled

SCRIPTS code where the value is actually used. To change it in the
SCRIPTS code, simply use the offsets as array indices. For example, to

change the value of DATA_COUNT from 6 to 10 :

SCRIPT [A_DATA_COUNT_Us ed [O]] l OL ;
SCRIPT [A_DATA_COUNT_Used [l]] l O L ;

This process i s called patching . Besides changing absolute values, you
can change pointers to external buffers, relative addresses, and other public
access elements.

The output file also lists entry points into your SCRIPTS code. If your
code contained the entry points TEST_ UNI T_ READY, INQUIRY, and
RE SET _DEVICE , they would appear as follows.

1 1 0 Low-Level SCSI Programming with SCRIPTS

de f ine Ent TEST UNI T READY
de f ine Ent_INQU IRY
d e f ine Ent RE SET DEVICE

OxO O O O O l l OL
Ox0 0 0 0 0 1 9 2L
Ox0 0 0 0 0 2 1 0L

When you tell the SCRIPTS processor where to begin execution, you
can pass the address of the SCRIPTS array plus the offset to the specific
routine.

Table Indirect Addressing

Patching is handy, but it can be cumbersome for making frequent

changes . Most of the Symbios Logic chips also support table indirect

operations . These chips provide an extra register that you set with the
address of a table in your C program. The table entries contain informa
tion for device selection or data transfer operations .

These entries are actually structures that contain two DWORD elements.

typede f s truct {
DWORD count ;
DWORD addre s s ;

} table_entry ;

For device selection, the count is an encoded value that holds SCSI
control parameters , timing factors for synchronous data transfer, and the

target device SCSI ID. The address is reserved and set to 0. For other
operations, the address points to a buffer in physical memory and the

count indicates the size of the buffer.

Table indirect operations can be tricky to work with, as they require

keeping two sets of books . Your SCRIPTS code holds a table declaration
and references to its entries. However, this does not actually generate any
code or allocate any memory. The table is just a placeholder, and the ref
erences indicate offsets into the table.

The actual work is done in the C side of your code. You declare the

table again, making sure that the entries are identical and in the same
order as in the SCRIPTS code. You may also define some mnemonic val
ues for indices into the table, corresponding to the names used in the
SCRIPTS code.

This is also where you actually allocate memory for the table and align
it on a DWORD boundary. Once you have the memory, you fill the table
with the desired values and set the table address in the proper register. The
code below shows the process from both the SCRIPTS side and the C side.

Embedding SCRIPTS in C Code 1 1 1

Listing 8-2. SCRIPTS Table Declaration

TABLE my_table \
s e lect info = ? ? , \

cmd_buf = ? ? , \
msg_buf = ? ? , \
data buf ? ?

Listing 8-3. C Table Declaration

typede f s truct {
DWORD count ;
DWORD addre s s ;

} table_entry ;

I I table entry de f inition

table_entry *my_tab le ;
BYTE command_buf [6] ;
BYTE me s s age_buf [2] ;
BYTE data_bu f [3 2] ;
BYTE targ_id ;

#def ine TABLE S I Z E 4

enum table o f f sets {
SELECT INFO = 0 ,
CMD_BUF ,
MSG_BUF ,
DATA BUF

}

I I
I I
I I
I I
I I

I I

I I

pointer to table
command bu f fer
me s s age buffer
data bu f fer
target SCSI I D

number of table

table o f f s et s

tab l e_entry * a l l oc_tab l e (WORD nentrie s)
{

entries

BYTE * ptr ;
WORD seg , o f f ;
tab l e_entry * newptr

II temporary pointer
I I pointer part s

NULL ;

ptr = mal loc (nentr ie s * s i zeof (table_entry) + 4) ;

i f (ptr) {
I I al located table memory
I I DWORD a l ign the bu f f er

}

seg = FP_SEG (ptr) ;
o f f = FP_OFF (ptr) ;
o f f += (4 - (o f f & O x 0 3)) ;
newptr = (table_entry *) MK_FP (s eg , of f) ;

(Continued)

1 1 2 Low-Level SCSI Programming with SCRIPTS

Listing 8·3. (Continued)

return newptr ;

}

my_table = a l loc_tab l e (TABLE_S I Z E) ;

i f (my_table ! = NULL) {
I I a l l oc ated tab l e memory
I I f i l l the table entries

}

my_table [SELECT_INFO) . count (O x0 0 0 0 0 3 0 0L & targ_id) << 1 6 ;
my_table [SELECT_INFO] . addre s s = OL ;

my_table [CMD_BUF) . count = 6L ;
my_tab l e [CMD_BUF] . addre s s = getPhysAddr (command_bu f) ;

my_table [MSG_BUF] . count = 2 L ;
my_table [MSG_BUF] . addres s = getPhysAddr (me s s age_bu f) ;

my_tab l e [DATA_BUF) . count = 3 2 L ;
my_tab l e [DATA_BUF] . addre s s getPhysAddr (data_bu f) ;

To make the table available to the SCRIPTS code, set the Data Struc

ture Address (DSA) register on the chip to the physical address of the
table.

I OWrite 3 2 (io_base + DSA , getPhysAddr (my_table)) ;

With the flexibility of table indirect operation, you can simply change
addresses , byte counts, or target device information in your C code
instead of patching the SCRIPTS array. This makes it easy to reuse your
SCRIPTS code for different commands or functions .

Detecting SCRIPTS Program Completion

It 's nice to know when your SCRIPTS program has completed. There are
a few different ways to detect this, all of which focus on the !STAT regis
ter on the chip. This register contains information about interrupts that
occur during SCSI operations . Specifically, it tells you the source of the
interrupt.

You will normally end your SCRIPTS program with an INT instruc
tion, which halts execution of the SCRIPTS code. It takes a value for an

Embedding SCRIPTS in C Code 1 1 3

argument, storing it in a register where you can retrieve it later. This lets
you return a value from your SCRIPTS code to your C program.

A SCSI error may also cause your SCRIPTS code to end abnormally.
An unexpected disconnect, a reset, or a phase mismatch may terminate

your program if it 's not prepared to handle these conditions .
The ISTAT register contains two important flags that direct you to fur

ther information. The DMA Interrupt Pending (DIP) flag at bit 0 tells you

to check the DMA Status (DSTAT) register for the source of the interrupt.
Bit 2 of this register is set if the interrupt came from an INT instruction in

the SCRIPTS code. If this is the case, the DMA SCRIPTS Pointer Save

(DSPS) register holds the value returned by the INT instruction.
If the SCSI Interrupt Pending (SIP) flag at bit 1 is set, a SCSI error

caused the interrupt. Two other registers , SCSI Interrupt Status 0 and I
(SISTO and SIST I) hold information about the error that occurred.

Many of these interrupt conditions may be masked through settings in
other registers . You must make sure that you test for valid conditions. You
also must be aware of which SCSI error conditions are fatal and which

are not.

Polling for Completion

The ISTAT register is unique in that you can access it from your C pro
gram while your SCRIPTS code executes. By polling the register in a

loop you can detect when the SCRIPTS code completes by testing whether

bit 0 or 1 is set. This is the simplest to program, but it wastes CPU cycles to
constantly poll.

You may also poll the contents of a data buffer or status byte in your

C code to detect completion. This runs the risk of failing to detect when
the program stops because of a SCSI error.

Hardware Interrupt on Completion

A more elegant but more complex way to detect completion is through
hardware interrupts . If you enable them in the DMA Control (DCNTL)
register, the chip will generate an IRQ when an interrupt occurs. If you
are comfortable with writing hardware interrupt handlers , you may wish
to use this method. In your handler, check the same registers as described
above to determine the source of the interrupt.

The IRQ level used depends on how the chip is configured. If you are
using a PCI SCSI adapter, you can retrieve the IRQ level through PC I
BIOS calls . Let 's look at how to do that as we discuss initializing and set
ting up the chip.

1 1 4 Low-Level SCSI Programming with SCRIPTS

I n it ia l izat ion and Housekeeping

Before you can even think about running a SCRIPTS program, there are
housekeeping issues that demand your attention. You 'll want to interro

gate the controller to find out how it's configured and what features it
supports. You ' 1 1 need to reset the SCSI functions and choose reasonable
default values for the control registers .

PC/ BIOS Functions

The SYM825 1 S host adapter is a PCI board based on the Symbios Logic

SYM53C825 SCSI I/0 controller chip. Using functions available through

the INT Ox l A and the PCI BIOS function (OxB l) ID you can locate

installed boards, and query and set their configurations. First , though, you
need to know if the machine your program is running on has a current PCI
BIOS installed.

Calling the PCI interrupt subfunction OxO 1 returns the identification
string " ICP" in the EDX register if a version 2 BIOS is present. Older

versions return the string in the CX:DX registers . To access the extended
register EDX requires 80386 instructions. Many C compilers don 't sup

port these instructions in inline assembly code, so you may need to build
them in a separate assembly module. Listing 8-4 illustrates how to check
for the presence of a PCI BIOS .

Listing 8-4. Detecting PCI BIOS Version

WORD PC I_GetPC I B IOSVers ion (pc i_bios *ppcibios)
{

WORD r_ax , r_bx , r_cx , r_dx ; I I regis ter variab les
DWORD r_edx ;
DWORD pc i_s ig ; I I PCI s ignature
WORD retval = PC I_NO_BIOS ;
pc i_s i g = O x2 0 4 9 4 3 5 0L ; I I " ICP " s i gnature
I I c a l l PCI function to check for BIOS
r_ax = ((PC I_FUNCTI ON_I D << 8) I PC I_BIOS_PRE SENT) ;
asm {

. 3 8 6
mov ax , [r_ax]
int PCI BIOS INT
mov DWORD PTR [r_edx] , edx
mov [r_dx] , dx
mov [r_cx] , ex
mov [r_bx] , bx
mov [r_ax] , ax

}
(Continued)

Initialization and Housekeeping 1 1 5

Listing 8-4. (Continued)

}

i f
I I

}

(r_dx == LOWORD (pc i_s ig)) {
PCI B I OS i s pres ent
if (r_cx == HIWORD (pc i_s i g) & &

(r_bx & O x f f O O) - - Ox O l O O)
I I P C I B I OS ver s ion l . x

retval = PCI B I OS REV l X ;

}
e l s e i f (r_edx == pc i_s i g) {
I I PCI BIOS ver s ion 2 . x

retval PCI_B I OS_REV_2 X ;

}
e l s e {
I I unknown ver s ion

retval = PCI UNKNOWN_BIOS ;

}
i f (ppcibios ! = NULL) {

{

I I f i l l B I O S info struct
ppc ibios->ac c e s s = (r_ax & O x f f) ;
ppc ibios ->vers ion r_bx ;
ppcibios - > l astbus = (r_cx & O x f f) ;

}

return retval ;

Save the PCI BIOS information in a structure for later use. Though this
function provides information about the BIOS version and the number of
busses , its main purpose is to assure us that there is a PCI bus present on
this machine.

Subfunction Ox02 lets us search for a specific device on the PCI bus.
Each device is identified by a vendor ID, a device ID, and a device index.
In Listing 8-5 we use a structure to hold PCI device information. We set

the device ID for the 53C825 chip, which is Ox003 . The Symbios Logic

vendor ID is Ox l OOO.

Listing 8-5. Locating a PCI Device

int PC I_FindDevic e (pc i_device *ppc idevic e)
{
I I struct REGPACK regs ;

WORD r_ax , r_bx , r_cx , r_dx , r_s i ;
DWORD c o n f i g ;
int retval = 0 ;

(Continued)

1 1 6 Low-Level SCSI Programming with SCRIPTS

Listing 8-5. (Continued)

I I make sure we have a PCI BIOS
i f (PC I_GetPC I B I OSVer s ion (NULL) ! = PCI_NO_BIOS) {

I I P C I B I O S i s pre s e nt
I I c a l l PCI function to f ind device
r_ax = ((PC I_FUNCTION_I D << 8) I

(PC I_FIND_DEVICE)) ;
r e x ppc idevice->dev_id ;
r dx = PC I_SYM_VENDOR_ID ;
r s i = ppc idevice- >dev_index ;
asm {

. 3 8 6
mov ax , [r_ax]
mov ex , [r_cx]
mov dx , [r_dx]
mov s i , [r_s i]
int PCI BIOS INT
mov ax , 0
a de ax , 0
mov [r_bx] , bx
mov [r_ax] , ax

}
i f (r_ax == 0) {
I I c arry bit i s c lear-c a l l succeeded

I I s ave device bus number
ppc idevice- >bu s_num = ((r_bx & OxFFO O) >> 8) ;
I I s ave devic e number
ppc idevice ->dev_num = (r_bx & O x O O FF) ;
I I s ave device function
ppc idevice->function = (r_bx & Ox0 0 0 7) ;
I I get command register
ppc idevice->command =

(WORD) PC I_GetCon f i gRegister (
ppc idevice , PC I_CONFIG_REG_CMD) ;

I I get revis ion I D
ppcidevice->rev_id =

(BYTE) PC I_GetCo n f i gRegister (
ppcidevice , PC I_CONFIG_REG_REVI D) ;

I I get subsys tem and vendor I D
config = PC I_GetCon f i gRegister (

ppcidevic e , PC I_CONFIG_REG_SUBV) ;
ppc idevice->sub_ven_id = (WORD) config ;
ppc idevice->sub_id = (WORD) (config >> 1 6) ;
I I get I / O base addre s s
config = PC I_GetCon f i gRegister (

ppcidevic e , C 8 XX_CONFIG_REG_IOB) ;
ppc idevice->io_base = (con fig & OxFFFFFFFEL) ;

(Continued)

Initialization and Housekeeping 1 1 7

Listing 8-5. (Continued)

}

}

}

I I get ROM base addr e s s
ppc idevice- >rom_base = PC! GetCon f i gRegister (

ppc idevice , PC I_CONFIG_REG_ROM) ;
I I get interrupt number
config = PC I_GetConf i gRegister (

ppc idevice , PC I_CONFIG_REG_INTL) ;
ppc idevice->intl = (BYTE) conf ig ;
retval = 1 ;

return retval ;

If the function succeeds, it returns the location of the adapter by bus
number and device number. We use this to get further information from

the board. Revision and ID numbers , the 1/0 base address, and the inter
rupt level used all are available through PCI queries .

The PC I_Getcon f i gRegister function uses subfunction OxOA to
read configuration registers . Once again, we use a structure to pass and
return PCI device information. The o f f set parameter points to a specific
register we wish to read.

Listing 8-6. Querying PCI Device Configuration

DWORD PC I_GetCon f i gRe g i s ter (pc i_device *ppc idevic e ,
WORD o f f set)

{
WORD r ax , r_bx , r_di , r_dx , r_cx ;
DWORD r_ecx ;
WORD pc i_vers ion ;
DWORD retval = O L ;

I I get PC! ver s ion
pci ver s ion = PC! GetPC I B I OSVer s ion (NULL) ;
i f (! (pc i_vers ion

-
== PCI_NO_BIOS I I

retval == PCI_UNKNOWN_BIOS)) {
I I PCI B I O S present

I I call PC! function to read register
r_ax = ((PC I_FUNCT I ON_I D << 8)

(PC I_READ_CONFI G_DWORD)) ;
(Continued)

1 1 8 Low-Level SCSI Programming with SCRIPTS

Listing 8-6. (Continued)

}

}

I I set bus number and device number to s earch
r_bx = ((ppc idevice->bu s_num & O x f f) << 8) I

(ppc idevice- >dev_num & O x f f) ;
I I set con f i guration register o f f set
r_di = o f f set ;
asm {

. 3 8 6
mov ax , [r_ax]
mov bx , [r_bx]
mov di , [r_di]
int PC! B I OS !NT
mov DWORD PTR [r_ecx] , ecx
mov [r_dx] , dx
mov [r_cx] , ex

}
i f { pc i_vers ion == PC I_BIOS_REV_l X) {
I I P C I vers ion l . x

retval r_dx ;
retval = (retval << 1 6) I r ex ;

}
e l s e i f { pc i_vers ion
I I PCI vers ion 2 . x

retval = r_ecx ;

}

PC! BIOS REV_2 X) {

return retval ;

Depending on the PCI version, this function returns the requested

information in the ECX or CX:DX registers .

Now that we have the controller 's base 1/0 address, we can initialize

the control registers .

Initializing SCSI Control Registers

The control registers are set to hardware default values when the chip is
powered up. These usually are sufficient for most purposes. If your con
troller board or your motherboard is equipped with a SCSI BIOS , it may
have changed some of the values on bootup. If you aren ' t happy with
these settings, you are free to change them.

It is absolutely necessary to have the documentation for your controller
chip before you attempt to fine-tune the register settings . Many of the

Sample Code 1 1 9

settings are bit-encoded into the registers . Others pertain to features like
Wide SCSI or Fast-20 SCSI that your controller may not support. Pro

ceeding without the documentation is like taking off on a cross-country

trip without a road map. You may get where you want to go, but it 's more
likely you ' 1 1 get lost somewhere along the way.

Sample Code

To illustrate how all these pieces fit together, let 's use them to build a sim

ple utility. Starting with a SCRIPTS module to handle general SCSI

functions , we ' ll add supporting C code to create a program that will query

the SCSI bus and print information about devices it finds. If it encounters
a direct access device, it will read and display the contents of the first
block.

This requires only a few SCSI functions . Test Unit Ready, Device
I nquiry, and Request Sense will apply to all devices. For direct access

devices, we 'll also use Read Capacity and Read (the 6-byte version) .

The generic SCRIPTS module, GENSCSI.SS, handles selection, mes
sage phases , and data phases . It also handles disconnect/reselect sequences .

For more advanced applications , you ' ll need to flesh i t out by addding sup
port for synchronous or wide transfer negotiation. The sample code in the

Symbios Logic Software Developer's Kit includes some examples of this .
For our purposes, we ' ll omit those features to make the code easy to follow.

The C modules are broken up by functions . SPCI.C contains PCI BIOS

interface code . Initialization code for the 53C800 chip family is isolated in

S8XX.C. Actual implementation of standard SCSI functions is contained

in SSCSI.C. Util ity functions reside in the SDK file GEN_TOOLS .C.

In the main module, SQUERY.C, we start by initializing the host adapter
using PCI calls. We gather configuration details about the host adapter,
information about the 1/0 port used, and support for Wide SCSI or Fast
SCSI. Wide SCSI support is important because it tells us how many devices

to look for.
Next we set up buffers for the SCRIPTS array and data buffers for the

SCSI calls . Message buffers , Command Descriptor B locks , and data buff
ers are allocated and aligned on DWORD boundaries . These are filled

with the proper values as we use them.
Finally, we search for devices that respond to a Test Unit Ready

command. Many of them may respond with a Unit Attention status , so
we need to retrieve sense data using the Request Sense command. You
should expect a Unit Attention condition the first time a device is
accessed after powering up. The code contains a retry loop for this
purpose.

1 20 Low-Level SCSI Programming with SCRIPTS

A Device Inquiry follows for any SCSI ID that responds to the Test
Unit Ready command. The program prints out the device type, identifi
cation strings, and other parameters.

If it finds a direct access device, the program issues a Read Capacity
command. This reports the number and size of data blocks on the
medium. If you are using a removable media drive like the Iomega Zip

drive, this call will fail if there is no disk present. The first call after you
insert the medium will return sense data indicating that the medium has

changed. Again, we have to anticipate this condition and recover from it.

The final call for direct access devices reads the first block on the

medium and prints it out in both hexadecimal and ASCII. B lock 0 on a
formatted Zip disk contains an Iomega signature in the first few bytes.

Generic SCRIPTS Code

The heart of our sample program is the SCRIPTS code contained in GEN

SCSI.SS . Let 's examine it more closely.
We start by declaring the architecture for which we are compiling. In

this case, it 's the 53C825 chip.

; - - - - - - - - - - set architecture for 5 3 C 8 2 5
ARCH 8 2 5

Next w e declare some constants. These are values that the SCRIPTS

code will return to its parent program.

; - - - - - - - - - - set constant values
ABSOLUTE err_cmd_comp lete OxO O O O O O O O
ABSOLUTE err_not_msgout = Ox O O O O O O O l
ABSOLUTE err bad rese lect Ox 0 0 0 0 0 0 0 2
ABSOLUTE err_bad_pha s e = Ox 0 0 0 0 0 0 0 4

Now comes a critical part. We declare a table of buffers because we are
using table indirect addressing for our data transfers . It 's not really impor
tant what we call it, because a SCRIPTS module can only contain a single
table .

Remember that simply declaring a table does not allocate memory for
it . That part is done in your supporting C code. In the example below, the
values that follow each table element are simply placeholders for debug
ging information.

In SCRIPTS syntax, a table declaration is a single line of code fol
lowed by a carriage return. We've used backslashes as line continuation
characters to separate the table elements and make the code more
readable.

; - - - - - - - - - - set up table de finitions
TABLE tab l e O \

s c s i id = I D { O x 3 3 , O xO O , Ox O O , O x O O } , \
msgout_bu f = { Ox B O , O x O O } , \

Sample Code 1 2 1

cmd_buf = { O x O O , OxO O , Ox O O , Ox O O , O xO O , O x O O } , \
stat_bu f = ? ? , \
msgin_bu f = 2 { ? ? } , \
exrns gin_bu f = 4 { ? ? } \
datain_bu f = O x 4 0 { ? ? }

Following the table declaration, we declare an entry point for the code,

and a name for the script. The script name wil l be used to name the

SCRIPTS array in the compiled code.

; - - - - - - - - - - entry point for general S C S I s c r ipt
ENTRY s t art s c s i

PROC GEN SCRIPT :

Finally, we begin the actual code with a SELECT ATN instruction. Our
C code has already filled the s c s i_ id buffer with information about the

target we are selecting. If the host adapter is itself selected or reselected

during this step, execution will branch to the bad_ rese lect label .

; - - - - - - - - - - start SCSI target se lection
s t art s c s i :

; s e lect devic e from encoded SCSI I D
; set ATN f o r me s s age out after se lect
SELECT ATN FROM s c s i_id , REL (bad_re s e lect)

Because we set the ATN flag during selection, a Message Out phase fol

lows. We'll send the Identi fy message, telling the target whether it has
disconnect privileges. We set up the ms gout _ buf buffer in our C code.

; - - - - - - - - - - send identify me s s age
; exit if not me s s age out phase
INT err_not_ms gout , WHEN NOT MSG OUT

; s end identify me s s age
MOVE FROM ms gout_bu f , WHEN MSG OUT
JUMP REL (handle_phase)

After sending the Identify message we jump to a phase handler
routine. This routine simply examines the bus phase and jumps to a corre
sponding routine. Here it's a Command phase that follows Message Out.

1 22 Low-Level SCSI Programming with SCRIPTS

; - - - - - - - - - - send SCSI command
s end cmd :

; s end command block to target
MOVE FROM cmd_buf , WHEN CMD
JUMP REL (handle_phase)

Once again, it 's back to the phase handler after the Command phase.
The command issued determines what happens next. For a command like

Test Unit Ready no data transfer takes place-we move directly to the
Status phase. In the example, we just read the status byte into a buffer.

; - - - - - - - - - - get S C S I status
get_s tatus :

; read s t atus byte from data bus
MOVE FROM stat_bu f , WHEN STATUS
JUMP REL (handle_phase)

A Message In phase follows the Status phase. We read the message

byte and clear the ACK bit. If things went well, the message is Command
Complete, and we jump to our exit code. If we arrived here at some other

point in the command execution, we must handle other messages .
The other messages we check for are Disconnect and extended mes

sages. If we detect a Disconnect message, we branch to a routine that
waits for a disconnect to occur. For extended messages, we read

another byte from the bus before jumping to the phase handler. Any other
messages are ignored.

; - - - - - - - - - - get S C S I me s s age input
get_ms gin :

; read me s s age byte from data bus
MOVE FROM ms gin_bu f , WHEN MSG IN
CLEAR ACK

; handle Command Complete me s s age
JUMP REL (cmd_complete) , IF OxO O

; handle Dis connect mes s age
JUMP REL (wait_disconnect) , IF O x 0 4

; handle extended me s s age
JUMP REL (ext_ms gin) , IF O x O l
JUMP REL (handle_phase)

- - - - - - - - - - handle extended me s s age
ext_ms gin :

; read extended me s s age from data bus
MOVE FROM exms gin_bu f , WHEN MSG IN
CLEAR ACK
JUMP REL (handle_phase)

Sample Code 1 23

If we issued a command that reads or returns data, the phase handler

will dispatch us to the data input routine. The number of bytes to read and
the destination address are contained in data_ buf . Once again, we set

this up in our C code.
The process would be similar for commands that send or write data to a

device. Data direction is determined by the command.

; - - - - - - - - - - get data input

get_datain :

; read data from bus
MOVE FROM datain_bu f , WHEN DATA IN
JUMP REL (handle_phas e)

Here is the dispatch table we use to handle the different bus phases.
Unexpected phases exit with an error code.

; - - - - - - - - - - handle SCSI phases
handle_phase :

; j ump to appropr iate handler for phase
JUMP REL (get_s tatus) , WHEN STATUS
JUMP REL (get_msgin) , WHEN MSG_IN
JUMP REL (get_datain) , WHEN DATA_IN
JUMP REL (s end_cmd) , WHEN COMMAND
; unhandled phase
INT err_bad_phase

This is our normal exit handler, reached by a Command Complete
message. We expect a bus disconnect, so we clear the register bits that
generate an error on disconnect. When disconnect occurs , we return with
a success code.

; - - - - - - - - - - SCSI command execution complete
cmd_comp lete :

; command comp lete - wait for dis connect
MOVE SCNTL2 & O x 7 F to SCNTL2

1 24 Low-Level SCSI Programming with SCRIPTS

CLEAR ACK
WAI T D I SCONNECT
INT err_cmd_comp lete

Selection or reselection errors come to this error handler. It simply
exits with an error code.

; - - - - - - - - - - handle inva lid se lect or reselect
bad rese lect :

; unhandled rese lect
INT err bad rese lect

If we received a Disconnect message, we wait here for disconnect to
occur. Notice that we have cleared the bits that generate an error on dis

connect. After disconnect, we clear any remaining data in the SCSI and
DMA registers , and wait for reselection. Once we are reselected, we wait
for an Ident i fy message from the target and branch to the error handler.

This approach to the disconnect/reselect process is light on error
checking. For more robust applications, you ' ll want to process the S ave
Data Pointers message that precedes the Dis connect message, and

save other information to ensure that there are no gaps or overlaps in your

data transfers.

; - - - - - - - - - - handle disconnect before reselect
wait dis connect :

MOVE SCNTL2 & O x 7 F to SCNTL2
CLEAR ACK
WAI T D I SCONNECT

; c lear DMA and S C S I f i fos
MOVE CTE ST3 I O x 0 4 to CTEST3
MOVE STE ST3 I O x 0 2 to STEST3

; wait for rese lect
WAI T RE SELECT REL (bad_re se lect)

; expect ident i f y me s s age
MOVE FROM ms gin_buf , WHEN MSG IN
CLEAR ACK

; shortcut to update sync and wide opt ions
SELECT FROM s c s i_id , REL (handle_phase)

Sample Code 1 25

Examine the sample code and the SCRIPTS routines . Experiment with
it, adding handlers for other commands or messages.

The Symbios Logic ftp site is a good source for other examples, and
for the NASM compiler used to build the SCRIPTS code. After you work
with it, you 'l l see how powerful SCRIPTS can be for low-level SCSI
development.

Chapter 9

SCSI Target-Mode
Programming

Most of this book discusses SCSI programming from the perspective of

using a host adapter to control peripheral devices. In this chapter things
are turned around and SCSI is looked at from a target peripheral 's point of

v iew. Target-mode SCSI programming has long been considered a spe

cialty practiced by few outside the mass-storage industry. It conjures
v isions of a lone programmer working late at night deep within the bow
els of an R&D lab, taking nourishment from a bottle of Mountain Dew
dripping into an LV. tube. Needless to say, this chapter isn 't written to

help these poor souls . Rather, we hope to give the rest of you a feel for the
"other side" of SCSI, along with some practical advice on how to tum

your PC into a SCSI target device .

From a programmer's perspective a typical SCSI implementation con
tains three distinct components : hardware, drivers (including ASPI) , and
applications . The hardware component handles the physical portions of a
SCSI transaction, including bus arbitration, selection, and data transfer.
The driver component manages the hardware, responding to phase

changes, handling message bytes, and providing an interface to the appli
cation. The application component gets the work done-working with
SCSI commands and orchestrating things at a higher level . I ' ll try to
break things up into these same categories as we discuss target-mode

SCSI programming.
When I first took on the task of writing a PC-based target-mode appli

cation I hoped to find a software library or driver package that would help

1 27

1 28 SCSI Target-Mode Programming

manage the low-level details of the SCSI bus . What I really wanted was a

sort of "reverse-ASP!" driver; something that would simply hand me an
incoming CDB and data buffer and let me get on with the real work. I

wasn 't interested in SCSI bus phase changes , message bytes, and the
l ike-1 just wanted to get the job done. I knew that the Common Access

Method (ANSI CAM) specification had provisions for target-mode SCSI
programming, but I wasn 't able to find a single PC-based SCSI adapter
that provided functional CAM drivers . In the end, I couldn ' t find any
libraries or packages that helped with target-mode programming, and I

had to develop my own code from the hardware on up. Fortunately, I was
already familiar with SCSI host-mode programming and with the com
mand sets of the devices I was trying to emulate. The SCSI-2 specification
is remarkably complete, and it did contain most of the information that I
really needed. These factors at least made the task manageable, but, boy,
what I 'd have given for a bit of target-mode advice and a few samples .
The code and techniques presented in this chapter are provided with the

hope that I can save someone reading this from a similar frustration.

Hardware

Not all SCSI host adapters are suitable for target-mode programming.
Some cards are designed only for the SCSI initiator role and simply can
not respond to a selection request from another initiator. Others contain

embedded firmware that is optimized for host-mode transactions at the

expense of target-mode support. In some cases you can download special

target-mode firmware to these cards, but in most cases you 're out of luck.
But by far the biggest obstacle to target-mode programming on most
adapters is a lack of documentation. Very few PC SCSI card manufactur
ers will admit that their cards are capable of supporting target-mode

operation, and even fewer have any documentation that tells how to
accomplish it. I 've often found it necessary to select a SCSI chipset that
fits my needs directly from a semiconductor manufacturer, then work
backward to find a PC card that uses that particular chipset. This usually
leaves me without support from the card supplier, but at least I ' ll have
access to the SCSI chipset documentation directly from the semiconduc
tor manufacturer's datasheets .

The SCSI chipset I ' ll be using for the examples below is the Symbios
Logic 53C400A. The 53C400A is an older, relatively low-end SCSI chip
that combines NCR's 53C80E SCSI core with an ISA bus interface. I
selected it as our example because of its low-level programming interface
to the SCSI bus . The 53C400A provides a minimal amount of hardware

Handling SCSI Phases 1 29

support for SCSI bus arbitration, selection, and handshaking without hid
ing too many of the details involved in SCSI transactions . This allows us
to learn about the SCSI bus in detail while still achieving reasonable

transfer rates for most applications.

Hand l i ng SCSI Phases

Before we proceed, let 's take a moment to review the different phases of a
SCSI transaction . Thi s transaction begins with the bus arbitration and
selection phases, providing the means for an initiator to grab the SCSI bus

and establish a link to a particular target device. After selection, the target

device takes over the SCSI bus and controls the sequencing of the SCSI
bus phase changes. If the initiator asserts the ATN signal , the target will

enter the Message Out phase, reading message bytes from the initiator.
These messages typically specify the target LUN and disconnect privi
leges, but other messages may be sent as well . After the message bytes
have been received and processed, the target will enter the Command
phase and supervise the transfer of the SCSI Command Descriptor Block

(CDB) from the host. Once this is finished, the target can begin process

ing the command.

At this point the target may decide to disconnect from the SCSI bus if
it is performing a lengthy command (only if the Ident ify message gave
it permission to disconnect) . This involves a Message In phase, in which
the target sends a S ave Data Pointers message , a Disconnect mes
sage, and then releases control of the SCSI bus by entering the bus-free
state . When the target is ready to reconnect it performs the bus arbitration
and reselection phases , sends an Ident i fy message to indicate which

LUN is reconnecting, then continues with the data or status transfer. If a
SCSI bus parity error is encountered during a transfer, the target might

issue a Restore Data Pointers message to the host and restart the
data transmission . Finally, the target enters the Status phase and sends the
command status to the initiator to mark the end of the process , then
releases control of the SCSI bus by entering the bus-free state .

In the sample code below we 'll see how the 53C400A responds to a
selection and handles the various phases of a SCSI transaction. The code
below assumes the existence of a Wr i teReg () routine that writes values

into a 53C400A register, and a ReadReg () routine that reads the value
of a specified 53C400A register. The code uses register names and values
that are specific to the 53C400A, but you should be able to follow the
intent of the code from the comments . Of course, other SCSI chipsets will

1 30 SCSI Target-Mode Programming

require different low-level code sequences, but the sample code below
should help you by showing how to handle the various SCSI bus phases.

The first requirement is to initialize and enable the 53C400A. We do

this by resetting the chip, enabling target-mode operation (at the expense
of traditional host-mode operation) , and clearing the interrupt state .

Listing 9-1 . Chip I n itial ization

WriteReg (CRO , O x B O) ;
Wr iteReg (MR , O x 4 0) ;
Wr iteReg (SE R , l << I D) ;
ReadReg (RIR) ;
Wr iteReg (CRO , O x l O) ;

I I Reset the 5 3 C 4 0 0A chip
I I Enable target-mode operation
I I Spec ify our target SCSI id
I I Read / reset the SCSI interrupt
I I Enable the SCSI interrupt

Now we simply wait for an interrupt telling us that the 53C400A has
been selected as the target by another host adapter. We ' ll do this by poll
ing just to keep things simple for this example, but most implementations

would install a real interrupt handler. Once we 've detected an interrupt

we ' ll check for exceptional conditions such as a bus reset or parity error.
If we 've been selected as the target of a SCSI transaction we 'll also have
to figure out the SCSI ID of the initiator. Note that we double-check the
selection bits on the SCSI bus to make sure that we are the legitimate tar
get of the selection. In the real world, false selections can occur because
of glitches on the data bus, or from quirks in the arbitration/selection han

dling on some older host adapters . Once we 've decided that we have been

properly selected, we ' ll assert the BSY signal to notify the initiator that
we 've taken control of the SCSI bus. The initiator should acknowledge

this by dropping the SEL signal . Most newer SCSI chipsets will handle
all of this for us automatically, but on the 53C400A we 'll see exactly what
needs to be done.

Listing 9-2. Responding to Selection

while (! (ReadReg (I SR) & IRQ))
I I Wait for an interrupt

irq_cause = ReadReg (I SR) ;
ReadReg (RIR) ;

I I s ave the interrupt source
I I Reset 5 3 C4 0 0A interrupt

(Continued)

listing 9-2. (Continued)

Handling SCSI Phases 1 3 1

i f (irq_cause & BUS_RESET)
{

I I Bus reset interrupt?

Proc e s sBusReset () ;
return ;

}

i f (irq_cause & PARITY ERROR)
I I Par ity error ?

{
Proce s s P arityError () ;
return ;

}

I I handle it e l s ewhere

II handle it e l s ewhere

I I This mu st be a s e lection interrupt . Get the
I I se lection ID bits from the SCSI data bus and
I I make sure our ID bit is set (we could have
I I interrupted with an inva lid s e lection due to
I I a g l itch on the S C S I bus) .

s e lect ion_id = ReadReg (DATA) ;
if (! (s e lect ion_id & (1 << I D)))

{
I I Our SCS I I D bit i s n ' t set , so we aren ' t
I I really s e lected ! I gnore the se lection .
return ;

}

I I Now determine the SCS I I D of the initiator
I I by f inding which other ID bit is s et .

s e lection_id & = - I D ; I I f irst c l ear our I D bit
for (initiator= O ; initiator< 8 ; initiator++)

{
i f (s e lection_id & 1)

break ;
s e lection id >>= 1 ;

}

I I We have a valid s e lection , a s s ert BSY and wait
I I for the host to drop the SEL s ignal to end the
I I s e l ection phase

WriteReg (I CR , BSY) ;
while (ReadReg (C SC) & SEL)

1 32 SCSI Target-Mode Programming

At this point we 've completed the SCSI arbitration and selection
phases and, as the selected target, we have control of the SCSI bus . The
SCSI-2 specification now requires a Message Out phase with at least an
Ident i fy message, but older SCSI- 1 initiators may skip this stage. We 'll

examine the state of the ATN signal to determine whether the initiator has

any message bytes to send us. As you examine the code below, note that

we explicitly control the SCSI bus phase by setting and clearing the vari
ous signals . You ' ll also see that we strobe in each message byte
individually via the REQ and ACK signals . The 53C400A is capable of
automated transfers of 1 28-byte data blocks , but for smaller chunks we 're
on our own.

Listing 9-3. Message In Phase

whi l e (ReadRe g (I SR) & ATN)
{
WriteReg (TCR , MSG I CD) :

I I Host me s s age waiting?

II set MSG and CID s igna l s
I I t o enter MSG OUT pha s e

WriteReg (TCR , MSG I CD I REQ) : I I Now also a s s ert REQ t o
I I reque st m s g byte from host

whi l e (! ReadReg (I SR) & ACK)
I I Wait for host to ACK , so data i s available

ms g_byte = ReadReg (DATA) : II Read first me s s age byte

WriteReg (TCR , MSG I CD) : I I release REQ , leave MSG+CD

if (ms g_byte & O x 8 0)
{

I I I s it an Identify me s s age?

II extract Identify information
ok_to_disconnect = ms g_byte & Ox4 0 :
luntar = ms g_byte & O x2 0 :

lun = ms g_byte & O x 0 7 :
}

e l s e i f ((ms g_byte == O x 0 6) I I (msg_byte
{
I I Abort or Bus Device Reset me s s age

OxO C))

WriteReg (TCR , O) : I I release MSG and CD lines
Wr iteReg (I CR , O) : I I release BSY l ine
return :
}

(Continued)

Handling SCSI Phases 1 33

Listi ng 9-3. (Continued)

e l s e i f ((ms g_byte == O x O B))

{

e l s e

}

I I NOP , so j u st ignore it

}

{
I I Th i s s amp le won ' t handle any other me s s age bytes
II so return a Me s s age Re j ect back to the host
Wr iteReg (TCR , MSG I CD I IO) ; I I Enter MSG IN phase
WriteReg (DATA , O x 0 7) ; I I ME S SAGE REJECT
Wr iteReg (I CR , BSY I DB) ; I I Turn on data bus
Wr iteReg (TCR , MSG I CD I I O I REQ) ; II As s ert REQ
whi l e (! ReadReg (I SR) & ACK) I I Wait for host to ACK

;
Wr iteReg (TCR , MSG I CD I I O) ;
Wr iteReg (ICR , BSY) ;

}

I I Re lease REQ
I I Turn o f f data bus

That was a lot, and we only handled a few messages. Real-world
implementations typically handle several others, including the Synchro
nous and Wide Data Trans fer Request messages. I typically create
message 1/0 subroutines to clean up the code a bit, but for this example I

thought it best to show the bus phase changes up front.
After the Message Out phase (messages from the host to the target) , a

target will enter the Command phase to collect the Command Descriptor

Block (CDB) from the host. This is pretty straightforward-the only com
plexity rises from the need to interpret the first command byte to
determine the CDB length.

Listing 9-4. Command Phase

WriteReg (TCR , CD) ;
Wr iteReg (TCR , CD I REQ) ;
wh ile (! Re adReg (I SR) & ACK)

I I Select the COMMAND phase
II As s ert REQ s i gnal
I I Wait for host to ACK

cdb_byte (O] = ReadReg (DATA) ; I I Get first byte of CDB
Wr iteReg (TCR , CD) ; I I De-as s ert REQ
switch (cdb_byte (O] >> 5)
I I Extract the command group code
I I to determine the CDB length

(Cominued)

1 34 SCSI Target-Mode Programming

Listing 9·4. (Continued)

{
c a s e 0 :

cdb l e n 6 ;
break ;

c a s e 1 :
c a s e 2 :

cdb len 1 0 ;
break ;

c a s e 5 :
cdb len 1 2 ;
break ;

default :
I I Res erved or vendor- spec i f ic , treat as
I I an error and force early termination

cdb len = 0 ;

}

I I Now read the remaining
for (i= 1 ; i<cdb_len ; i++)

COB bytes

{
WriteReg (TCR , CO ! REQ) ;
whi l e (! ReadReg (I SR) &

I I As s ert REQ
ACK) I I Wait for host to ACK

cdb_byte [i] = ReadReg (OATA) ; I I Get next COB byte
Wr iteReg (TCR , CO) ; I I Clear REQ

}

At this point we have a complete SCSI Command Descriptor B lock
ready for processing. We know which LUN should receive the COB

because of the Identify message received from the host. (If the message
came from a SCSI- 1 initiator, we can either assume a LUN of 0, or retrieve
it from the upper three bits of cdb_byte[l] . This lack of an Identify mes
sage was one of the many problems encountered with multiple LUNs
before the SCSI-2 standard.)

If the command requires additional data, we would enter a Data Out
phase (out of the host, in to our target) , strobing each byte with the REQ/
ACK signals just as we did above. We may also send additional messages
to the host by entering a Message In phase (in to the host, out of the tar
get) and strobing out the message data, just as we did with the Me s s age
·Re j ect message above. If the command required a significant delay
before the data was available, we might disconnect at this point and
reconnect when the data is ready. For our example, let 's assume that
we 've received a standard I nquiry command.

Handling SCSI Phases 1 35

Listing 9-5. Responding to Inquiry Command

if (cdb_byte [O] == INQU I RY)

{
I I Send back inquiry data . As sume the correct inquiry
I I data i s stored in the inq_byte [) array .
nbytes = cdb_byte [4] ; I I Get reque sted length

i f (nbytes > s i zeof (inq_byte))
nbyte s s i z e o f (inq_byte) ;

Wr iteReg (TCR , I O) ;

Wr iteReg (I CR , BSY ! DB) ;

for (i= O ; i<nbyte s ; i++)
{

I I Truncate reque s ted
I I length to actual

I I Se lect DATA IN phase

II Turn on data bus

WriteReg (DATA , inq byte [i]) ; I I Write the next byte
WriteReg (TCR , I O ! REQ) ; I I Set the REQ line
wh i l e (! ReadReg (I SR) & ACK) II Wait for host to ACK

Wr iteReg (TCR , I O) ;

}

Wr iteReg (I CR , BSY) ;

}

I I C lear the REQ l ine

II turn off data bus

At this point we should check for an active ATN signal from the host

indicating that it has additional message bytes to send. Real-world imple

mentations should check for such messages between every phase change,
and also at the end of every data block during a data transfer. In our exam

ple we ' ll skip this check and proceed to the final step, sending the status
byte and the command complete message back to the host, and releasing
control of the SCSI bus .

Listi ng 9-6. Sending Status a n d Command Complete

status byte = O x O O ; I I GOOD status
WriteR;g (TCR , CD ! I O) ; I I Se lect STATUS phase
Wr iteReg (I CR , BSY ! DB) ; I I Turn on data bus
Wr iteReg (DATA , status byte) ; I I Send the status byte
Wr iteReg (TCR , CD ! I O ! REQ) ; I I Set the REQ l ine
whi l e (! ReadReg (I SR) & ACK) I / Wait for ho st to ACK

(Continued)

1 36 SCSI Target-Mode Programming

Listing 9-6. (Continued)

Wr iteReg (TCR , CD I I O) ; I I C lear the REQ l ine
Wr iteReg (TCR , MSG I CD I I O) ; I I Enter MSG IN phase
WriteReg (DATA , COMMAND COMPLETE) ; II Send command complete
WriteReg (TCR , MSG I CD I IO I REQ) ; I I Set the REQ l ine
whi l e (! ReadReg (I SR) & ACK) I I Wait for host to ACK

Wr iteReg (I CR , BSY) ;
WriteReg (TCR , O) ;
Wr iteReg (I CR , O) ;

I I Turn o f f data bus
I I Re lease all SCSI lines
II to enter BUS FREE

As you 've seen, managing the SCSI bus isn 't a trivial task. We 've
examined a typical transaction, but haven 't really gone into any signifi

cant detail regarding message and error handling. Also, we 've been

working directly with the hardware. That gets pretty boring and is better
left to the chipset 's data sheet, especially since you 're likely to use a com

pletely different SCSI adapter for your target-mode project. Rather than
continue with a long, drawn-out presentation of the details of 53C400A
programming, wouldn ' t it be a better idea to hide this complexity behind
the sort of target-mode API that I hinted at earlier? For any of you who
might be interested in these low-level details, I refer you to the target-mode
source code included on the CD-ROM that accompanies this book.

Target-Mode API

Let 's start by considering the functional requirements for a target-mode
SCSI interface. First and foremost, it should be easy to understand and to
use, just like the ASPI interface is for host-mode programming. ASPI 's

biggest asset is its simplicity. It foregoes little-used SCSI features like

tagged queues and asynchronous event notification in favor of a simple,
easy to understand interface. Our target-mode interface should do the
same. Let 's not worry about every feature of SCSI target-mode program
ming, but instead concentrate on those features we need to get the job
done. Also, a target-mode SCSI interface should insulate applications
from hardware-specific details. This should allow us to run the same
application with different implementations of the target-mode interface,
just like ASPI applications should run with any ASPI implementation.

Please note that I 'm not trying to create a standard interface specifica
tion here-I ' ll just be describing an API that has worked well for me over
the past few years . I hope you will find it useful if you decide to write any

Target-Mode API 1 37

PC-based target-mode applications . You 'll find the complete source code
for a 53C400A TSPI driver included on the CD-ROM that accompanies
this book. Of course, you ' I I probably want to use another SCSI chipset for
your target -mode application. If so, you ' II have to modify the TSPI driver to

work with your specific hardware. I 've tried to keep the hardware-specific

code separate from the more general-purpose target-mode routines to make

this process easier.
I 've arrived at this particular API by the notorious trial and error design

process . They provide a fairly complete and (I hope) easy to understand
routines that insulate applications from the details of the SCSI bus trans
actions . The functional goals for the API include:

• pass full COBs to the application for processing

• provide Read/Write routines that the application can call to transfer
data buffers

• handle SCSI message bytes transparently (as much as possible)
• provide for disconnect/reconnect sequences
• allow for multiple LUNs

Let 's j ump right in by examining the core data structures and routines

that comprise the API, which I call the Target-mode SCSI Programming

lnteiface, or TSPI. (Pretty original, huh?) I 've modeled its interface along

the same lines as AS PI . The interface has a single entry point, tspi _
SendCommand () , which is passed a pointer to a structure describing the

command. S ince you 're already familiar with ASPI from Chapter 7, you
shouldn 't have much trouble with this interface.

I wanted to keep the application code as simple as possible, while pro
viding enough flexibility to work with most existing host adapters . The

TSPI interface works very much like ASPI. It has a single entry point

called tspi_SendCommand (void *) , which takes a pointer to a struc

ture that contains all the information necessary to execute a given TSPI
command. We ' II see how to issue TSPI commands a bit later. Right now

let 's look at the command structures used to pass information across the

TSPI interface.

Listing 9-7. TSPI Command Structures

typede f s truct TSP I_EVENT_s
I I Holds incoming S C S I COBs and bus events

{
uns igned char CommandCode ;
un s i gned char Error ;

I I Type of command
I I Returns error s t atus

(Continued)

1 38 SCSI Target-Mode Programming

Listing 9·7. (Continued)

uns i gned s hort F lags ; I I TSPI FLAG xxxx
uns i gned char Adapter I ndex ; I I Adapter number
u n s i gned char I nitiator i d ; I I Who sent it
uns i gned char Lun ; I I Our LUN
un s i gned char Res ervedl [l 5] ; I I Reserved for AP I u s e
uns i gned long T imeout ; I I I n mi l l i s econds
uns i gned c har Re s erved2 [3] ; I I Res erved (al i gnment)
uns igned char CdbLength ; I I Length o f COB
u n s i gned char CdbByte [1 6] ; I I COB data bytes

} TSP I_EVENT ;

typede f s truct TSP I_CMD_
I I Generic T S P I cmd

{
uns i gned char CommandCode ; I I Type o f command
uns i gned char Error ; I I Returns error status
u n s i gned s hort F l ags ; I I TSPI FLAG xxxx
uns i gned char Adapteri ndex ; I I Adapter number
uns i gned char Initiator i d ; I I Host SCSI I D
uns i gned char Lun ; I I Our LUN
uns i gned char Res erved l [l 5] ; I I Reserved for AP I use
uns i gned long Parm [6] ; I I Generic parameters

} TSP I_CMD ;

typede f s truct T S P I XFER s
I I Data tran s fer cmd

{
u n s i gned char CommandCode ; I I Type o f command
u n s i gned char Error ; I I Returns error status
uns i gned s hort Flags ; I I TSPI FLAG xxxx
uns igned char Adapter I ndex ; I I Adapter number
uns igned char I nitiator i d ; I I Host SCSI I D
uns i gned char Lun ; I I Our LUN
u n s i gned char Re s ervedl [l S] ; I I Re served for AP I u s e
u n s i gned long Trans ferLength ; I I Bytes to read /write
vo i d * Tran s ferAddre s s ; / / Data bu ffer addr e s s
uns i gned long Re s idualLength ; I I Bytes NOT sent
uns i gned long Re served2 [3] ;

} TSP I_XFER ;

I I Flags
de f ine T S P I FLAG BusRe s et
de f ine TSPI FLAG DeviceRe set

I I Re s erved

OxO O O l
Ox0 0 0 2

de f ine TSP I_FLAG_HostMsgWaiting Ox0 0 0 4
de f ine TSPI FLAG S aveDataPointers OxO O O B

(al ignment)

(Continued)

Target-Mode API 1 39

Listing 9-7. (Continued)

I I Command Code s
de f ine TSPI CMD _Adapterinfo 0
de f ine TSPI CMD Attac hLUN 1
de f ine TSPI CMD Detac hLUN 2
de f ine TSPI CMD GetEvent 3
#def ine TSPI CMD ReadFromHost 4
de f ine T S P I CMD Wr iteToHo st 5
#def ine TSP I_CMD_Cornp leteCommand 6
#def ine TSP I_CMD_S endMe s s age 7
#def ine T S P I_CMD_GetMe s s age 8
#def ine TSPI CMD D i s connect 9
#def ine TSPI CMD Reconnect 1 0

I I Error Codes
#def ine TSPI ERR None 0
#def ine
de f ine
de f ine
de f ine
#def ine
de f ine
#define

TSPI ERR I nval idCommand 1
TSP I_ERR_Busy 2
TSP I_ERR_I nva lidAdapter 3
TSP I_ERR_I nva lidTarget 4
TSPI ERR I nval idLUN 5
T S P I ERR LunNotAvai l able 6
T S P I ERR T imeout 7

You 'll note that the first few fields of each structure are identical . The
TSPI manager uses the ConunandCode field to interpret the remaining
fields . The TSPI_EVENT structure is used to retrieve SCSI commands
and events as they arrive at the target. The TSPI_XFER structure is used
to manage the transfer of data buffers across the SCSI bus . Finally, the
TSPI_CMD structure is used to control the remaining portions of a SCSI

transaction, including disconnect/reconnect sequences and command

completion. The TSPI_CMD structure is also used to control the TSPI
interface itself. Let 's take a closer look at the TSPI commands.

Adapter Inquiry (TSPI_ CMD _ Adapterlnfo)

This command is used to obtain information about a specific target-mode
adapter managed by the TSPI driver. To issue an adapter inquiry com
mand you must set the ConunandCode field to TSPI _ CMD _Adapter Info
and set the Adapteri ndex field to the 0-based index of the target-mode
adapter you wish to query. If you specify an adapter that doesn ' t exist, the

1 40 SCSI Target-Mode Programming

Error field will return TSPI _ERR_ I nvalidAdapter. Otherwise, the
Parm [] array will return information pertaining to that adapter.

On entry:

Command Code

Adapterlndex

Flags

TSPI_CMD_Adapterinfo

0-based adapter index

Must be 0

On return:

Error

Parm[O]

Parm[l]

Parm[2]

Parm[3-5]

Error code

Total number of target-mode adapters managed by the
TSPI manager

TSPI version number supported by this adapter, e .g .
Ox00000 1 04 (1 .04)

Target adapter SCSI ID

Reserved for future use, currently return 0

Listing 9-8. TSPI Adapter Inquiry

TSP I_CMD info ;
info . CommandCode = TSP I_CMD_Adapterinfo ;
info . Adapteri ndex = 0 ;
info . F l ags = 0 ;
tspi_SendCommand (& i n fo) ;
NumAdapters = info . P arm [O] ;
printf (" % lu target-mode adapters avai lable \ n " ,

NumAdapters) ;
while (in f o . Adapteri ndex < NumAdapters)

{
i f (in f o . Error)

e l s e

printf (" Adapter % lu , error % u \ n " ,
info . Adapteri ndex
info . Error) ;

printf (" Adapter % lu , ID=% lu ver s ion % lu . % 0 2 lu \ n " ,
info . Adapter i ndex ,
info . Parm [2] ,
info . Parm [l] >> 8 ,
info . P arm [l] & O xFF) ;

info . Adapter i ndex++ ;

}

Target-Mode API 1 41

This example also illustrates another TSPI behavior. All nonreserved
parameters are left alone , unless they are specifically documented as

returning a value. This can simplify the application code since it won ' t

have to constantly reinitialize structures.

Attach L UN (TSPI_CMD_AttachLUN)

This command is used to notify the TSPI manager that your application

will handle SCSI commands for the specified LUN. You must do this

before issuing any other TSPI commands that use this LUN. If this com
mand completes without an error your application should start issuing
TSPI _ CMD _ GetEvent commands to retrieve incoming SCSI commands
and bus events .

On entry:

Command Code

Adapter Index

Lun

Flags

On return::

Error

Listing 9-9. TSPI Attach LUN

TSP I_CMD attach ;

TSPI CMD AttachLUN

Adapter to attach (0-n)

LUN to attach (0-7)

Must be 0

Error code

attach . CommandCode = TSP I_CMD_Attac hLUN ;
attach . Adapteri ndex = 0 ;
attach . Lun = 0 ;
attach . F lags = 0 ;
tspi_S endCommand (& attach) ;
i f (! attach . Error)

print f (" LUN %u i s now enabled\ n " , attach . lun) ;

We ' II describe the cal lback routine in more detail later.

Detach LUN (TSPI_CMD_DetachLUN)

This command is used to notify the TSPI manager that your application
will no longer be responding to SCSI commands for the specified LUN.

1 42 SCSI Target-Mode Programming

You must issue this command to detach any previously attached LUNs

before your application terminates.

On entry:

Command Code

Adapterlndex

LUN

Flags

On return:

TSPI CMD DetachLUN

Adapter to detach from, same as for
TSPI CMD AttachLUN

LUN to attach from, same as for
TSPI CMD AttachLUN

Must be 0

Error Error code

Listing 9-1 0. TSPI Detach LUN

TSPI CMD attach ; I I used in original c a l l to
I I TSPI CMD AttachLUN

TSPI CMD detach ;
detach . CommandCode TSP I_CMD_DetachLUN ;
detac h . Adapterindex = attach . Adapteri ndex ;
detach . Lun = attach . Lun ;
detach . F lags = 0 ;
tspi_SendCommand (& detach) ;
i f (! detach . Error)

printf (" LUN % u i s now d i s abled \ n " , detach . Lun) ;

Get Event (TSPI_ CMD _ GetEvent)

This command is used to retrieve SCSI commands for execution. The
TSPI manager will buffer a single incoming command for each attached
LUN, and the application uses the TSP I_CMD_GetEvent command to
retrieve it. Most applications will sit in a loop waiting for events and then
processing them as they arrive. Note that you must use a TSPI_EVENT
structure with this command.

On entry:

CommandCode

Adapter Index

Lun

Flags

Timeout

On return:

Error

Flags

CdbLength

CdbByte []

Listing 9-1 1 . TSPI Get Event

TSPI CMD GetEvent

Target-Mode API 1 43

Adapter number, same as for TSPI _ CMD _
AttachLUN

LUN, same as for TSP I _ CMD _ AttachLUN

Must be 0

Number of milliseconds to wait for an incoming
SCSI command or bus reset event. A value of 0

indicates that the command should return immedi

ately if no command or event is pending.

Error code

The flag bits will be updated to indicate the current

status of the SCSI bus at the end of this command.

TSPI FLAG BusReset will be set if the SCSI bus has

been reset. TSPI FLAG DeviceRe s et will be set if

the TSPI manager has received a Device Re set mes

sage for the target . TSPI_FLAG_HostMs gWaiting
will be set if the initiator is asserting the ATN signal,
indicating that it has a message to send to us. If so, use
the TSPI_CMD_GetMe s s age command to get the
message.

Number of valid CDB bytes in the CdbByte [] array. A
value of 0 indicates that there is no CDB associated
with this event. This can happen if the TSP I_ FLAG_
BusReset or TSPI _FLAG _DeviceRes et flag bits are
set.

This array contains the SCSI Command Descriptor
Block received from the initiator. Its length is deter

mined by the CdbLength field.

TSP I_CMD attac h ; I I used in original c a l l to
I I TSPI CMD AttachLUN

TSP I_EVENT event ;
whi l e (! quit)

{
event . CornmandCode TSP I_CMD_GetEvent ;

(Continued)

1 44 SCSI Target-Mode Programming

Listing 9-1 1 . (Continued)

event . Adapteri ndex = attach . Adapterindex ;
event . Lun = attach . Lun ;
event . Timeout = 1 0 0 ; I I 1 0 0 mi l l i s econds
event . F l ags = 0 ;
tspi_SendCommand (& event) ;
i f (event . Error == TSPI_ERR_None)

{
i f (event . F lags & TSPI_FLAG_BusReset)

printf (" Bus reset detected \ n ") ;
i f (event . F lags & TSP I_FLAG_DeviceReset)

printf (" Device reset detected \ n ") ;
i f (event . CdbLength > 0)

Proc e s s Cdb (& event) ;

}
e l s e i f (event . Error ! = TSP I_ERR_Timeout)

}

{
print £ (" Error %u , quitting • . • \ n " , event . Error) ;
quit = 1 ;

}

Read Data From Host (TSP/_ CMD_ Read From Host)

This command causes the TSPI manager to read a data buffer from the

initiator. This is required for commands that write data or parameters to

the target device (e.g . , Write). The specified adapter will enter a Data

Out phase, and the specified number of bytes will be read from the initia
tor and placed in the application 's data buffer. Note that you don't have to
read the entire data buffer from the host at one time. You can break it into
as many transfers as you wish, issuing this command once for each chunk
of data you wish to read. Of course, larger chunks will generally lead to

better performance, so don 't make your buffers too small. Note also that
the structure passed to the tspi _ SendCommand () routine is a TSPI_XFER
structure rather than a TSPI_ CMD structure.

On entry:

Command Code

Adapterlndex

Initiatorld

TSPI CMD ReadFromHost - -
Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN

Flags

TransferLength

Transfer Address

On return:

Error

Flags

Residual Count

Target-Mode API 1 45

LUN from the original TSPI_EVENT structure

Must be 0

Number of bytes to transfer

Pointer to the buffer that will receive the data

bytes from the host. This buffer must be large
enough to hold the number of bytes requested.

Error code

The flag bits will be updated to indicate the current

status of the SCSI bus at the end of this command.
TSP I FLAG BusRe s e t will be set if the SCSI bus

has been reset. T S P I _FLAG_ H o s tM s gW a i t ing will

be set if the initiator is asserting the ATN signal ,
indicating that i t has a message to send to us . If so,
use the T S P I_CMD_GetMe s s age command to get
the message.

Number of requested data bytes NOT transferred.

This value is the requested transfer length minus the
number of bytes actually received. If the entire
requested transfer length was received, this field
will be 0.

Listing 9-1 2. TSPI Read Data From Host

TSP I_EVENT * event ;
TSPI XFER xfer ;
char block_bu f [5 1 2] ;

I I original incoming event structure
I I our trans fer structure

xfer . CommandCode = TSP I_CMD_ReadFromHost ;
xfer . Adapteri ndex = event->Adapter i ndex ;
xfer . Initiator i d = event->I nitiatorid ;
xfer . Lun = event- >Lun ;
xfer . Flags = 0 ;
xfer . Tran s ferLength = s i z eo f (block_bu f) ;
xfer . Tran s ferAddre s s = & b lock_buf [O] ;
tspi_SendCommand (& xfer) ;
i f (! xfer . Error)

printf (" % lu bytes received \ n " ,
xfer . Tran s f e rLength - xfer . Re s idualCount) ;

1 46 SCSI Target-Mode Programming

Write Data To Host (TSP/_CMD_ WriteToHost)

This command causes the TSPI manager to send a data buffer to the initi

ator. This is required for commands that read data or parameters from the
target device (e.g . , Read). The specified adapter will enter a Data In
phase, and the specified number of bytes will be sent to the host from the
application 's data buffer. Note that you don 't have to send the entire data
buffer to the host at one time. You can break it into as many transfers as
you wish, issuing this command once for each chunk of data you wish to
send. Of course, larger chunks will generally lead to better performance,

so don 't make your buffers too small . Note that the structure passed to the

tspi _ SendCommand () routine is a TSPI_XFER structure rather than a
TSPI_ CMD structure .

On entry:

Command Code

Adapterlndex

Initiatorld

LUN

Flags

Transfer Length

Transfer Address

On return:

Error

Flags

Residual Count

TSPI CMD WriteToHost

Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure

Must be 0

Number of bytes to transfer

Pointer to the buffer that contains the data bytes
that will be sent to the host.

Error code

The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
T S P I FLAG B u s Re s et will be set if the SCSI bus
has been reset. T S P I_FLAG_H o s tMs gWa i t i n g will
be set if the initiator is asserting the ATN signal ,

indicating that it has a message to send to us. If so,
use the T S P I_CMD_GetMe s s ag e command to get
the message.

Number of requested data bytes NOT transferred.
This value is the requested transfer length minus the
number of bytes actually sent. If the entire requested
transfer length was sent, this field will be 0.

Listing 9-1 3. TSPI Write Data To Host

Target-Mode API 1 47

TSP I_EVENT * event ;
TSPI XFER xfer ;
char block_bu f [5 1 2] ;

I I original incoming event s tructure
I I our trans fer s tructure

xfer . CommandCode = T S P I_CMD_WriteToHo st ;
xfer . Adapteri ndex = event- >Adapteri ndex ;
xfer . Init iator i d = event->I nitiatorid ;
xfer . Lun = event- >Lun ;
xfer . Flags = 0 ;
xfer . Tran s ferLength = s i zeof (block_buf) ;
xfer . Tran s ferAddr e s s = &block_bu f [O] ;
tspi_S endCommand (& x f er) ;
i f (! xfer . Error)

printf (" % lu bytes s e nt \ n " ,
xfer . Tran s f erLength - xfer . Re s idualCount) ;

Complete Command (TSP/_ CMD_ CompleteCommand)

This command is used to signal the end of a SCSI command received via
the callback routine. It causes the TSPI manager to send the final STATUS

byte back to the initiator and disconnect from the SCSI bus . All SCSI com
mands received via the callback routine must have a corresponding
TSPI _ CMD _ Completecommand command to terminate them. Once this
command is sent for a given TSPI_EVENT received via the callback rou

tine you should not access any fields within that TSPI_EVENT structure,
since the TSPI manager may immediately reuse it for another command.
This shouldn 't be a practical restriction, since TSPI_CMD_Complete
Command will be the last command issued for a given event.

On entry:

Command Code

Adapter Index

Initiatorld

LUN

Flags

Parm [O]

TSPI_CMD_CompleteCommand

Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure

Must be 0

Status byte to send back to the initiator. This is typi
cally one of the following:

OxOO - Good

1 48 SCSI Target-Mode Programming

Ox02 - Check condition

Ox08 - Busy

Ox 18 - Reservation Conflict

Ox22 - Command Terminated

Refer to the SCSI specification for a complete list

of possible status bytes.

On return:

Error Error code

Listing 9-1 4. TSPI Complete Command

TSP I_EVENT * event ; I I original incoming event structure
TSPI CMD cmd ;
cmd . CommandCode = TSP I_CMD_CompleteCommand ;
cmd . Adapter i ndex = event->Adapteri ndex ;
cmd . I nitiator i d = event->Init iatorid ;
cmd . Lun = event->Lun ;
cmd . F l ags = 0 ;
cmd . P arm [O] = O x 0 2 ; I I Check condition
tspi_SendCommand (& cmd) ;
i f (! cmd . Error)

print £ (" Error % u \ n " , cmd . Error) ;

Send Message To Host (TSP/_ CMD_SendMessage)

This command is used to send a message to the initiator. This command is

provided to allow the application to send an arbitrary SCSI message to the
host. It follows the same format as the TSPI CMD WriteToHost com-- -
mand, except that the data will be send during a Message In phase. Note
that the structure passed to the tspi _ SendCommand () routine is a
TSPI_XFER structure rather than a TSPI_ CMD structure.

On entry:

Command Code

Adapterlndex

Initiatorld

TSPI CMD WriteToHost

Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN

Flags

Transfer Length

Transfer Address

On return:

Error

Flags

Residual Count

Target-Mode API 1 49

LUN from the original TSPI_EVENT structure

Must be 0

Number of message bytes to transfer

Pointer to the buffer that contains the message
bytes that will be sent to the host. The application
is responsible for the formatting of the message
bytes.

Error code

The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
T S P I FLAG B u s Re s et will be set if the SCSI bus

has been reset. T S P I_FLAG_H o s tM s gWa i t i n g will

be set if the initiator is asserting the ATN signal ,
indicating that it has a message to send to us (possi
bly a Mes s age Re j ect message) . If so, use the
T S P I_CMD_GetMe s s age command to get the
message.

Number of requested message bytes NOT trans
ferred. This value is the requested transfer length
minus the number of bytes actually sent. If the
entire requested transfer length was sent, this field

will be 0. Note that if the initiator requests a
MESSAGE OUT phase, this routine will terminate

early to allow for timely processing of the host 's
message. This field will indicate where in the mes
sage buffer the host asserted ATN.

Listing 9-1 5. TSPI Send Message To Host

TSP I_EVENT * event ; / / origin a l ly pas s ed to c a l lback rout ine
TSPI XFER xfer ; / / our tran s f e r structure
char ms g_bu £ [4] ;
msg_bu f [O] = RE STORE_PO INTERS ; / / res tore s aved pointers
xfer . CommandCode = TSP I_CMD_SendMe s s age ;
xfer . Adapte r i ndex = event . Adapterindex ;
xfer . Init i ator i d = event . I nitiatorid ;
xfer . Lun = event . Lun ;
xfer . F l a g s = 0 ;

(Continued)

1 50 SCSI Target-Mode Programming

Listing 9-1 5. (Continued)

xfer . Tran s ferLength = 1 ;
xfer . Trans ferAddres s = &ms g_buf [O] ;
tspi_SendCommand (&x f er) ;
i f (! xfer . Error)

printf (" % lu bytes s e nt \ n " ,
xfer . Tran s ferLength - xfer . Res idualCount) ;

Get Message From Host (TSP/_ CMD _ GetMessage)

This command is used to get a message from the initiator. You might do

this if the TSPI_FLAG_HostMs gWaiting bit is set upon return from
another command. This indicates that the initiator has the ATN s ignal
asserted to request a Message Out phase. This command allows an appli
cation to read that message. Note that messages arriving before the
command phase of a transaction will be automatically handled by the
TSPI manager. This includes nearly all of the message handling required
for most applications, including Ident i fy messages, Synchronous and
Wide Negotiation, and the Bus Device Reset message. However, the
TSPI manager does not automatically handle messages that arrive during

or after the data transfer phases . These may include the Abort, D i scon
nect (from host), and Initiator Detected Error messages . Also, an

initiator may send a parity error message after a Data In transfer to indicate

an error in the data. The TSPI_FLAG_HostMs gWaiting bit indicates the
presence of such a message. If this bit is set you should issue a TSPI _ CMD _
GetMe s s age command to read the message from the host. If it was a
Parity Error message, you might want to send a Restore Pointers
message and retry the transfer.

This command follows the same general format as the TSPI _ CMD _
ReadFromHost command, except that the data will be send during a Mes
sage In phase. Note that the structure passed to the tspi _ SendCommand ()
routine is a TSPI_XFER structure rather than a TSPI_ CMD structure.
Also note that more than one message may be read into your buffer if the
host sends multiple messages during a single Message Out phase.

On entry:

Command Code

Adapterlndex

TSPI_CMD_GetMe s s age

Adapter number from the original TSPI_EVENT
structure

Initiatorld

LUN

Flags

Transfer Length

Transfer Address

On return:

Error

Flags

Residual Count

Target-Mode API 1 5 1

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure

Must be 0

Number of bytes to transfer

Pointer to the buffer that will receive the message
bytes from the host. This buffer must be large
enough to hold the number of bytes requested.

Error code

The flag bits will be updated to indicate the current
status of the SCSI bus at the end of this command.
T S P I FLAG B u s Re s et will be set if the SCSI bus
has been reset. T S P I_FLAG_H o s tM s gWa i t i n g will

be set if the initiator is still asserting the ATN signal,

indicating that it has another message to send to us.

Number of requested data bytes NOT transferred.
This value is the requested transfer length minus the
number of bytes actually received. If the entire
requested transfer length was received, this field
will be 0. You should use this field to calculate how
many message bytes were actually received.

Listing 9-1 6. TSPI Get Message From Host

TSP I_EVENT * event ;
TSPI XFER xfer ;
char msg_bu f [l 6] ;

I I originally passed to cal lback rout ine
I I our trans fer structure

xfer . CommandCode = TSPI CMD GetMe s s age ;
xfer . Adapteri ndex = event . Adapter i ndex ;
xfer . I nitiator i d = event . I nitiator i d ;
xfer . Lun = event . Lun ;
xfer . F l ags = 0 ;
xfer . Tran s f erLength = s i zeof (ms g bu f) ;
xfer . Trans ferAddre s s = &ms g_buf [O] ;
tspi_S endCommand (& x f er) ;
i f (! xfer . Error)

Proc e s sMe s s ageByte s (ms g_bu f ,
xfer . Tran s f erLength -
xfer . Res idualCount)

1 52 SCSI Target-Mode Programming

Disconnect (TSP/_ CMD _Disconnect)

This command causes the TSPI manager to send a disconnect message to
the initiator and then disconnect from the SCSI bus . This allows an appli
cation to free the SCSI bus for other transactions while the application is
carrying out a lengthy operation. The application must issue a TSPI _ CMD _
Reconnect command before sending any other commands to the TSPI
manager for that LUN.

On entry:

CommandCode

Adapterlndex

Initiatorld

LUN

Flags

On return:

TSPI CMD Disconnect

Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure

If the T S P I _ CMD _ S aveDa t aPo i n t e r bit is set, the
TSPI manager will send a S ave D a t a P o i nt e r

message to the initiator before disconnecting. This
flag is almost always set when you are breaking a
transfer up into smaller chunks.

Error Error code

Listing 9-1 7. TSPI Disconnect

TSP I_EVENT * event ; I I original incoming event structure
TSPI CMD cmd ;
cmd . CommandCode = TSP I_CMD_D i s connect ;
cmd . Adapterindex = event->Adapteri ndex ;
cmd . I nitiator i d = event->Initiator i d ;
cmd . Lun = event->Lun ;
cmd . F l ags = TSPI_FLAG_S aveDataPointer ;
tspi_SendCommand (& cmd) ;
i f (! cmd . Error)

printf (" Error % u \ n " , cmd . Error) ;

Connecting to the TSPI Manager 1 53

Reconnect (TSPI_ CMD_Reconnect)

This command causes the TSPI manager to reselect an initiator to con
tinue a SCSI transaction. See the T S P I CMD Disconnect command for
additional information.

On entry:

Command Code

Adapterlndex

Initiatorld

LUN

Flags

On return:

T S P I CMD Reconnect

Adapter number from the original TSPI_EVENT
structure

Initiator SCSI ID from the original TSPI_EVENT
structure

LUN from the original TSPI_EVENT structure

Must be 0

Error Error code

Flags The T S P I FLAG_H o s tMs gWaiting will be set if the initiator
is asserting the ATN signal, indicating that it has a message to

send to us. If so, use the T S P I_CMD_GetMe s s age command

to get the message from the host.

Listing 9-1 8. TSPI Reconnect

TSP I_EVENT * event ; / / original incoming event structure
TSPI CMD cmd ;
cmd . CommandCode = TSP I_CMD_Reconnect ;
cmd . Adapteri ndex = event ->Adapteri ndex ;
cmd . I nitiator i d = event->Initiatorid ;
cmd . Lun = event->Lun ;
cmd . F l ags = 0 ;
tspi_SendCommand (& cmd) ;
i f (! cmd . Error)

printf (" Unable to reconnect , error % u \ n " , cmd . Error) ;

Con necting to the TSPI Manager

The TSPI interface was designed to exist in a separate executable from
the applications that use it. This typically would be a device driver or

1 54 SCSI Target-Mode Programming

Windows DLL Gust l ike ASPI) . For our MS-DOS example, we 'll connect
to it in very much the same way we connected to the ASPI manager. We'll
open the TSPI manager's device driver and get the address of the TSPI
manager's entry point. This is done by the following code sample :

Listing 9-1 9. Gett ing the TSPI Entry Point

DO 0
ow 0

; address of entry point
; f i l e handle

. DATA
TspiE ntryPoint
TspiHandle
AspiDriverName DB " TSP IMGR$ " , 0 ; TSPI device name

. CODE
GetTspiEntryPoint PROC

pu s h ds
mov ax , @ DATA
mov ds , ax
lea dx , TspiDr iverName
mov ax , 3 D 0 0 h
int 2 1 h
j c f a i led
mov [TspiHandle] , ax

mov bx , [TspiHandle]
lea dx , T spiEntryPoint
mov cx , 4
mov ax , 4 4 0 2 h
int 2 1 h
j c fai led

mov bx , [TspiHandle]
mov ax , 3 E 0 0 h
int 2 1 h

s ave current data segment
load local data segment

load o f f set of driver name
MS-DOS open f i le

s ave f i l e handle

load f i le handle
addre s s o f bu f fer
length = 4 bytes
MS -DOS I OCTL read

load file handle
MS-DOS c lose f i l e

; return t h e addr e s s o f t h e TSPI entry point
mov ax , word ptr [TspiEntryPoint)
mov dx , word ptr [T spiEntryPoint+2]
pop ds
ret

fai led :
mov
mov
pop

ax , O
dx , O
ds

ret
GetTspiEntryPoint ENDP

return NULL on error

Using the TSP/ Interface 1 55

An application can then use the following sequence to connect to the
TSPI manager:

Listing 9-20. Connecting to the TSPI Manager

BYTE NumAdapters ;

VOI D (FAR * t s p i_SendCommand) (void FAR * p) ;

tspi_SendCommand = GetT spiEntryPo int () ;
i f (t spi_SendCommand)

e l s e

{
TSP I_CMD tspi_info ;
mems et (& t s p i_in fo , 0 , s i z eo f (tspi_info)) ;

tspi_info . CommandCode = TSPI_CMD_Adapter i nquiry ;
tspi_inf o . Adapteri ndex = 0 ;

tspi_SendCommand (&tspi_info) ;
i f (t spi_info . Error)

{

e l s e

}

{

I I Something i s wrong
NumAdapters = 0 ;

}

{
I I T S P I manager is instal led and running
NumAdapters = tspi_info . Parm [O] ;

}

I I T S P I manager i s not instal led
NumAdapters = 0 ;

}

Using the TSPI Interface

Now that we 've defined a target-mode SCSI interface for PCs, let ' s look
at how you might use it from within a target-mode application. First you
should define the SCSI command set that your application will support. If
your application will be emulating a device type already defined by the
SCSI specification, this is easy-just grab the SCSI spec and implement
the command set defined for that device type. Maybe this won ' t seem
easy when you look at the myriad of mode sense/select pages, buffering
and logging options, and other features . Try implementing a bare-bones

1 56 SCSI Target-Mode Programming

emulation at first, and then add features as required. If you 're writing
code for the initiator (host) s ide as well , you can often get away with a
minimal implementation of the command set.

If your application doesn't match any of the defined SCSI device types,
you 'll have to define your own command set. This shouldn 't be too difficult,
as the command set probably will be dictated by the functionality you
require. You may want to place all of your operations in vendor-specific
commands, or you may be able to use variations of existing commands (i .e . ,
read and write) to meet your specific needs. Whichever route you

choose, be sure to implement all of the mandatory SCSI commands so that
your application will be compatible with existing host adapters and soft

ware. Also, be sure to set the most significant bit of the Peripheral
Qua l i f ier field in your inquiry data. This marks your device type as

vendor-specific, and should keep other applications from trying to use it.
If you define your own vendor-unique commands, you should keep

them as "SCSI-like" as possible. For example, the opcode, LUN, and con
trol byte fields are common to all current SCSI commands, so don 't
redefine them in your vendor-unique commands.

Also, keep your COBs either 6, 1 0, or 1 2 bytes long, and use the exist
ing command group codes if possible. Some host adapter drivers and
software won 't handle other lengths.

Your application should use standard sense keys and ASC/ASCQ
codes wherever possible. This will help eliminate confusion on the host
side, and some host applications can make retry and error recovery deci
sions based on these values.

Be prepared to respond to an Inquiry or Test unit Ready com
mand at any time. This is important if your device supports commands

that can complete before the operation is actually finished. As an exam

ple, check out the Rewind command for sequential access (tape) dev ices .
It contains an Immediate bit that, when set, instructs the device not to
wait for the rewind operation to finish before completing the SCSI
Rewind command. Then, the host might later issue a Test Unit Ready
command to determine if the rewind has actually finished. Since rewind
operations can take a great deal of time, this feature is often used by tape
applications . Note that with the TSPI manager you don ' t have to worry
about additional SCSI commands arriving until the current SCSI com
mand has completed. The warning above applies only to SCSI commands
that can complete early, but which may leave the device unable to accept
additional media access-type commands until some later time.

Let 's take a look at a simple target-mode application that implements a
few frequently used SCSI commands. As with the earl ier examples, this

Using the TSPI Interface 1 57

code leaves out a few details, but you should be able to follow along.
Check out the companion CD-ROM for a more complete example.

Listi ng 9-21 . TSPI Sample Application

d e f ine SENSE LEN 1 8
un s i gned c har S e n s e D at a [SENSE_LEN] ;

#def ine INQU I RY_LEN 3 6

un s i gned c h ar I nquiryDat a [INQU I RY_LEN]
{ your inquiry data here } ;

void (FAR * t s p i_SendCornmand) (void FAR * p) ;

int main (i nt argc , c har * argv [])
{

T S P I CMD cmd ;
T S P I EVENT event ;

t s p i_S endCornmand = GetT s p iEntryPoint () ;
i f (! t s p i_S endCornmand)

{

print f (" TS P I manager not i n s t a l l e d \ n ") ;
return 3 ;

}

I I Att a c h to LUN 0 on the Adapter 0
cmd . CornmandCode = TSP I_CMD_Attac hLUN ;
cmd . Adapter = 0 ;
cmd . Lun = 0 ;
t s p i_S endCornmand (& cmd) ;
i f (cmd . E rror)

{

printf (" E rror % u trying to attach LUN \ n " ,
cmd . Error) ;

return 4 ;
}

S e t S e n s e D at a (SKEY_NoS e n s e , 0 , 0) ;

whi l e (! kbhit ())
{

I I Run unt i l a key i s pre s s ed

event . CornmandCode = T S P I CMD_GetEvent ;
event . Adapteri ndex = cmd . Adapter i ndex ;
event . Lun = cmd . Lun ;
event . Timeout = 1 0 0 ; I I 1 0 0 mi l l i s econds
t s p i_S endCornmand (& event) ;
i f (event . Error == TSP I_ERR_None)

(Continued)

1 58 SCSI Target-Mode Programming

Listing 9-21 . (Continued)

{
i f (event . Flags & TSP I_FLAG_BusRe s et)

print f (" Bus reset detected \ n ") ;
i f (event . F lags & TSP I_FLAG_DeviceReset)

printf (" Device reset detected \ n ") ;
i f (event . CdbLength > 0)

Proc e s s Cdb { & event) ;

}
e l s e i f (event . E rror ! = TSP I_ERR_Timeout)

}

{
printf (" Error %u , quitting • • • \ n " , event . Error) ;
break ;

}

I I Detach from LUN before we exit
cmd . CommandCode = TSPI_CMD_DetachLUN ;
cmd . Adapter = 0 ;
cmd . Lun = 0 ;
t s p i_SendCommand (& cmd) ;
return 0 ;

}

void Proces sCdb (TS P I_EVENT * event)
{
int status ;
TSP I_CMD cmd ;

switch (event ->CdbByte [O])
{
c a s e TE ST UNI T READY :

status = TestUnitReady (event) ;
break ;

c a s e I NQUIRY :
s t atus = I nquiry (event) ;
break ;

c a s e REQUE ST_SENSE :
status = RequestSense (event) ;
break ;

de f ault :

}

I I Unsupported command
SetSenseData (SKEY_I l legalRequest ,

ASC_I nvalidCommandCode , 0) ;
status = CHECK_CONDITION ;

(Continued)

Using the TSP/ Interface 1 59

Listing 9-21 . (Continued)

I I Now we t e l l the TSPI manager that we ' re done ,
I I and send the status byte back to the initiator

cmd . CommandCode = TSP I_CMD_CompleteCommand ;
cmd . Adapteri ndex = event->Adapteri ndex ;
cmd . Target i d = event->Target i d ;
cmd . P arm [O] = s t atus ;
tspi_SendCommand (& cmd) ;

}

void SetSenseData (int s key , int asc , int asq)
{
int i ;
for (i= O ; i<SENSE_LEN ;

Sens eData [i] = 0 ;
Sens eData [O] = O x 7 0 ;
Sens eData [2] = s key &
SenseData [l 2] asc ;
Sens eData [l 3] = asq ;

}

i++)

I I Current error
O x O F ; I I Sense Key

I I Additional sense code
I I Additional qua l i f ier

int Tes tUnitReady (TSP I_EVENT * event)
{
I I As sume a global ' Ready ' variable
I I indicates our ready status
if (Re ady)

return GOOD ;
e l s e

return CHECK_CONDITION ;

}
int Reque stSen s e (TSPI_EVENT * event)

{
I I Send s e n s e data back to host
TSP I_XFER xfer ;
xfer . CommandCode = TSP I_CMD_WriteToHost ;
xfer . Adapteri ndex = event->Adapter i ndex ;
xfer . I nitiator i d = event->Init iator i d ;
xfer . Target i d = event- >Target i d ;
xfer . Lun = event- >Lun ;
i f (event- >CdbByte [4] > SENSE_LEN)

xfer . Tran s ferLength
e l s e

SENSE_LEN ;

xfer . Tran s ferLength event- >CdbByte [4] ;
xfer . Tran s ferAddre s s = & S ens eData [O] ;

(Continued)

1 60 SCSI Target-Mode Programming

Listing 9-21 . (Continued)

tspi_SendCommand (& x f er) ;
i f (xfer . Error)

{
}

return GOOD ;

}

int I nquiry (TS P I_EVENT * event)
{
i f (event->CdbByte [l] & EVPD_BIT)

{

e l s e

}

I I We don ' t support vital page data in this
II examp l e , s o return a CHECK CONDITION
SetSenseData (SKEY_I l legalReque st ,

ASC_I nval idFieldinCdb , 0)
return CHECK_CONDITION ;

}

{
I I Send s tandard inquiry data back to host
TSP I_XFER xfer ;
xfer . CommandCode = TSPI_CMD_Wr iteToHost ;
xfer . Adapte r i ndex = event->Adapteri ndex ;
xfer . I nitiatorid = event->I nitiatori d ;
xfer . Targe t i d = event->Target i d ;
xfer . Lun = event->Lun ;
i f (event- >CdbByte (4] > INQUIRY_LEN)

xfer . Tran s ferLength
e l s e

INQUIRY_LEN ;

xfer . Tran s ferLength event->CdbByte [4] ;
xfer . Tran s ferAddre s s = & I nquiryData (O] ;
tspi_SendCommand (& xfer) ;
return GOOD ;

}

Chapter 1 0

SCSI Support under Windows

With the enormous installed base of computers running Microsoft Win
dows, we 'd be remiss if we didn 't spend some time discussing native SCSI

support under Windows . I ' ll start by reminding you that ASPI managers

are available for each current version of Windows (3 .x, 95 , and NT) . In an
ideal world, that would be enough said-you could write ASPI-compliant

code, and aside from a few initialization details , you wouldn 't have to
worry which operating system it ran on. Unfortunately, this is the real
world, and there are some additional requirements and restrictions you
should note when using ASPI under Windows. In this chapter we ' ll take a
look at these requirements, and then move on to a look at how SCSI is

supported on the Windows 95 and NT operating systems.

AS PI for Windows 3.x

Windows 3.x is really a graphical operating environment that sits on top
of DOS . (I ' ll bet you haven 't heard that before !) For our purposes, the
important difference between Windows 3 .x and the others is that Win
dows 3 .x still uses DOS for many of its services, and that DOS device
drivers (such as ASPI managers) can still be loaded and used. This is
important because although there is a true ASPI for Windows 3 .x specifi
cation (more about this later) , not all SCSI adapter vendors provided the
Windows 3 .x WinASPI drivers required to use it. Windows 3 .x applications

1 6 1

1 62 SCSI Support under Windows

that had to run with all SCSI adapters were forced to bypass WinASPI
support, and instead use DOS Protected Mode Interface (DPMI) calls to
access the real-mode ASPI drivers directly. Unfortunately, this technique
still has some limitations. For example, any SRB and data buffers that you
pass to a real-mode ASPI manager must lie in real-mode addressable
memory below one megabyte. This often means that an application must
copy data buffers to and from the DOS addressable space. For a detailed
description of how to use DPMI services to access real-mode ASPI man
agers, read Brian Sawert 's article "The Advanced SCSI Programming
Interface" in the March 1 994 issue of Dr. Dobb's Journal.

Adaptec eventually released an ASPI specification and drivers that sup
port Windows 3 .x applications. Their implementation still uses DOS

ASPI drivers, but it also has a Windows 3.x Virtual Device Driver (VxD)
and a DLL that applications can call directly from Windows 3 .x applica
tions. The VxD handles most of the enhanced-mode memory management
issues automatically, so applications don 't have to copy data buffers back

and forth from the DOS addressable memory space. Also, applications
that use WinASPI aren 't restricted to using that precious little bit of DOS

addressable memory available under Windows 3 .x for SRBs and data
buffers . They can use the regular Windows GlobalAl loc () routine to
allocate memory above the one megabyte limit, and pass them directly to
the WinASPI manager. The only restriction is that an application must
page-lock the memory to prevent enhanced-mode Windows 3.x from
swapping it out to disk while the ASPI operation was in progress. This i s
done by allocating memory with the GMEM_FIXED attribute, and then
calling GlobalPageLock () to lock it in place. If your application uses
ASPI posting (callbacks) you should also page-lock your code segment

and any data segments used by the post routine to keep them from being
moved or swapped out to disk.

AS PI for Win32 (Windows 95 and NT)

Windows 95 and NT both have SCSI support built right into the operating
system. This allows for a much more robust implementation of ASPI for

these systems. In particular, you no longer need to worry about page-locking
your code segments and data buffers . When necessary, these functions are
carried out by the SCSI drivers themselves . However, the ASPI for Win32
specification does make some changes that you need to note. First, the
layout of the SRB structure has changed a bit. Fields have been moved
around for better 32-bit alignment, and the SRB _ CDBByte [] array is now
always 1 6 bytes long, and is followed by a new field that receives any

The Windows 95 and NT SCSI Model 1 63

returned sense data bytes. This means that you no longer have to take the
length of the COB into account when looking at the sense data.

ASPI for Win32 (95 and NT) also provides a new method for notifying
your application that an SRB has completed, called Event Notification .
With this method, you provide the handle to a regular Win32 event object

that will be signaled when the SRB completes . After starting the SRB ,

your application can call Wai tForSingleOb j e c t () to block until the
SRB completes . This frees up processor time that would otherwise be

wasted while your application polls for the SRB 's completion . Event
Notification is the preferred method for waiting for an SRB to complete
under Windows 95 and NT. It is even faster and more efficient than post
ing, which requires the ASPI for Win32 manager to launch a separate
thread to monitor SRBs for completion . This is done because the post
routine cannot be run at interrupt time under Windows 95 and NT (like it
can under DOS) . The extra thread provides a way for the ASPI for Win32
manager to simulate the callback to the post routine, but at the expense of
some additional system overhead.

The Wi ndows 95 and NT SCS� Model

Both Windows 95 and NT contain a series of layered device drivers that
provide different levels of SCSI support. At the lowest level are hardware

specific drivers that manage SCSI bus transaction. In the middle l ies a
driver that prov ides a single, consistent interface to all of the SCSI adapt
ers on the system. And at the top are class drivers that implement the
different personalities of the various SCSU device types . Although the
implementation details differ between the two operating systems, concep

tually they provide very similar SCSI model .

At the lowest software level are SCSI miniport drivers that are respon
sible for the direct control of a SCSI interface adapter. Miniport drivers
initialize SCSI adapters , transmit I/0 requests to the hardware, handle
interrupts, and perform adapter-level error recovery and logging. In short,

miniport drivers are small , stripped-down SCSI I/0 modules that hide the
hardware-specific details of a particular SCSI adapter. They provide
higher-level SCSI modules with a consistent low-level interface to differ
ent SCSI adapters , regardless of the actual hardware interface .

As you can see from Figure 10- 1 , a SCSI mini port driver doesn 't have
to control a traditional SCSI adapter as long as it implements the defined
SCSI miniport interface. This allows peripheral vendors to use a different
bus interface to their hardware with a minimal amount of device driver
support. As long as they can make their interface look l ike SCSI at some

1 64 SCSI Support under Windows

Win32 Application
(ReadFIIe(), WriteFile())

I
File System Driver

. · · · · · · · · · · · · · · · · · · ·

Disk Class CD-ROM
Driver Class Driver

SCSIPORT Driver

I J
Adaptec 1 540 ATAPI (EIDE)

Miniport Driver Miniport Driver

I J
Adaptec 1540 Standard IDE
SCSI Adapter Interface

Figure 1 0-1 . Win32 SCSI Support Model

Wln32 Application
(ASPI32 or other)

ASPI Manager
NT Pass-
Through
Interface

ASPI Driver (NT)
ASPI VxD (95)

Iomega Zip
Parallel Port

Minlport Driver

Parallel Port

level, they can rely on the higher-level Windows drivers to do most of the
work required to control their device. For example, ATAPI devices have a

command set nearly identical to SCSI, but they communicate over an IDE
bus. The Windows ATAPI miniport driver accepts the low-level SCSI
commands and sends them out over the IDE bus . It hides the IDE-specific
features of the interface behind a SCSI shell. S imilarly, Iomega supplies a

miniport driver that mimics the SCSI interface over a parallel port to com
municate with their Zip drives .

S itting atop these miniport drivers is a mid-level driver called the
SCSIPORT driver. The SCSIPORT driver provides a single entry point

for all SCSI requests in the system. It initializes the various miniport driv
ers in the system, converts system-specific SCSI I/0 requests into standard
SCSI Command Descriptor Blocks (CDBs), and passes these requests
through to the appropriate miniport driver. Since hardware-specific details
are hidden by the miniport drivers , higher-level drivers can call the SCSI
PORT driver to carry out any SCSI I/0 operation without regard to the
actual hardware interface employed. Under Windows NT, applications

Windows NT SCSI Pass- Through Interface 1 65

can also send SCSI 1/0 requests directly to the SCSIPORT driver via the
Devic e i oC o n t r o l () routine-more about this a bit later. Unfortu
nately, Windows 95 doesn 't provide the same support for applications
only VxDs and other system components can call the SCSIPORT driver.

The highest level of SCSI-specific support in the Windows layered
device driver model rests in the SCSI class drirers. Each class driver is
responsible for handling l/0 requests for a particular type of SCSI device.
There are several standard SCSI class drivers shipped with Windows,
including those that handle disk drives, tape drives , and CD-ROM drives.

Each of these device types requires a significantly different high-level

interface, but can use the SCSIPORT driver to carry out the lower-level
SCSI I/0 requests . For example, file system drivers will call upon the disk
class driver to carry out high-level, block-oriented 1/0 requests . The disk
class driver will convert the file system requests into a series of SCSI 1/0

requests , which it will then pass along to the SCSIPORT driver. Tape
class drivers have a completely different high-level interface, one suited

to sequential access rather than block access, and they know about
tape-specific concepts such as filemarks and end-of-tape warnings. The

tape class driver converts these high-level tape requests into one or more
SCSI 1/0 requests , which are again passed along to the SCSIPORT driver.

The CD-ROM and scanner class drivers are similarly unique, each imple
menting a different high-level interface, but calling on the SCSIPORT

driver to carry out SCSI 1/0 requests .
You might be asking where ASPI fits into this picture . The Windows

NT ASPI manager uses a custom device driver (ASPI32 .SYS) to call
directly into the SCSIPORT driver. The Windows 95 implementation

makes calls into the APIX VxD, which then connects to the SCSIPORT

driver. In either case , the ASPI manager must be careful not to al low
applications direct access to certain devices used by the system. You cer
tainly shouldn 't be able to issue commands to a SCSI hard drive while
Windows is trying to update the file system. The ASPI managers for Win

dows 95 and NT deal with this by simply hiding these system-reserved
devices from your application. If you want access to these devices from

your application, you should use the standard file system services . If you
really want to muck about with a hard drive while it's being used by Win
dows, you ' II have to write your own device driver to manage it.

Windows NT SCSI Pass-Through I nterface

Earlier I mentioned that applications could issue SCSI commands directly
to the SCSIPORT driver under Windows NT. This is accomplished via a
slightly documented mechanism called the SCSI Pass-Through InteJface ,

1 66 SCSI Support under Windows

or SPTI. Applications can issue various SCSI-specific IOCTL calls directly
to any SCSI class or port driver. That driver will then route the SCSI com
mand through the chain of drivers , and eventually out to the device. If a
particular device has been claimed by a class driver, you must issue the
SCSI pass-through commands to that class driver rather than the SCSI
port driver. This restriction prevents applications from issuing commands

without the knowledge of the class drivers , and allows the class driver to
maintain control of the device state .

To use the SCSI pass-through interface you must first open the class or

port driver in charge of the device. Direct-access devices are usually
claimed by the file-system drivers, and you can open them via their drive
letter. Other devices are accessed by their class driver name. You can
access unclaimed devices directly through their SCSI adapter driver.

Examples of each of these device names appear below:

Device Name Examples

\\\C: Hard drive C

\\\D: CD-ROM drive D

\\\TapeO: Tape drive 0

\\\ScsiO: SCSI adapter 0

\\\Scsi2: SCSI adapter 2

Opening the driver is as simple as opening a file:

Listing 1 0-1 . Opening a Device Driver

handle = CreateF i l e (" \ \ \ \ S c s i 2 : " ,
GENERI C_WRI TE I GENERI C_READ ,
FILE_SHARE_READ I F ILE_SHARE_WRITE ,
NULL , OPEN_E X I S T ING , O , NULL) ;

Once you 've opened the device you can issue IOCTL calls to get the
inquiry data for any devices controlled by the driver, get the host adapter
capabilities , execute SCSI commands, or re-scan the SCSI bus to look for
new devices . The IOCTL codes and the structures that they use are
defined in various header files distributed with the Windows NT Device
Driver Kit (DDK) . The required header files are :

• DEVIOCTL.H
• NTDDDISK.H
• NTDDSCSI.H

Windows NT SCSI Pass- Through Interface 1 67

The calls available via the SCSI pass-through interface are:

• IOCTL_SCSI_GET_INQUIRY _DATA

• IOCTL_SCSI_ GET_ CAPABILITIES
• IOCTL_SCSI_GET_ADDRESS
• IOCTL_SCSI_RESCAN_BUS
• IOCTL_SCSI_PASS_THROUGH
• IOCTL_SCSI_PASS_THROUGH_DIRECT

Let 's examine each of thes� in turn.

IOCTL_SCS/_GET_INQUIRY_DATA

This IOCTL command is used to retrieve information describing each
SCSI bus and device controlled by the driver. Let 's look at the structures

used to describe this information, and then at some sample code that
walks through the list of busses and devices .

Listing 1 0-2. SCSI Get Inquiry Data

typede f s truct _SCS I_ADAPTER_BUS_INFO

{
UCHAR NumberOfBus e s ; I I How many SCS I bus s e s
SCS I_BUS_DATA BusData [l] ; I I Array of data structures
} S C S I_ADAPTER_BUS_INFO , * PSCS I_ADAPTER_BUS_INFO ;

typede f s truct _SC S I_BUS_DATA

{
UCHAR NumberOfLogicalUnit s ; I I Logical devices
UCHAR InitiatorBu s i d ; I I SCSI adapter ' s I D
ULONG I nqu iryDataO f f s et ; I I I nquiry data bu f fer
} SCS I_BUS_DATA , * PSCS I_BUS_DATA ;

typede f s truct _SC S I_INQUI RY_DATA
{
UCHAR Path i d ; I I Which SCS I bus
UCHAR Target i d ; I I Which SCSI target
UCHAR Lun ; I I Which SCSI LUN
BOOLEAN DeviceC l a imed ; I I Claimed by drive r ?
ULONG I nquiryDataLength ; I I I nquiry data length
ULONG Next i nquiryDataO f f s et ; l l Next LUN ' s data
UCHAR I nquiryData [l] ; I I This LUN ' s data
} SCS I_INQU I RY_DATA , *PSCS I_INQUIRY_DATA ;

(Continued)

1 68 SCSI Support under Windows

Listing 1 0-2. (Continued)

ULONG bus , n ;
SCS I_ADAPTER_BUS_INFO * adapter ;
char inq_bu f [4 0 9 6] ;
Devicei oContro l (device_handle , I I from CreateFile ()

I OCTL_SCS I_GET_INQUI RY_DATA ,
NULL , 0 ,
& inq_bu f , s i zeof (inq_bu f) ,
& n , NULL) ;

I I Scan through the adapter inquiry data , printing out
I I informat ion for each BUS I T I D ILUN encountered
adapter = (SCS I_ADAPTER_BUS_INFO *) inq_buf ;
printf (" Bu s T I D LUN C l a imed I nquiry Data\ n ") ;
print f (" - \ n ") ;
for (bu s = O ; bus<adapter->NumberOfBuses ; bus++)

{
I I Get o f f set to f ir s t logical unit ' s inquiry data
ULONG inq_o f f set =

adapter->BusDat a [bu s] . I nquiryDataO f f s et ;

whi l e (inq_o f f set ! = 0)
{

I I end of l i s t ?

I I G e t pointer to t h e inquiry data
I I within the returned bu f fer
SCS I_INQUI RY_DATA * inq ;
inq = (SC S I_INQUIRY_DATA *) (inq_bu f + inq_o f f s et) ;

I I Print BUS I T I D ILUN , and whether or not
I I the device is c l aimed by a c l a s s driver .
printf (" % 3 lu % 3 u % 3 u % s

bus , inq->Target i d , inq->Lun ,
inq->DeviceClaimed ? " Yes " : " No ") ;

I I Now print out the device ' s SCSI inquiry data
for (int i = O ; i<S ; i++)

printf (" % 0 2 X " , inq->I nquiryData [i]) ;
print f (" % . 2 8 s \ n " , & inq- >Inquiryoata [8]) ;

I I Get o f f s et to next logical unit ' s inquiry data
inq_o f f set = inq->Nexti nquiryDataO f f set ;
}

Windows NT SCSI Pass- Through Interface 1 69

IOCTL_SCSI_ GET_ CAPABILITIES

This command is used to determine the capabilities and limitations of the
underlying SCSI adapter and miniport driver. This includes the maximum

transfer length allowed, how many pages that transfer may span, and the
alignment requirement for any data buffers passed to it.

Listing 1 0·3. SCSI Get Capabil ities

typedef s truct _IO_SCS I_CAPAB ILITIES
{
ULONG Length ; / / Length of this s tructure
ULONG MaximumTran s ferLength ; / / Maximum tran s fer length
ULONG MaximumPhy s i c a lPage s ; / / How many phy s i c a l pages

II the trans fer c an span
ULONG SupportedAsynchronousEvents ; // Async event a l l owed
ULONG AlignmentMa s k ; / / Alignment requirement
BOOLEAN TaggedQueuing ; / / Tagged queueing a l l owed
BOOLEAN AdapterScans Down ; / / Adapter s c ans B I O S
BOOLEAN AdapterU s e s P i o ; / / Adapter u s e s programmed I / O

I I (as oppo sed to bu s -mas ter
I I or DMA tran s f er s)

} IO_SCS I_CAPAB I L I T I E S , * P I O_SCS I_CAPABILITIE S ;

IO_SCS I_CAPAB I L I T I E S caps ;

DeviceioContro l (device_handle , / / from CreateF i l e ()
I OCTL_SCS I_GET_INQUIRY_DATA ,
NULL , O ,
& c aps , s i z e o f (c aps) ,
& n , NULL) ;

You always should respect the transfer limits returned by this com
mand. Larger transfers will fail, and may cause some versions of
Windows NT to crash. S ince applications don 't have access to the physi
cal page layout of their data buffers , you should limit your transfers to the
smaller of the MaximumTransferLength and the worst-case page layout
of your buffer, which is (MaximumPhysicalPages- 1) * PAGE_SIZE.

IOCTL_SCSI_ GET_ ADDRESS

This command is used to return addressing information for a particular
device. Note that this command is valid only for class drivers . You can use

1 70 SCSI Support under Windows

this information to determine the SCSI adapter, bus , and target ID to
which a device is attached.

Listing 1 0·4. SCSI Get Address

typede f s truct S C S I ADDRES S
{
ULONG Length ; I I Length of this structure
UCHAR PortNumber ; I I Which SCSI device contro l s
UCHAR Pathid ; I I Which bus it ' s on
UCHAR Target i d ; I I I t s target I D
UCHAR Lun ; I I I t s logical unit number
} SCS I_ADDRE S S , * PSCS I_ADDRE S S ;

SCS I_ADDRE S S addr ;

Devi c e ioContro l (device_handle , I I from CreateFile ()
I OCTL_SC S I_GET_ADDRE S S ,
NULL , 0 ,
& addr , s i z eo f (addr) ,
& n , NULL) ;

Note that the Pathi d, Targetid, and LUN fields are also returned by
the IOCTL SCS I_GET_INQUIRY_DATA command. The PortNumber
field can be used to create the device name for the port driver. For exam
ple, a PortNumber of 2 would indicate that the device is controlled via
the ''\\ \Scsi2" port driver.

IOCTL_SCS/_RESCAN_BUS

This command causes the driver to rescan its SCSI bus , looking for new
devices. It collects SCSI inquiry data for newly attached devices , while
preserving any class driver claims on existing devices.

Listing 1 0-5. SCSI Rescan Bus

Devic e i oContro l (device_handle , II from CreateFile ()
I OCTL_SCS I_RE SCAN_SCS I_BUS ,
NULL , 0 ,
NULL , 0 ,
& n , NULL) ;

Windows NT SCSI Pass- Through Interface 1 71

An application can then reissue the IOCTL_SCSI_INQUIRY_DATA
command to check for any new devices.

IOCTL_SCS/_PASS_ THROUGH and
/OCTL_SCS/_PASS_ THROUGH_DIRECT

These commands are used to send SCSI commands to a target device. The
IOCTL_SCSI_PASS_THROUGH command uses a single structure for the

SRB and data buffer, while IOCTL_SCS I_PASS_THROUGH_DIRECT
allows you to specify the address of a separate data buffer for 1/0 transfers.
The structures used by these commands are as follows :

Listing 1 0·6. SCSI Pass-Through

typede f struct _SCS I_PAS S_THROUGH

{
USHORT Length ;
UCHAR S c s i Status ;
UCHAR Pathi d ;

UCHAR Target i d ;

UCHAR Lun ;

I I Length of this s tructure
I I Returned target status
I I Path ID
I I (from SCS I_INQUIRY_DATA)
I I Target I D
I I (from SCS I_INQU IRY_DATA)
I I LUN
I I (f rom SCSI INQUIRY DATA)

UCHAR CdbLength ; I I Length of SCSI COB
UCHAR S e n s e i n f oLength ; I I Sense bu f f er length
UCHAR Data i n ; I I Direction f l ag (s ee below)
ULONG DataTrans f erLength ; I I Data bytes t o tran s fer
ULONG T imeOutValue ; I I timeout , in s econds
ULONG DataBu f ferO f f set ; I I o f f set of data bu f fer
ULONG Sens e i n foOf f s et ; I I o f f set of sense bu f f er
UCHAR Cdb [16] ; I I CDB bytes

} SCS I_PAS S_THROUGH , *PSCS I_PASS_THROUGH ;

typede f s truct S C S I PAS S THROUGH DIRECT
{
USHORT Length ;
UCHAR S c s iStatus ;
UCHAR Pathid ;

UCHAR Target i d ;

UCHAR Lun ;

UCHAR CdbLength ;

I I Length of this s tructure
I I Returned target status
I I Path I D
I I (from SCS I_INQU I RY_DATA)
I I Target I D
I I (f rom SCS I_INQU IRY_DATA)
I I LUN
I I (from SCS I_INQUI RY_DATA)
I I Length of SCS I COB

(Continued)

1 72 SCSI Support under Windows

Listing 1 0-6. (Continued)

}

UCHAR Sen s e i nfoLength ; I I Sense bu f f er length
UCHAR Data i n ; I I Direction f l ag (s ee below)
ULONG DataTran s ferLength ; I I Data bytes to tran s fer
ULONG TirneOutVa lue ; I I timeout , in seconds
PVO I D DataBu f fer ; I I address of data bu f f er
ULONG Sens e i n foOf f s e t ; I I o f f set of sense bu f f er
UCHAR Cdb [l 6] ; I I COB bytes

SCS I_PAS S_THROUGH_D I RECT , *PSCS I_PAS S_THROUGH_D IRECT ;

Note that these structures are almost identical , with the exception of

the DataBuf ferO f f set and DataBuf fer fields . The IOCTL SCSI
PASS_ THROUGH command expects the data buffer to be addressed as an
offset from the start of the SCSI_PASS_ THROUGH structure, while the
IOCTL_SCS I_PAS S_THROUGH_D IRECT command allows you to specify
a pointer that directly addresses the buffer. Also note that the Sense
I n foOf f s et in each structure indicates an offset from the start of the
structure. Applications typically embed these structures within their own
data structures, like the following :

Listing 1 0-7. SCSI Pass-Through Request

typede f s truct _NT_SCS I_REQUE ST
{
S C S I PAS S THROUGH spt ;
uns i gned char sens e [l 6] ;
unsigned c har data [l] ;

} NT_SCS I_REQUE ST ;

typede f s truct _NT_SCS I_REQUE ST DIRECT
{
S C S I PAS S THROUGH D I RECT spt ;
uns igned char sens e [l 6] ;
} NT_SCS I_REQUE ST_D I RECT ;

This allows you to use the o f f setof () macro to specify the offset of
the sense buffer (and the data buffer offset for the IOCTL_SCSI_PASS_
THROUGH command) .

Windows NT SCSI Pass- Through Interface 1 73

Listing 1 0-8. SCSI Pass-Through Data Buffers

NT_SCS I_REQUE ST s r ;
s r . spt . Sens e i n f oO f f s et = o f f setof (NT SCSI REQUE ST , s ens e) ;
s r . spt . DataBuf ferO f f set = o f f s etof (NT_SCS I_REQUE ST , data) ;

NT_SCS I_REQUE ST_DI RECT srd ;
char data_bu f f er [l 0 2 4] ;
s rd . spt . Sens e i n f oO f f set = o f f setof (NT_SCS I_REQUE ST , s ens e) ;
s rd . spt . DataBuf fer = & data_bu f f er [O] ;

The following example shows how you can use the I OCTL_scsr_
PAS S_THROUGH_DIRECT command to implement a SCSI I/0 routine.
Your application can use a similar routine to handle all of the l/0 com
mands for SCSI devices.

Listing 1 0-9. Using SCSI Pass-Through

int S c s iCommand (HANDLE device_handle ,
SCS I_INQUIRY_DATA * inq ,
vo id * c db_bu f , uns i gned cdblen ,
vo id * data_bu f , uns igned long dlen ,
int direct ion ,
vo id * s ense_buf , uns igned s l en ,
long t imeout)

{
NT_SCS I_REQUE ST_D IRECT a ;
ULONG returned ;

mems et (& a , O , s i zeo f (a)) ;
a . spt . Length = s i z eo f (a . spt) ;
a . spt . Path i d = inq->Pathid ;
a . spt . Targe t i d = inq->Targetid ;
a . spt . Lun = inq->Lun ;
a . spt . CdbLength = cdblen ;
a . spt . S e n s e i n foLength = s i zeof (a . sens e) ;
a . spt . Dat a i n = direction ;
a . spt . DataTran s ferLength = dlen ;
a . spt . T imeOutValue = t imeout ;
a . spt . DataBu f fer = data_bu f ;
a . spt . S e n s e i n f oO f f set =

o f f s etof (NT_SCS I_REQUE ST_DIRECT , s ense) ;
memcpy (a . spt . Cdb , cdb_bu f , cdblen) ;

(Continued)

1 7 4 SCSI Support under Windows

Listing 1 0-9. (Continued)

i f (! Devicei oContro l (h ,
I OCTL SCS I PAS S THROUGH_DIRECT ,
& a , s i z e o f (a) , & a , s i z eo f (a) ,
& returned , NULL))
{
int x = GetLastError () ; I I See why it failed
i f (s ense_bu f && s len)

mems et (s ense_bu f , O , s len) ;
I I c lear sense area

return O xFF ; I I return error statu s
}

i f (sense_bu f & & s len)
memcpy (s e n s e_bu f , a . sense ,

(s len < s i zeof (a . sens e)) ? s len
s i z e o f (a . sense)) ;

return a . s pt . S c s iStatus ;

}

Chapter 1 1

Unix SCSI Implementations

The rest o f this book covers how to write SCSI device drivers and applica
tions in the ever-popular MS-DOS/Windows/Windows95/NT environment.

That seems to be the general trend these days, yet SCSI doesn 't really get

to shine in most platforms of that type. A personal desktop system with
one user clicking away at the keyboard, even a programmer doing soft

ware development, only begins to tap the capabilities of a high-performance
SCSI 1/0 subsystem.

In server systems running UNIX, the multitasking abilities of SCSI are
put to real advantage. Since any number of users are requesting data from
multiple disks, CD-ROMs, etc . , the single-minded nature of IDE would

not be well tolerated. Because of this , virtually all current servers have
SCSI I/0.

In the paragraph above, I mentioned systems running UNIX. UNIX is
not really one operating system anymore. Ever since U.C. Berkeley

started independent development from the AT&T version 7 code base,
UNIX has branched many times. A number of attempts at standardizing
UNIX systems has resulted in operating systems that are basically source

code compatible at the application programming interface level . However,
every UNIX kernel is completely unique inside ! Unfortunately, this is the
domain of the UNIX device driver developer.

The various UNIX vendors never felt the need to be compatible below

the application level. Even when the PC vendors agreed on a standard
SCSI API, the UNIX vendors paid it no mind. That thinking is readily

1 75

1 76 Unix SCSI Implementations

apparent when one begins to write SCSI device drivers for more than one
UNIX platform. Each platform has its own entirely different SCSI API,
not to mention a whole different kernel architecture and set of kernel 1/0

support functions.
This situation has provided employment for a large number of driver

writers since 1 985 or so. After a while ANSI decided to create a standard
SCSI API specification called Common Access Method (CAM), but it
wasn 't really in a usable state until about 1 99 1 or so. By then the UNIX
vendors were pretty much locked in to their proprietary APis. Only Digi

tal Equipment Corporation adopted CAM as their native UNIX SCSI API.
UNIX systems provide an application environment that is quite differ

ent from the MS-DOS/Windows environment. User applications are not
allowed to directly access system hardware. In order to perform 1/0 an
application must make a system call , l ike "read," for example. The 0/S
will then decide which device driver is in control of the device from
which the data is to be read from and build a request asking that the
desired data be transferred into the user's memory buffer.

Another method that is used by some special applications is for the 0/S
to provide what is called a SCSI pass-through driver. In this case the
application builds its own SCSI commands and hands them to the pass
through driver to be delivered to the device. Once the command com
pletes the status is returned to the calling application. An example of this
type of application is a music CD playing utility.

Some UNIX systems have all the device drivers l inked into one large

monolithic kernel file. When the system boots , the entire 0/S image is
loaded into memory and executed. Other systems go through a dynamic
process during boot that loads only the drivers that are needed currently.

Other drivers can be loaded and unloaded as needed. This dynamic
approach is being used more and more since it conserves system resources.
It does, however, make the drivers themselves more complicated to write.

This chapter will not attempt to explain in detail how to write SCSI
drivers and applications for all UNIX platforms. To do that would take an
entire book for each 0/S . I simply want to give the reader a glimpse of the
SCSI environment in the various UNIX variants . Then I ' ll single out one
popular UNIX variant and give more detail on it.

A Brief Descript ion of UNIX Device Drivers

In UNIX systems applications are protected from each other's transgres
sions by the kernel 's intervention. All l/0 is done via system calls into the

A Brief Description of UNIX Device Drivers 1 77

UNIX kernel . A device driver is a program that runs at the kernel 's privi
lege level that performs I/0 to a particular type of I/0 device. All UNIX
I/0 is made to look to the application like file I/0, even when the I/0 is to
a hardware device l ike a terminal screen. There is a "special file" (also
called a device node) for each device that appears in the filesystem (usu

ally in the /dev directory) . These have names l ike /dev/ttyO for a terminal
or /dev /hdO for a hard disk. The names are made up by the driver writer,
but can be changed or have links made to them by the system administra
tor. All these special files really do is store the "major and minor
numbers" for that device. The major number is used as an index into a
table of all the device drivers in the kernel and the minor number can be
used in any manner desired by the driver writer. It usually is used to spec

ify which unit the I/0 is to go to.
There are two main types of UNIX drivers , called block and character.

Block devices are used to access devices that are clearly block oriented

(like disks) . Character devices are used for everything else.
B lock drivers have three major entry points : Open, Close, and Strategy.

Character drivers have a few more : Open, Close, Read Write, and Ioctl .
Take a look at Figure 1 1 - 1 to understand how all the pieces fit together.
Drivers operate in two processor contexts : User and Kernel . When the

driver is opened by the user application and a data request is made, the
driver is acting as a privileged extension of the user application (User

context) . Once the user's request has been submitted to the device, the
application is put to sleep (blocked from further execution) , until the
device interrupts the currently running process by causing the driver's
interrupt handler to execute. The interrupt handler runs in kernel context.
It issues a wakeup call that will cause the application to resume execution
where it left off with the requested data in its buffer, where it was placed
either by the interrupt handler using polled I/0 or by the device itself
using DMA. Modem UNIX drivers also need to be aware that their inter

rupt handler may run on a different processor than the one running the
application program. This means that some form of locking must be done
on any structures or variables that are accessed by an instance of the

driver.
A driver's strategy routine is actually called by the kernel's file system

code when a user process asks for data using standard file I/0 calls . The
data read this way is stored in the kernel's "buffer cache" so that other
processes that need the same data can get it without another disk read
operation being done.

1 78 Unix SCSI Implementations

SCSI Application Programs
Standard UNIX

Tape Backup Utllites
Command Applications

(xcmd, writecd, etc.)
(cp, dd, etc.)

(tar, cpio, etc.)

I I I I I I User
Space open ioctl open read open read

Kernel
Space

Peripheral
Drivers

I
/de

J
cam

I
SCSI acket

Pass-through
Driver iocti

Routine

(In some platforms this
layer is eliminated)

I I
file"tme /de

J
ape

Fllesystem

Device Switch Table

I I
buf struct buf struct

Disk Driver
Strategy Routine

Tape Driver Read
Routine

Low-Level
Hoat Adapter

Driver

Adapter Card

Terminator

Low-Level
Host Adapter

Driver

Adapter Card

Terminator

Figure 1 1 ·1 . A Typical UNIX SCSI I/O Subsystem

The specific kernel function names that perform all the housekeeping
operations involved in accomplishing the above mentioned data transfer
are different for each flavor of UNIX.

Comparison of UNIX Implementations 1 79

Comparison of UNIX Implementations

Here are some key points of the most popular UNIX variants in outli ne
form, which I hope wi l l make it easy to compare them. The fol lowing
tables could also act as a guide in getting a driver writer started in devel
oping drivers for the various p latforms.

Table 1 1 -1 . AIX Version 4.1 Features

Platform

Kernel type

Kernel-memory
handling (allocate/free)

Kernel-data space
conversion

Kernel-process
blocking (sleeping)

Kernel-data
access locking

Kernel--other
functions

Kernel--other
structures

SCSI-related header
fi les

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Description

Power RISC and Power PC architectures

Fully dynamic

xmattach(), xmalloc(), xmfree()

copyin(), copyout(), uiomove()

e_sleep(), wakeup()

lock!(), unlock!(), lock_alloc(), simple_lock_init(), unlock_
enable(), lock_free(), disable_lock(), i_enable(), i_disable()

fp_opendev(), fp_close(), fp_ioctl(), pincode(), unpincode(),
pinu(), unpinu(), eiTSave(), bzero(), uphysio(), devswadd(),
devswdel()

buf, sc_buf, sc_iocmd

/usr/include/sys/scsi.h, trcmacros.h, err_rec.h, errids.h, trchkid.h,
lock_alloc.h, cdrom.h, scdisk.h

devstrat(sc_buf)

drivernameconfig, drivernameopen, drivernarneclose, driver
narneread, drivernarnewrite, drivernameioctl, drivernamestrategy

fd = openx("/dev/rcdO", O_RDONLY, NULL,
SC_DIAGNOSTIC)

ioctl(fd, CDIOCMD or DKIOCMD, &sc_iocmd)

smit, lsdev, odme, odmadd, odmdelete, odmget, odmchange,
odmshow, trace, errpt, errclear, cfgmgr, installp

(Continued)

1 80 Unix SCSI Implementations

Table 1 1 -1 . AIX Version 4.1 Features (Continued)

eature

Driver support files

Error logging

Example driver
source

Debugging

Available driver
documentation

Comments

Description

/etc/drivers/*, /etc/methods/*, /lib/kernex.exp

en·save(), errrpt

Under Ver 3 .x, a few partial examples were included with the 0/S
(in /usr/lpp/bos/samples/). Better examples are included on a dis
kette in the IBM Device Driver manual mentioned below. Another
source of sample driver code is on IBM's ftp site at
ftp://ftp.austin. ibm.com/pub/developer/aix/ddriver/writedd.tar.Z

A very primitive kernel debugger is included with the 0/S. It
requires that a dumb terminal be attached to a serial port.

Kernel printf is active only with switch in the "service" position.

"Writing a Device Driver for AIX Version 3.2"
(IBM PIN GG24-3629-0 l)

"Writing a Device Driver for AIX Version 4. 1 "
(IBM PIN SC23-2593-03)

"Kernel Extensions and Device Support Programming Concepts"
(IBM PIN SC23-26 1 1 -03)

AIX drivers are more complicated than some because of the
required interaction with the ODM (Object Data Manager) data
base for device infmmation. All device topology and identification
information is stored in the ODM.

AIX SCSI adapter drivers need to realize that the sc_buf passed to
it may contain a l ist of transfers to be done, or only one. There is
more than one if the buf structure pointer in the sc_buf is not
NULL. An editor called odme, which could be used to edit the
ODM database directly, used to be supplied in version 3 .x , but it
is no longer available in 4.x.

The "export" fi les in /lib show which functions are exported by
each module. It is useful to look in kernex.exp to determine the
exact names of kernel functions. If your driver wil l have any entry
points other than the standard ones, you must create one of these
export fi les for your driver too. This includes any of your symbols
you may want to find in the kernel debugger.

Comparison of UNIX Implementations 1 8 1

Table 1 1 -2. HP-UX 1 O.x Features

Feature

Platfom1

Kernel type

Kernel-memory han
dling (allocate/free)

Kernel--data space
conversion

Kernel-process
blocking (sleeping)

Kernel--data access
locking

Kernel-other
functions

Kernel-other
structures

SIO-other functions

SIO-SCSI-related
header fi les

S IO-SCSI adapter
driver interface

WSIO--data access
locking

WSIO-other
functions

WSIO-SCSI-related
header files

Description

HP9000/8xx series PA-RISC architecture

Monolithic

Note: As of HP-UX l O.xx, HP-UX supports two different driver
subsystems: Workstation I/0 (WSIO) and Server l/0 (SIO). Gener
ally, WSIO drivers control devices on EISA, HSC, and some built-in
busses, while SIO drivers control HP-IO bus devices.

kmalloc(), kfree(), io_get_mem(), io_rel_mem()

copyin(), copyout() , bvtospace(), pvtospace(), minphys()

biowait(), get_sleep_lock(), sleep(), wakeup()

alloc_spinlock(), spinlock(), spinunlock()

physio(), timeout(), biodone(), bzero(), bcopy(), bcmp()

buf, sctl_io, iovec, uio

io_sencl(), io_get_tm(), io_get_frame(), io_port_info(), sio_get_pda()

/usr/include/sio/ll io.h, sys/sio_drv.h

io_send(io_req)

A driver must "bind" to a Device Adapter Manager (DAM) for
each SCSI target it wants to control. No other driver can then be
bound to those devices.

scsi_lun_lock(), scsi_lun_unlock()

scsi_lun_open(), scsi_lun_close(), scsi_ioctl(), scsi_init_inquiry _
data(), scsi_read(), scsi_ write(), scsi_enqueue(), scsi_dequeue(),
scsi_dequeue_bp(), scsi_cmd(), scsi_cldsw _in it(), scsi_strategy(),
scsi_enqueue_cnt(), scsi_mode_sense(), scsi_mode_fix(), scsi_
mode_select(), scsi_ wr_prot(), scsi_act ion(), scsi_sense_action(),
scsi_snooze(), scsi_sleep(), scs i_log_io()

/usr/inclucle/sys/wsio.h, sys/scsi_ctl .h

(Continued)

1 82 Unix SCSI Implementations

Table 1 1 -2. HP-UX 1 O.x Features (Continued)

WSIO-SCSI adapter
driver interlace

SCSI-related header
files

Required driver entry
points

SCSI pass-through
interlace

Driver support
commands

Driver support files

Error logging

Debugging

Comments

scsi_start()

/usr/include/sys/scsi.h, scsi_meta.h

drivemame (I/0 message port server)

fd = open("/dev/rdsk/c0t5d0", . . .)

ioctl(fd, SIOC_IO or SIOC_SET_CMD, &sctl)

Other IOCTL commands:

SIOC_INQUIRY, SIOC_EXCLUSIVE, SIOC_XSENSE, SIOC_IO,
SIOC_PRIORITY _MODE, SIOC_ CMD _MODE, SIOC_SET _
CMD, SIOC_RETURN_STATUS, SIOC_GET_TGT_PARMS,
SIOC_GET_BUS_PARMS, SIOC_GET_LUN_LIMITS, SIOC_
SET_LUN_LIMITS, SIOC_GET_TGT_LIMITS, SIOC_SET_
TGT_LIMITS, SIOC_GET_BUS_LIMITS, SIOC_SET_BUS_
LIMITS, SIOC_RESET_DEV, SIOC_RESET_BUS

swinstall, swremove, swpackage, ioscan, uxgen

/sbin/rc2.d/Sxxx and Kxxx scripts, /stand/system,
/usr/conf/master.d/drivemame, /usr/conf/lib/driverlib.a

/var/adm/messages, dmesg

Source-level kernel debugger called ddb, which is based on dbx.
Requires a second machine on the same IP subnet.

Server type SCSI adapters use the ' scsi 1 ' (narrow) or ' scsi3 '
(wide) adapter drivers. Workstation type SCSI adapters use either
the ' c700' (narrow) or 'c720' (fast/wide) adapter drivers.

The driver being used by a SCSI adapter can be seen using the
command "ioscan -kf'.

Warning ! Some HP PA RISC documentation shows bit 0 as the
MSB. There were major changes between HP-UX ver 9 .x and
l O.x. All kernel intersubsystem communication is done via
messages.

Comparison of UNIX Implementations 1 83

Table 1 1 -3. SCO ODT 3 Features

feature

Platform

Kernel type

Kernel--data space
conversion

Kernel-process
blocklng (sleeping)

Kernel--data access
locking

Kernel--other
functions

Kernel--other
structures

SCSI-related header
fi les

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support fi les

Error logging

Example driver source

Debugging

Available driver
documentation

Comments

Description

Intel architecture based PCs

Monolithic

ktop(), ptok(), paddr(), vtop(), copyin(), copyout()

iowait(), sleep(), wakeup(), iodone()

spl6(), splx()

bcopy(), printf(), delay(), major() , minor(), panic(), physio(),
suser(), signal() , timeout()

buf, scsi_io_req, scsi_dev_cfg, u

/usr/include/sys/scsi.h

scsi_ha_cfg[O](&scsi_io_req)

drxinit, drxopen, drxclose, drxread, drxwrite, drxioct l ,
drxstrategy, drxstart, drxintr

fd = open("/dev/rcdO", . . .)

ioctl(fd, SCSIUSERCMD, &sc)

link_unix, custom

/etc/conf/cf.d/mscsi, mdevice, sdevice,
/etc/conf/pack.d/drxx/driver.o

cmn_err, /var/adm/messages

Comes with SCO Driver Book mentioned below.

An assembler-level kernel debugger is available from SCO for
developers.

Kettle, Peter and Steve Statler. Writing Device Drivers for SCO

UNIX: A Practical Approach. Reading, Massachusetts: Addison
Wesley, 1 993.

AT&T System V based. Evolved into Microsoft Xenix and around
1 990 into SCO UNIX and Open Desktop.

1 84 Unix SCSI Implementations

Table 1 1 -4. Solaris 2.5 Features

feature

Platform

Kernel type

Kernel-memory han
dling (allocate/free)

Kernel--data space
conversion

Kernel-process
blocking (sleeping)

Kernel--data access
locking

Kernel-other
functions

Kernel--other
structures

SCSI-related header
fi les

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support fi les

Error logging

Description

Sun SPARC architecture

Fully dynamic

scsi_alloc_consistent_buf(), scsi_free_consistent_buf(),
kmem_alloc(), kmem_zalloc(), kmem_free()

copyin(), copyout()

sleep(), wakeup(), biowait(), biodone(), bioenor(), cv _init, cv _wait(),
cv _ wait_sig(), cv _signal(), cv _broadcast(), cv _destroy()

mutex_init(), mutex_enter, mutex_exit()

ddi_get_soft_state, ddi_soft_state_fini(), ddi_soft_state_zalloc(),
ddi_soft_state_free(), mod_remove(), mod_info(), ddi_getprop(),
ddi_get_parent(), ddi_get_instance(), ddi_get_driver_private(),
scsi_init_pkt(), ddi_create_minor_node(), ddi_remove_minor_
node(), ddi_get_name(), ddi_name_to_major(), ddi_report_dev(),
scsi_reset(), scsi_ destroy _pkt(), scsi_probe(), scsi_unprobe(),
scsi_errmsg(), makecom_gO(), bzero(), bcopy(), physio(),
getrbuf(), freerbuf()

buf, uscsi_cmd, iovec, uio

/usr/include/sys/scsi/scsi .h

scsi_transport(scsi_pkt)

drivername_open, drivername_close, drivername_read,
drivername_ write, drivername_ioctl, drivername_strategy,
drivername_info, drivername_identify, drivername_probe,
drivername_attach, drivername_detach, _init, _fini , _info

fd=open("/dev/rdsk/c0t2l0s0", . . .)

ioctl(fd, USCSICMD, &uscsi_cmd)

add_drv, rem_drv, drvconfig, pkgmk, pkginfo, pkgtrans, pkgchk,
pkgadd, pkgrm, prtconf, sysdef

/usr/kernel/drv /driver.conf, /etc/dev l ink. tab, proto.drivemame,
/etc/system, /etc/rc2/

/var/adm/messages

(Continued)

Comparison of UNIX Implementations 1 85

Table 1 1 -4. Solaris 2.5 Features (Continued)

Example driver source

Debugging

Available driver
documentation

Comments

Description

ftp://opcom.sun.ca/pub/drivers/svr4_sample_drivers.tar.Z

Assembler-level kernel debugger is built into the system boot
PROM and can be activated by booting with a command line
option. It can then be entered by typing "L l -A" or ("Stop-A").
Another primitive debugger called "adb" is also provided.

http://www. sun. com/smcc/solaris-migrati on/docs/

Solaris 2.x DDK (Driver Development Kit)

"Writing Device Drivers" (Sun PIN 800-6502-06)

On SPARC systems, DMA goes through the memory manage
ment hardware so scatter/gather isn 't necessary for transfers up to
1 6 MB.

Development is rather convenient since drivers can be loaded and
unloaded without rebooting.

Table 1 1 -5. Digital UNIX (Formerly OSF/1) Ver. 4.x Features

eature

Platform

Kernel type

Kernel-memory han
dling (allocate/free)

Kernel-data space
conversion

Kernel-process
blocking (sleeping)

Kernel-data access
locking

Kernel-other
functions

Kernel-other
structures

Description

Digital Alpha architecture

Monolithic (but driver loading/unloading is possible)

contig_malloc(), contig_free(), MALLOC()

copyin(), copyout()

biodone(), iodone(), mpsleep(), sleep(), spldevhigh(), splx(),
wakeup()

lock_init(), lock_ done(), lock_read(), lock_ write(), lock_ terminate()

physio(), devsw_add(), devsw_del(), devsw_get(), getnewbuf(),
brelse(), bzero(), major(), minor()

buf, uagt_struct, CCB_SCSIIO, CCB_GETDEV, CCB_PATHINQ,
etc.

(Continued)

1 86 Unix SCSI Implementations

Table 1 1 -5. Digital UNIX (Formerly OSF/1) Ver. 4.x Features (Continued)

feature

SCSI-related header
files

SCSI adapter driver
interface

Required driver entry
points

SCSI pass-through
interface

Driver support
commands

Driver support files

Error logging

Debugging

Available driver
documentation

Comments

Description

/usr/include/io/cam/cam.h, scsi_all .h, scsi_cdbs.h, scsi_direct.h,
scsi_opcodes.h, uagt.h, dec_cam.h, xpt.h, scsi_status.h, buf.h,
ioctl . h

xpt_action(&ccb), xpt_ccb_alloc(), xpt_ccb_free()

drivername_open, drivername_close, drivername_read,
drivername_ write, drivername_ioctl, drivername_strategy

fd=open("/dev/cam", . . .)

ioctl(fd, UAGT_CAM_IO, &uagt_struct)

uerf, /sbin/doconfig, /sbin/ddr_config, /usr/sbin/sysconfig

/etc/ddr.dbase, sysconfigtab, /sys/conf/hostname

cam_logger, /var/adm/messages, binary.errlog

dbx -k, dbx -remote, Ladebug (All are full source level
debuggers.)

Digital UNIX Device Driver Writing Manual Set
(DEC P/N QA-MTSAH-GZ)

A large set of common routines for simplifying the sending and
receiving of CAM CCBs is available for use by SCSI peripheral
drivers. See the ccmn_xxxx routines in the CAM driver writer's
manual (part of the document set above).

Table 1 1 -6. Linux (Kernel Ver. 2.0.x) Features

eature
Platform

Kernel type

Kernel-memory han
dling (allocate/free)

Kernel-data space
conversion

Description
Intel x86 architecture-based PCs, Digital Alpha architecture,
Sun SPARC architecture

Partially dynamic

kmalJoc(), kfree(), free_pages(), scsi_init_malloc(), scsi_init_free(),
brelse()

put_ user(), get_ user(), verify _area(), memcpy _tofs(),
memcpy _fromfs()

(Continued)

Comparison of UNIX Implementations 1 87

Table 1 1 -6. Linux (Kernel Ver. 2.0.x) Features (Continued)

feature

Kernel-process
blocking (sleeping)

Kernel--data access
locking

Kernel-other
functions

Kernel-other
structures

SCSI-related header
fi les

SCSI adapter driver
interface

Required driver entry
points (character
drivers)

Required driver entry
points (block drivers)

SCSI pass-through
interface (character
drivers)

SCSI pass-through
interface (block
drivers)

Driver support
commands

Driver support fi les

Error logging

Example driver source

Descriptlon

sleep_on(), wake_up()

save_flags(), eli(), sti(), restore_flags()

printk(), panic(), memset(), suser(), init_module(), register_blkdev(),
unregister_blkdev(), register_chrdev(), unregister_chrdev(),
scsi_register_device(), scsi_register_host(), scsi_unregister_
device(), scsi_unregister_host(), scsi_register_module(), scsi_
unregister_module(), scsi_init(), scsi_done() , check_sense(), scsi_
abort(), scsi_reset(), scsi_build_commandblocks(), scsi_dev _in it()

buf, Scsi_Cmnd, Scsi_Device_Template, drx_fops

/usr/src/linux/drivers/scsi/scsi.h, scsi_ioctl .h

scsi_do_cmd(SCpnt, cmd, buffer, bufflen, done_rtn, timeout,
retries)

drx_in it, drx_open, drx_release, drx_finish, drx_attach, drx_
detach, drx_detect, drx_ioctl, drx_read, drx_ write, do_drx_request

check_media_change, drx_revalidate

fd=open("/dev/sgO", . . .)

write(fd, scsi_command, nbytes)

read(fd, scsi_results, nbytes)

fd = open("/dev/scdO", . . .)

ioctl (fd, SCSI_IOCTL_SEND_COMMAND, buff)

make depend, make zli lo

/lib/modules/version/*, /usr/src/linux/kemel/drivers/*

logger(), syslog(), printk(), /etc/syslog.conf, /usr/sbin/syslogd,
/var/log/messages

/usr/src/linux/kemel/drivers/scsi/sd. *, st .*, sg.c

(Continued)

1 88 Unix SCSI Implementations

Table 1 1 -6. Linux (Kernel Ver. 2.0.x) Features (Continued)

eature
Debugging

Description
printk(), gdb, /proc/*

A handy feature of the /proc fi lesystem: "cat /proc/scsi/scsi" will
show all attached SCSI devices. There is also another "directory"
/proc/scsi/adaptername/. There are "files" in there (0, 1 . . .) for
each SCSI bus's parameters.

Available driver
documentation

Beck, Michael. Linux Kernel Internals. Reading, Massachusetts:
Addison-Wesley, 1 996. See also documentation files that accom
pany the Linux distribution: Linux Kernel Hacker's Guide (Mi
chael K. Johnson); Writing Linux Device Drivers (Michael K.
Johnson); Linux SCSI HOWTO (Drew Eckhardt); Linux SCSI

Programming HOWTO (Heiko Ei Felt).

Comments The Linux disk driver only has one interface, unlike most other
UNIX disk drivers that provide both a block and character inter
face. It also has no strategy routine.

Linux is not derived from AT&T or BSD sources.

After comparing the kernel environments in the above UNIX platforms,

it should be apparent that to write UNIX drivers one needs to concentrate
on one p latf01m at a time. Writing one that's portable between multiple

platforms is almost unthinkable, given the current state of affairs. This may

change at some point. There are efforts afoot to standardize and modular

ize UNIX drivers at two different levels. The Universal Device lnteJface

(UDI) is one such idea, and Inte l 's 120 standard is another.

If the purpose of writing your first UNIX SCSI driver is to learn how
to do it, I can 't think of a better platform to start with than Linux. It pro

vides a powerful yet inexpensive environment to learn the basics of UNIX

driver writing. Linux runs on just about any hardware. To get started, I 'd

recommend buying one of the several CD-ROM install -based releases,
such as Slackware or Red Hat, for the Intel X86-based PC. For the more
adventurous, Linux can also be downloaded from the Internet from many

sites via ftp or http protocol . The Linux web site at http://www. l inux.org
contains l inks to download sites for several different distributions.

Once you have a running Linux system, instal l the kernel sources (if
they weren 't installed with the rest of the 0/S). In the /usr/src/l inux/drivers
directory you ' 1 1 find the source code for al l the drivers that have been
written for Linux. One of the best ways to Jearn how to write a driver is to
look at examples of working drivers. To get you started, I 'm going to walk
you through the SCSI disk driver (sd.c), and the SCSI passthrough driver
(also referred to as the "SCSI Generic" driver) (sg.c).

Don your hip boots, and let's get started.

The Linux SCSI Disk Driver 1 89

The Linux SCSI Disk Driver

I'm just going to show each driver entry point routine in isolation from
the surrounding glue code that allows it to compile and links the driver
into the kernel.

The excerpts below are from the source files : /usr/src/linux/kemel/
drivers/scsi/sd.c , sd_ioctl .c , scsi .c , sd.h

Listing 1 1 ·1 . Linux sd_open Routine

static int s d_open (s truct inode * inode , struct f i le * f i lp)
{

I *

int target ;
target = DEVICE_NR (inode->i_rdev) ;

i f (target >= sd_temp l ate . dev_max I I ! r s c s i disks [target] . device)
return -ENX I O ; I * No such device * I

* Make sure that only one proc e s s can do a check_c hange_d i s k at
* one t ime . This i s a l s o used to lock out further acce s s when the
* part it ion tab l e i s being reread .
* I

whi l e (r s c s i_di s k s [target] . device->busy)
barr ier () ;

i f (r s c s i_di s k s [target] . device->removable) {
check_di s k_c hange (inode->i_rdev) ;

}

I *
* I f the drive i s empty , j u st let the open f a i l .
* I

i f (! r s c s i_di s k s [target] . ready
return -ENX I O ;

I *
* S imi larly , i f the device has the wr ite protect t ab set ,
* have the open fail if the user expects to be able to wr ite
* to the thing .
* I

i f ((r s c s i_di s k s [target] . write_prot) & & (f ilp->f_mode & 2))
return -EROF S ;

(Continued)

1 90 Unix SCSI Implementations

Listing 1 1 -1 . (Continued)

}

I *
* See i f we are reque sting a nonexistent partition . Do this
* after checking for disk change .
* I

i f (s d_s i z e s [MINOR (inode ->i_rdev)] 0)
return -ENXI O ;

i f (r s c s i_di s k s [target] . device- >removable)
i f (! r s c s i_di s k s [target] . device->acces s_count)

s d_ioc t l (inode , NULL , SCS I_IOCTL_DOORLOCK , 0) ;

r s c s i_di sks [target] . device->acces s_count++ ;
i f (r s c s i_di s k s [target] . device->host->hostt->us age_count)

(* r s c s i_di s k s [target] . device->host->hostt->us age_count) ++ ;
i f (sd_temp l ate . u s age_count) (* sd_template . u s age_count) ++ ;
return 0 ;

The s d _open routine gets two arguments as input: a pointer to an
inode structure and a pointer to a file structure. The first thing the routine

does is check that the device actually exists and has media in the drive.

The rsc s i _disks (] array is used to keep track of all information

about each disk in the system. If all goes well the routine returns 0 meaning
success.

Listing 1 1 -2. Linux sd_release Routine

static void s d_re lease (s truct inode * inode , struct f i le * f i le)
{

int target ;
f sync_dev (inode->i_rdev) ;

target = DEVICE_NR (inode->i_rdev) ;

rs c s i_disks [target] . device- >acces s_count- - ;
i f (rs c s i_di s k s [target] . device->host->hostt->u s age_count)

(* r s c s i_di s k s [target] . device ->host->hostt->us age_count) - - ;
i f (s d_temp l ate . us age_count) (* sd_template . us age_count) - - ;

(Continued)

The Linux SCSI Disk Driver 1 9 1

Listing 1 1 -2. (Continued)

}

i f (r s c s i_di s k s [target] . device->removab le) {
i f (! r s c s i_di s k s [target] . devic e->acces s_count)

s d_ioc t l (inode , NULL , SCS I_IOCTL_DOORUNLOCK , 0) ;

}

The sd _release routine gets two arguments as input: a pointer to an

in ode structure and a pointer to a file structure. The routine doesn ' t do
much except decrement some count variables and unlock the media in
removable media drives.

Listing 1 1 -3. Linux sd_init Routine

I *
* The sd_init () function looks at a l l SCSI drives pres ent ,
* determines their s i z e , and reads part ition table entries
* for them .
* I

static int s d_regi s tered 0 ;

static int s d_init ()

{
int i ;

i f (sd_temp l ate . dev_noticed 0) return 0 ;

i f (! sd_registered) {
i f (re g i s ter_b l kdev (MAJOR_NR , " s d " , & s d_fops)) {

printk (" Unable to get ma j or %d for S C S I d i s k \ n " ,
MAJOR_NR) ;

}

return 1 ;

}
sd_reg i s tered++ ;

I * We do not support attac hing loadable devices yet . * I
i f (r s c s i_di s k s) return 0 ;

sd_temp l ate . dev_max = sd_template . dev_not iced +
SD_EXTRA_DEVS ;

(Continued)

1 92 Unix SCSI Implementations

Listing 1 1 -3. (Continued)

}

r s c s i_di s k s = (Sc s i_Di s k *)
s c s i_init_mal loc (s d_template . dev_max *
s i zeof (Sc s i_Di s k) , GFP_ATOMIC) ;

mems et (r s c s i_di s k s , 0 , sd_template . dev_max *
s i zeof (Sc s i_Di s k)) ;

s d_s i z e s = (int *)
s c s i_init_mal loc ((s d_template . dev_max << 4) *
s i z e o f (int) , GFP_ATOMIC) ;

mems et (sd_s i z e s , 0 , (sd_template . dev_max << 4) * s i z eo f (int)) ;

sd_b locks i z e s = (int *)
s c s i_i n it_mal loc ((s d_template . dev_max << 4) *
s i z eo f (int) , GFP_ATOMI C) ;

sd_hards i z e s = (int *)
s c s i_init_mal loc ((sd_template . dev_max << 4) *
s i z eo f (int) , GFP_ATOMIC) ;

for (i= O ; i< (s d_temp l ate . dev_max << 4) ; i++) {
s d_blocks i z e s [i] = 1 0 2 4 ;
s d_hards i z e s [i] = 5 1 2 ;

}
blks i z e s i z e [MAJOR NR] = s d_b locks i z e s ;
hardsect_s i z e [MAJOR_NR] = s d_hards i z e s ;
s d= (s truct hd_s truct *)

s c s i_init_mal loc ((s d_template . dev_max<< 4) *
s i z e o f (s truct hd_struct) , GFP_ATOMIC) ;

s d_gendi s k . max_nr = sd_template . dev_max ;
s d_gendi s k . part = s d ;
sd_gendi s k . s i z e s = s d_s i z e s ;
s d_gendi s k . real_devic e s = (void *) r s c s i_di sks ;
return 0 ;

The ini t routine gets no input arguments. It s imply registers the driver
with the kernel, which gives it a place in the devswitch table. Then it allo
cates space for the r s c s i_disks [1 array and a couple of other arrays
and initializes a few values in them.

The Linux SCSI Disk Driver 1 93

Listing 1 1 -4. Linux sd_finish Routine

static void s d_f i n i s h ()
{

}

int i ;

b l k_dev [MAJOR_NR] . reque st_fn = DEVICE_REQUEST ;

s d_gendi s k . next = gendisk_head ;
gend i s k_head = & s d_gendi s k ;

for (i = 0 ; i < s d_template . dev_max ; ++i)
i f (! r s c s i_di s k s [i] . c apacity & &

r s c s i_di s k s [i] . device)
{

}

i f (MODULE_FLAG & &
! r s c s i_di s k s [i] . has_part_tab le) {

s d_s i z e s [i << 4] = r s c s i_disks [i] . capacity ;
I * reval idate does sd init onedi s k via MAYBE RE I N I T * I

}
e l s e

- - -

reva l idate_s c s idisk (MKDEV (MAJOR_NR , i << 4) , 0) ;

i=sd_init onedisk (i) ;
r s c s i_di s ks [i] . has_part_table 1 ;

I * I f our host adapter i s capable o f scatter-gather ,
* then we increase the read- ahead to 1 6 blocks (3 2 s ectors) .
* I f not , we u s e a two block (4 sector) read ahead .
* I

i f (r s c s i_di s k s [O] . device & &
r s c s i_di s k s [O] . device->host->sg_tab le s i z e)
read_ahead [MAJOR_NR] 1 2 0 ; I * 1 2 0 s ector read- ahead * I

e l s e
read_ahead [MAJOR_NR]

return ;

4 ; I * 4 sector read-ahead * I

The finish routine hooks the driver's "request function" into the blk_
dev [] array, reads in the partition table and then initializes the host
adapter that the disks are attached to.

1 94 Unix SCSI Implementations

Listing 1 1 -5. Linux sd_detect Routine

static int s d_detect (S c s i_Device * SOp) {

}

i f (SDp- >type ! = TYPE D I S K & & SDp->type ! = TYPE_MOD)
return 0 ;

printk (" Detected s c s i % s d i s k sd%c at " ,
SDp->removable ? " removable " : " " ,
' a ' + (s d_temp l ate . dev_noticed++)) ;

printk (" sc s i % d , channel % d , id % d , lun % d \ n " ,
SDp->ho s t->host_no , SDp->channe l ,
SDp- >id , SDp-> lun) ;

return 1 ;

The detect routine simply checks to see if we have a hard disk or
Magneto Optical disk to use and prints a message during boot time.

Listing 1 1 -6. Linux sd_attach Routine

static int s d_attach (S c s i_Device * SOp) {
Sc s i D i s k * dpnt ;
int i ;

i f (SDp- >type ! = TYPE D I SK & & SDp- >type ! = TYPE_MOD)
return 0 ;

i f (s d_temp l ate . nr_dev >= s d_template . dev_max) {
SDp->attached- - ;
return 1 ;

}

for (dpnt = r s c s i_di s k s , i = O ; i<sd_template . dev_max ;
i++ , dpnt++)
i f (! dpnt- >device) break ;

i f (i >= sd_template . dev_max)
panic (" s c s i_devices corrupt (s d) ") ;

SDp- > s c s i_request_fn = do_sd_request ;
r s c s i_di s k s [i] . device = S Op ;

(Continued)

The Linux SCSI Disk Driver 1 95

Listing 1 1 ·6. (Continued)

}

rs c s i_di s k s [i] . has_part_table 0 ;
s d_temp l ate . nr_dev++ ;
sd_gend i s k . nr_real++ ;
return 0 ;

The attach routine checks again for the presence of a hard disk or
Magneto Optical disk and that we have not reached the maximum number
of drives that can be supported by this driver. It then checks through the
rsc s i _disks [] array to make sure all disks have an entry in it. If there

are serious inconsistencies, the system panics . A few values in the rs c s i _
disks [] array are initialized and the number of attached devices is

incremented.

Listing 1 1 -7. Linux sd_detach Routine

static void s d_detach (S c s i_Device * SDp)
{

Sc s i D i s k * dpnt ;
int i ;
int max_p ;
int start ;

for (dpnt = r s c s i_di s k s , i=O ; i<sd_template . dev_max ;
i++ , dpnt++)
i f (dpnt- >device == SDp) {

I * I f we are d i s connecting a disk driver ,
* s ync and inval idate everything * /

max_p sd_gendi s k . max_P ;
start = i << sd_gendi sk . minor_shift ;

for (i=max p - 1 ; i >=0 ; i--) {
int minor = start+i ;

}

kdev_t devi = MKDEV (MAJOR_NR , minor) ;
s ync_dev (devi) ;
inval idate_inode s (devi) ;
inva l idate_buf fers (devi) ;
s d_gendi s k . part [minor] . start_s ect = 0 ;
s d_gendi s k . part [minor] . nr_s ects 0 ;
s d_s i z e s [minor] = 0 ;

(Continued)

1 96 Unix SCSI Implementations

Listing 1 1 -7. (Continued)

}

}
return ;

dpnt->has_part_table 0 ;
dpnt ->devic e = NULL ;
dpnt- >c apac ity = 0 ;
SDp- >attached- - ;
s d_temp l ate . dev_noticed-- ;
s d_temp l ate . nr_dev- - ;
s d_gendi s k . nr_re a l - - ;
return ;

The sd detach routine 's main task is to flush all unwritten data out to
the physical disk (specified by SDp), and then clear some variables to
indicate that the device is no longer available.

Listing 1 1 -8. Linux revalidate_scsidisk Routine

#def ine DEVICE_BUSY r s c s i_disks [target] . device->busy
#def ine USAGE r s c s i_di s k s [target] . device->acces s_count
de f ine CAPAC ITY r s c s i_di s k s [target] . capac ity
#def ine MAYBE RE INIT s d_init_onedi s k (target)
#def ine GEND I S K_STRUCT s d_gendi s k

I * T h i s routine i s c a l led to f lu s h all part itions and
* partition tables for a changed s c s i di s k , and then
* reread the new part ition table . If we are reval idating
* a disk becau s e o f a media change , then we enter with
* us age == 0 . If we are us ing an ioctl , we automat ically
* have us age == 1 (we need an open channel to use an ioc t l : -) ,
* so this i s our l imit .
* I

int reva l idate_s c s idi s k (kdev_t dev , int maxus age) {
int target ;
struct gendisk * gdev ;
uns igned long f l ags ;
int max_p ;
int s tart ;
int i ;

target DEVICE_NR (dev) ;
gdev = & GEND I S K_STRUCT ;

(Continued)

The Linux SCSI Disk Driver 1 97

Listing 1 1 ·8. (Continued)

s ave_f lags (f lags) ;
e l i () ;
i f (DEVICE BUSY I I USAGE > maxus age) {

restore_f lags (f lags) ;

}

printk (" Device bu sy for reva lidation (u s age= % d) \ n " ,
USAGE) ;

return -EBUSY ;

DEVICE_BUSY = 1 ;
res tore_f lags (f lags) ;

max_p
s tart

gdev- >max_p ;
target << gdev- >minor_shift ;

for (i=max_p - 1 ; i >=0 ; i - -) {
int minor = start+ i ;

}

kdev_t devi = MKDEV (MAJOR_NR , minor) ;
sync_dev (devi) ;
inval idate_inode s (devi) ;
inval i date_bu f fers (devi) ;
gdev->part [minor] . s tart_s ect = 0 ;
gdev->part [minor] . nr_s ects 0 ;
I *

* Re set the blocks i z e for everything s o that we
* c an read the partition table .
* I

blks i z e_s i z e [MAJOR_NR] [minor] = 1 0 2 4 ;

i fde f MAYBE RE INIT
MAYBE_RE INIT ;

endi f

}

gdev- >part [s tart] . nr_s ects = CAPAC I TY ;
resetup_one_dev (gdev , target) ;

DEVICE BUSY = 0 ;
return 0 ;

If media has changed, invalidate all stored data for it and reread the
partition table, and so on. Note that where data structures are being modi
fied, a e l i () is done previous and a restore_ f lags () is done
afterwards . This is Linux 's data locking method that prevents another
instance of the driver from being able to corrupt the data.

1 98 Unix SCSI Implementations

Listing 1 1 -9. Linux do_sd_request Routine

I *
* do_s d_reque s t () i s the reque st handler function for
* the s d driver . Its function in life is to take block
* device reque s t s , and tran s l ate them into SCSI commands .
* I

static void do_sd_request (void)
{

S c s i_Cmnd * SCpnt = NULL ;
S c s i_Device * SDev ;
s truct reques t * req = NULL ;
uns i gned long f l ags ;
int f l ag = 0 ;

s ave_f lags (f lags) ;
whi l e (1 == 1) {

e l i () ;
i f (CURRENT I = NULL & &

}

CURRENT->rq_s tatus RQ_INACTIVE) {
res tore_f lags (f lags) ;
return ;

INIT_SCS I_REQUE ST ;
SDev = r s c s i_di s k s [DEVI CE_NR (CURRENT->r�dev)] . devic e ;

I *
* I am not sure where the best place to do this i s .
* We need to hook in a place where we are l ikely to
* come if in user space .
* I

i f (SDev->was reset
{
I *

* We need to relock the door , but we might
* be in an interrupt handler . Only do this
* from user space , s ince we do not want to
* s leep from an interrupt .
* I

i f (SDev- >removab l e & & ! intr_count)
{

s c s i_ioct l (SDev , SCS I_I OCTL_DOORLOCK , 0) ;
I * s c s i ioctl may a l low CURRENT to change ,

(Continued)

The Linux SCSI Disk Driver 1 99

Listing 1 1 -9. (Continued)

}

* so s t art over . * I

}

SDev->was reset
continue ;

SDev->was reset 0 ;

0 .
I

I * we have to be c are ful here . alloc ate_device wi l l get a
free pointer , but there i s no guarantee that it i s queueab l e .
I n norma l us age , we want to c a l l this , because other types
of devices may have the host a l l tied up , and we want to make
sure that we have at least one request pending for this type
o f devic e . We can a l s o come through here whi l e s ervic ing an
interrupt , becau s e of the need to s tart another command . I f
we c a l l al loc ate_device more than once , then the sys tem c an
wedge i f the command i s not queueable . The request_queue able
function i s safe becau s e it checks to make sure that the host
i s ab le to t ake another command be fore it returns a pointer .
* I

i f (f l ag++ == 0)
SCpnt = al loc ate_device (& CURRENT ,
r s c s i_di s k s [DEVICE_NR (CURRENT- >q_dev)) . device , 0) ;

e l s e SCpnt = NULL ;

I *
* The f o l lowing res tore_f lags leads to l atency prob lems .
* F I XME .
* Us ing a " sti () " gets rid of the latency problems but causes
* race condit ions and crashes .
* I

res tore_f lags (f lags) ;

I * This i s a performance enhancement . We dig down into the
request l i s t and try to f ind a queueable reque s t (i . e . , device
not busy , and host ab le to acc ept another command . If we f ind
one , then we queue it . This can make a big d i f f erence on sys tems
with more than one d i s k drive . We want to have the interrupt s
o f f when monkeying with the reque st l i s t , becau s e otherwi s e the
kerne l might try to s l ip a reque st in between somewhere .
* I

(Continued)

200 Unix SCSI Implementations

Listing 1 1 ·9. (Continued)

}

i f (! SCpnt & & s d_temp l ate . nr_dev > 1) {
s truct request *req l ;

}

req l = NULL ;
e l i () ;
req = CURRENT ;
whi l e (req) {

}

SCpnt = request_queueable (req ,
r s c s i_di s k s [DEVICE_NR (req- >rq_dev)] . device) ;

i f (SCpnt) break ;
req l = req ;
req = req- >next ;

i f (SCpnt & & req->rq_status == RQ_INACT IVE) {
i f (req == CURRENT)

CURRENT = CURRENT->next ;
e l s e

req l ->next = req->next ;

}
restore_f lags (f lags) ;

i f (! SCpnt) return ; I * Could not f ind anything to do * I

I * Queue command * I
requeue_sd_reque s t (SCpnt) ;

} I * Whi l e * I

This routine is essentially the scheduler portion of the SCSI disk driver.
It decides whether the host adapter is ready for another command and
decides which command to do next. It then calls requeue_ sd _
reques t () to build the actual command request.

Listing 1 1 -1 0. Linux requeue_sd_request Routine

static void requeue_sd_reques t (Sc s i_Cmnd * SCpnt)
{

int dev , devm , bloc k , thi s_count ;
uns i gned char cmd [l O] ;
int bounce_s i z e , contiguous ;
int max_s g ;
s truct bu f fer_head * bh , * bhp ;
char * bu f f , * bounce_bu f fer ;

(Continued)

The Linux SCSI Disk Driver 201

Listing 1 1 -1 0. (Continued)

repeat :

i f (! SCpnt I I SCpnt- >reque s t . rq_status
do_s d_reque s t () ;

RQ_INACTIVE) {

return ;

}

devm MINOR (SCpnt- >reque s t . rq_dev) ;
dev = DEVICE_NR (SCpnt- >reque st . rq_dev) ;

block = SCpnt- >reque s t . sector ;
this count = 0 ;

ltifdef DEBUG
printk (" Doing s d reque s t , dev

devm , block) ;
endif

%d, b lock

i f (devm >= (s d_temp l ate . dev_max << 4) I I
! r s c s i_di s k s [dev] . device I I

{

}

block + SCpnt- >reque s t . nr_s ectors >
sd [devm] . nr_s e c t s)

SCpnt = end_s c s i_reque st (SCpnt , 0 ,
SCpnt->reque s t . nr_s ectors) ;

goto repeat ;

b lock += sd [devm] . s tart_sect ;

i f (r s c s i_di s k s [dev] . device- >changed)
{

I *

% d \ n " ,

* quietly refuse to do anything to a changed
* disc unt i l the changed bit has been reset
* I

}

SCpnt = end_s c s i_reque st (SCpnt , 0 ,
SCpnt->reque st . nr_s ectors) ;

goto repeat ;

ifdef DEBUG
printk (" s d % c real dev = l devl sd%c , block

' a ' + devm , dev , b lock) ;
#endif

% d \ n " ,

(Continued)

202 Unix SCSI Implementations

Listing 1 1 -1 0. (Continued)

I *
* I f we have a 1 K hardware sector s i z e , prevent acc e s s
* t o s ingle 5 1 2 byte s ectors . I n theory w e could handle
* this-in f act the s c s i cd-rom driver mus t be abl e to
* handle this becau s e we typically use 1K blocks i z e s ,
* and cd-roms typ i c a l l y have 2 K hardware sector s i z e s .
* Of cour s e , things are s impler with the cd-rom , s ince it
* i s read-only . For performance reasons , the f i lesystems
* should be able to handle this and not force the s c s i
* d i s k driver t o u s e bounc e buf fers for this .
* I

i f (r s c s i disks [dev] . s ector s i z e == 1 0 2 4)
i f ((block & 1) I I (SCpnt->request . nr_s ectors & 1)) {

printk (" s d . c : Bad block number reque sted ") ;

}

SCpnt = end_s c s i_reque st (SCpnt , 0 ,
SCpnt->reque s t . nr_s ectors) ;

goto repeat ;

switch (SCpnt- >reque s t . cmd)
{
c a s e WRI TE :

i f (! r s c s i_di s k s [dev] . device->wr iteable)
{

}

SCpnt = end_s c s i_reque s t (SCpnt , 0 ,
SCpnt->reque st . nr_s ectors) ;

goto repeat ;

cmd [O] = WRITE_6 ;
break ;

c a s e READ :
cmd [0] READ_ 6 ;
break ;

default :
panic (" Unknown sd command % d \ n " , SCpnt->reque st . cmd) ;

}

SCpnt->thi s_count = 0 ;

I * I f the host adapter can deal with very large
* s c atter-gather reque s t s , it is a waste o f time
* to c l nster
* I

cont i guous = (! CLUSTERABLE_DEVICE (S Cpnt) ? 0 : 1) ;
bounce bu f fer = NULL ;
bounc e s i z e (SCpnt->reque st . nr_s ectors < < 9) ;

(Continued)

The Linux SCSI Disk Driver 203

Listing 1 1 ·1 0. (Continued)

I * First see i f we need a bounce bu f f er for this reque s t .
* I f we do , make sure that we can al locate a bu f fer .
* Do not waste space by al locating a bounce bu f f er i f
* w e are stradd l ing the 1 6MB l ine
* I

i f (contiguous & & SCpnt- >request . bh & &
((long) SCpnt- >reque st . bh->b_data)
+ (SCpnt->reque st . nr_s ectors << 9) - 1 >

I SA DMA THRE SHOLD
& & SCpnt->host->unchec ked_i s a_dma) {
i f (((long) SCpnt- >reque st . bh- >b_data) >

I SA_DMA_THRE SHOLD)
bounce_bu f f er = (c har *) s c s i_mal loc (bounce_s i z e) ;

i f (! bounce_bu f f er) cont iguous = 0 ;

}

i f (contiguous & & SCpnt- >reque st . bh & &
SCpnt->reque s t . bh->b_reqnext)
for (bh = SCpnt- >reque s t . bh , bhp = bh- >b reqnext ;

bhp ; bh = bhp , bhp = bhp->b_reqnext) {
i f (! CONT IGUOUS_BUFFERS (bh , bhp)) {

i f (bounce_buf fer)

}
}

s c s i_free (bounce_bu f fer , bounce_s i z e) ;
contiguous = 0 ;
break ;

i f (! SCpnt- >reque s t . bh I I contiguous) {

I * c a s e of page reque st (i . e . , raw device) ,
* or unl inked bu f fer * I

thi s_count = SCpnt- >reque s t . nr_s ectors ;
bu f f = SCpnt- >reque s t . bu f fer ;
SCpnt- >use_s g = 0 ;

} e l s e i f (SCpnt ->host->sg_tables i z e == 0 I I
(need_is a_bu f f er & & dma_free_sectors <= 1 0)) {

I * C a s e of host adapter that cannot s c atter-gather .
* We a l s o come here if we are runn ing low on DMA
* bu f fer memory . We set a thre shold higher than that
* we woul d need for this reque st so we leave room
* for other reque s t s . Even though we wou ld not need
* it a l l , we need to be cons ervative , becau s e if we
* run low enough we have no choice but to panic .
* I

(Continued)

204 Unix SCSI Implementations

Listing 1 1 ·1 0. (Continued)

i f (SCpnt- >ho s t - > s g_tab l e s i z e ! = 0 & &

need i s a buf fer & &

dma_free_s ectors < = 1 0)
printk (" Warning : SCSI DMA bu f fer space running low . ") ;
printk (" Us ing non scatter- gather I / 0 . \ n ") ;

thi s_count = SCpnt->reque st . current nr sector s ;
buf f = SCpnt- >reque s t . buf fer ;
SCpnt->use_s g = 0 ;

} e l s e {

i f 0

I * Sc atter- gather capable ho st adapter * /
struct s c atter l i s t * s gpnt ;
int count , thi s_count_max ;
int counted ;

bh = SCpnt->reque s t . bh ;
thi s_count = 0 ;
this count max = - -

(rs c s i_di s k s [dev] . ten ? Oxf f f f O x f f) ;
count = 0 ;
bhp = NULL ;
wh i l e (bh) {

}

i f ((thi s_count + (bh->b s i z e >> 9)) >
this count max) break ;

i f (! bhp T l ! CONTI GUOUS_BUFFERS (bhp , bh) I I
! CLUSTERABLE_DEVI CE (SCpnt) I I
(SCpnt- >ho st- >unc hecked_i s a_dma & &

((un s i gned long) bh- >b_data- 1) ==
I SA_DMA_THRE SHOLD)) {

}

i f (count < SCpnt->host->sg_table s i z e)
count++ ;

e l s e break ;

this count += (bh- >b_s i z e >> 9) ;
bhp = bh ;
bh = bh- >b_reqnext ;

i f (SCpnt->ho s t - >unchec ked_i s a_dma & &

((uns igned int) SCpnt- >request . bh->b_data- 1)
I SA_DMA_THRE S HOLD) count- - ;

(Continued)

The Linux SCSI Disk Driver 205

Listing 1 1 ·1 0. (Continued)

end i f
SCpnt->use_s g = count : I * Number o f chains * I
I * s c s i_ma l loc can only al locate in chunks o f

* 5 1 2 byt e s * I
count = (SCpnt ->use_s g *

s i z e o f (struct s c atter l i s t) + 5 1 1) & - 5 1 1 :

SCpnt - > s g l i s t_len = count :
max_s g = count I s i zeof (struct scatter l i s t) :
i f (SCpnt->ho s t - > s g_tables i z e < max_s g)

max_s g = SCpnt->ho st->sg_tab l e s i z e :
s gpnt = (s truct s c atter l i s t *) s c s i_mal loc (count) :
i f (! s gpnt) {

printk ("Warning - running *really* short on DMA buf fers \n ") :
SCpnt->u s e s g = O : I * No memory left - b a i l out * I
thi s_count = SCpnt- >reque st . current_nr_sectors :
bu f f = SCpnt- >reque s t . buf fer :

} e l s e {
mems et (s gpnt , 0 , count) :
I * Z ero so it is easy to f i l l , but only

* i f memory i s available * I

buf f = (c har *) s gpnt :
counted = O :
for (count = 0 , bh = SCpnt->reque s t . bh , bhp =

bh- >b_reqnext : count < SCpnt->use_s g & & bh :
count++ , bh = bhp) {

bhp = bh- >b_reqnext :

i f (! s gpnt [count] . addres s) s gpnt [count] . addres s
bh- >b_data :

s gpnt [count] . length += bh->b_s i z e :
counted += bh- >b_s i z e >> 9 :

i f (((long) s gpnt [count] . addres s) +
s gpnt [count] . length - 1 >
I SA DMA THRESHOLD & &

(SCpnt->host->unchecked_i s a_dma) & &

! s gpnt [cou nt] . alt_addre s s) {
s gpnt [count] . alt_addre s s =

s gpnt [count] . addre s s :
I * We try to avo id exhausting the DMA

* poo l , s ince it is eas ier to control
* us age here . I n other places we might
* have a more pre s s ing need , and we
* wou ld be in trouble i f we ran out * I

(Continued)

206 Unix SCSI Implementations

Listing 1 1 ·1 0. {Continued)

i f 0

end i f

}

i f (dma_free_s ectors <
(s gpnt [count] . length >> 9) + 1 0) {

s gpnt [count] . addre s s NULL ;

} e l s e {

}

s gpnt [count] . address (char *)
s c s i_mal loc (s gpnt [count] . length) ;

I * I f we start running low on DMA buf fers ,
* we abort the scatter- gather operation ,
* and free a l l of the memory we have
* al located . We want to ensure that a l l
* s c s i operat ions are ab le t o d o a t least
* a nons c atter l gather operat ion * I

i f (s gpnt [count] . addre s s == NULL) {
I * Out of dma memory * I

}

printk (" Warning : Running low on \
S C S I DMA buf fer s ") ;

I * Try switching back to a non
* s-g operation . * I

whi l e (- -count >= 0) {
i f (s gpnt [count] . alt_addre s s)

s c s i_free (s gpnt [count] . addre s s ,
sgpnt [count] . length) ;

}
this count

SCpnt- >request . current_nr_sectors ;
bu f f = SCpnt->request . buf fer ;
SCpnt->use_s g = 0 ;
s c s i_free (s gpnt , SCpnt->sglist_len) ;

SCpnt->use_s g = count ;
this count = counted

bh->b s i z e >> 9 ;
break ;

I * Only c luster buf fers i f we know that we
* can supply DMA buffers large enough to
* s a t i s f y the request . Do not c luster a
* new request if this would mean that we
* suddenly need to start us ing DMA bounce
* buf fers * I

(Continued)

The Linux SCSI Disk Driver 207

Listing 1 1 -1 0. (Continued)

i f (bhp & & CONT IGUOUS_BUFFERS (bh , bhp)
& & CLUSTERABLE_DEVICE (SCpnt)) {

char * tmp ;

i f (((long) s gpnt [count] . addres s) +
s gpnt [count] . length +
bhp->b_s i z e - 1 > I SA_DMA_THRE S HOLD & &
(SCpnt->host->unchecked_i s a_dma) & &
! s gpnt [count] . alt_addre s s) continue ;

i f (! s gpnt [count] . alt_addre s s)
{ count-- ; continue ; }

i f (dma_free_s ectors > 1 0)
tmp = (char *)

s c s i_mal loc (s gpnt [count] . length +
bhp->b_s i z e) ;

e l s e {

}

tmp NULL ;
max_s g SCpnt->use_s g ;

i f (tmp) {
s c s i_free (s gpnt [count] . addre s s ,

}

s gpnt [count] . length) ;
s gpnt [count] . addres s = tmp ;
count-- ;
cont inue ;

I * I f we are allowed another s g chain ,
* then inc rement counter so we can ins ert
* it . Otherwi se we wi l l end up trunc ating * I

i f (SCpnt->use_s g < max s g) SCpnt->use_s g++ ;
} I * contiguous bu f fers * I

} I * for loop * I

I * Thi s i s actual ly how many we are going to tran s fer * I
this count = counted ;

i f (count < SCpnt->use_s g I I SCpnt - >use_s g >
SCpnt- >host->sg_tables i z e) {
bh = SCpnt->request . bh ;
printk (" Use s g , count % d % x % d \ n " ,

SCpnt->use_s g , count , dma_free_s ectors) ;
printk (" maxs g = % x , counted = % d thi s_count % d \ n " ,

max_s g , counted , thi s_count) ;
(Continued)

208 Unix SCSI Implementations

Listing 1 1 ·1 0. (Continued)

}

whi l e (bh) {

}

printk (" [%p % lx] " , bh->b_data , bh->b_s i z e) ;
bh = bh->b_reqnext ;

i f (SCpnt->use_s g < 1 6)
for (count= O ; count<SCpnt->use_s g ; count++)

printk (" { % d : %p %p % d } " , count ,
s gpnt [count] . addres s ,
s gpnt [count] . alt_addre s s ,
s gpnt [count] . length) ;

panic (" Ooops ") ;

i f (SCpnt->reques t . cmd == WRITE)
for (count= O ; count<SCpnt->use_s g ; count++)

i f (s gpnt [count] . alt_addres s)
memcpy (s gpnt [count] . addre s s ,

s gpnt [count] . alt_addre s s ,
s gpnt [count] . length) ;

} I * Abl e to mal loc s gpnt * I

} I * Host adapter c apable of s c atter-gather * I

I * Now handle the po s s ib i l ity of DMA to addres s e s > 1 6Mb * I

i f (SCpnt->u s e_s g == 0) {

}

i f (((long) buf f) + (th i s_count << 9) - 1 >
I SA DMA THRESHOLD & &
(SCpnt->host->unchecked_i s a_dma)) {
i f (bounce_bu f fer)

}

buf f bounce_buf fer ;
e l s e

buf f (char *) s c s i_mal loc (this_count << 9) ;
i f (bu f f = = NULL) {
I * Try backing o f f a bit i f we are low on mem* l

thi s_count = SCpnt->reque st . current_nr_s ector s ;
buf f = (c har *) s c s i_mal loc (this_count << 9) ;
i f (! bu f f) panic (" Ran out of DMA buf fers . ") ;

}
i f (SCpnt- >reques t . cmd == WRITE)

memcpy (bu f f , (char *) SCpnt->reque s t . bu f fer ,
thi s_count << 9) ;

(Continued)

The Linux SCSI Disk Driver 209

Listing 1 1 ·1 0. (Continued)

U fdef DEBUG
printk (" s d % c : %s % d / % d 5 1 2 byte . blocks . \ n " ,

' a ' + devm ,

endi f

(SCpnt->request . cmd == WRI TE) ?
" writing " : " reading " ,
thi s_count , SCpnt->reque st . nr_s ectors) ;

cmd [l] = (SCpnt->lun << 5) & OxeO ;

i f (rs c s i_di s k s [dev] . sector_s i z e == 1 0 2 4) {
i f (block & 1)

}

panic (" s d . c : Bad block number reque sted ") ;
i f (th i s_count & 1)

panic (" s d . c : Bad block number requested ") ;
b lock = block >> 1 ;
this count this count >> 1 ;

i f (rs c s i_di s k s [dev] . sector_s i z e
b l o c k = b l o c k << 1 ;

2 5 6) {

this count this count << 1 ;

}

i f (((thi s_count > O xf f) I I (b lock > O x 1 f f f f f)) & &

r s c s i_di s k s [dev] . ten)
{

}
e l s e
{

i f (th i s_count > O x f f f f)
this count O x f f f f ;

cmd [O]
cmd [2]
cmd [3]
cmd [4]
cmd [5]
cmd [6]
cmd [7]
cmd [B]

+= READ 1 0 - READ_6 ;
(un s igned char) (b lock >> 2 4) & O xf f ;
(un s i gned char) (b lock >> 1 6) & O x f f ;
(un s i gned char) (block >> 8) & O x f f ;
(un s i gned char) block & O x f f ;
cmd [9] = 0 ;
(un s igned char) (this_count >> 8) & O xf f ;
(un s i gned char) this count & O x f f ;

i f (th i s_count > O x f f)
this count O x f f ;

(Continued)

2 1 0 Unix SCSI Implementations

Listing 1 1 -1 0. (Continued)

}

}

cmd [l]
cmd [2]
cmd [3]
cmd [4]
cmd [5]

I = (un s igned char) ((block >> 1 6) & O x l f) ;
(un s igned char) ((block >> 8) & O x f f) ;
(uns igned char) block & O x f f ;
(un s igned char) thi s_count ;
0 ;

I *
* We shouldn ' t disconnect i n the middle o f a sector ,
* so with a dumb host adapter , it ' s safe to a s s ume
* that we c an at least trans fer this many bytes between
* each connec t / d i s connect .
* I

SCpnt->tran s fer s i z e = r s c s i disks [dev] . sector_s i z e ;
SCpnt- >underf low = thi s_count << 9 ;
s c s i do cmd (SCpnt , (void *) cmd , bu f f ,

thi s_count * r s c s i_disks [dev] . sector_s i z e ,
rw_intr ,
(SCpnt- >device- >type == TYPE_DISK ?

SO T IMEOUT : SD_MOD_T IMEOUT) ,
MAX_ RETRI E S) ;

The requeue_ sd _request () routine creates all the SCSI COBs,

which then get sent to the appropriate low-level SCSI adapter driver.

Notice that the driver needs to worry about such things as the ISA bus 's
1 6MB address space and break up transfers that will cross it using bounce
buffers below that limit. The driver also is concerned with whether an
operation needs to be done using "scatter-gather." This means that since
DMA transfers deal with physical memory addresses that don ' t go
through the CPU's memory management unit, areas of memory that are
logically contiguous may be physically separated in memory. This means
that the SCSI host adapter needs to be able to follow a linked list of mem
ory segments while transferring the data. During read operations it

scatters the data physically into memory and during write operations it
gathers the data together into a single stream for the disk.

The Linux SCSI Disk Driver 2 1 1

Listing 1 1 -1 1 . Linux check_scsidisk_media_change Routine

stat ic int check_s c s id i s k_media_change (kdev_t ful l_dev) {
int retval ;

}

int target ;
struct inode inode ;
int f l ag = 0 ;

target = DEVICE_NR (fu l l_dev) ;

i f (target >= s d_temp l ate . dev_max I I
! r s c s i_di s k s [target] . device) {

}

printk (" SC S I d i s k reque st error : invalid device . \ n ") ;
return 0 ;

i f (! r s c s i_di sks (target] . device- >removab le) return 0 ;

inode . i_rdev = f u l l_dev ;
I * This i s a l l we really need here * I
retval = s d_ioct l (& inode , NULL ,

SCS I_I OCTL_TEST_UNI T_READY , 0) ;

i f (retva l) { I * Unab le to test , unit probab ly not ready .
* This usually me ans there i s no disc in

}

* the dr ive . Mark as changed , and we wi l l
* f i gure it out later once the drive i s
* avai l able again . * I

r s c s i_di s k s (target] . ready = 0 ;
r s c s i_di s k s (target] . device->changed 1 ;
return 1 ;
I * This wi l l force a f lush , i f cal led from

* check_di s k_c hange * I

I *
* for removab le s c s i disk (FLOPTICAL) we have to
* recogn i s e the presence o f disk in the drive . This
* i s kept in the Scsi D i s k struct and tested at open
* I

rsc s i_di s k s (t arget] . re ady = 1 ; 1 * FLOPTI CAL * I

retval = r s c s i_di s k s [target] . device->changed ;
i f (! f l ag) r s c s i_di s k s [target] . device->changed 0 ;
return retva l ;

2 1 2 Unix SCSI Implementations

This routine performs a Test Unit Ready command to see if the
media has been changed and marks a structure variable showing whether
it did.

The Linux SCSI Pass-Through Driver

A SCSI pass-through driver simply provides a way for an application pro
gram to bypass some of the kernel 's protection mechanisms and send a
SCSI command to an attached device. Typically the pass-through driver is
used to work with less common devices that don 't have kernel resident

drivers . Examples of these would be scanners, CD recorders , media

changers (jukeboxes), etc .

Linux provides such a driver. It is called the SCSI generic driver (sg) .
Let 's take a look at how it works. Each SCSI device that is actually
attached to the system's host adapters is represented by a device special
file (also called a device node) . These special files are named /dev/sga,
/dev/sgb, etc . , to correspond with each of the SCSI devices that were
present when the system booted. For example, if you booted the system
with SCSI devices on host adapter 0 at IDs 1 and 3, the /dev/sga special
file would correspond with the device at ID 1 and the /dev/sgb device
would correspond with the device at ID 3 .

Commands are sent to the devices by opening the proper device special

file and doing a write () system call. The results are obtained by doing a
read () system call. An error is indicated if the return value of the system
call is negative. "Sounds simple enough," you say. Let 's see what the
pass-through driver does to create this interface for us.

Listing 1 1 -1 2. Linux sg_ioctl Routine

/ * * * * * * * * * s g . c * * * * * * * * /

static int s g_init (vo id) ;
static int s g_attach (S c s i_Device *) ;
static int s g_detect (S c s i_Device *) ;
static void s g_detach (S c s i_Device *) ;

struct S c s i_Device_Ternp l ate s g_ternplate
{ NULL , NULL , " s g " , NULL , O xf f ,
SCS I_GENERIC_MAJOR , 0 , 0 , 0 , 0 ,
s g_detect , s g_init ,
NULL , s g_attach , s g_detach } ;

(Continued)

The Unux SCSI Pass- Through Driver 2 1 3

Listing 1 1 -1 2. (Continued)

i fde f SG_BI G_BUFF
s t atic char * b i g_bu f f = NULL ;
I * wait for bu f fer ava i l able * I
s s tatic s truct wait_queue *big_wait ;
s t atic int b i g_inu s e = O ;
endif

struct s c s i_generic
{

} ;

S c s i Device * device ;
int users ; I * how many people have it ope n ? * I
I * wait for device to be avai lable * I
s truct wait_queue * generic_wait ;
I * wait for response * I
struct wait_queue * read_wait ;
I * wait for free bu f f er * I
s truct wait_queue *write_wait ;
I * current de f au l t value for device * I
int t imeout ;
int bu f f_len ; I * length of current bu f fer * I
char * bu f f ; I * the buffer * I
I * header o f pending command * I
s truct s g_he ader header ;
char exc lude ; I * opened for exc lus ive acc e s s * I
char pending ; I * don ' t accept writes now * I
char complete ; I * command complete al low a read * I

static struct s c s i generic * s c s i_generics =NULL ;
static void s g_free (c har *buf f , int s i z e) ;

static int s g_ioct l (s truct inode * inode ,
struct f i l e * f i l e , uns igned int cmd_in ,
uns igned long arg)

{
int result ;
int dev = MINOR (inode ->i rdev) ;
i f ((dev< O) I I (dev>= s g_temp l ate . dev_max))

return -ENX I O ;
switch (cmd_in)
{
c a s e SG SET TIMEOUT :

result = veri f y_area (VERIFY_READ ,
(canst void *) arg , s i zeof (long)) ;

i f (re sult) return result ;
(Continued)

2 1 4 Unix SCSI Implementations

Listing 1 1 -1 2. (Continued)

}

s c s i_generic s [dev] . timeout=get_user ((int *) arg) ;
return 0 ;

c a s e SG GET TIMEOUT :
return s c s i_generic s [dev] . timeout ;

default :

}

return s c s i_ioct l (s c s i_generic s [dev] . device ,
cmd_in , (void *) arg) ;

The ioc t l routine simply allows the application to set and get the
timeout values .

Listing 1 1 -1 3. Linux sg_open Routine

static int s g_open (s truct inode * inode , struct f i l e * f i lp)
{

I *

int dev=MINOR (inode- >i_rdev) ;
int f lags = f i lp->f_f l ags ;

i f (dev>= s g_template . dev_max I I
! s c s i_generic s [dev] . device)
return -ENXIO ;

i f (O_RDWR ! = (f l ags & O_ACCMODE))
return -EACCES ;

* I f we want exc lus ive acce s s , then wait unt i l the
* device is not busy , and then set the f lag to prevent
* anyone e l s e from us ing it .
* I

i f (f lags & O_EXCL)
{

whi l e (s c s i_generic s [dev] . users)
{

}

i f (f lags & O_NONBLOCK)
return -EBUSY ;

interruptible_s leep_on (
& s c s i_generic s [dev] . generic_wait) ;

i f (current ->s ignal & -current->blocked)
return -ERE STARTSYS ;

(Continued)

The Linux SCSI Pass- Through Driver 2 1 5

Listing 1 1 ·1 3. {Continued)

}

s c s i_generic s [dev] . exc lude= l ;

}
e l s e

I *
* Wait unt i l nobody has an exc lus ive open on
* this device .
* I

whi l e (s c s i_generic s [dev] . exc lude)
{

}

i f (f lags & O_NONBLOCK)
return -EBUSY ;

interrupt ible_s leep_on (
& s c s i_generic s [dev] . generic_wait) ;

i f (current ->s ignal & -current->b locked)
return -ERESTARTSYS ;

I *
* OK , we s hould have grabbed the device . Mark the
* thing so that other proc e s s e s know that we have it ,
* and initial i z e the state variables to known value s .
* I

i f (! s c s i_generic s [dev] . u sers

{

}

& & s c s i_generic s [dev] . pending
&& s c s i_generic s [dev] . complete)

i f (s c s i_generic s [dev] . bu f f ! = NULL)
s g_free (s c s i_generic s [dev] . bu f f ,
s c s i_generic s [dev] . bu f f_len) ;

s c s i_generic s [dev] . bu f f =NULL ;
s c s i_generic s [dev] . pending= O ;

i f (! s c s i_generic s [dev] . u sers)
s c s i_generic s [dev] . t imeout=SG_DEFAULT TIMEOUT ;

i f (s c s i_generic s [dev] . device->host->hostt->usage_count)
(* s c s i_generic s [dev] .

devic e->ho s t - >hostt->us age_count) ++ ;
i f (s g_temp l ate . u s age_count)

(* s g_temp l ate . u s age_count) ++ ;
s c s i_generic s [dev] . u s ers++ ;
return 0 ;

Reserve the desired device for use by this application.

2 1 6 Unix SCSI Implementations

Listing 1 1 -1 4. Linux sg_close Routine

static void s g_c lo s e (s truct inode * inode , struct f i l e * f i lp)
{

}

int dev=MINOR (inode->i_rdev) ;
s c s i_generic s [dev] . users - - ;
i f (sc s i_generic s [dev] . device->host->hostt->us age_count)

(* s c s i_generic s [dev] .
device->ho s t - >hostt->us age_count) -- ;

i f (s g_temp l ate . us age_count) (* s g_template . us age_count) - - ;
s c s i_generic s [dev] . exc lude= O ;
wake_up (& sc s i_generic s [dev] . generic_wait) ;

The c lose routine just releases the device that was reserved by open.

Listing 1 1 -1 5. Linux sg_malloc Routine

stat ic char * s g_mal loc (int s i z e)
{

i f (s i z e<= 4 0 9 6)
return (char *) s c s i_mal loc (s i ze) ;

i fdef SG B I G BUFF
if (s i ze<=SG_B IG_BUFF)
{

whi l e (big_inu s e)
{

}

interruptible_s leep_on (&big_wait) ;
i f (current->s ignal & -current->blocked)

return NULL ;

b i g_ inu s e= l ;
return big_bu f f ;

}
endif

}
return NULL ;

The rnal loc routine either allocates a fresh buffer if the request is
small, or the one large buffer if the request is larger than 4K.

The Linux SCSI Pass- Through Driver 2 1 7

Listing 1 1 ·1 6. Linux sg_free Routine

static void s g_free (c har * buf f , int s i z e)

{
i fdef SG B I G BUFF

if (bu f f==big_bu f f)
{

}

b i g_inu s e= O ;
wake_up (& b i g_wait) ;
return ;

endif
s c s i_free (bu f f , s i z e) ;

}

The f ree routine releases whatever buffer was allocated by the
rnal loc routine.

Listing 1 1 ·1 7. Linux sg_read Routine

I *
* Read back the results o f a previous command .
* We u s e the pending and comp l ete semaphores to
* t e l l u s whether the bu f fer i s avai l ab l e for us
* and whether the command is actually done .
* I

static int s g_read (s truct inode * inode , struct f i l e * f ilp ,
char *buf , int count)

{
int dev=MINOR (inode->i_rdev) ;
int i ;
uns i gned long f lags ;
struct s c s i_generic * device= & sc s i_generic s [dev] ;
i f ((i=ve r i fy_area (VERI FY_WRI TE , bu f , count)))

return i ;

I *
* Wait unt i l the command i s actually done .
* I

s ave_f lags (f l a gs) ;
e l i () ;
whi l e (! device->pending I I ! device->complete)

(Continued)

21 8 Unix SCSI Implementations

Listing 1 1 -1 7. (Continued)

}

{
i f (f i lp->f_f lags & O_NONBLOCK)
{

restore_f lags (f lags) ;
return -EAGAIN ;

}
interrupt ible_s leep_on (& device- >read_wait) ;
i f (current- >s ignal & -current->blocked)
{

}

restore_f lags (f lags) ;
return -ERE S TARTSYS ;

}
restore_f lags (f lags) ;

I *
* Now copy the result back t o the user buf fer .
* I

device->header . pack_len=device->header . reply_len ;

i f (count>= s i zeof (s truct s g_header))
{

rnerncpy_to f s (bu f , & device- >header ,
s i z eo f (s truct s g_header)) ;

buf += s i zeof (s truct s g_header) ;
i f (count>device- >header . pack_len)

count=device->header . pack_len ;
i f (count > s i z eo f (struct s g_header)) {

rnerncpy_to f s (bu f , device->bu f f ,
count- s i z eo f (s truct sg_header)) ;

}
e l s e

I *

}

count= device- >header . re sult==O ? 0 -EIO ;

* C lean up , and release the device so that
* we c an send another
* command .
* I

s g_free (device - >bu f f , device->bu f f_len) ;
device->bu f f = NULL ;
device->pending= O ;
wake_up (& device - >write_wa it) ;
return count ;

The Linux SCSI Pass- Through Driver 2 1 9

The read routine first checks that the buffer the caller passed in is
writable by it. It then waits for the command to complete by checking bits
that get set by the command_ done routine below. When the data is ready
it copies it out to user space using memcpy _ tof s () , frees up the buffer,
and wakes up anyone who 's waiting for a buffer.

Listing 1 1 -1 8. Linux sg_command_done Routine

I *
* This function i s c a l led by the interrupt handler
* when we actually have a command that is complete .
* Change the f l ags to indicate that we have a result .
* I

static void s g command_done (Sc s i_Cmnd * SCpnt)

{
int dev = MINOR (SCpnt- >reque st . rq_dev) ;
struct s c s i_generic * device & s c s i_generic s [dev] ;
i f (! device->pending)
{

printk (" unexpected done for sg %d \ n " , dev) ;
SCpnt- >reque st . rq_s tatus RQ_INACT IVE ;
return ;

}

I *
* See i f the command completed norma l ly , or whether
* something went
* wrong .
* I

memcpy (device->header . s ens e_buffer , SCpnt->sense bu f fer ,
s i z e o f (SCpnt->sense_bu f fer)) ;

switch (ho s t_byte (SCpnt->result)) {
c a s e D I D OK :

device- >he ader . result = 0 ;
break ;

c a s e D I D NO CONNECT :
case D I D BUS BUSY :
c a s e D I D TIME OUT :

device- >header . result
break ;

c a s e D I D BAD TARGET :
c a s e D I D ABORT :
c a s e D I D PARITY :
c a s e D I D RE SET :
c a s e D I D BAD INTR :

EBUSY ;

device- >he ader . result E I O ;
bre ak ;

(Continued)

220 Unix SCSI Implementations

Listing 1 1 -1 8. (Continued)

}

c a s e D I D ERROR :

}

I *
* There really should be D I D UNDERRUN and D I D OVERRUN
* error value s , and a means for cal lers of s c s i do cmd
* to indic ate whether an underrun or overrun should
* s i gnal an error . Unt i l that can be imp lemented , this
* kludge a l l ows for returning useful error values
* except in cases that return DID ERROR that might be
* due to an underrun .
* I

i f (SCpnt->sense buf f er [O] == 0 & &
status_byte (SCpnt->re sult) = = GOOD)

device->header . result = 0 ;
e l s e devic e->header . result = E I O ;
break ;

I *
* Now wake up the proc e s s that i s wait ing for the
* result .
* I

device->complete= l ;
SCpnt->reque s t . rq_s tatus = RQ_INACTIVE ;
wake_up (& s c s i_generic s [dev) . read_wait) ;

The command_ done routine gets control when an interrupt comes in

from the SCSI adapter signifying that it has finished a command (for bet
ter or for worse) . The routine saves away the sense data from the result
and checks for errors . It then wakes up the caller that sent this command
in the first place.

Listing 1 1 -1 9. Linux sg_write Routine

static int s g_write (s truct inode * inode ,

{
struct f i l e * f i lp , const char *buf , int count)

int b s i z e , s i z e , amt , i ;
uns igned char cmnd [MAX_COMMAND_S I ZE] ;
kdev_t devt = inode->i_rdev ;
int dev = MINOR (devt) ;
struct s c s i_generic * device= & s c s i_generic s [dev] ;

(Continued)

The Linux SCSI Pass- Through Driver 22 1

Listing 1 1 -1 9. (Continued)

int input_s i z e ;
uns i gned char opcode ;
S c s i_Cmnd * SCpnt ;

i f ((i=ver i f y_are a (VERI FY_READ , buf , count)))
return i ;

I *
* The minimum s c s i command length is 6 byte s .
* I f we get anything l e s s than this , it i s
* c learly bogus .
* I

i f (count< (s i z eof (s truct s g_header) + 6))
return - E I O ;

I *
* I f we s t i l l have a result pending from a previous
* command , wait unt i l the result has been read by the
* user before s e nding another command .
* I

whi l e (device->pending)
{

i f (f i lp->f_f lags & O_NONBLOCK)
return -EAGAIN ;

i fdef DEBUG
printk (" s g_write : s leeping on pending reque s t \ n ") ;

endif

}

interrupt ible_s leep_on (& device->wr ite_wait) ;
i f (current->s ignal & -current->blocked)

return -ERESTARTSYS ;

I *
* Mark the device f l ags for the new state .
* I

device->pending= l ;
device->complete= O ;
memcpy_fromf s (& device->header , buf ,

s i z eo f (struct s g_header)) ;

device->header . pack_len=count ;
bu f+=s i z eof (struct sg_header) ;

I *
* Now we need t o grab the command it s e l f from
* the u s er ' s bu f f er .
* I

(Continued)

222 Unix SCSI Implementations

Listing 1 1 ·1 9. (Continued)

opcode = get_u s er (bu f) ;
s i z e=COMMAND_S I Z E (opcode) ;
i f (opcode >= O xc O & &

device->header . twe lve_byte) s i z e 1 2 ;

I *
* Determine buf f er s i z e .
* I

input s i z e = device->header . pack_len - s i z e ;
i f (input_s i z e > device->header . reply_len)
{

b s i z e

} e l s e {
b s i z e

input_s i z e ;

device- >header . reply_len ;

}

I *
* Don ' t inc lude the command header its e l f
* in t h e s i z e .
* I

b s i z e - = s i z eo f (s truct s g_header) ;
input_s i z e - = s i z eo f (s truct s g_header) ;

I *
* Verify that the user has actual ly pas sed
* enough bytes for this command .
* I

i f (input_s i z e < 0)
{

}

device->pending= O ;
wake_up (&device->write_wait) ;
return -EIO ;

I *
* Al locate a bu f f e r that i s large enough to hold the
* data that has been reque sted . Round up to an even
* number of s ector s , s ince s c s i mal loc al locates in
* chunks o f 5 1 2 byte s .
* I

amt=b s i z e ;
i f (! b s i z e)

b s i z e++ ;
b s i z e= (b s i z e + 5 1 1) & - 5 1 1 ;

(Continued)

The Linux SCSI Pass- Through Driver 223

Listing 1 1 -1 9. (Continued)

I *
* I f we cannot a l locate the buf fer , report
* an error .
* I

i f ((bs i z e < O) I I ! (device->bu f f =
s g_mal loc (device->bu f f_len=b s i z e)))

{

}

device->pending= O ;
wake_up { & device->wr ite_wait) ;
return -ENOMEM ;

Hfdef DEBUG
printk (" a l locating device \ n ") ;

endif

I *
* Grab a device pointer for the device we want to
* talk to . I f we don ' t want to block , j u st return
* with the appropr i ate me s s age .
* I

i f (! (SCpnt=alloc ate_devic e (NULL , device->device ,
! (f i lp->f_f lags & O_NONBLOCK))))

{

}

device->pending= O ;
wake_up { & device->wr ite_wait) ;
s g_free (device- >bu f f , device->buf f_len) ;
device- >bu f f = NULL ;
return -EAGAIN ;

i fde f DEBUG
printk (" device al loc ated \ n ") ;

e ndi f

SCpnt- >reque s t . rq_dev = devt ;
SCpnt->reque s t . rq_s tatus = RQ_ACTIVE ;
SCpnt->sense_bu f f er [O] = O ;
SCpnt- >cmd_len = s i z e ;

I *
* Now copy the S C S I command from the user ' s
* addres s space .
* I

memcpy_fromf s (cmnd , bu f , s i z e) ;
buf+= s i z e ;

(Continued)

224 Unix SCSI Implementations

Listing 1 1 ·1 9. (Continued)

I *
* I f we are writing data , copy the data we are
* writing . The pack_len f ield also inc lude s the
* length o f the header and the command , so we need
* to subtract the s e o f f .
* I

i f (input s i z e > 0) memcpy_fromf s (device->bu f f ,
buf , input_s i z e) ;

I *
* Set the LUN f ie l d i n the command structure .
* I

cmnd [l] = (cmnd [l] & O x l f) I (device->device->lun<< 5) ;

i fdef DEBUG
printk (" do cmd \ n ") ;

itendif

I *
* Now pas s the actual command down to the low- leve l
* driver . We do not do any more here-when the
* interrupt arrive s , we w i l l then do the post
* proc e s s ing .
* I

s c s i_do_cmd (SCpnt , (void *) cmnd ,
(void *) device->bu f f , amt ,
s g_command_done , device->timeout , SG_DEFAULT_RETRIE S) ;

it i fdef DEBUG
printk (" done cmd \ n ") ;

it end i f

}

return count ;

The write routine is used to send commands to the SCSI device. It
waits for any in-progress commands to complete. Potential error condi
tions are checked for. Allocate a buffer that 's big enough for the data
being transfered. The user's command (and data if necessary) are copied
(rnerncpy_frornf s) from user space into the kernel and is executed by the
s c s i do crnd routine.

The Linux SCSI Pass- Through Driver 225

Listing 1 1 -20. Linux sg_select Routine

static int s g_s e l ect (s truct inode * inode , s truct f i l e * f i l e ,
int s e l_type , s e l ect_tab le * wait)

{

}

int dev=MINOR (inode->i_rdev) ;
int r = 0 ;
s truct s c s i_generic * device= & s c s i_generic s [dev] ;

i f (s e l_type == SEL_IN) {
i f (device->pending & & device->complete)
{

}

r = 1 ;

} e l s e {
s e lect_wait (& s c s i_generic s [dev] . read_wait , wait) ;

}

i f (s e l_type == SEL OUT) {
i f (! device->pending) {

r = 1 ;

}

}
e l s e
{

}

s e lect_wait (& s c s i_generic s [dev] . write_wait , wait) ;

return (r) ;

static struct f i le_operations s g_fops {
NULL , I * l s eek * I
s g_read , I * read * I
s g_write , I * write * I
NULL , I * readdir * I
s g_s e lect , I * s e lect * I
s g_ioc t l , I * ioctl * I
NULL , I * mmap * I
s g_open , I * open * I
s g_c lo s e , I * release * I
NULL I * f s ync * I

} ;

Check to see whether a write to the device would block.

226 Unix SCSI Implementations

Listing 1 1 -21 . Linux sg_detect Routine

static int s g_detect (Sc s i_Device * SDp) {

}

switch (SDp->type) {
c a s e TYPE D I S K :
c a s e TYPE MOD :
c a s e TYPE ROM :
case TYPE WORM :
case TYPE TAPE : break ;
default :
printk (" Detected s c s i generic s g % c at ") ;
printk (" s c s i % d , channe l % d , id % d , lun % d \ n " ,

' a ' + s g_temp l ate . dev_noticed ,
SDp->ho s t->ho s t_no , SDp->channe l ,
SDp->id , SDp->lun) ;

}
s g_temp l ate . dev_noticed++ ;
return 1 ;

Check the type of the device that was found and display a message for
the ones we don ' t recognize.

Listing 1 1 -22. Linux sg_in it Routine

I * Dr iver init i a l i z at ion * I
s t atic int s g_init ()
{

static int s g_re g i s tered = 0 ;

i f (s g_temp l ate . dev_not iced

i f (! s g_reg i s tered) {

0) return 0 ;

i f (register_chrdev (SCS I_GENERIC_MAJOR , " s g " , & s g_fop s))
{

}

printk (" Unable to get ma j or %d " ,
SCS I_GENERI C_MAJOR) ;

printk (" for generic SCSI devic e \ n ") ;
return 1 ;

}
s g_reg i s tered++ ;

I * I f we alre ady have been through here , return * I
i f (s c s i_generic s) return 0 ;

(Continued)

The Linux SCSI Pass- Through Driver 227

Listing 1 1 -22. (Continued)

i fde f DEBUG
printk (" s g : !nit generic device . \ n ") ;

endi f

i fdef SG B I G BUFF
big bu f f = (c har *) s c s i init mal loc (SG BIG BUFF , -

GFP ATOMI C I GFP_DMA) ;
- - -

end i f

}

s c s i_gener i c s = (s truct s c s i generic *)
s c s i_init_mal loc ((s g_template . dev_noticed +

SG_EXTRA_DEVS) * s i z eo f (struct s c s i_generic) ,
GFP _ATOMIC) 1

mems et (s c s i generic s , 0 , (s g_template . dev_noticed +
SG_EXTRA_DEVS) * s i zeof (s truct s c s i_generic)) ;

s g_temp l ate . dev_max
SG_EXTRA_DEVS ;

return 0 ;

s g_template . dev_noticed +

Create special files for all the available devices. Allocate a transfer

buffer if necessary. Allocate enough space for the table of devices and a
couple of extras .

Listing 1 1 -23. Linux sg_attach Routine

static int s g_att ach (S c s i_Device * SDp)
{

struct s c s i_generic * gpnt ;
int i ;

i f (s g_temp l ate . nr_dev >= s g_template . dev_max)
{

}

SDp->attached-- ;
return 1 ;

for (gpnt s c s i_generic s , i=O ; i< s g_template . dev_max ;
i++ , gpnt++)
i f (! gpnt->devic e) break ;

(Continued)

228 Unix SCSI Implementations

Listing 1 1 -23. (Continued)

} ;

i f (i >= s g_temp l ate . dev_max)
panic (" sc s i_devices corrupt (s g) ") ;

s c s i_generic s [i] . device=SOp ;
s c s i_generics [i] . us e r s = O ;
s c s i_generic s [i] . generic_wait=NULL ;
s c s i_generic s [i] . read_wait=NULL ;
s c s i_generic s [i] . write_wait=NULL ;
s c s i_generic s [i] . bu f f =NULL ;
s c s i_generic s [i] . exclude= O ;
s c s i_generic s [i] . pending= O ;
s c s i_generic s [i] . t imeout=SG_OEFAULT TIMEOUT ;
s g_temp late . nr_dev++ ;
return 0 ;

Initialize the array of available SCSI devices .

Listing 1 1 -24. Linux sg_detach Routine

static void s g_detac h (S c s i_Oevice * SOp)
{

}

s truct s c s i_generic * gpnt ;
int i ;

for (gpnt s c s i_gener ic s , i=O ; i< s g_template . dev max ;
i++ , gpnt++)
i f (gpnt->device == SOp) {

}
return ;

gpnt->device = NULL ;
SOp- >attached- - ;
s g_temp l ate . nr_dev-- ;
I *

* avoid a s s o c i ated device /dev / s g ? being
* incremented each t ime modu le is
* ins erted/ removed , <dan @ lectra . fr>
* I

s g_temp l ate . dev_noticed-- ;
return ;

Release all the devices.

Acknowledgments 229

Example SCSI Pass-Through Application Program

The companion CD-ROM contains an example of a SCSI pass-through
application in the Linux "SCSI Programming HOWTO" document.

Summary

I know that what I 've told you in this chapter isn ' t enough to allow you to
go right out and write UNIX SCSI drivers . I do hope, though, that I 've
sketched things out well enough to enable you to find and absorb the nec
essary information. After having written drivers for each of the above
mentioned systems myself, I 've found that jumping right in and writing a
simple driver initially is the best way to learn it. Reading only prepares
you to understand what you will encounter during the development

process .

Acknowledgments

I 'd like to thank Linus Torwalds and his merry band of Linux developers
for producing such an impressive operating system platform for everyone

to enjoy. And, most especially, for making it and its source code freely

distributable.

Chapter 1 2

Troubleshooting and
Common Mistakes

By now you 've probably concluded that SCSI represents a powerful tech
nology, but you may be intimidated by its complexity. If you 're starting to

think that more can go wrong with SCSI than can go right, this chapter

may help put your mind at ease.

The mistakes programmers make when working with SCSI fall into a
few basic categories . Certain problems crop up frequently enough that it 's
easy to recognize them and head them off. Some simple troubleshooting
and debugging skills can save you hours of frustration.

Start with a Clean Hardware Layer

The most important thing you can do to minimize problems with SCSI is
to make sure your hardware is set up correctly. Some people think that
setting up a trouble-free SCSI system is a matter of trial and error. That 's
not the case. The rules for cable lengths, termination, and other compo
nents of the physical layer are precise, if somewhat hard to interpret.

For a handy reference to troubleshooting your physical layer, you may
wish to refer to the "SCSI Game Rules," posted once a month on the
comp .periphs.scsi newsgroup. This document is maintained by Gary
Field, who also maintains the SCSI FAQ on the same forum. It 's full of

tips to help you understand how the SCSI game is played and what hap
pens when you break the rules.

23 1

232 Troubleshooting and Common Mistakes

SCSI Bus Termination

More mythology and misinformation surrounds the subject of bus termi

nation than any other aspect of SCSI. The simple fact is that a properly
configured bus has exactly two terminators-no more, no less . The termi
nators must be at the ends of the bus . Often this means the host adapter is
terminated, but that is not always the case. If you use both internal and
external devices , the host adapter may be in the middle of the chain and

should not be terminated.
Often, people will advise terminating all attached devices, just to be

sure. This is bad advice-run fast and far from anyone who suggests that
you do this .

Passive termination is common, but active termination is the most
trouble-free. For higher transfer rates , termination becomes critical. That
is why Fast SCSI protocols require active termination to work properly.

SCSI Termination Power

Termination power problems can be difficult to track down. The host

adapter is required to provide a TERMPWR signal . However, this rule
often is violated. Many parallel port SCSI adapters do not supply TERM
PWR, relying instead on the attached peripheral to supply it. Some
peripheral devices will, but often they do not. For example, the Iomega
Zip drive does not supply TERMPWR, and does not work with many par
allel port adapters.

If nothing provides terminator power you have serious trouble. If

you 're not sure if it's within range, check with a voltmeter. It should be
between 4.25 and 5 .25 volts on a properly terminated single-ended bus .

Be Cautious with Cables

The SCSI bus has much stricter electrical requirements than other inter
faces. That's why it pays to be fussy about the cables you use. Good SCSI
cables are properly shielded, have the correct impedance, and probably
cost more than you think they should. This is not the place to cut corners,
as a marginal cable can cost you more in the long run, causing intermit
tent problems that are nearly impossible to isolate.

Be aware of cable lengths. The total length of a single-ended SCSI bus
should be no more than six meters . For cabling between devices, shorter
is better.

Watch Out for Platform Dependencies 233

And at the risk of stating the obvious, make sure both ends of your
cables are connected. A cable connected at only one end is a spawning
ground for electrical gremlins.

Don't Take Documentation at Face Value

As you work with SCSI devices, you 'll find that often the manufacturer's
documentation is only slightly more trustworthy than a supermarket tab

loid. Often the documentation is written to design specifications that
changed several times before the final product reached the market.

Trust nothing you read. If the programmer's specification claims that a

device returns a certain error code, test it by inducing the error condition

and checking how the device responds .

Be cautious with documentation that appears vague. Programmers tend
to be optimistic , interpreting ambiguous information in whatever way

makes the code easier to write. When in doubt seek out a second opinion,
preferably from a pessimist.

Watch Out for Platform Dependencies

SCSI Byte Order

Novice SCSI programmers often are careless about byte order in SCSI
commands. The rule is simple: values in SCSI Command Blocks are
always in big-endian order. The most significant byte leads, the least sig
nificant byte follows .

Programmers working on Intel platforms generally are more used to

little-endian values where the least significant byte leads. Be aware that

you 'll have to do some bit-shifting or other operations to convert values
back and forth.

ASP/ Byte Order

On the other hand, ASPI uses Intel order in its SCSI Request B locks . This
makes sense, since ASPI was created for Intel platforms. I t can make
things confusing, however, when you build a SCSI COB with big-endian

numbers, then embed it in an ASPI SRB filled with little-endian values.
A little extra attention to bookkeeping can make things go more

smoothly. You may find it helpful to define macros for frequently used
conversions .

234 Troubleshooting and Common Mistakes

Structure Alignment

It's a minor mistake, but often hard to catch. You 've defined a structure in
your C code to hold a SCSI Command Descriptor Block. You fill it with

the proper values and send it to a device for execution, only to have sense
data come back informing you that you have an invalid parameter in the
CDB . What went wrong?

It's possible your structure isn 't aligned properly. A SCSI CDB must
be aligned on byte boundaries. Many compilers align structures on word
or doubleword boundaries by default.

Check your compile options to make sure your byte-aligned structures
are preserved. Inspect the structures using a debugger to make sure they

look the way you expect them to.

Buffer Alignment

Buffer alignment is another potential problem. When working with ASPI,

always check the host adapter capabilities. The sc _ HA _INQUIRY func
tion returns a buffer alignment mask. This mask tells you how to align any
buffer pointers that you pass to the ASPI manager for this particular host.
Violate the requirements at your own peril .

SCRIPTS code also has strict rules for buffer alignment. Registers that
point to memory addresses hold DWORD values, so all buffers must fall
on a DWORD boundary.

The easiest way to comply with buffer alignment rules is to align all
buffers on DWORD boundaries. This will also satisfy more lenient
requirements for word or byte aligned buffers. The SCSI Snooper sample

application takes this approach by defining a utility class called Aligned
Buffer. The AlignedBuffer class allocates memory and returns a pointer

aligned to the next doubleword boundary.

Debugging Tools

Debugging SCSI code can be a maddening experience. Too often i t involves
sending a CDB to a device that is, in effect, a black box. The device may
perform as you expect, or it may surprise you with errors that you never
anticipated.

Interactive Command Utilities

If you can invest the time, it 's often worthwhile to build a utility that will
let you edit a CDB , pass it to a device, and examine the output. This lets

Debugging Tools 235

you work with a device and become familiar with it before you build any

production code.
There are many commercial and public domain tools that perform this

function. A tool called ASPIMenu is available from Western Digital , a
manufacturer of SCSI drives and controllers . It works through your

installed ASPI driver to let you interact with a SCSI device. You can
download ASPIMenu without charge from the Western Digital Web site at
www.wdc.com.

Virtual Devices

If you plan to work extensively with a particular device, it is sometimes
helpful to simulate it in software. Set up a second host adapter in your
test machine with a different SCSI ID, and connect it to the first host
adapter. With the proper software, this second adapter can mimic a SCSI

peripheral .

For developers writing target-mode software, this is often the only way
to test code before committing it to firmware. A poorly behaved applica
tion is less likely to inflict damage on a simulated device than a real one .

Software that works with SCSI disk drives can be difficult to test safely.

Many of the examples in this book use an Iomega Zip drive, which has
removable media that is easily replaced. An even better solution would be
to use a virtual disk drive. In the SCRIPTS sample code on the companion
CD-ROM, there is an application that demonstrates target mode program

ming by building such a device. If you have a compatible Symbios Logic
host adapter, you may want to look at this code .

SCSI Bus Analyzers

The granddaddy of all SCSI debugging tools is the SCSI bus analyzer. A
bus analyzer can make errors painfully obvious . Il legal phase transitions

or dead signal lines show up readily.
Bus analyzers come in many forms, but the basic purpose is to display

a snapshot of the SCSI bus at any given time. A bus analyzer can show
you what phase the bus is in by examining the signal lines. It can display
raw data, or formatted Command Descriptor Blocks , depending on the
capabilities of a particular model . Many models measure signal voltages
and bus timing. Some have extensive capture and analysis capabilities
that will let you walk through a sequence of commands and data transfers .

If bus analyzers have a drawback, it's that they are expensive. Most
units start at several thousand dollars , which can be difficult to justify for

236 Troubleshooting and Common Mistakes

small projects . However, if you plan to work extensively with SCSI, it 's
worth the investment.

Keep a Record

As you work with SCSI, you ' 11 probably have more suggestions of your
own to add to this list. As the SCSI specification evolves , so does the

potential for mistakes by programmers. To keep from repeating your mis
takes, try keeping a notebook or journal. You 'd be surprised how much you
can forget between projects if you don't have something to refer back to.

Chapter 1 3

Sample Application: SCSI Snooper

Up until now, we 've only shown snippets of sample code to illustrate

SCSI concepts. It 's time to put some of this information to use in building
a practical application.

Most programmers learning to use SCSI start by writing an inventory
program that locates and identifies attached to the bus . We'l l take this
approach further.

We 'll develop a C++ class library around ASPI calls that will include
definitions for a SCSI interface class and SCSI device classes. We'l l
derive classes for specific device types through inheritance from a generic
base class .

Then we ' ll use this class library to build a SCSI inspector utility to
examine host adapters and peripherals attached to them. This is a 32-bit
Windows application that runs under Windows 95 and NT.

A word of preparation is in order for the Windows NT platform. The
ASPI32 service we use in this application is not part of the default NT
installation. Unless you have an application that installs it for you, you

will have to install it manually. For instructions on how to do this , refer to
Appendix C.

Because the application is written in Microsoft Visual C++, you ' l l also
need the files MSVCRT40.DLL and MFC40.DLL. Chances are, they 're
on your system already. If not, copy them from the accompanying CD-ROM

into your system directory.

237

238 Sample Application: SCSI Snooper

An Overview of the SCSI Snooper

Let 's look at our sample application in action, then we ' l l examine how it 's

constructed.

The appl ication d isplays a window with icons representing SCSI host
adapters and attached peripherals. Clicking on the icons brings up infor

mation provided by the ASPI manager and SCSI Inquiry commands.

<7 SCSI Snooper £i

� •l
1 -····--············--··········n
l J.�.\� 1

S)lmc8xx

Figure 1 3-1 . SCSI Snooper Opening Screen

The host adapter information screen displays information gleaned from

the ASPI driver. It shows the host adapter number, the name of the ASPI

manager, and a driver i dentification string.

You may see some surprises if you run this application on different
machi nes. Many manufacturers have adopted the ASPI model for device
drivers. Iomega, for example, uses an ASPI-compatible device driver for
the parallel port version of their Zip drive. Modern IDE devices may use
an ATAPI interface based on SCSI protocol, with ASPI-compatible driv
ers. When we tested the software on an IBM ThinkPad equipped with an
ATAPI CD-ROM drive, the internal interface appeared on the l ist of ASPI
hosts adapters, identifying itself as "ESDI_506."

Our example is from a Windows 95 machine equipped with Symbios
Logic SYM53C825 and Adaptec 1522 host adapters. The Symbios adapter

An Overview of the SCSI Snooper 239

i nformation screen shows that this is a Wide SCSI controller capable of
supporting 1 6 devices, with an assigned SCSI ID of 7 .

Host Adapter Properties f3

Host adapter number ,1

AS PI manager

Identification string rsymc8xX"" --

Devices supported 1 6

Figure 1 3-2. Host Adapter Information Screen

I c:::::::::::g�:::::::�:Jl

Attached peripherals are treated as a pool of devices, regardless of
whi ch host adapter they are connected to. A click on a device icon brings
up a basic i nformation screen that d isplays the device address, type, and
identification. For the Iomega Zip drive, it looks l ike Figure 1 3-3 .

SCSI Device Properties £t

Host adapter number

SCSI ID

SCSI LUN

SCSI D evice Type

D evice Name

Revision

Figure 1 3-3. Iomega Zip Drive Basic Information

l.c::::::::::9:�:�::::::::JI
More lnfo .. .]
Actions. . . I

A click on the "More I n f o . . . " button brings up an advanced i nfor
mation screen . Th is screen shows information about supported features,

attained through the I nquiry command.

240 Sample Application: SCSI Snooper

Advanced Information l£j

ANSI Version

R emovable Mecf11.1m

Linked Commands

Commend Queuing

Soft Reset

Figure 1 3-4. Iomega Zip Drive Advanced Information

Let's look at the same screens for a SCSI CD-ROM drive. The basic

i nformation screen tells us it's a Sony CD-ROM, set to SCSI ID 2.

SCSI Device Properties �

Host adapter number

SCSI IO

SCSI LUN

SCSI Device Type

Device Name

R evision

Figure 1 3-5. CD-ROM Drive Basic Information

Again, a c lick on "More I n f o . . . " brings up the advanced informa
tion, which tell s us that this device supports linked commands and
synchronous data transfer.

An Overview of the SCSI Snooper 241

Advanced Information · 11'3

ANSI Version fSCs�- I c:��:::::9�:::::::::::!)
Removable Medium �

32-bit Wide SCSI � Linked Commands

1 6-bit Wide SCSI r Command Queuing

r Soft Reset

Figure 1 3-6. CD-ROM Drive Advanced Information

Clicking the "Ac t i on s . . . " button on the device screen brings up a l ist

of device-specific actions we can perform. For all device types, you ' 11 see
the same basic actions: Test Unit Ready, Device I nqu i ry, and Read

Sense. Other actions differ depending on whether the peripheral device
type supports them or not For instance, the Zip drive actions screen shows

a l ist that pertains to direct-access devices with removable media.

Perform SCSI Command £I
Actions

T est Unit Ready
Device Inquiry
Request Sense
Read D isk Capacity
Read Disk Sector
Lock/Unlock Disk

Figure 1 3-7. Zip Drive Actions

Commands for direct access include functions to read the disk capac
ity, read a sector, and lock, unlock, or unload removable media. Selecting

242 Sample Application: SCSI Snooper

"R e a d D i s k S e c t o r" and clicldng "Run" brings up a dialog box request
ing a sector to read. The results of the command appear in the output box.

Perform SCSI Command 13

OK

I c:::::: B:��:::::.::::JI

e , IPART
code 009

2 0 2D 2 0 49 6 F 6D 65 67 - Iomeg

6 1 2 0 43 6 F 72 70 6 F 72 a C o rpor

0020 6 1 7 4 6 9 6 F 6E 20 2D 20 ation -

0028 31 31 2F 32 33 2F 39 30 11/23/90

FA FC 8 C C 8 BE DO B C 0 0

Figure 1 3-8. Zip Drive Read Sector Results

If the command fails , the output box contains error information and

any available sense data.

The actions screen for the CD-ROM is similar to that of the direct

access device.

Perform SCSI Command Ei

Actions

Test Unit R eady
D evice I nquiry
R equest Sense
R ead CD·ROM Capacity
R ead CD-ROM Table of Contents
Lock/Unlock CD·ROM

Figure 1 3-9. CD-ROM Drive Actions

lr:::::::::::QK::::::::::;I
Run I

The ASP/ Class Library 243

The user may choose to read the CD-ROM capacity, and lock, unlock,

or unload the CD-ROM. Instead of a command to read a disk sector, there

is a command to read the CD-ROM table of contents. This function dis
plays track information in the output box.

Perform SCSI Command f!i

1
23

�:ack numbe �: : 1
ADR code : 01h
T�:ack typ e : audi o

OK

I r:::::�::A:��:::::::JI

Figure 1 3-1 0. CD-ROM Read Table of Contents Results

This version of the SCSI Snooper offers only extended functions for
direct-access devices and CD-ROM drives. Actions for other SCSI periph
erals such as scanners and tape drives are l imited to commands common

to all devices. However, i t 's easy to add support for other device types

we 'l l show you how as we examine how the application works.

The ASPI Class Library

The foundation of the SCSI Snooper application is the ASPI class l ibrary.
This l ibrary creates a device interface class by applying principles we dis

cussed in Chapter 7. It serves as a wrapper around basic ASPI functions
that constructs SCSI Request B locks, passes them to the ASPI manager,
checks for completion, and maps enors.

Note that when we use the term "class," we refer to a C++ class-not a
device class or other type of class associated with Windows programming.

244 Sample Application: SCSI Snooper

The Scsilnterface Class

The Scsilnterface class is the foundation of our class library. It provides a
mechanism for software to communicate with devices through the ASPI
manager. The Scsilnterface class contains an array of host adapter informa
tion and a linked list of devices attached to the adapters . The list approach
lets us access a specific device without requiring us to know which adapter
hosts it.

Here is the definition for the Scsilnterface class .

Listing 1 3-1 . Scsi lnterface Class Definition

c l a s s S c s i i nterface {

pub lic :

int Asp i i s Open ;
uns i gned NumAdapters ;
uns i gned NumDevices ;

Adapter i n f o *AdapterL i s t ;

ItemL i s t S c s iDevLi s t ;

S c s i i nterface () ;
Sc s i i nterface (int BuildDeviceList , int type=- 1 ,

int sc an_luns = O) ;
- s c s i i nterface () ;

ScbError OpenAs piLayer () ;
uns i gned GetNumAdapter s () ;

uns i gned GetNumDevices () ;
S c s iDevice * GetDevic e (uns igned i) ;

int Bui l dDeviceL i s t (int type=- 1 , int sc an_1uns = O) ;
void ClearDeviceLi s t () ;

ScbError Re s c anBu s (int type=- 1 , int sc an_luns = O) ;

ScbError AttachDevice (uns igned adapter , uns igned unit ,
uns igned lun , int type=- 1) ;

void RemoveDevice (uns igned adapter , uns i gned unit ,
uns i gned lun) ;

(Continued)

The ASP/ Class Library 245

List ing 1 3-1 . (Continued)

S c s iDevice * F i ndDevice (char * n ame) ;
S c s iDevice * F indDevice (un s i gned adapter , uns igned unit ,

un s i gned lun) ;

} ;

An important element of the Scsilnterface class is the S c s iDevice
List member. This is a linked list of objects describing the attached SCSI

devices. Class member functions help you manage this list or locate specific

list items by name or SCSI address.

We have defined a separate class for the objects in this list .

The ScsiDevice Class

The ScsiDevice class describes the attributes and characteristics of a SCSI
peripheral, as well as functions to interact with it . It 's a bit more compli
cated than the Scsilnterface class . Here is its definition.

Listing 1 3-2. Scsi Device Class Definition

c l a s s S c s iDevice
{
publ ic :

int Adapter ;
int Unit ;
int Lun ;
int Type ;
char * Re a lName ;
char *Name ;
char * Revis ion ;
uns igned int Ans iVer s ion ;
uns igned int bRemovab le ;
uns i gned int bWide 3 2 ;
uns i gned int bWide l 6 ;
uns igned int bSync ;
uns i gned int bLinked ;
uns i gned int bQueue ;
uns i gned int bSo ftReset ;
long RetryOnSc s iBus y ;
long RetryOn S c s iError ;

I I mi l l i s econds to wait
I I mi l l i seconds to wait

(Continued)

246 Sample Application: SCSI Snooper

Listing 1 3·2. (Continued)

long RetryOnUnitAttention � I I mi l l i s econds to
long RetryOnTargetBu sy � I I mi l l i s econds to
long RetryOnTargetNotRe ady � I I mi l l i s econds to
long RetryOnTargetBecomingReady ; I I mi l l i s econds to

S c s iDevice () �
- S c s iDevice () ;

char * GetName () { return Name � } �
char * GetRealName () { return RealName ;
char * GetRevis ion () { return Revi s ion ;
int GetAdapter () { return Adapter � } �
int GetUnit () { return Unit � } ;
int GetLun () { return Lun ; } ;
int GetType () { return Type ; } ;
uns i gned int GetAns iVers ion () { return
un s i gned int I sRemovab le () { return
uns i gned int I sWide 3 2 () { return
uns i gned int I sWide l 6 () { return
uns igned int Is Sync () { return
unsigned int I sLinked () { return
uns i gned int I s Queue () { return
uns i gned int I s SoftRe s et () { return
int SetName (c har * n ame) ;

} ;

} ;

Ans i Ver s ion �
bRemovable ;
bWide 3 2 � } ;
bWide 1 6 � } ;
bSync � } ;
bLinked ; } ;
bQueue ; } �
bSo ftRe s et ;

wait
wait
wait
wait

} ;

} ;

} ;

ScbError I nit (uns i gned adapter , un s i gned unit , uns igned

ScbError ExecuteScb (S c s iCmdB lock & s cb , long timeout) ;

} �

lun) �

The ScsiDevice class contains data members that store information
about device names, SCSI addresses, host adapters, and supported features .
Some of the class functions are defined inline to simply return these values.

The workhorse function of the ScsiDevice class is ExecuteScb. This
function handles the execution of SCSI commands through the ScsiCmd
Block class .

The ScsiCmdB/ock Class

The ScsiCmdBlock class is responsible for building ASPI SCSI Request
Blocks and passing them to the ASPI manager for execution.

The ASP/ Class Library 24 7

Listing 1 3-3. ScsiCmdB iock Class Defin ition

c l a s s S c s iCmdB lock
{

pub lic :

S c s iReque stBlock s rb ;
ScbError Las tError ;

S c s iCmdB lock () ;
- S c s iCmdB lock () ;

void Init (uns igned cmd , uns igned adapter= O ,
uns igned target = O , uns igned lun= O) ;

I I The f o l l owing rout ines assume an SC EXEC S C S I CMD type command
void SetCdb (void *cdb , uns igned nbytes) ;
void GetSens e (void * s ense , uns i gned maxbytes) ;
void SetDataBu f fer (void * bufp , uns igned bu f l e n) ;
ScbError Execute (long timeout = - lL) ;

} ;

The E x e c u t e function passes a SCSI Request B lock to the underlying
ASPI manager. Other class functions set data buffers for I/0 operations
and retrieve sense data.

Initializing the Scsilnterface Class

Let 's look at these classes more closely to see how they work. We' l l start
with the second form of the Scsiinterface constructor function .

S c s i i nterface (int BuildDeviceList , int type=- 1 , int s c an_luns = O) ;

The arguments to this constructor let us tell it to scan the SCSI bus and
build a device list . We can also specify a specific device type to look for,
and whether to scan Logical Unit Numbers at each address. The default i s

to report a l l device types, and only scan LUN 0. This constructor is simi
lar to the default form, except that it calls the B u i l d D evi c eL i s t

member function. Bu i l dD e v i c eL i s t scans the host adapters for de
vices , building a linked list of attached devices.

248 Sample Application: SCSI Snooper

Listing 1 3-4. Scsi lnterface : : Bui ldDevicelist Member Function

int S c s i i nterface : : BuildDeviceLi st (int type , int sc an_luns)
{

uns igned adapter , unit , lun ;
ScbError err ;

i f (! Aspii sOpen)
{
err = OpenAspiLayer () ;
i f (err)

return 0 ;

}

I I paranoia
a s s ert (NumAdapters <= MAX_HOST_ADAPTERS) ;

for (adapter= O ; adapter<NumAdapters ; adapter++)
{
S c s iCmdB lock scb ;
s c b . I nit (SC_HA_INQUIRY , adapter , O , O) ;
err = s c b . Execute (3 0 0 0) ;
i f (! err)

{
uns igned host unit = scb . s rb . hai . HA_SCSI_I D ;
uns i gned max_units = scb . s rb . hai . HA_Unique [3] ;
i f (max_units == 0) I I old ASP! managers ?

max units = 8 ;

I I S ave host adapter informat ion
if (AdapterL i s t)

{
char * s ;
int i ;

AdapterL i s t [adapter] . AdapterNum = adapter ;
AdapterLi s t [adapter] . Sc s i i d = host_unit ;
AdapterLi s t [adapter] . MaxUnits max_units ;
AdapterLi s t [adapter] . Re s idual

s cb . srb . hai . HA_Unique [2] ;
AdapterLi s t [adapter] . Al ign =

((WORD) scb . s rb . hai . HA_Unique [O]
(WORD) scb . s rb . hai . HA_Unique [l] << 1 6) ;

I I S ave adapter manager I D
s = AdapterL i s t [adapter] . Manageri d ;

(Continued)

The ASP/ Class Library 249

Listing 1 3-4. (Continued)

for (i= O ; i< s i z eo f (s cb . srb . hai . HA_Manageri d) ; i++)
* s ++ = s c b . s rb . hai . HA_Manager id [i] ;

* S = ' \ 0 ' i

I I Trim trai ling spaces
whi l e (- - s > AdapterList [adapter] . Manager i d)

{
i f (i s a s c i i (* s) & & is spac e (* s))

* s = ' \ 0 ' ;
e l s e

break ;

}

I I S ave adapter ident i f ier
s = AdapterList [adapter] . I dent i f ier ;

for (i= O ; i < s i zeof (s cb . s rb . hai . HA_Ident i f i er) ; i++)
* s ++ = scb . s rb . hai . HA_Ident i f ier [i] ;

* s = ' \ 0 ' ;

I I Trim trailing spaces
whi l e (- - s > AdapterList [adapter] . Ident i f ier)

{

}

i f (i s a s c i i (* s) & & is spac e (* s))
* s = ' \ 0 ' ;

e l s e
break ;

}

for (unit=O ; unit<max_units ; unit++)
{
i f (unit ! = host_unit)

{
i f (sc an_luns)

{
for (lun=O ; lun< B ; lun++)

{
err = AttachDevice (adapter , unit , lun , type) ;
i f (err)

break ;

}
}

(Continued)

250 Sample Application: SCSI Snooper

Listing 1 3·4. (Continued)

}

}
}

}

e l s e
{

}

lun = 0 ;
AttachDevic e (adapter , unit , lun , type) ;

}

return NumDevices ;

There isn 't much mystery to this function. It first checks to see if the
ASPI layer is open, calling an initialization function if needed. A side effect
of the initialization routine is that it records the number of host adapters
present.

The next part of the function loops through the adapters , collecting and

storing information about the adapters and attached devices. For each host
adapter, it checks all the possible SCSI addresses for active peripherals by
calling the AttachDevice routine. The AttachDevice function per
foms the actual discovery. Listing 1 3-5 shows what it looks like.

Listing 1 3-5. Scsi lnterface : :Attach Device Member Function

ScbError S c s i i nterface : : AttachDevice (uns i gned adapter ,
uns igned unit , uns i gned lun , int type)

{
ScbError err ;
Scs iCmdB lock scb ;
S c s iDevice * dev ;

i f (! Aspii sOpen)
{
err = OpenAspiLayer () ;
i f (err)

return err ;

}
(Continued)

The ASP/ Class Library 25 1

Listing 1 3-5. (Continued)

}

I I Make sure we don ' t alre ady have it attached
i f ((dev=FindDevic e (adapter , unit , lun)) ! = NULL

{
i f ((type == - 1) I I (type == dev- >GetType ()))

return Err_None ;
e l s e

return Err_NoDevice ; I I Wrong type

}

I I See i f device r e a l ly exists by getting its device type
I I This s hould cut down on init time
scb . I nit (SC_GET_DEV_TYPE , adapter , unit , lun) ;
err = scb . Execute (l O O O L) ;
if (err)

return err ;

i f ((type ! = - 1) & & (type ! = scb . s rb . gdt . SRB_Devic eType)
{
I I Wrong type
return Err_NoDevice ;
}

dev = new S c s iDevic e ;
i f (! dev)

return Err_OutO fMemory ;

err = dev- > I n i t (adapter , unit , lun) ;
i f (err)

{
delete dev ;
return err ;
}

dev->SetName (dev->GetRea lName ()) ;
i f (! S c s iDevLi st . Add i t em (dev))

{
delete dev ;
return Err_OutO fMemory ;
}

NumDevic e s ++ ;
return Err_None ;

252 Sample Application: SCSI Snooper

AttachDevice first executes the ASPI sc GET DEV TYPE function - - -
to determine the device type attached at a specific SCSI ID and LUN. If
the ASPI call returns a valid device type, AttachDevice then calls the
ScsiDevice Init member function. The Init function executes a SCSI

I nquiry call , then stores device identification strings and capabilities for

future reference. Here is what it looks like.

Listing 1 3-6. Scsi Device : : ln it Member Function

ScbError ScsiDevice : : Init (unsigned adapter , unsigned unit , uns igned lun)
{

ScbError err ;
S c s iCmdBlock scb ;
SCS I_Cdb_I nquiry_t cdb ;
SCS I_I nquiryData_t inq ;

Adapter = adapter ;
Unit = unit ;
Lun = lun ;

s cb . I nit (SC_EXEC_SCS I_CMD , Adapter , Unit , Lun) ;

memset (& cdb , O , s i z eo f (cdb)) ;
cdb . CommandCode = SCS I_Cmd_I nquiry ;
cdb . Lun = Lun ;
cdb . Evpd = 0 ;
cdb . PageCode = 0 ;
cdb . Al locat ionLength
scb . SetCdb (& c db , 6) ;

s i zeof (inq) ;

mems et (& inq , O , s i z eo f (inq)) ;
s cb . S etDataBu f fer (& inq , s i z e o f (inq)) ;

{
long tmp = RetryOn S c s iError ;
err = ExecuteScb (s cb , 3 0 0 0L) ;
RetryOnS c s iError = tmp ;
}

i f (! err)
{
Type = inq . DeviceType ;
i f (RealName)

free (RealName) ;
RealName = (char *) mal loc (s i z eof (inq . Vendori d) +

s i zeof (inq . Product i d) +2) ;
(Continued)

The ASP/ Class Library 253

Listing 1 3-6. (Continued)

i f (RealName)
{
char * s = RealName ;
int i ;
for (i= O ; i< s i z eo f (inq . Vendorid) ; i++)

* s ++ = inq . Vendorid [i] ;
I I Trim trail ing spaces
whi l e (- - s > RealName)

{
i f (! (i s a s c i i (* s) & & i s spac e (* s)))

break ;

}
s++ ;
* s ++ = ' ' ;
for (i= O ; i< s i zeof (inq . Produc t i d) ; i++)

* s ++ = inq . Produc t i d [i] ;
* s = ' \ 0 ' ;
I I Trim trail ing spaces
while (- - s > RealName)

{
i f (i s a s c i i (* s) & & i s space (* s))

* s = ' \ 0 ' ;
e l s e

break ;

}
i f (Name == NULL)

SetName (RealName) ;

}

I I S ave revis ion s tring
i f (Revi s ion)

free (Revis ion) ;
Revi s ion = (char *)

mal loc (s i z e o f (inq . ProductRevisionLeve l+ l)) ;
i f (Revi s ion)

{
char * s = Revi s ion ;
int i ;
for (i= O ; i< s i z eo f (inq . ProductRevis ionLeve l) ; i++)

* s ++ = inq . ProductRevis ionLeve l [i] ;
* s = ' \ 0 ' ;

I I Trim trai ling spaces
whi l e (- - s > Revi s ion)

(C anti nued)

254 Sample Application: SCSI Snooper

Listing 1 3-6. (Continued)

}

}

{
i f (i s a s c i i (* s) & & is space (* s))

* S = ' \ 0 ' ;
e l s e

break ;

}

I I s ave other propert ies
Ans iVers ion = inq . Ans ivers ion ;
bRemovable = inq . RemovableMedia ;
bWide 3 2 = inq . WideBus 3 2 Support ;
bWide 1 6 = inq . WideBus 1 6 Support ;

}
e l s e

{

bSync = inq . SynchronousTrans ferSupport ;
bLinked = inq . LinkedCommandSupport ;
bQueue = inq . CommandQueueSupport ;
bSoftRe set = inq . So ftRe s etSupport ;

Type O x l F ;

}

return err ;

Look closely at this piece of code. It demonstrates how to build a SCSI
Command Descriptor Block, assign the CDB to an instance of a ScsiCmd
Block, set the address of the data buffer, and pass the ScsiCmdBlock on
for execution. All SCSI calls in the ScsiDevice class follow this model .

Executing a ScsiCmdB/ock

We've finally worked our way down to the actual ASPI function call . It
takes place in the ScsiCmdBlock class . The Execute member function

sets a few flags in the SCSI Request Block and passes it to the DoAs p i

Comrnand function. DoAs piComrnand is a static function, and is not a
member of the ScsiCmdBlock class .

The ASP/ Class Library 255

Listing 1 3-7. DoAspiCommand Function

static int DoAspiCommand (Sc s iReque stBlock *p , long timeout)
{

HANDLE hEvent ;
long wait ;

I I get event handle
hEvent = p->io . SRB_Pos tProc ;

I I map t imeout value
wait = (timeout == - 1 L) ? INFINITE timeout ;

Re setEvent (hEvent) ;

aspi_SendCommand (p) ;

i f (p->io . SRB_Status == S S_PEND ING)
{
i f (WaitForSingleOb j ect (hEvent , wait)
I I event completed
{

}

Re s etEvent (hEvent) ;
return 1 ;

time t e l ap s ed_t ime ;
time t startt ime = time (NULL) ;

whi l e (p->io . SRB_Status == SS_PENDING)
{
e l apsed_time = time (NULL) - startt ime ;
i f (t imeout ! = - 1)

{

WAI T_OBJECT_O)

i f (e l aps ed_t ime > (t imeout l 1 0 0 0 + 1)
{
i f (p->io . SRB_Cmd ! = SC_ABORT_SRB)

{
I I Abort it now
SRB_Abort a ;
mems et (& a , O , s i zeo f (a)) ;
a . SRB_Cmd = SC_ABORT_SRB ;
a . SRB_Haid = p->io . SRB_Haid ;
a . SRB_ToAbort = p ;
aspi_S endCommand (& a) ;
startt ime = time (NULL) ;
whi l e (a . SRB_Status S S_PENDING)

(Continued)

256 Sample Application: SCSI Snooper

Listing 1 3·7. (Continued)

}

}

}

}

{
i f (t ime (NULL) > (startt ime + 4))

{
I I Something has gone horribly wrong .
I I We can ' t even abort the command .
I I I gnore the abort , and pretend the
I I original command timed out .
break ;

}
S leep (l O L) ;

}

I I Aborted , return code
return 0 ;

}

i f (e laps ed_t ime > 2)
S leep (l O O OL) ;

I I i s this a long command ?
I I i f so , give the OS more t ime

e l s e
S leep (l OL) ; I I e l s e j ust give it a l ittle

}

return 1 ;

The code should look familiar, as it is similar to the examples in Chap

ter 7. We use event notification to detect when a command has completed,
and add some timeouts and other checks for paranoia.

Some of the constants and structures we use may be unfamiliar. They
are defined outside the classes we've examined, and appear separately in
the SCSIDEFS .H and ASPI.H header files .

Using the ASPI Class Library

Now that you 've seen the low-level workings of the ASPI class library,
we ' 1 1 show you how to use it in an application.

Deriving SCSI Device Types

A useful abstraction for working with SCSI peripherals is to define a
generic device type, and derive specialized devices from that. The generic

Using the ASP/ Class Library 257

device supports common SCSI functions like Te s t Unit Ready, Read

S e n s e , I nqu i ry, and others that apply to all peripheral types. From this
base class , we can derive specialized classes for direct-access devices,

CD-ROM drives , and other devices .
This is the approach we take for the SCSI Snooper. We start with a

base class called ScsiBaseDevice. This class handles common functions
and error mapping. Its definition can be seen in Listing 1 3-8 .

Listing 1 3-8. ScsiBaseDevice Class Definition

I I Base c l a s s for derived S C S I device c la s s e s
c l a s s S c s iBas eDevice

{
publ ic :

S c s iDevice * Device ;

int I sOpen ;
int LastError ;
int SystemError ;
int LastScs iError ;

uns igned Adapter ;
uns i gned Unit ;
uns igned Lun ;

S c s iCmdBlock Scb ; I I a l l commands use this S c s iCmdB lock
MutexSemaphore ScbMutex ;

union
{
S C S I_S enseData_t Sens e ;
uns i gned char SenseBuffer [SENSE_LEN] ;

} ;

S c s iDeviceAttributes t
SCS I_I nquiryData_t

S c s iBas eDevice () ;
- S c s iBas eDevice () ;

Attribute s ;
I nquiryData ;

S c s iDevice * GetS c s iDevice () ;

S c s iError_t Open (Sc s iDevice * dev ,
S c s iDeviceAttribute s_t * attr=O) ;

S c s iError t C l o s e (void) ;
(Continued)

258 Sample Application: SCSI Snooper

List ing 1 3·8. (Continued)

S c s iError_t DoCommand (vo id * cdb , uns igned cdblen ,
void * dbu f , uns igned long dbuflen , int dir ,
long timeout) ;

int Val idRe s idualCount () ;
long GetRe s idualCount () ;
u n s i gned MapAs cAsq () ;
S c s iError t Map S c s iError () ;

S c s iError t WaitTi lRe ady (long timeout - 1) ;

S c s iError t Tes tUnitReady () ;
S c s iError t RequestSense (void *bufp , uns igned maxbyte s) ;
S c s iError_t I nquiry (void * bufp , uns i gned maxbytes ,

int evpd= O , int page_code= O) ;
S c s iError_t ModeSelect (void *bufp , uns i gned nbyte s ,

int p f = O , int sp=O) ;
S c s iError_t ModeSen s e (void *bufp , uns igned maxbyte s ,

int page_code=O , int pc=O , int dbd= O) ;

void QueryErrorStr ing (Sc s iError_t errcode , char *bufp ,
uns i gned maxbyte s) ;

char * QueryMa j orErrorString (Sc s iError_t errcode) ;

} ;

The Dev i c e member variable is a pointer to a ScsiDevice object from

our class library. This object must already exist, and is passed to the Scsi
BaseDevice object through the Open function.

The higher level functions all call DoCommand, which takes pointers to
a COB and a data buffer as arguments. A simple example is the I nqu i ry

function, which executes a SCSI Inquiry command.

Listing 1 3·9. Scsi BaseDevice : : l nquiry Member Function

S c s iError t Sc s iBaseDevice : : I nquiry (void *bufp ,
uns igned maxbytes , int evpd , int page_code)

{
SCS I_Cdb_Inquiry_t cdb ;
char buf [2 6 0] ;

(Continued)

Using the ASP/ Class Library 259

Listing 1 3·9. (Continued}

}

mems et (bu fp , O , maxbyte s) ;
i f (maxbyte s > 2 5 5)

maxbyte s = 2 5 5 ;
memset (& cdb , O , s i zeof (cdb)) ;
cdb . CommandCode = SCS I_Cmd_I nquiry ;
cdb . Lun = Lun ;
cdb . Evpd = evpd ;
cdb . P ageCode = page_code ;
cdb . Al locat ionLength = O xFF ;

LastError = DoCommand (& cdb , 6 , bu f , maxbyte s , Sc s i_Dir_I n ,
Attr ibute s . ShortTimeout) ;

memcpy (bu fp , bu f , maxbytes) ;

return Las tError ;

The approach here is simple: build a SCSI CDB and pass it to the
DoCommand function along with data buffer information. This makes add
ing functions for other SCSI commands easy.

The ScsiDiskDevice class inherits the functionality of ScsiBaseDevice,

and adds support for other commands.

Listing 1 3-1 0. ScsiDiskDevice Class Defin ition

I I SCSI direct ac c e s s device c l a s s
c l a s s S c s iD i s kDevice : pub lic Scs iBas eDevice

{
public :

S c s iD i s kDevice () ;
-Sc s iD i s kDevice () ;

S c s iError t ReadCapac ity (DWORD *blklast , DWORD * b l k s i z e) ;
S c s iError_t ReadSector (DWORD s ectnum , void * bufp ,

DWORD maxbyt e s , DWORD * bytes read = NULL) ;
S c s iError t LockUnloc k (int fLock) ;
S c s iError t E j ect () ;

} i

260 Sample Application: SCSI Snooper

We've only added a few device type-specific functions here. The C++
inheritance mechanism makes functions in the ScsiBaseDevice class
available to ScsiDiskDevice objects .

It 's comforting to note that at higher levels of abstraction the code
becomes simpler.

The SCSI Snooper Application Framework

The SCSI Snooper uses the Microsoft Foundation Classes l ibrary to pro
vide an application framework and the elements of the user interface .
Structurally, the Snooper program is a series of dialog boxes with controls
that invoke selected commands .

Much of the application code was generated by Microsoft's Develop

ment Studio, and is too bulky to reproduce here. However, it is included

on the companion CD-ROM. Feel free to study it, dissect it, and adapt it
for your own use.

You may use the included makefile to build the application or create a
Visual C++ project file. The ASPI class library files are in a separate sub
directory. Make sure this subdirectory appears in the search path for
include files, or the compiler will be unable to locate the class l ibrary
header files.

SCSI Snooper Application Structure

The application class, CSnooperApp, contains a pointer to a Scsilnterface
object. The main dialog class , CSnooperDlg, uses this pointer to locate
host adapters and create icon buttons for them. The c s nooperD l g initial
ization routine walks the device list, mapping it to an array. This array is
used to create and track device icon buttons by index number.

The adapter information dialog class is CAdapterDlg. The CSnooper

Dlg object passes it a pointer to the application 's Scsiinterface object,

which it uses to display information about the selected host adapter.
The device information dialog class is CDeviceDlg. It receives a

pointer to a ScsiDevice object from the CSnooperDlg object that calls it.
Through this pointer, it retrieves the device name and identification strings
for display.

The CMoreinfoDlg class is responsible for the extended information
dialog. It receives a pointer to a ScsiDevice object from the parent CDevice
Dlg object. SCSI features appear as a series of boxes, which are checked
if the device supports them.

Using the ASP/ Class Library 261

The CActionDlg class is more complex than the others . Using the
ScsiDevice object pointer it receives from its CDeviceDlg parent, it deter

mines the SCSI peripheral device type and displays the appropriate
actions in a list box . On executing the actions, it displays error messages
or output in a text field.

Use the SCSI Snooper to examine devices . You may be surprised to see
that some devices do not respond as you expect them to. For instance,

Read S e n s e command issued after cycling power on a device should report
Unit Attention condition. However, some devices silently ignore it .

Use the application as a learning tool by extending it. Don 't be afraid

to experiment !

Appendix A

Glossary of Acronyms

General Terms

ANSI

ASC

ASCQ

CDB

CRC

ccs

The world of SCSI is filled with strange terms and confus
ing acronyms. This glossary lists some of the more common
acronyms and what they stand for.

American National Standards Institute-organization re
sponsible for maintaining and promoting industrial standards

Additional Sense Code-sense value that identifies the source

of a specific error condition

Additional Sense Code Qualifier-sense value that provides
details about a specific error condition

Command Descriptor Block-structure used to pass com
mands and parameters to a SCSI device

Cyclic Redundancy Check-computed number used to
detect errors in data transfers

Common Command Set-standard command set for direct
access devices

263

264 Glossary of Acronyms

DLL

LUN

LVD

SCAM

SCSI-2 Def in it ions

Dynamic Link Library-file containing shared code or data
used in Windows applications

Logical Unit Number-identifies a subunit on a target

device

Low Voltage Differential-a wiring alternative designed to
accommodate higher transfer speeds

SCSI Configured AutoMagically-defines a protocol for

Plug and Play SCSI configuration

SCSI-2 Protocols

PHI SSA Physical Level 1--defines Serial Storage Architecture
physical layer

S2P SSA SCSI-2 Protocol-defines SCSI-2 transport over Serial
Storage Architecture

TLI SSA Transport Level 1--defines transport protocol over
Serial Storage Architecture physical layers

SCSI-3 Defin itions

SAM

SAM-2

MMC

SCS/-3 Architecture

SCSI-3 Architecture Model

SCSI-3 Architecture Model, second generation

SCS/-3 Command Sets

Multi-Media Commands-defines commands for multi
media devices such as CD-ROMs

SBC SCSI-3 Block Commands-defines commands for block-
oriented direct-access devices

SCC SCSI-3 Controller Commands-defines commands for
RAID devices

SCSI Software Interfaces 265

SES SCSI-3 Enclosure Services-defines commands for
enclosures

SMC SCSI-3 Medium Changer Commands-defines commands

for medium changers such as jukeboxes

SPC SCSI-3 Primary Commands-defines basic commands for

all SCSI-3 devices

SSC SCSI-3 Stream Commands-defines commands for stream
oriented sequential-access devices

FCP

PH2

S3P

SBP

SBP-2

SIP

SPI

SPI-2

SSA

STS

TL2

SCSI-3 Protocols

Fibre Channel Protocol-defines SCSI transport over the
Fibre Channel Interface

SSA Physical Level 2-defines Serial Storage Architecture
physical layer

SSA SCSI-3 Protocol-defines SCSI-3 transport over Serial
Storage Architecture

SCSI-3 Serial Bus Protocol-defines SCSI-3 transport over

the IEEE 1 394 interface

Serial Bus Protocol, second generation-defines generic
transport over IEEE 1 394 interface

SCSI-3 Interlocked Protocol

SCSI-3 Physical Interface

SCSI-3 Physical Interconnect-2--combines SPI, Fast-20,

and SIP

Serial Storage Architecture

SCSI Transport via SBP-2-defines SCSI-3 transport over

SBP-2

SSA Transport Level 2-defines transport protocol over
Serial Storage Architecture physical layers

SCSI Software Interfaces

ASPI Advanced SCSI Programming Interface

266 Glossary of Acronyms

CAM

CAM-3

SRB

SCSI-2 Common Access Method

SCSI-3 Common Access Method

SCSI Request Block-command structure used in ASPI
programming

Appendix B

Books

SCSI Resources

A wide range of information about SCSI is available-the trick is to find

it. This appendix lists sources of information in both print and electronic
form. Use it as a starting point for tracking down information. Keep in
mind though, that with the rapid growth of SCSI more information is
available daily.

Books about SCSI are scarce commodities . Most books on the topic focus

on SCSI hardware , rather than on programming SCSI devices . Some of
the books in this list are no longer in print, but are still available through
locator services or online bookstores.

ANSI SCS/-2 Standard

Global Engineering Documents
1 5 Inverness Way East

Englewood, CO 801 1 2
(800) 854-7 1 79

267

268 SCSI Resources

The SCSI Bus and IDE InteJface : Protocols , Applications and
Programming

Friedheim Schmidt

Addison Wesley Longman

ISBN 0-20 1 -42284-0

The Indispensable PC Hardware Book: Your Hardware Questions
Answered, Second Edition

Hans-Peter Messmer

Addison Wesley Longman
ISBN 0-20 1 -87697-3

The Book of SCSI

Peter M. Ridge

No Starch Press

ISBN 1 -8864 1 1 -02-6

The SCSI Encyclopedia

ENDL Publishing
1 4426 B lack Walnut Ct.

Saratoga, CA 95090

(408) 867-6642

The SCSI Bench Reference

ENDL Publishing
1 4426 Black Walnut Ct.
Saratoga, CA 95090
(408) 867-6642

What Is SCSI? Understanding the Small Computer
Systems Intelface

Prentice-Hall
ISBN 0- 1 3-796855-8

In-Depth Exploration of SCSI

Solution Technology, SCSI Publications
P.O. Box 1 04
Boulder Creek, CA 95006
(408) 338-4285

Magazines and Journals

"The Advanced SCSI Programming Interface"

Brian Sawert

Online Information 269

D1: Dobb 's Journal, March 1 994, pages 1 54- 1 5 8

"The SCSI Bus, Part 1"

L. Brett Glass

Byte Magazine , February 1 990, pages 267-274

"The SCSI Bus, Part 2"

L. Brett Glass
Byte Magazine , March 1 990, pages 29 1-298

"More Than Just Fast"

Rick Grehan
Byte Magazine , December 1 990, pages 36 1-369

O n l i ne I nformation

The best sources for current information on proposed SCSI standards are
on the internet. Web sites offer interactive browsing of documents , FTP
sites contain current draft specifications . Here are some l ists of useful
sites for SCSI programmers .

Web Sites

ANSI X3TIO Committee Home Page-http ://www.symbios .com/x3t l 0/

This is the home page for the X3T l 0 working committee . Look for
current information about SCSI-3 standards here.

ANSI X3TJ O Committee Drafts-http ://www.symbios .com/x3t l 0/
drafts .htm

This link from the X3T 1 0 home page holds the latest draft
documents.

SCSI-2 Specification (Draft X3T9.2 Rev JOL)-http ://scitexdv.com/

SCSI2/

This site holds a hypertext version of the SCSI-2 draft specification .

270 SCSI Resources

SCSI FAQ-http ://www.cis.ohio-state .edu/hypertext/faq/usenet/scsi-faq/

top.html

This s ite-maintained by Gary Field-contains archives of SCSI
Frequently Asked Questions from the comp.periphs.scsi newsgroup.

Adaptec Home Page-http ://www.adaptec.com

This is the home page for Adaptec, a manufacturer of SCSI control
lers and devices. With Adaptec 's acquisition of Trantor and Future
Domain, support for these devices are also here.

Adaptec Developer Information-http ://www.adaptec.com/support/
dev.html

This s ite holds information for SCSI developers , including ASPI
information and documents .

Symbios Logic Home Page-http ://www.symbios .com

This is the home page for Symbios Logic, a manufacturer of SCSI
devices and controllers . Symbios grew from the NCR Microelectron
ics Division, a pioneer in the SCSI industry. Symbios hosts the
X3T1 0 committee home page.

Symbios Logic Articles-http ://www.symbios.com/articles/articles .htm

This page is a starting point for information relating to SCSI.

Ancot Corporation Home Page-http ://www.ancot.com/

Ancot, a manufacturer of SCSI devices and test equipment, hosts
technology discussiOns and pointers to other SCSI resources . They
offer a free booklet, The Basics of SCSI, that you can order online.

Western Digital Corporation Home Page-http ://www.wdc.com/

Western Digital manufactures SCSI drives and host adapters . Their
web site contains useful benchmark programs, ASPI utilities , and
testing tools .

Linux Parallel Port Home Page-http ://www.torque.net/linux-pp.html

For information about parallel port devices under Linux, this is the
place to go. It contains links to information about parallel port SCSI
adapters and the Iomega parallel port Zip drive .

Linux Documentation Project Home Page-http ://sunsite .unc.edu/mdw/
linux .html

This is the home of the Linux Documentation Project, and is a good
resource for questions about Linux device drivers and SCSI support.

Usenet Newsgroups

Online Information 27 1

Newsgroups are great forums for discussing topics related to SCSI . Users
post questions and answers, and lively discussions usually follow.

comp.periphs.scsi-the definitive newsgroup for SCSI information

comp.sys. ibm .pc.hardware .chips-a newsgroup with a slant toward
SCSI controllers

comp.sys . ibm.pc.hardware .storage-good information about SCSI

drives and tape devices

comp.os .ms-windows.programmer.nt .kernel-mode--questions and
answers about SCSI support under Windows NT

comp . os. linux .hardware--questions and answers about SCSI
devices under Linux

Ftp Sites

I/0 Standards Committee Ftp Server-ftp.symbios .com/pub/standards/io/

This site, hosted by Symbios , holds draft standards, utilities , specifi
cations, and working group proceedings. You 'l l find documents
relating to SCSI-2, SCSI-3 , Plug and Play SCSI, and an assortment of
other SCSI topics .

Tulane University SCSI Archive-ftp.cs . tulane.edu/pub/scsi/

This ftp site mirrors the contents of the SCSI BBS . Draft standards,

working papers, and other documents appear here.

Linux Ftp Sites
ftp :/ /sunsite . unc .edu/pub/linux/
ftp :/ /tsx- l l .mit.edu/pub/linux/
ftp :/ /ftp .redhat.com/pub/

These are popular sites for Linux distributions and documentation.

Bulletin Board Systems

SCSI BBS-(7 1 9) 574-0424

This is the definitive source for SCSI-related information, maintained
by members of the X3T l 0 working committee.

272 SCSI Resources

Manufacturer Contacts

This list gives contact information for manufacturers noted in the text.

Global Engineering Documents

1 5 Inverness Way East
Englewood, CO 80 1 1 2

(800) 854-7 1 79

Global Engineering publishes and distributes the ANSI SCSI-2 speci
fication. The document runs over 400 pages of minute detail , but is
indispensible for serious development work.

Adaptec, Inc .

69 1 South Milpitas Boulevard

Milpitas , California 95035

(408) 945-8600

Adaptec manufactures SCSI controllers , host adapters , and other
devices. Contact their Developer Relations department to purchase
the ASPI Software Developer's kit.

Symbios Logic

Western Sales Division

1 73 1 Technology Drive, Suite 6 1 0
(408) 44 1 - 1 080

Symbios manufactures SCSI controller chips, host adapters, and
other devices. They distribute the SCRIPTS compiler for low-level
programming of their products .

Iomega Cmporation

West Iomega Way

Roy, Utah 84067
(800) 778- 1 000

Iomega manufactures the popular Zip drive. Available in both SCSI
and parallel port versions, Zip drives come in handy for developing
and testing SCSI code. The parallel port model comes with an ASPI

compatible driver.

Appendix C

Installing the Windows
NT ASP/32 Service

The default Windows NT setup does not contain support for ASPI32.

Windows NT supports SCSI devices differently than Windows 95 , so the

ASPI layer is not required. Unless you use an application that installs the
ASPI service for you, you ' 11 have to do it yourself.

If you have purchased the Adaptec EZ-SCSI software, it will install the
necessary l ibraries and drivers for you. The EZ-SCSI software is also
include in the ASPI Developer's Kit.

If you don ' t have the EZ-SCSI software, it 's not difficult to configure
the service manually. The required files are available on the Adaptec web

site at www.adaptec .com.

Download the Windows 32 ASPI drivers and DLLs from the Adaptec
web site. You may have to hunt around for them. There are four files
required for the Windows NT ASPI service.

ASP/32 Support Files

WNASPI32.DLL

ASPI32.SYS

WINASPI.DLL

WOWPOST.EXE

32-bit ASPI manager

ASPI kernel mode driver

1 6-bit ASPI manager

Support for callbacks in 1 6-bit applications

273

27 4 Installing the Windows NT ASP/32 Service

Copy WNASPI32.DLL to the \WINN1\SYSTEM32 directory. Copy

the ASPI32.SYS file to the \WINN1\SYSTEM32\DRIVERS directory.

The other files go in the \WINN'I\SYSTEM directory to support 1 6-bit
applications .

Edit the registry to install the ASPI32.SYS driver. Run the registry
editor, and create a key under HKEY _LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services called ASPI32. Add the fol lowing three

values under the new key. Note that they are all REGDWORD values.

ASP/32 Registry Entries

ErrorControl

Start

Type

(REGDWORD) 1

(REGDWORD) 2

(REGDWORD) 1

Exit the registry editor and reboot your system.
When your machine has restarted, go to the Control Panel and click on

Devices. You 'll see ASPI32 listed among them. It's configured to start
automatically when your system starts.

That 's it ! Your NT system is now ready to support ASPI32 applications .

Appendix D

Companion CDsROM Contents

The CD-ROM that accompanies this book contains sample code, tools ,
and documentation that you wil l find helpful as you explore SCSI further.
Keep in mind that SCSI is a rapidly evolving technology. Some of the
contents of the CD-ROM may be out of date by the time you read this .
Nevertheless, i t 's convenient to have them at your fingertips .

Sample Code

The SCRIPTS sample code and the source code for the SCSI Snooper
application appear on the disk under the SampCode directory. You 'l l find
the source code along with the compiled applications .

You ' ll also find the source code for the TSPI target mode API library
under the SampCode directory.

SCRIPTS Sample Code

The SCRIPTS sample code contains the routines presented in the
SCRIPTS chapter. It contains a makefile for building the sample SCSI
inventory program. The makefile i s compatible with Borlands ' make util
i ty, distributed with their C++ compiler. The makefile assumes you are

using Borland C++ and Turbo Assembler. You 'l l need to modify i t if you
are porting the code to another compiler.

275

276 Companion CD-ROM Contents

SCSI Snooper Application

The code for the SCSI Snooper application includes a makefile generated
by Microsoft 's Visual C++ development environment. You can use it as is ,

or generate a project file from it . The compiled application and required
libraries appear in the Program subdirectory.

TSPI Target-Mode SCSI Programming Interface

The code for the TSPI target-mode programming interface appears in the

TSPI subdirectory. You 'll also find sample code from Chapter 9 here.

SCSI Specifications

The SCSI- I , SCSI-2, and SCSI-3 draft specifications appear under the
SCS/Spec directory. The older specifications are plain text files and Adobe
Acrobat PDF files. The components of the SCSI-3 draft specification are
distributed as PDF and PostScript files . You 'll need Adobe 's Acrobat

Reader to view the PDF files . We have included that in the Acrobat

directory.

Keep in mind that many parts of the SCSI-3 specification are still under
revision. For the latest updates, check the TlO Committee web site at
http :/ /www.symbios .com/x3t 1 0.

We also have included a hypertext version of the SCSI-2 specification.
This i s Gary Bartlett 's HTML adaptation of the SCSI-2 drafts, as posted
on the web site at http ://scitexdv.com/SCSI2. Point your browser to the
\SCSISpec\HTML\index.html file on the CD-ROM to view the material

offline. If you have installed the Adobe Acrobat Reader plugin, you can

also use your browser to view the SCSI-3 specification PDF files .

SCSI Frequently Asked Questions

No SCSI book would be complete without a copy of Gary Field 's SCSI
FAQ. You ' ll find it in the SCS/Faq directory. This document is posted

monthly in the comp .periphs.scsi usenet newsgroup.

Symbios SCRIPTS Support

The Symbios subdirectory contains tools and sample code for working
with the SCRIPTS language. You 'll find the NASM compiler in the Tools

subdirectory, along with the NVPCI debugger.

Linux SCSI Documentation 277

The 8xxdev directory contains sample code that demonstrates using
SCRIPTS for SCSI initiator code. Other source files in this directory con
tain utility routines you ' l l want to use for your own software .

The 8xxtarg directory contains sample code that demonstrates using
SCRIPTS for target mode appl ications . The sample application creates a

virtual SCSI disk drive that can be useful for testing other applications.

lim.ax SCSI Documentation

Under the Linux directory on the CD-ROM, you ' l l find the Linux
HOWTO documents for SCSI support and SCSI programming. The SCSI
programming HOWTO document contains an example application that

uses the Linux SCSI pass-through feature.
We have also included an archive of the kernel source code for version

2.0 .30. You ' ll need Gnu zip to unpack the tar file, or a Windows utility

like WinZip . The linuxldriverslscsi directory in the archive holds driver
source code for a variety of SCSI host adapters and the code for the SCSI
pass-through driver, sg.c. Other SCSI support files are found in the linux/
include/scsi directory of the archive.

Index

A cable, 6

AB_ButLen field, 1 0 1

AB_BufPointer field, 1 0 1

AB_ZeroFi l l field, 1 0 1

Abort message, 28

Abort SRB command, 8 3-86

Abort Tag message, 29

ACK signal

in Data phases, 2 1

for Synchronous Data Transfer Request

message, 26

in target mode programming, 1 32, 1 34

Actions in SCSI S nooper, 24 1

Adapter Inquiry command, 1 39- 1 4 1

Adapter Unique Flags, 75

Adapters

addressing, 5 7-5 8

information about, 69, 7 1 -7 5 , 1 39- 1 4 1 ,

23 8-239

specific properties of, 64

status of, 97-99

Additional sense code qualifiers (ASCQs),

52

Additional sense codes (ASCs), 52

Addresses

in ASPI, 57-59

for devices, 1 69- 1 70

logical block, 45

in SCRIPTS, 1 1 0- 1 1 2

Advanced Information screen, 239-24 1

Advanced SCSI Programming Interface

(ASPI), 55-56

adapter and device addressing in, 5 7-5 8

adapter specific properties in, 64

benefits of, 5 6-57

byte order in, 233

class l ibrary. See Class l ibrary for SCSI

Snooper

command steps in, 5 8-63

command summary for, 69-7 1

Host Adapter Status code in, 97-99

manager connections in, 64-69

SC_ABORT_SRB command in, 8 3-86

SC_EXEC_SCSI_CM D command in,

7 8-83

SC_GET_DEV _TYPE command in,

7 6-78

SC_GETSET_TIMEOUTS command in,

90-93

SC_HA_INQUIRY command in, 7 1-75

279

280 Index

Advanced SCSI Programming Interface

(ASPI) (cont.)
SC_RESCAN_SCSI_BUS command in,

89-90

SC_RESET_DEV command in, 86-89

SRB Status code in, 93-97

Target Device S tatus code in, 99- 1 00

for Win32 functions, 1 00- 1 02

for Windows 3 . x , 1 6 1 - 1 62

for Windows 95 and NT, 1 62-1 63

AECN flag, 36

AIX 4. 1 UNIX, 1 79- 1 80

Alignment

in buffers, 74-75, 234

in SCRIPTS , 1 08

in structures, 234

Allocation length for sense data, 50

Analyzers, bus, 235-236

APIX VxD, 1 65

Arbitrated loop topology, 1 0

Arbitration phase, 1 5- 1 6, 1 8- 1 9

Arrays

for SCRIPTS , 1 05

for Windows 95 and NT, 1 62-1 63

ARRE flag, 44

ASCQs (additional sense code qualifiers) ,

52

ASCs (additional sense codes), 52

ASPI. See Advanced SCSI Programming

Interface (ASPI)

ASPI .H file, 256

ASPI32 service, 237, 273-274

ASPI32.SYS driver, 1 65 , 273

ASPI32BUFF structure, 1 0 1

ASPIMenu tool, 235

ATN (Attention) s ignal, 1 8

i n Selection phase, 1 9

i n target mode programming, 1 35

Attach LUN command, 1 4 1

attach routines i n Linux, 1 94- 1 95 , 227-228

AttachDevice function, 250-252

A WRE flag, 44

B cable, 6

B ig-endian byte order, 3 3 , 233

BIOS , PCI, version of, 1 1 4- 1 1 5

B lock descriptors, 4 1

Block device drivers , 1 77

BSY (Busy) signal, 1 8

in Arbitration phase, 1 8- 1 9

i n Reselection phase, 1 9

i n Selection phase, 1 9

in target mode programming, 1 30

Buffer Alignment Mask, 74-75

Buffers

alignment in, 74-75, 234

for SCRIPTS , 1 1 9- 1 20

for SCSI Pass-Through, 1 72-1 73

testing, 3 8

for UNIX device drivers, 1 77

for Win32 functions, 1 00- 1 0 1

BuildDeviceList function, 247-250

Bus

querying, 1 1 9- 1 25

scanning for changes on, 89-90, 1 70- 1 7 1

termination of, 3 , 232

Bus analyzers, 235-236

Bus Device Reset message, 28, 86

Bus Free phase, 1 8

Busy status code, 49, 1 00

Byte order, 3 3 , 233

C/D (Control/Data) signal, 1 8

in Data phases, 2 1

in Message In phase, 2 1

in Message Out phase, 20

in Status phase, 2 1

C language, SCRIPTS code embedded in,

1 07- 1 1 3

Cables

problems with, 232-233

in SCSI- I , 3

in SCSI-3 , 8

in serial SCSI standards , 9

CActionDlg class, 26 1

CALL instruction, 1 06

Callback routines

in ASPI, 60-62

in TSPI, 1 47- 1 48

CAM (Common Access Method), 1 76

CAM-3, 1 2

Capabilities information, 3 6-3 7 , 1 69

CCS (Common Command Set) , 3-4

CDBs. See Command Descriptor Blocks

(CDB s)

CDECL calling convention, 6 1-62

CDeviceDlg class, 260-26 1

Change Definition command, 39

Character device drivers , 1 77

Check Condition status code, 49, 1 00

check_scsidisk_media_change routine,

2 1 1 -2 1 2

Class drivers, 1 63 , 1 65

Class l ibrary for SCSI Snooper, 243

AttachDevice function in, 250-25 2

B uildDeviceList function i n , 247-250

DoAspiCommand function in, 254-256

Init function in, 252-254

ScsiCmdBlock class in, 246-247

ScsiDevice class in, 245-246

Scsiinterface class in, 244-245

using, 256-26 1

CLEAR instruction, 1 06

Clear Queue message, 29

Close entry point, 1 77

close routine, 2 1 6

CMoreinfoDlg class, 260

Command Complete message, 2 1

Command Descriptor B locks (CDBs) , 20,

3 1-32 , 59 , 7 8

alignment i n , 234

creating, 2 1 0

editing, 234-23 5

with miniport drivers, 1 64

in target mode programming, 1 33- 1 34

command_done routine, 2 1 9-220

Command layer in SCSI-3 , 1 1
Command phase, 1 6 , 20, 1 3 3- 1 36

Command Terminated status code, 49

Commands, 3 1

in ASPI, 5 8-63 , 69-93

byte order of, 3 3 , 233

device type specific, 39-44

linked, 7 , 23

mandatory, 3 3-3 8

optional, 3 8-39

Index 28 1

for reading and writing, 44-45 , 1 1 9

in SCSI- I , 3-4

structure of, 3 1 -3 3

in TSPI, 1 39, 1 56

Common Access Method (CAM), 1 76

Common Command Set (CCS) , 3-4

comp.periphs .scsi newsgroup, 23 1

Companion CD-ROM, 275-277

Compare command, 38

Complete Command command, 1 47- 1 48

Condition Met status code, 48-49

Conditional tests in SCRIPTS , 1 07

Configuration registers, SCRIPTS routine

for, 1 1 7- 1 1 8

Connecting

to ASPI manager, 64-69

to TSPI manager, 1 5 3- 1 55

Contingence alliance conditions, 49

Control fields, 3 2-3 3

Control registers , initializing, 1 1 8- 1 1 9

Copy command, 3 8

Copy and Verify command, 3 8

Cost o f cables, 232

CSnooperApp class, 260

Current errors with sense data, 50

Cyclic Redundancy Check (CRC), 1 0

Data In phase, 1 6, 20-2 1

Data integrity in serial SCSI standards, 1 0

Data l ines in Arbitration phase, 1 9

Data Out phase, 1 6, 20-2 1 , 1 34

Data parity in SCSI-2, 7

DBD flag, 40

DCNTL (DMA Control) register, 1 1 3

Debugging tools, 234-236

Dedicated services in FC standard, I 0

Deferred errors with sense data, 5 0

Density code with sense data, 4 1

Dependencies, platform, 23 3-234

Deriving device types, 25 6-260

Detach LUN command, 1 4 I - I 42

detach routines in Linux, I 95- I 96, 228

detect routine, I 94, 226

Device Driver Kit (DDK), 1 66

282 Index

Device drivers

opening, 1 66

in UNIX implementations, 1 7 6- 1 78

in Windows 3 . x , 1 6 1 - 1 62

in Windows 95 and NT, 1 63- 1 64

Device indexes, 1 1 5

Device Inquiry command, 1 1 9- 1 20

Device nodes, 1 77 , 2 1 2

Device types

commands for, 39-44

deriving, 256-260

in Inquiry command, 36

obtaining, 76-78

resetting, 86-89

DeviceloControl() routine, 1 65

Devices

addresses for, 57-5 8 , 1 69- 1 70

capabilities of, 3 6-37, 1 69

IDs for, 1 1 5

information about, 1 1 9- 1 20

opening, 1 88-1 90, 2 1 4-2 1 5

precedence of, 1 6 , 1 9

virtual, 235

DEVIOCTL.H file, 1 66

Differential wiring, 6

Digital UNIX, 1 85- 1 86

DIP (DMA Interrupt Pending) flag, 1 1 3

Direct hardware access, I 04

Disconnect command, 1 5 2

Disconnect message, 28, 1 5 2

Disconnect-reconnect mode page, 43

Disk class drivers , 1 65

DMA Control (DCNTL) register, 1 1 3

DMA Interrupt Pending (DIP) flag, 1 1 3

DMA SCRIPTS Pointer (DSP) register, 1 08

DMA SCRIPTS Pointer Save (DSPS) regis-

ter, 1 1 3

DMA Status (DSTAT) register, 1 1 3

do_sd_request routine, 1 9 8-200

DoAspiCommand function, 254-256

DoCommand function, 25 8-259

Documentation

for Linux, 277

problems with, 233

for target mode programming, 1 28

DPMI (DOS Protected Mode Interface), 1 62

DPO/FUA flag, 43

Drivers

opening, 1 66

in UNIX implementations, 1 76- 1 78

in Windows 3 .x, 1 6 1 - 1 62

in Windows 95 and NT, 1 63- 1 64

DSP (DMA SCRIPTS Pointer) register, 1 08

DSPS (DMA SCRIPTS Pointer Save) regis

ter, 1 1 3

DSTAT (DMA Status) register, 1 1 3

Dynamic driver loading, 1 76

Editing Command Descriptor Blocks,

234-235

EER flag, 44

Embedding SCRIPTS code in C , 1 07- 1 1 3

End of Medium (EOM) field, 50

Entry points in TSPI, 1 53- 1 5 5

Errors and status

Host Adapter Status, 97-99

with Mode Sense command, 44

with Request Sense command, 50

in SCRIPTS programs, 1 24

sense keys for, 5 1 -53

SRB Status, 93-97

Target Device Status , 99- 1 00

in TSPI, 1 39

Event Notification, 63, 1 63

EVENT objects , 62

Events in TSPI, 1 42- 1 44

EVPD flag, 3 5 , 3 8

Execute S C S I Command command, 78-83

Extended messages, 25

FAR PASCAL calling convention, 6 1

Fast SCSI, 5-6

Fast-20 SCSI, 8

Fast-40 SCSI, 8-9

Fast Wide SCSI, 6

Feedback, 47

Fibre Channel (FC) standard, 1 0

Field, Gary, 23 1 , 276

53C400A chipset, 1 28- 1 30

Filemark field, 50

finish routine, 1 93

Fire Wire standard, I I

Frame switched services, I 0

free routine, 2 1 7

FreeASPI32Buffer() routine, 1 0 1

Frequently asked questions, 276

Generic driver in Linux, 2 1 2

GENSCSI .SS module, 1 1 9- 1 25

Get Address command, 1 69- 1 70

Get Capabil i ties command, 1 69

Get Device Type command, 7 6-7 8

Get Event command, 1 42- 1 44

Get Inquiry Data command, 1 67- 1 68

Get Message From Host command,

1 50- 1 5 1

Get/Set Timeouts command, 90-93

Get Timeout function, 8 3

GetASPI32Buffer() routine, 1 0 1

GetASPI32Supportlnfo() routine, 65

GetASPISupportlnfo() routine, 65--66, 69

GetProcAddress() routine, 66

GlobalAlloc() routine, 1 62

GlobalPageLock() routine, 1 62

Good status code, 48-49, I 00

Groups, command, 20, 3 1 -3 2

HA_Count field, 73

HA_Identifier field , 74

HA_ManageriD field, 74

HA_SCSI_ID field, 73

HA_Unique field, 74-75

Handshaking in Data phases , 2 1

Hardware

in target mode programming, 1 28- 1 29

troubleshooting, 23 1 -233

Hardware Error sense key, 5 1

Hardware independence in ASPI, 56

Hardware-specific drivers, 1 63

Hardware-speci fi c properties, 64

HASTAT_BUS_FREE status value, 98

HAST AT _BUS_RESET status value, 99

HASTAT_COMMAND_TIMEOUT status

value, 99

HASTAT_DO_DU status value, 98

Index 283

HAST AT _MESSAGE_REJECT status

value, 99

HASTAT_OK status value , 97

HASTAT_pARITY_ERROR status value,

99

HASTAT_PHASE_ERR status value, 98

HAST AT _REQUEST_SENSE_FAILED

status value, 99

HASTAT_SEL_ TO status value, 97-98

HASTAT_TIMEOUT status value, 99

Head of Queue Tag message, 29

Header files in SPTI, 1 66

Headers with Mode Sense command, 4 1

Host Adapter Inquiry command, 69, 7 1 -7 5

Host Adapter Properties screen, 23 8-239

Host Adapter Status code, 97-99

Host Adapter Unique field, 64

Hosts

getting messages from, 1 50- 1 5 1

reading data from, 1 44- 1 45

sending messages to, 1 48- 1 50

writing data to, 1 46- 1 47

Housekeeping in S CRIPTS, 1 1 4- 1 1 9

HP-UX 1 0.x UNIX, 1 8 1 - 1 82

1/0 (Input/Output) s ignal , 1 8

in Data phases , 2 1

in Message In phase, 2 1

in Message Out phase, 20

in Reselection phase, 1 9

i n Selection phase, 1 9

i n Status phase, 2 1

I_ T _L nexus, 20, 23

I_T_L_Q nexus, 29

I_T_R nexus, 20

120 standard, 1 88

Identify messages, 23-25
in Data phases , 2 1

in Message Out phase, 20

in SCSI-2, 7

in target mode programming, 1 34

IDs

device and vendor, 5 7-5 8

SCRIPTS routine for, 1 1 5

IF operator, 1 07

284 Index

Ignore Wide Residue message, 28

Illegal Request sense key, 5 1

Impedance for cables, 232

Incorrect Length Indicator (ILl) , 50

Independence in ASPI, 5 6-57

Indirect addressing in SCRIPTS , 1 1 0- 1 1 2

Init function in ScsiDevice, 252-254

init routine in Linux, 1 9 1 - 1 92, 226-227

Initializing

control registers, 1 1 8- 1 1 9

53C400A chipset, 1 30

in SCRIPTS , 1 1 4- 1 1 9

Scsilnterface class, 247-254

Initiator

arbitration by, 1 7- 1 9

terminator power from, 7

Inquiry command, 34-3 8 , 1 56

Inquiry() function

for ScsiBaseDevice, 25 8-259

in target mode programming, 1 60

Installing Windows NT ASPI32 service,

273-274

INT instruction, 1 1 3

Intelligent devices, 4

Interactive command utilities, 234-235

Intermediate status code, 49

Intermediate-Condition Met status code, 49

Interrupts

in 53C400A chipset initialization, 1 30

in SCRIPTS , 1 1 3

for UNIX device drivers , 1 77

IOCTL calls in SPTI, 1 66

loctl entry point, 1 77

ioctl routine, 2 1 2-2 1 4

IOCTL_SCSI_GET_ADDRESS command,

1 69- 1 70

IOCTL_SCSI_GET_CAPABILITIES com

mand, 1 69

IOCTL_SCSI_GET _INQUIRY _DATA

command, 1 67-1 68

IOCTL_SCSI_PASS_THROUGH com

mand, 1 7 1 - 1 74

IOCTL_SCSI_PASS_ THROUGH_

DIRECT command, 1 7 1 - 1 74

IOCTL_SCSI_RESCAN_BUS command,

1 70- 1 7 1

Iomega Zip drive

actions screen for, 24 1

Inquiry command for, 37-3 8

miniport driver for, 1 64

Mode Sense command for, 42-44

SCSI Device Properties screen for,

239-240

sense data for, 52-5 3

10Write32() function, 1 08

IRQ levels for SCRIPTS , 1 1 3

ISTAT register, 1 1 2- 1 1 3

Journals in troubleshooting, 236

JUMP instruction, 1 06

Kernel files in UNIX, 1 76- 1 77

Layered architecture in SCSI-3 , 1 1- 1 2

Length of cables, 232

Linked Command Complete message, 23

Linked commands, 7 , 23

Linux UNIX

check_scsidisk_media_change routine

in, 2 1 1 -2 1 2

disk driver in, 1 89-2 1 2

do_sd_request routine in, 1 98-200

documentation for, 277

features of, 1 86- 1 88

requeue_sd_request routine in, 200-2 1 0

revalidate_scsidisk routine in, 1 96- 1 97

SCSI pass-through in, 2 1 2-229

sd_attach routine in, 1 94- 1 95

sd_detach routine in, 1 95- 1 96

sd_detect routine in, 1 94

sd_finish routine in, 1 93

sd_init routine in, 1 9 1 - 1 92

sd_open routine in, 1 89- 1 90

sd_re1ease routine in, 1 90- 1 9 1

sg_attach routine in, 227-228

sg_close routine in, 2 1 6

sg_command_done routine in, 2 1 9-220

sg_detach routine in, 228

sg_detect routine in, 226

sg_free routine in, 2 1 7

sg_init routine in, 226-227

sg_ioctl routine in, 2 1 2-2 1 4

sg_malloc routine in , 2 1 6

sg_open routine in, 2 1 4--2 1 5

sg_read routine in, 2 1 7-2 1 9

sg_select routine in , 225

sg_ write routine in, 220-224

Little-endian byte order, 3 3 , 233

LOAD instruction, I 06

LoadLibrary() routine, 66

Locking with UNIX dev ice drivers , 1 77

Log Select command, 3 8

Log Sense command, 3 8

Logical block addresses , 45

Logical operators in SCRIPTS , I 07

Logical Unit Numbers (LUNs), 32, 57-5 8 ,

1 4 1 - 1 42

Low-level programming. See SCRIPTS

language

Low Voltage Differential (LVD), 8-9

Major numbers for devices, 1 77

malloc routine, 2 1 6

Mandatory commands, 3 3-3 8

Mandatory messages, 24

MASK operator, I 07

Maximum SCSI Targets Supported field, 75

Maximum Transfer Length field, 75

Medium Error sense key, 5 1

Medium type byte, 4 1

Message In phase , 1 6 , 2 1 , 1 3 2- 1 3 3

Message Out phase , 1 6 , 1 9-20

Message Reject message, 2 3 , 26, 1 34

Messages , 23-24

common , 27-30

extended, 25
getting, 1 50- 1 5 1

in SCSI-2, 7

sending, 1 48- 1 50

Synchronous Data Transfer Request, 25-

26

in TSPI, 1 48- 1 5 1 , 1 5 3

types of, 24--25

Wide Data Transfer Request, 26-27

MFC40.DLL fi l e , 237

Miniport drivers , 1 63- 1 64

Minor numbers for dev ices, 1 77

Mode data length byte, 4 1

Mode pages, 40-42

Mode parameter headers , 4 1

Mode Select command, 39-40

Mode Sense command, 40

data fonnat for, 4 1 -42

for Iomega Zip drive, 42-44

Index 285

Most S ignificant Byte (MSB) in logical

block addresses, 45

MOVE instruction, 1 05- 1 06

MS-DOS, ASPI manager connections in,

67-69

MSG (Message) signal , 1 8

in Data phases , 2 1

in Message In phase , 2 1

in Message Out phase , 1 9-20

in Status phase , 2 1

MSVCRT40. DLL file, 237

Multiple device types in SCSI- I , 5

Multiplexed serv ices in FC standard, I 0

Multitasking I/0 in SCSI- I , 4

NASM compiler, 1 04-- 1 05 , 1 09 , 276-277

National Comm ittee for Information Tech-

nology Standards (NCITS) , 1 1

No Operation message, 27

Notebooks in troubleshooting, 236

NTDDDISK.H file , 1 66

NTDDSCSI .H fi le , 1 66

Open entry point, 1 77

open routine, 1 89- 1 90, 2 1 4--2 1 5

Opening
device drivers , 1 66

devices, 1 8 8- 1 90, 2 1 4--2 1 5

Operating system independence, 5 6-57

Operation codes, 3 2

Optional commands, 3 8-39

Ordered Queue Tag message, 29-30

P 1 394 standard, I I

286 Index

Page code field

in Inquiry command, 35

in Mode Sense command, 40

Page format, 40

Page length field, 42

Page locking

in ASPI, 57

in Windows, 1 62

Parameters

command, 32-33

in SCRIPTS , 1 09-1 1 2

Parity i n SCSI-2, 7

Pass-through

in Linux, 2 1 2-229

in UNIX, 1 76

in Windows NT, 1 65-1 7 4

Pass Through command, 1 7 1 - 1 74

Pass-Through Interface, 1 65- 1 7 4

Patching in SCRIPTS , 1 09- 1 1 0

PCI BIOS functions i n SCRIPTS , 1 1 4- 1 1 8

PCI_FindDevice() function, 1 1 5- 1 1 7

PCI_ GetConfigRegister() function,

1 1 7- 1 1 8

PCI_GetPCIBIOSVersion() function,

1 1 4-1 1 5

Perform SCSI Command screen, 24 1 -243

PF flag, 40

Phases , 1 6- 1 8

Arbitration, 1 8- 1 9

B u s Free, 1 8

Command, 20

Data In and Data Out, 20-2 1

Message In, 2 1

Message Out, 1 9-20

Rese1ection, 1 9

Selection, 1 9

sequence of, 22

Status, 2 1

in target mode programming, 1 29- 1 36

Physical layer in SCSI-3 , 1 1

Platforms

dependencies in, 233-234

UNIX, 1 76

Plug and Play (PnP) , 1 2- 1 3

Polling

with ASPI commands, 60

in 53C400A chipset initialization, 1 30

for SCRIPTS program completion, 1 1 3

Portability of UNIX device drivers, 1 88

Posting with ASPI commands, 60

Power for termination, 232

Precedence, device, 1 6, 1 9

Privilege levels, 1 77

ProcessCdb() function, 1 5 8-1 5 9

Product identification field, 3 8

Programming Guide, 1 04

Protocol layer in SCSI-3 , 1 1

PS flag, 4 1 -42, 44

Querying bus, 89-90, 1 1 9- 1 25 , 1 70- 1 7 1

Queue Full status code, 49

Queue tag messages, 29

Queued 1/0 processes, 6-7

Read commands, 44-45 , 1 1 9, 2 1 7-2 1 9

Read Buffer command, 3 8

Read Capacity command, 1 1 9- 1 20

Read Data From Host command, 1 44- 1 45

Read entry point, 1 77

Read Sense command, 1 1 9

Reading

command results, 2 1 7-2 1 9

commands for, 44-45 , 1 1 9

data in TSPI, 1 44-1 45

Reconnect command, 1 5 3

Records for troubleshooting, 236

Recovered Error sense key, 5 1

release routine, 1 90-1 9 1

REQ signal

in Data phases, 2 1

for Synchronous Data Transfer Request

message, 26

in target mode programming, 1 32, 1 34

Request Sense command, 49, 1 1 9

RequestSense() function, 1 59- 1 60

requeue_sd_request routine, 200-2 1 0

Rescan Bus command, 1 70- 1 7 1

Rescan SCSI Bus command, 89-90

Reselection errors in SCRIPTS , 1 24

Rese1ection phase, 1 9

Reservation Conflict status code, 49, 1 00

Reset SCSI Device command, 8 6-89

Restore Pointers message, 28

revalidate_scsidisk routine, 1 96- 1 97

Rewind command, 1 56

RMB flag, 36

RST signal, 9 1

Run-time parameters i n S CRIPTS , 1 09- 1 1 2

SAM (SCSI-3 Architecture Model), 1 1

Save Data Pointers message, 28

SBP-2 (Serial Bus Protocol-2) , 1 1

SC_ABORT_SRB command, 83-86

SC_EXEC_SCSI_CMD command, 78-8 3 ,

9 1

SC_GET_DEV _TYPE command, 76-78

SC_GET_DISK_INFO command, 7 1

SC_GETSET_TIMEOUTS command,

90-93

SC_HA_INQUIRY command, 7 1-75, 234

SC_RESCAN_SCSI_BUS command, 89-

90

SC_RESET_DEV command, 86-89

SC_SET_HA_INFO command, 7 1

SCAM (SCSI Configured AutoMagically) ,

1 2- 1 3

Scatter-gather operations, 2 1 0

SCO ODT 3 UNIX, 1 83

SCRIPT array, 1 07

SCRIPTS language, 1 03-1 05

buffer alignment in, 234

detecting program completion in, 1 1 2-

1 1 3

embedding in C code, 1 07- 1 1 3

initialization and housekeeping in, 1 1 4-

1 1 9

instructions in, 1 05- 1 07

logical operators and conditional tests in,

1 07

PCI BIOS functions in, 1 1 4-1 1 8

run-time parameters in, 1 09- 1 1 2

sample code for, 1 1 9- 1 25 , 275-276

for SCSI control registers , 1 1 8- 1 1 9

table indirect addressing in, 1 1 0- 1 1 2

tools for, 276-277

SCSI- 1 , 2-5

SCSI-2, 5-8

SCSI-3 , 8

Fast-20 and Fast-40, 8-9

layered architecture in, 1 1 - 1 2

Plug and Play in, 1 2- 1 3

serial standards in, 9- 1 1

Index 287

SCSI-3 Architecture Model (SAM), 1 1

SCSI-3 Interlocked Protocol (SIP), 1 1

SCSI-3 Parallel Interface (SPI), 1 1

SCSI bus analyzers , 235-236

SCSI Bus Device Reset message, 86

SCSI byte order, 233

SCSI Configured AutoMagically (SCAM),

1 2- 1 3

SCSI control registers, initializing, 1 1 8- 1 1 9

SCSI Device Properties screen, 239-240

scsi_do_cmd routine, 224

SCSI Game Rules, 23 1

SCSI Interrupt Pending (SIP) flag, 1 1 3

SCSI Interrupt Status 0 (SISTO) register,

1 1 3

SCSI Interrupt Status 1 (SIST I) register,

1 1 3

SCSI Parallel Interconnect-2 (SPI-2), 1 1

SCSI pass-through

in Linux, 2 1 2-229

in UNIX, 1 76

in Windows NT, 1 65-1 7 4

SCSI Pass-Through Interface (SPTI)

IOCTL_SCSI_GET_ADDRESS com

mand in, 1 69- 1 70

IOCTL_SCSI_GET _CAPABILITIES

command in, 1 69

IOCTL_SCSI_GET _INQUIRY _DATA

command in, 1 67-1 68

IOCTL_SCSI_pASS_ THROUGH com

mand in, 1 7 1 - 1 74

IOCTL_SCSI_PASS_ THROUGH_

DIRECT command in, 1 7 1- 1 7 4

IOCTL_SCSI_RESCAN_BUS com

mand in, 1 70- 1 7 1

i n Windows NT, 1 65- 1 67

SCSI Request B locks (SRBs)

for Abort SRB command, 83-86

288 Index

SCSI Request Blocks (SRBs) (cont.)
building, 5 8-59

common fields in, 69-70

for Execute SCSI Command command,

78-83

for Get Device Type command, 76-78

for Get/Set Timeouts command, 90-93

for Host Adapter Inquiry command,

7 1 -75

for Rescan SCSI Bus command, 89-90

for Reset SCSI Device command, 8 6-89

returned status information from , 63

sending, 60

waiting for completion of, 60-63

for Windows 95 and NT, 1 62-1 63

SCSI Snooper application, 237

class library for. See Class l ibrary for

SCSI Snooper

code for, 276

framework for, 260

overview of, 23 8-243

structure of, 260-26 1

SCSI Transport via SBP-2 (STS) , 1 1

ScsiBaseDevice class, 257-259

ScsiCmdBlock class, 246-247 , 254-256

SCSIDEFS .H file, 256

ScsiDevice class, 245-246

ScsiDiskDevice class, 259-260

Scsilnterface class, 244-245 , 247-254

SCSIPORT driver, 1 64- 1 65

sd_attach routine, 1 94-1 95

sd_detach routine, 1 95-1 96

sd_detect routine, 1 94

sd_finish routine, 1 93

sd_init routine, 1 9 1 - 1 92

sd_open routine, 1 89-1 90

sd_release routine, 1 90- 1 9 1

Segment number field, 50

SEL (Select) signal, 1 8

in Reselection phase, 1 9

in Selection phase, 1 9

in target mode programming, 1 30

SELECT ATN command, 1 2 1

SELECT instruction i n SCRIPTS , 1 05

select routine in Linux, 225

Selection errors in SCRIPTS , 1 24

Selection phase, 1 9, 1 30- 1 3 2

Self-configuration i n SCSI-3 , 1 2- 1 3

Send Message To Host command, 1 48- 1 50

SendASPICommand command, 60, 69

Sending

messages in TSPI, 1 48- 1 50

SRBs, 60

Sense data, 1 6, 49-53

Sense Key Specific Value (SKSV) flag, 5 1

Sense keys, 5 1 -53

SENSE_LEN value, 59

Serial Bus Protocol-2 (SBP-2), 1 1

Serial SCSI standards, 9-1 1

Serial Standard Architecture (SSA), 1 0

Set Timeout function, 8 3

SetSenseData() function, 1 59

SFBR (SCSI First Byte Received) register,

1 06

sg_attach routine, 227-228

sg_close routine, 2 1 6

sg_command_done routine, 2 1 9-220

sg_detach routine, 228

sg_detect routine, 226

sg_free routine, 2 1 7

sg_init routine, 226-227

sg_ioctl routine, 2 1 2-2 1 4

sg_malloc routine, 2 1 6

sg_open routine, 2 1 4-2 1 5

sg_read routine, 2 1 7-2 1 9

sg_select routine, 225

sg_ write routine, 220-224

Shielding for cables, 232

Signal termination in SCSI- 1 , 3

Signals

bus analyzers for, 235

in phases, 1 8

Simple Queue Tag message, 29

Single-ended wiring, 6

SIP (SCSI-3 Interlocked Protocol) , 1 1

SIP (SCSI Interrupt Pending) flag, 1 1 3

SISTO (SCSI Interrupt Status 0) register,

1 1 3

SIST I (SCSI Interrupt Status 1) register,

1 1 3

SKSV (Sense Key Specific Value) flag, 5 1

Software Development Kit (SDK), 1 04

Solaris 2.5 UNIX, 1 84-1 85

Sony CD-ROM, SCSI Device Properties

screen for, 240

SP flag

with Mode Select command, 40

with Mode Sense command, 43

Specifications , SCSI, 276

SPI (SCSI-3 Parallel Interface), I I

SPI-2 (SCSI Parallel Interconnect-2), I I

SQUERY.C module, 1 1 9

SRB_B ufLen field, 8 1

SRB_BufPointer field, 8 1

SRB_CDBByte field, 8 3 , 1 62- 1 63

SRB_CDBLen field, 82

SRB_Cmd field

for Abort SRB command, 85

for Execute SCSI Command command,

79

for Get Device Type command, 77

for Get/Set Timeouts command, 92

for Host Adapter Inquiry command, 73

for Rescan SCSI Bus command, 90

for Reset SCSI Device command, 87

in SRBs, 70

SRB_DATA_IN flag, 59

SRB_DATA_OUT flag, 59

SRB_DeviceType field, 76, 78

SRB_ExecSCSICmd structure, 59, 93-94

SRB_Flags field, 63

for Abort SRB command, 86

for Execute SCSI Command command,

80

for Get Device Type command, 78

for Get/Set Timeouts command, 90, 92

for Host Adapter Inquiry command, 73

for Rescan SCSI Bus command, 90

for Reset SCSI Device command, 88

in SRB s , 70

SRB_Haid field

for Abort SRB command, 84, 86

for Execute SCSI Command command,

80

for Get Device Type command, 76, 7 8

for Get/Set Timeouts command, 9 2

Index 289

for Host Adapter Inquiry command, 73

for Rescan SCSI Bus command, 90

for Reset SCSI Device command, 88

in SRBs, 70

SRB_HaStat field, 63

for Execute SCSI Command command,

82

for Reset SCSI Device command, 88

in SRB_ExecSCSICmd structure, 93, 97

SRB_Hdr_Rsvd field

for Abort SRB command, 86

for Execute SCSI Command command,

80

for Get Device Type command, 78

for Get/Set Timeouts command, 92

for Host Adapter Inquiry command, 73

for Reset SCSI Device command, 88

SRB_Lun field

for Execute SCSI Command command,

8 1

for Get Device Type command, 76, 78

for Get/Set Timeouts command, 93

for Reset SCSI Device command, 88

SRB_PostProc field

for Execute SCSI Command command,

83

for Reset SCSI Device command, 89

SRB_Rsvd l field

for Execute SCSI Command command,

8 1

for Get Device Type command, 78

for Reset SCSI Device command, 88

SRB_Rsvd2 field

for Execute SCSI Command command,

83

for Reset SCSI Device command, 89
SRB_Rsvd3 field

for Execute SCSI Command command,

83

for Reset SCSI Device command, 89

SRB_SenseArea field

for ASPI commands, 63

for Execute SCSI Command command,

83

290 Index

SRB_SenseLen field, 8 1

SRB Status code, 93-97

SRB_Status field, 60, 63

for Abort SRB command, 84-85

for Execute SCSI Command command,

79-80

for Get Device Type command, 77

for Get/Set Timeouts command, 92

for Host Adapter Inquiry command, 73

for Rescan SCSI Bus command, 90

for Reset SCSI Device command, 87-88

in SRB_ExecSCSICmd structure, 93-94

in SRBs, 70

SRB_ Target field

for Execute SCSI Command command,

80

for Get Device Type command, 76, 78

for Get/Set Timeouts command, 92

for Reset SCSI Device command, 88

SRB_TargStat field, 63

for Execute SCSI Command command,

82-83

for Reset SCSI Device command, 88

in SRB_ExecSCSICmd structure,

93 , 99

SRB_Timeout field, 93

SRB_ToAbort field, 84, 86

SRBs. See SCSI Request B locks (SRBs)

SS_ABORT_FAIL status value, 96

SS_ABORTED status value, 96

SS_ASPI_IS_BUSY status value, 95-96

SS_BUFFER_ALIGN status value, 96

SS_BUFFER_TOO_BIG status value, 96

SS_COMP status value, 94

S S_ERR status value, 94-95
SS_FAILED_INIT status value, 95

SS_ILLEGAL_MODE status value, 96

SS_INSUFFICIENT_RESOURCES status

value, 97

SS_INVALID_CMD status value, 95

S S_INVALID_HA status value, 95

SS_INVALID_SRB status value, 95

SS_MIS MATCHED_COMPONENTS sta-

tus value, 97

SS_NO_ADAPTERS status value, 97

SS_NO_ASPI status value, 96

SS_NO_DEVICE status value, 95

SS_PENDING status value, 94

SS_SECURITY _VIOLATION status

value, 96

Status and status codes, 47-49

Host Adapter Status, 97-99

SRB Status, 93-97

Target Device Status, 99- 1 00

in target mode programming, 1 35

Status phase, 2 1

_stdcall calling convention, 6 1

STORE instruction, 1 06

Strategy entry point, 1 77

Structures, alignment in, 234

STS (SCSI Transport via S B P-2), 1 1

subroutines in SCRIPTS , 1 06

SYM825 1 S host adapter, 1 1 4

Synchronous data transfer

in Fast-20 and Fast-40 SCSI, 8

in SCSI- I , 4

in SCSI-2, 5-6

Synchronous Data Transfer Request mes

sage, 25-26, 1 3 3

System calls, 1 76

T l 0 Technical Committee, 1 1

Table indirect addressing, 1 1 0- 1 1 2

Tables i n SCRIPTS , 1 20- 1 2 1

Tag messages, 29-30

Tagged I/0 process queuing, 6-7

Tape class drivers, 1 65

Target Device Status code, 99- 1 00

Target mode programming, 1 27- 1 28

API for. See Target-mode SCSI Program

ming Interface (TSPI)

hardware in, 1 28- 1 29

phases in, 1 29- 1 36

Target-mode SCSI Programming Interface

(TSPI) , 1 36- 1 39

code for, 276

connecting to, 1 53- 1 55

sample application, 1 5 7- 1 60

TSPI_CMD_Adapterinfo command in,

1 39- 1 4 1

TSPI_CMD_AttachLUN command

in, 1 4 1

TSPI_CMD_CompleteCommand com

mand in, 1 47- 1 48

TS PI_CMD_DetachLUN command

in, I 4 I - 1 42

TSPI_ CMD _Disconnect command

in, 1 5 2

TSPI_ CMD _ GetEvent command in,

I 42- 1 44

TSPI_ CMD _ GetMessage command

in, 1 50- 1 5 1

TSPI_ CMD _ReadFromHost command

in, I 44- 1 45

TSPI_CMD_Reconnect command in, 1 5 3

TSPI_ CMD _SendMessage command

in, 1 48- 1 50

TSPI_CMD_ WriteToHost command

in, I 46- I 47

using, 1 55- 1 5 7

Targets

messages from , 23

selection of, 1 6 , I 9

Termination

bus, 232

power for, 232

in SCSI- I , 3

Terminator power in SCSI-2, 7

TERMPWR s ignal, 232

Test Unit Ready command, 34, 1 I 9 , I 22,

1 56

TestUnitReady() function, I 59

Timeouts

Abort SRB command for, 83-86

setting and retrieving, 90-93

Timing, bus analyzers for, 235

Transactions, 1 5- 1 6
Transfer period factor, 26

Transfer speed

in Fast-20 and Fast-40 SCSI, 8

in SCSI- 1 , 4

in SCSI-2, 5-6

in serial SCSI standards, I 0

TranslateASPI32Address() routine,

I O I - 1 02

TrmiOP flag, 3 6

Troubleshooting

debugging tools for, 234-236

documentation errors, 233

hardware, 23 1 -233

platform dependencies, 23 3-234

records for, 236

Index 291

TSPI. See Target-mode S C S I Programming

Interface (TSPI)

TSPI_CMD_ structure, 1 3 8- 1 39

TSPI_ CMD _Adapter Info command,

1 39- 1 4 1

TSPI_CMD_AttachLUN command, 1 4 1

TSPI_CMD_Comp1eteCommand com

mand, 1 47- 1 48

TSPI_CMD_DetachLUN command,

1 4 1 - 1 42

TSPI_CMD_Disconnect command, 1 5 2

TSPI_CMD_GetEvent command, 1 42- I 44

TSPI_ CMD _ GetMessage command,

1 50- 1 5 1

TSPI_ CMD _ReadFromHost command,

1 44- 1 45

TSPI_CMD_Reconnect command, I 5 3

TSPI_ CMD _SendMessage command,

1 48- 1 50

TSPI_CMD_ WriteToHost command,

1 46- I 47

TSPI_EVENT_s structure, 1 37- 1 39

tspi_SendCommand() routine, 1 37

TSPI_XFER_s structure, 1 3 8- 1 39

UDI (Universal Device Interface) , 1 8 8

Ultra SCSI, 8

Ultra2 SCSI, 8-9

Unit Attention sense key, 5 2

Universal Device Interface (UDI) , 1 8 8

UNIX implementations, 1 75- 1 76
AIX 4. I , I 79- I 80

device drivers in, I 76- I 78

Digital UNIX, 1 85- 1 86

HP-UX 1 0.x , 1 8 1 - 1 82

Linux. See Linux UNIX

sea ODT 3 , I 83

SCSI pass-through in, 2 I 2-229

So1aris 2 . 5 , 1 84- 1 85

Untagged I/0 process queuing, 6

292 Index

User context for UNIX dev ice drivers , 1 77

Val id bit with sense data, 50

Vendor field, 3 8

Vendor I D s , SCRIPTS routine for, 1 1 5

Virtual Device Drivers (VxDs), 1 62

Virtual devices, 235

Voltages , bus analyzers for, 235

WAIT instruction, 1 06

WaitForSingleObject() routine, 62, 1 63

WHEN operator, 1 07

Wide Data Transfer Request message,

26-27, 1 3 3

Wide SCSI, 6

Wide Ultra SCSI, 8

Wide Ultra2 SCSI, 8

Win32 functions, ASPI for, 1 00- 1 02

WinASPI, 1 6 1 - 1 62

WINASPLLIB file, 64-66

WINASPL S YS file, 273

Windows 3 .x , 1 6 1 - 1 62

Windows 95

ASPI for, 64-67 , 1 62- 1 63

SCSI model for, 1 63- 1 65

Windows NT

ASPI for, 64-67, 1 62- 1 63

ASPI32 service for, 273-274

SCSI model for, 1 63-1 65

SCSI Pass-Through Interface in, 1 65- 1 7 4

Wiring alternatives, 6

WNASPI32.DLL file, 273-274

WNASPI32.LIB file, 64-66

WOWPOST.EXE file, 273

Write Buffer command, 38

Write command, 44-45

Write Data To Host command, 1 46- 1 47

Write entry point, 1 77

write routine, 220-224

Writing

commands for, 44-45

data in TSPI, 1 46- 1 47

X3 Committee, 1 1

National Committee on Information Technology Standards,
1"1 0 Committee ora Smal l Computer Systems Interface

TlO operates under the National Committee on Information Technology
Standards (NCITS, see www.ncits .org) * and is responsible for Lower
Level Interfaces. Its principal work is the Small Computer System Inter
face (SCSI, including SCSI-2 and a family of SCSI-3 projects) . Anyone
"directly and materially affected" is welcome to participate in T l O.

(Essentially, this amounts to anyone interested in T lO's work.)
T 10 is one of the Technical Committees of the National Committee on

Information Technology Standards (NCITS, pronounced "insights") .
NCITS is accredited by, and operates under rules that are approved by, the
American National Standards Institute (ANSI) . These rules are designed
to insure that voluntary standards are developed by the consensus of
industry groups . NCITS develops Information Processing System stan
dards, while ANSI approves the process under which they are developed
and publishes them.

The mission of NCITS is to produce market-driven, voluntary consen
sus standards in the areas of:

• Multimedia (MPEG/JPEG)
011 Intercommunication among computing devices and information sys

tems (including the Information Infrastructure, SCSI-2 interfaces,
and Geographic Information Systems)

011 Storage media (hard drives, removable cartridges)
• Database (including SQL3)

lil Security
• Programming languages (such as C++)

The world changes rapidly, and every day the role of information tech
nology evolves, expanding into new areas and transforming the processes
of our l ives : Communication, transportation, artistic expression, healthcare,
and other areas are all affected. Standards provide the platform from which
technological advances spring. Through participation in NCITS, industry
leaders and users alike have the opportunity to open new markets, dismantle
nontariff trade barriers, and build the basic structure of the Global Informa
tion Infrastructure.

For further information please contact the NCITS Secretariat
(ncits @ itic .nw.dc .us) at (202) 626-5739.

*From 1 9 6 1 t o 1 996 NCITS operated under the name Accredited Standards Committee X 3 , Informa
tion Technology.

CD-ROM License Ag reement Notice

Addison Wesley Longman warrants the enclosed disc to be free of defects
in materials and faulty workmanship under normal use for a period of
ninety days after purchase. If a defect i s discovered in the disc during this
warranty period, a replacement disc can be obtained at no charge by send
ing the defective disc, postage prepaid, with proof of purchase to :

Addison Wesley Longman, Inc .
Computer & Engineering Publishing Group

One Jacob Way
Reading, MA 0 1 867

After the ninety-day period, a replacement will be sent upon receipt of the
defective disc and a check or money order for $ 1 0.00, payable to Addison
Wesley Longman, Inc .

Addison Wesley Longman makes no warranty or representation, either
express or implied, with respect to this software, its quality, performance,
merchantability, or fitness for a particular purpose. In no event will Addi
son Wesley Longman, its distributors, or dealers be l iable for direct,

indirect, special , incidental , or consequential damages arising out of the
use or inability to use the software. The exclusion of implied warranties is
not permitted in some states. Therefore, the above exclusion may not
apply to you . This warranty provides you with specific legal rights . There
may be other rights that you may have that vary from state to state .

The contents of the CD-ROM are intended for personal use only. For

commercial use, please send email to harvey@newpath .com.

More information and updates are available at
http :/ /www.awl.com/cseng/titles/0-20 1 - 1 8538-5/

System Req u i rements

The CD-ROM contains sample code and applications for DOS 3.3 or
higher, Windows 3 . 1 , Windows 95 and NT, and Linux. The included
browser files will run on Netscape 2.02 or above or Internet Explorer 3 .0
or above. Some of the SCSI-3 draft specification fi les are in Adobe Acro
bat PDF format. The Acrobat reader runs on Windows 3 . 1 , Windows 95
and NT, and Linux .

The Programmer's Guide to SCSI offers a concise
tutorial and reference to the Small Computer
Systems Interface (SCSI), the standard interface

for high-performance computer peripherals .
Geared specifically for programmers who are
writing drivers or creating applications that

support S C SI devices, this book presents compre
hensive SCSI hardware and sOftware information
within the context of software development. It will
help you find your way through this complex
topic and ease your learning curve by providing
expert advice, tip s , and techniques for more
effective S C S I programming.

The Programmer's Guide to SCSI covers
both high- and low-level programming topic s .
Specifically, y o u will find coverage of:

• S C S I in general, including an explanation
of its design philosophy, evo lution, and
transaction model

• S C S I-2 features, including faster transfers ,
wider data paths , and other specialized
capabilities

• S C SI-3 , including Fast-20 and Fast-40 S C S I ,
serial S C S I , fibre channel , P 1 394 , and plug
and-play S C S I

• The Advanced S C S I Programming Interface

(ASPI) and the ASPI32 extensions under .
Windows 95 and Windows NT

• The Windows NT built-in S C S I Pass-Through
Interface

• Low-level programming using S C RIPTS"'
• S C S I target mode programming
• S C S I support under different UNIX

implementations

• S C S I debugging and troubleshooting

http ://www. awl. com/ cseng/titles/0-20 1- 18538-5/

Covet· i l lustration by Tatsuhiko Shimada, Photonica

OText printed on recycled paper

.-• .. ADDISON-WESLEY
Addison-Wesley is an imprint
of Addiso-n Wesley Longman, Inc .

In addition . thi book deYelop an A PI class
library and use it to create a C I nooper appli
cation under Windows . The library can also be
extended for use in your own project .

The accompanying CD-ROM contains _ample
code, SCSI specifications, the SCSI F Q. RIPT -

support, and Linux SCSI documentation .
This book's clear presentation of C I

eliminates wading through densely packed
hardware documentation and lets you approach
the topic with better direction to gain a fuller
understanding.

Brian Sawert has worked with I for
years , developing applications and dri.Yer for
S C S I devices ranging from optical driYe to
scanners . H e has acquired vast experience ''ith
S C S I devices at a range of companie . including
Lockheed Missiles and Space Company. Flaustaff
Engineering, Trantor Systems, Ltd .. and Laguna
Data Systems . He has contributed articles on
S C S I and ASPI to Dr. Dobb 's Journal and
Windows!DOS Developer 's Journal .

With contributions b y :
• Larry Martin on ASPI , Windows de"ice

support , and S C S I target mode
• Gary Field on UNIX support for I

System requirements : The C D-RO 1 contains
sample code and applications to run on DO 3 . 3
o r higher, Windows 3 . 1 , Window 9 5 and XT.
and Linux . The included browser file "ill

run on Netscape 2 . 02 or above or Internet
Explorer 3 . 0 or above . Some of the C I-3
draft specification files are in Adobe crobat
PDF format . The Acrobat reader run on

Windows 3 . 1 , Windows 95 and T. and Linu.x .

1 1 1 1 111 11 1 11 1 11 1 1 11 11 1 1 111 11 111 111 11 1 111
XOOOFECWRL

The Programmer's Guide to SCSI
Used, Like New

	Blank Page

