The
SCSI
Encyclopedia

Volume [
Phases and Protocol
(N-Z)

ENDL

PUBLICATIONS

The
SCS/

Encyclopedia

Volume 1

Phases and Protocols
(N-Z)

Jeffrey D. Stai

L Publications

Library of Congress Cataloging-in-Publication Data

Stai, Jeffrey D., 1958-
The SCSI encyclopedia / Jeffrey D. Stai.
p. cm. -- (ENDL SCSI Series)

Contents: V. 1, A-M. Phases and protocols - v. 1, N-Z. Phases and proto-
cols.

ISBN 1-879936-11-9 (v. 1, A-M). -- ISBN 1-879936-12-7 (v. 1, N-Z). --
ISBN 1-879936-10-0 (set)

1. Computer interfaces--Standards. 2. SCSI (Computer bus) 3. Local area
networks (Computer networks) | Title. Il. Series.
TK7887.5.S73 1991

621.39'81--dc20 91-17070
CIP

Copyright © 1991 ENDL Publications and Jeffrey D. Stai

All Rights Reserved. Except for brief passages to be published in a review or as citation of authority, no part
of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage and retrieval system, without written
permission from the publisher. This means YOU!

Throughout this book, the trade names and trademarks of many companies and products have been used,
and no such uses are intended to convey endorsement of or other affiliations with the book. Any brand
names or products names used within this book are trademarks or registered trademarks of their respective
holders.

Though the author and publisher have made every effort to ensure the accuracy and completeness of

information contained in this book, we assume no responsibility for errors, inaccuracies, omissions, or any
inconsistency therein.

ENDL SCSI Series

The publisher offers generous discounts on this book when ordered in bulk quantities.
For more information, write:

Special Sales/Library Marketing
ENDL Publications

14426 Black Walnut Court
Saratoga, CA 95070

The complete set of books in the SCSI Encyclopedia may be ordered under
ISBN 1-879936-10-0

Printed in the United States of America
10 98 76 543 2 1

ISBN 1-879936-12-7

ENDL Publications, Saratoga, California

For Mary,
who put up with it.

About the Author

About the Publisher

Jeffrey Stai has learned more about SCSI
than anyone should be forced to know. He
has designed SCSI chips, SCSI controllers,
and SCSI software over an eleven year ca-
reer. He has been the principal representative
for Western Digital to X3T9.2 for several
years.

Dal Allan has spent over 30 years working
with computers, and specializes in storage
systems and related issues. He claims to have
had a lot of hair before he became Vice Chair-
man of X3T9.2 (he lies! - JDS). He has been,
and continues to be, active in the develop-
ment of other industry standard interfaces
such as the Intelligent Peripheral Interface, AT
Attachment, and Fiber Channel.

Preface

A work like this cannot be called a Labor of Love; it is more like a Labor of Luck. |
was lucky enough to be chosen to represent a little company called Adaptive Data
Systems (ADSI) to X3T9.2 and be part of the effort to make SCSI a standard. | was
fortunate enough to be involved in several projects at ADSI and Western Digital
Corporation that exposed me to so many different facets of SCSI. And, | am amazed
to have family and friends who put up with the two years of nights and weekends
spent grinding this thing out.

There are those (and you know who you are!) who would argue the kind of luck that
plunged me into the SCSI effort. Good or Bad?

| have made every effort to be accurate, but | am a mere human. If there is any
discrepancy between the SCSI Encyclopedia and the SCSI Standard, follow the
Standard. Please be sure to contact either or both ENDL and X3T9.2, so the discrep-
ancy can be addressed. Heck, there is probably room for improvement in here
somewhere, so all comments are more than welcome.

| do not apologize for the irreverence of the style. Let’s face it; SCSI is dull-dull-dull.
Anything that can be done to make the reading easier seems necessary and appropri-
ate. Since Initiators and Targets figure prominently in almost every SCSI transaction,
we have occasionally replaced those titles with proper names; Targets become
"Tanya" or "Tom", Initiators become "lan" or "Iris". Proper names allow the use of
active verbs, which tend to improve readability. | have even attempted humor on
occasion....

My opinions are sprinkled throughout the Encyclopedia; in fact, there is one section
dedicated to my opinions, which | call SCSI Etiquette. Since the SCSI Standard often
allows more than one way to do something (there’s an understatement!), opinions
become inevitable.

A work of this magnitude could not be completed without a careful and thoughtful
review. | would like to thank Kurt Chan, Erik Jessen, Larry Lamers, John Lohmeyer,
Bill Spence, and Gary Stephens for their tremendous help and encouragement.

It has been said that someone who can correctly answer ten SCSI questions out of a
hundred is a SCSI Guru, someone who can correctly answer twenty SCSI questions
out of a hundred is a SCSI God, while someone who claims they can correctly answer
all hundred SCSI questions must be a SCSI Devil, because he must be lying! These
guys live on Olympus!

Jeffrey D. Stai
Placentia, California
March 1991

About the SCSI Series

This volume is the second part of the SCSI Series by ENDL Publications. The first
part of the series is the SCSI Bench Reference, which re-packages the SCSI Standard
with timing charts, examples, easy references, and improved table structures. That
book is for intermediate and experienced SCSI users.

Volume | of the SCSI Encyclopedia is intended for all SCSI users, such as the SCSI
beginner, who should start with the Study Guide at the front of each volume. The
intermediate user can use the SCSI Encyclopedia to bolster understanding of difficult
subjects, such as the SCSI| Message System. The experienced user will find here
discussions on such new subjects as Wide Data Transfer and Command Queuing.

The encyclopedic format was chosen so that you can easily access only the informa-
tion desired. The need to provide sufficient detail on each topic caused Volume | of
the SCSI Encyclopedia to grow to a size that required a split into two separate books,
A-M and N-Z.

Volume | deals with the phases and protocols of the low-level interface. In other
words, sections 1 through 5 of the SCSI-2 Standard, and part of section 6, are
covered in this volume. Volume | covers anything to do with cables and connectors,
drivers and receivers, signals and phases, messages and nexuses. (Nexuses? So
read the book!)

Volume Il will cover the Direct Access Device (disk drive) command set. This includes
sections 7 and 8 of the SCSI Standard, and the rest of section 6 that Volume | did not
cover. The "generic" commands in section 7 are discussed from a disk point of view.
Volume 1l covers READ and WRITE, MODE SELECT and INQUIRY, FORMAT and
REQUEST SENSE, among others.

Volume Il will cover Sequential Access Devices (tape drives). This includes sections 7
and 9 of the SCSI Standard, and the rest of section 6 that Volume | did not cover.
This time, the "generic" commands in section 7 are discussed from a tape point of
view, to give the tape-oriented reader the fullest value. Volume Ill covers READ and
WRITE, MODE SELECT and INQUIRY, RECOVER BUFFERRED DATA and RE-
QUEST SENSE, among others.

Volume IV will cover all Optical Devices, such as write-once read-multiple (WORM)
drives, CDROM, and magneto-optic (MO) drives. This includes sections 7, 12, 13, and
15 of the SCSI Standard, and the rest of section 6 that Volume | did not cover. As you
might hope, the "generic" commands in section 7 are discussed from the "optical"
point of view, again for the fullest value. Volume IV covers READ and WRITE, MODE
SELECT and INQUIRY, ERASE and REQUEST SENSE, among others.

The followina subjects are covered in Volume | (A-M) of the SCSI Encyclopedia:

A Cabile.

ABORT Message.
ABORT TAG message.
ACK Signal.

ACKB Signal.

Active 1/O Process.
Active Pointers.

Active Pull-Up.
Arbitration Delay.
ARBITRATION Phase.
Assertion Period.
Assert Signal.
Asynchronous Data Trans-
fer.

Asynchronous Event Noti-
fication (AEN).

ATN Signal.

Attention Condition.

B Cable.

Between Phases.

BSY Signal.

Bus Clear Delay.

BUS DEVICE RESET
Message.

Bus Free Delay.

BUS FREE Phase.
Bus ID.

Bus Phases.

Bus Phase Signals.
Bus Set Delay.

Bus Settle Delay.

Bus Timing.

C/D Signal.

Cables.

Cable Skew Delay.
CAM (Common Access
Method).

Chips.

CLEAR QUEUE Message.
COMMAND COMPLETE
Message.

Command Descriptor
Block.

COMMAND Phase.
Command Pointer.
COMMAND TERMI-
NATED Status.
Condition.

Connect.

Connected 1I/O Process.
Connection.
Connection Phases.
Connectors.

Contingent Allegiance.
Control Byte.
Controller.

Control Signals.
Current 1/O Process.
Data Bus Signals.
DATA IN Phase.

DATA OUT Phase.
DATA Phase.

Data Pointer.

Data Release Delay.
Deassert.

Deskew Delay.

Device.

Differential Interface.
DIFFSENS.

Disconnect.
Disconnection Delay.
DISCONNECT Message.
ECA.

Error Recovery.
Etiquette.

Extended Contingent Alle-
giance (ECA) Condition
Extended Messages.
False.

Fast Assertion Period.
Fast Cable Skew Delay.
Fast Data Transfer.
Fast Deskew Delay.
Fast Hold Time.

Fast Negation Period.
Forced Perfect Termina-
tion (FPT).

Hard Reset.

HEAD OF QUEUE TAG
Message.

Hold Time.

Host Adapter.

/0 Process.

I/O Signal.

IDENTIFY Message.
IGNORE WIDE RESI-
DUE Message.
Information Transfer
Phases.

Initial Connection.
Initialization.

INITIATE RECOVERY
Message.

Initiator.

INITIATOR DETECTED
ERROR Message.
LINKED COMMAND
COMPLETE Messages.
Linked Commands.
Logical Block.

Logical Block Address
(LBA).

Logical Unit.

Logical Unit Number
(LUN).

Message.

MESSAGE IN Phase.
MESSAGE OUT Phase.
MESSAGE PARITY ER-
ROR Message.
MESSAGE REJECT
Message.

Message System.
MODIFY DATA POINT-
ER Message.

MSG Signal.

[__X)

Study Guide

Study Guide

We think you’ll all agree that reading an encyclopedia starting at "A" and going
through to "Z" is:

(a) Dullsville.

(b) A real drag, man.
(c) A bummer.

(d) Bogus, dude.

Pick your era.... To save you from that drudgery, we have a Study Guide. Each
general topic noted below has a list of subject topics within the Encyclopedia that
combine to describe the general topic. So, have fun!

Learning SCSI

Lesson #1: Bus and Devices

e SCSI Device
e SCSI Bus

e |nitiator

e Target

e Logical Unit

Lesson #2: Processes and Phases

o Nexus

e |/O Process
e Phase

e Bus Phases
e Condition

Lesson #3: Bus Control

e Path Control

¢ Pointers

e Message

e Message System
e Error Recovery

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Study Guide 11

Lesson #4: Protocols

e BUS FREE Phase

e ARBITRATION Phase

e SELECTION Phase

e Selection Time-out

e RESELECTION Phase

® Reselection Time-out

e Between Phases

e Asynchronous Data Transfer
e Attention Condition

e Reset Condition

¢ Unexpected BUS FREE Phase

Lesson #5: Physical Issues

¢ Single-Ended Interface

e Differential Interface

e Assert, Negate, and Release Signal
e Cables

e Connectors

e Termination

e Terminator Power

e Parity

e Wire-OR Glitch

Lesson #6: High Level Issues

e Command Descriptor Block (CDB)
e Status

¢ Logical Block

e Contingent Allegiance Condition

¢ Unit Attention Condition

e Hard Reset

¢ Linked Commands

e Extended Messages

Lesson #7: Advanced Data Transfer

e Synchronous Data Transfer

e Synchronous Data Transfer Negotiation
e Fast Data Transfer

e Wide Data Transfer

e Wide Data Transfer Negotiation

e P Cable

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

oo

111 Study Guide

Lesson #8: Advanced Topics

e Queue

e Soft Reset

® Asynchronous Event Notification (AEN)

¢ Extended Contingent Allegiance (ECA) Condition

* TERMINATE |/O PROCESS Message and COMMAND TERMINATED Status
e Target Routine

Lesson #9: Implementation

e Chips

® Host Adapter

e Controller
Assorted Subjects
Helpful Hints

e Etiquette

Data Transfer Protocols

e REQ Signal

e ACK Signal

® DATA Phases

e Asynchronous Data Transfer
e Synchronous Data Transfer
¢ Fast Data Transfer

e Wide Data Transfer

e P Cable

Error Recovery

¢ Pointers

® Message System

e Error Recovery
Timin

e Bus Timing

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Study Guide iv

Bus Signals

o ACK Signal

e ATN Signal

e BSY Signal

e C/D Signal

e |/O Signal

e MSG Signal

¢ REQ Signal

e RST Signal

e SEL Signal

e Data Bus Signals
e Parity

e Terminator Power

e Reset Condition
e RST Signal
e Hard Reset
e Soft Reset

Aborting an Operation in order of severity:

e TERMINATE I/O Message

e ABORT TAG Message

e ABORT Message

e CLEAR QUEUE Message

e BUS DEVICE RESET Message
e Reset Condition

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

\ Study Guide

Messages

e ABORT

e ABORT TAG

e BUS DEVICE RESET

e CLEAR QUEUE

e COMMAND COMPLETE

e DISCONNECT

e HEAD OF QUEUE TAG

e IDENTIFY

¢ IGNORE WIDE RESIDUE

® INITIATE RECOVERY

¢ INITIATOR DETECTED ERROR
e LINKED COMMAND COMPLETE
o MESSAGE PARITY ERROR

® MESSAGE REJECT

e MODIFY DATA POINTER

e NO OPERATION

e ORDERED QUEUE TAG

e RELEASE RECOVERY

e RESTORE POINTERS

e SAVE DATA POINTER

® SIMPLE QUEUE TAG

e SYNCHRONOUS DATA TRANSFER REQUEST
e TERMINATE 1/0 PROCESS

e WIDE DATA TRANSFER REQUEST

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Using vi

Using the SCSI Encyclopedia

The SCSI Encyclopedia is organized, naturally enough, in alphgbetical order._ Therg
are two types of topics: major topics and minor topics. Major topics cover-subjects like
ARBITRATION Phase, which is a SCSI topic that calls for a lot of discussion and '
examples. Major topics typically begin with a general overview of the subject, and this
will typically include an illustration or flow diagram. After the overview, there are
several detailed illustrations and examples.

Minor topics cover subjects like Arbitration Delay, which is a subject encompassed by
one or more major topics. Minor topics will have a detailed description of the subject,
with a reference to a major topic for more information.

A few editorial conventions have been adopted to make information easier to find. The
beginning of a topic is identified by a special font; e.g., ARBITRATION

Phase. Within a topic, a reference to another topic is highlighted as follows: see
Arbitration Delay. This convention is very analogous to a HyperText system (except,
of course, you can click your mouse on a piece of paper all day with no effect...).
Highlighting is done only once on a page or once within a topic to reduce "font
fatigue". Also, since they are used so often within each topic, the names "Initiator" and
"Target" are not highlighted.

In several places, the terms "Initiator" and "Target" are replaced by proper names, like
"lan" and "Tanya" or "Iris" and "Tom". While this seems odd for a technical work,
anthropomorphism allowed us to use simpler language for complicated concepts. And,
it does spice things up a little...

We have included the "Examples" section at the end of both volumes so that they are
available when reading either volume.

Most Important Note: This is not the SCSI Standard! Please refer to the Standard
when judging the compliance of any implementation.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

@ e

vii Using

Within timing diagrams, certain conventions are used, which are illustrated in Figure 1
below.

Irene’s a d
BSY /

Irene’s b
SEL /

|
|
Irene’s c |
ATN /

FIGURE 1: EXAMPLE TIMING DIAGRAM
Timing diagram conventions:

e The "owner" of the signal (either as a driver or receiver) is shown on the left
hand side.

o All signals are shown as "high-true/low-false", independent of the electrical
interface type (Single Ended Interface or Differential Interface). For
instance, Single Ended Interface signals are electrically low when true, but
the timing diagram shows them high when true. While this may seem confus-
ing, it keeps the timing diagrams generic for all electrical interfaces.

¢ A signal that is not driven is shown as dashes "------- ". A signal thatis in a
"don’t care" state is shown as "XXXXXXX".

o A lower case letter (e.g., -) within the timing diagram indicates an event that
is described in text following the diagram that begins with the same letter

(e.g., (a)).

e Times between two edges are given both as actual time (e.g., so as), and as
defined by SCSI Bus Timing values (e.g., w45, Which is a Deskew Delay).

The various symbols used in flow diagrams are illustrated in Diagram 1.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Using

[Assert ATN J

Delay
90 nsec minimum

REQ
Asserted?

SELECTION
Phase

I/0O
changes

A rectangle with rounded corners
indicates an action to be performed

A rectangle with square corners
indicates a delay period:

nsec = nanoseconds
pusec = microseconds
msec = milliseconds

A diamond indicates a decision point

An elipse indicates a reference
to another phase or procedure
described in another flow diagram

A circle indicates an asynchronous
interrupt; i.e. a change in state which
may (or may not) be expected.

A circle may also indicate one state
of a state sequence.

DIAGRAM 1: KEY TO SCSI FLow DIAGRAM SYMBOLS

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

Negate Signal.
Negation Period.

Nexus.
NO OPERATION Message.

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

N 2

Negate Signal. To drive a signal to the False state. "Negated" is used in the
SCSI standard and in this reference to indicate that a signal or signal pair is driven to
the False or "zero" state. Compare to Assert and Release. See Signal Levels.

Negation Period. thp = 90 nsec. The Negation Period is the minimum period of
time from the negating edge of the REQ Signal or ACK Signal to the asserting edge
of the next REQ or ACK, respectively. The Negation Period measures from REQ pulse
to REQ pulse, and ACK pulse to ACK pulse, during a synchronous data transfer. It
does not restrict REQ to ACK or ACK to REQ timing. See Synchronous Data
Transfer and Assertion Period. More precisely:

¢ For a device sending data, the Negation Period is the minimum pulse spacing
of the signal that it sends to strobe data into the receiving device.

® For a device receiving data, the Negation Period is the minimum pulse spac-

ing of the signal it sends to the other device that allows another transfer to
occur.

was proposed by the editors:

¢ "Sounds like a disease!"

¢ "Sounds like a gland!"

¢ "Sounds like a shampoo!"
Back to Webster’s: "Nexus [Latin]: a link or connection."

¢ "Hey, that's just what we're talking about!"
In SCSI, Nexus refers to a relationship between two SCSI devices, one an Initiator
and the other a Target. The word was chosen so that the different types of relation-
ships could be easily described without using a word that had a prior connotation. A
SCSI device must have a particular Nexus with another device before a particular

operation may be performed.

It is important to note that a Nexus is a relationship, it does not refer to a specific
action. Specific actions can establish or revive a Nexus:

¢ An Initiator establishes a Nexus during an Initial Connection.

e A Target revives a Nexus during a Reconnection.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

® An Initiator may also revive a previously established Nexus via another
Connection.

Other actions can further restrict the relationships that are established or revived by
the use of the IDENTIFY Message and the Queue Tag Messages.

The different types of Nexuses (ask Webster about that plural) are:

o |_T Nexus: The basic type of Nexus. An I_T Nexus is established after a
successful SELECTION Phase. An I_T Nexus is revived after a successful
RESELECTION Phase. An |_T Nexus is further restricted to form all other
types of Nexuses.

e |_T_L Nexus: An I_T_L Nexus is established after an IDENTIFY Message is
successfully transferred from the Initiator to the Target following SELECTION
Phase. An I_T_L Nexus is revived after an IDENTIFY Message is successful-
ly transferred from the Target to the Initiator following RESELECTION Phase.
In both cases the LUNTAR bit of the IDENTIFY message is set to zero,
indicating that a Logical Unit is identified.

e |_T_R Nexus: An |_T_R Nexus is established after an IDENTIFY Message is
successfully transferred from the Initiator to the Target following SELECTION
Phase. An I_T_R Nexus is revived after an IDENTIFY Message is successful-
ly transferred from the Target to the Initiator following RESELECTION Phase.
In both cases the LUNTAR bit of the IDENTIFY message is set to one,
indicating that a Target Routine is identified.

e [_T_x Nexus: This is a generic term that refers to either an |_T_L or an
I_T_R Nexus. It does not refer to an I_T or an |_T_L_Q Nexus.

e |_T_L_Q Nexus: An I_T_L_Q Nexus is established after any Queue Tag
Message is successfully transferred from the Initiator to the Target following
the IDENTIFY Message. An I_T_L_Q Nexus is revived after a SIMPLE
QUEUE TAG Message is successfully transferred from the Target to the
Initiator following the IDENTIFY Message. In both cases the LUNTAR bit of
the IDENTIFY message is set to zero, indicating that a Logical Unit is
identified.

¢ |_T_R_Q Nexus: An I_T_R_Q Nexus is not allowed! You are not allowed to
issue a Queued command to a Target Routine.

e |_T_x_y Nexus: This is a generic term that refers to either an I_T_L, an
I_T_R, oran I_T_L_Q Nexus. It does not refer to an I_T Nexus.

Table 1 and Table 2 summarize the different Nexus types:

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

N

4

TABLE 1: NEXUS ESTABLISHED BY AN INITIATOR

Nexus Type SELECTION Phase IDENTIFY Message Queue Tag Message Preceded by
Nexus Type
I_T Yes No No none
I_T_L Yes Yes; LUNTAR=0 No T
I_T_R Yes Yes; LUNTAR=1 No I_T
I_T_L_Q Yes Yes; LUNTAR=0 Yes; any type I_T_L
TABLE 2: NEXUS REVIVED BY A TARGET
Nexus Type RESELECTION Phase IDENTIFY Message Queue Tag Message Preceded by
Nexus Type
I_T Yes No No none
I_T_L Yes Yes; LUNTAR=0 No I_T
I_T_R Yes Yes; LUNTAR=1 No I_T
I_T_L_Q Yes Yes; LUNTAR=0 Yes; SIMPLE QUEUE TAG only I_T_L

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

S5 N

NO OPERATION Message. The NO OPERATION Message does nothing.
Period. What more can we say? Here is the message format:

Bit 7 6 5 4 3 2 1 0
Byte

0 Message Code = 08 hex

But, wait, we hear you cry, what's it for? Well, there are a couple of uses....

NO OPERATION Use #1: Let’s say you have an Initiator, that decides that its internal
buffer is going to overflow during a DATA Phase. It then creates the Attention
Condition with the intent of sending a DISCONNECT Message. But this time, the
Initiator catches up and it no longer needs to disconnect. As long as the Attention
Condition exists, the Initiator will be expected to send a message. So, the Initiator
maintains the Attention Condition until the next MESSAGE OUT Phase. It then sends
the NO OPERATION message to the Target, which has no effect, and the transfer
continues.

Comment: This is a use that makes sense, and is preferable to creating the Attention
Condition and then taking it away (see Etiquette). On the other hand, if the Initiator
makes a habit of this the data transfer rate can really go down the drain (i.e., slow
down). It might be better to use some of the disconnect control methods defined within
the MODE SELECT Command.

NO OPERATION Use #2: What happens when a Target enters the MESSAGE OUT
Phase, but the Initiator hasn’t created the Attention Condition? Well, the Initiator sends
a NO OPERATION message and hopefully everything continues normally.

Comment: A MESSAGE OUT Phase without the Attention Condition? That'’s less
probable than a politician without greed! On the other hand, this could happen if an
Attention Condition was created and then ended. Any Initiator presented with this
situation either played games with the Attention Condition, or it could assume that the
Target is broken and take appropriate action (example: see ABORT Message), or the
Target is a SCSI-3 Device and it's doing something we haven’t yet imagined!

Summary of Use: The NO OPERATION message is sent only by an Initiator when it
has nothing better to send during a MESSAGE OUT Phase.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

This page is nearly blank!

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

ORDERED QUEUE TAG Message.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

O 8

ORDERED QUEUE TAG Message. The ORDERED QUEUE TAG
Message is used by an Initiator to get an [/O Process executed in the order received
(relative to all other I/O Processes previously received by the Target from all Initiators)
when a Queue is used by the Target. ORDERED QUEUE TAG is a two byte mes-

sage:
Bit 7 6 5 4 3 2 1 0
Byte
0 Message Code = 22 hex
1 Queue Tag

The second byte of the message specifies the Queue Tag associated with the Nexus
being established by this message.

This message causes the new |/O Process associated with the Nexus to be put at the
rear of the Queue, behind any other I/O Processes that currently may be queued. Any
I/O Processes in the Queue prior to the Ordered I/O Process must be executed first. If
no I/O Process is currently being executed for that Logical Unit, then the new I/O
Process is made active and executed immediately.

This type of Queue Tag also affects the ordering of Tagged I/O Processes received
after it. Any incoming I/O Processes using the SIMPLE QUEUE TAG Message must
be queued after an ORDERED QUEUE TAG. The intent of an ORDERED QUEUE
TAG is that it is executed in the order received, relative to what came before and what
is to follow. See Queue for an illustration of this behavior.

Note that an I/O Process begun with a HEAD OF QUEUE TAG Message can still
"cut" to the front of the Queue, including any ORDERED QUEUE TAGS in the Queue.

Summary of Use: The ORDERED QUEUE TAG Message is sent only by an Initiator
to a Target to cause the I/O Process to be placed at the rear of the Queue.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

P Cable.

Parity.

Path Control.

Peripheral Device.

Phase.

Pointers.

Power-On to Selection Time.
Protocol Chips.

Pull-Up.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

10

P Cable. "l didn’t see any 'P Cable’ in my copy of SCSI-2I" That's right, you didn't.
The P Cable is a new feature for SCS/-3, which has so much more utility for new 16-
bit designs in the near future than the combination of the A Cable and the B Cable.
The P Cable is the best Cable to use for 16-bit designs.

Why a P Cabie? The P cable was defined in response to concern about the cost and
space requirements of the B Cable. With the B Cable, if you only want 16-bit data
transfers, you must still use the A Cable and the full B cable and connectors. Two
connectors and cables to each device in this era of smaller and smaller devices and
systems is painful:

e Where are you going to route those fat cables?

* Where are you going to put those two big fat connectors on the device?

e Who wants to pay for all that extra metal, anyway?
Thus, the P Cable was born.
Since the P Cable is not in your copy of SCSI-2, we will provide the Connector
pinouts for the P Cable here. The P Cable is a 68 conductor cable. Table 5 shows the
P Cable connections for the Single-Ended interface, and Table 6 shows the P Cable

connections for the Differential Interface. See Wide Data Transfer for details on
P Cable data transfer.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

11

TABLE 5: SINGLE-ENDED P CABLE CONNECTIONS

Signal Name Connector | Cable Conductor | Connector Signal Name
Contact Numbers Contact
| Number Number
GROUND 1 -T Z;m 35 -DB(12)
GROUND 2 3 4 36 -DB(13)
GROUND 3 5 6 37 -DB(14)
GROUND 4 7 8 38 -DB(15)
GROUND 5 9 10 39 -DB(P1)
GROUND 6 1" 12 40 -DB(0)
GROUND 7 13 14 41 -DB(1)
GROUND 8 15 16 42 -DB(2)
GROUND 9 17 18 43 -DB(3)
GROUND 10 19 20 44 -DB(4)
GROUND 11 21 22 45 -DB(5)
GROUND 12 23 24 46 -DB(6)
GROUND 13 25 26 47 -DB(?)
GROUND 14 27 28 48 -DB(P)
GROUND 15 29 30 49 GROUND
GROUND 16 31 32 50 GROUND
TERMPWR 17 33 34 51 TERMPWR
TERMPWR 18 35 36 52 TERMPWR
RESERVED 19 37 38 53 RESERVED
GROUND 20 39 40 54 GROUND
GROUND 21 41 42 55 -ATN
GROUND 22 43 44 56 GROUND
GROUND 23 45 46 57 -BSY
GROUND 24 47 48 58 -ACK
GROUND 25 49 50 59 -RST
GROUND 26 51 52 60 -MSG
GROUND 27 53 54 61 -SEL
GROUND 28 55 56 62 -C/D
GROUND 29 57 58 63 -REQ
GROUND 30 59 60 64 -1/0
GROUND 31 61 62 65 -DB(8)
GROUND 32 63 64 66 -DB(9)
GROUND 33 65 66 67 -DB(10)
GROUND 34 67 68 68 -DB(11)

The leading minus sign (e.g., "-BSY") refers to the active low nature of a Single-Ended

Interface signal.

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

12

TABLE 6: DIFFERENTIAL P CABLE CONNECTIONS

Signal Name Connector | Cable Conductor | Connector Signal Name
Contact Numbers Contact
Number Number
+DB(12) 1 1 2 35 -DB(12)
+DB(13) 2 3 4 36 -DB(13)
+DB(14) 3 5 6 37 -DB(14)
+DB(15) 4 7 8 38 -DB(15)
+DB(P1) 5 9 10 39 -DB(P1)
GROUND 6 11 12 40 GROUND
+DB(0) 7 13 14 41 -DB(0)
+DB(1) 8 15 16 42 -DB(1)
+DB(2) 9 17 18 43 -DB(2)
+DB(3) 10 19 20 44 -DB(3)
+DB(4) 1 21 22 45 -DB(4)
+DB(5) 12 23 24 46 -DB(5)
+DB(6) 13 25 26 47 -DB(6)
+DB(?) 14 27 28 48 -DB(7)
+DB(P) 15 29 30 49 -DB(P)
DIFFSENS 16 31 32 50 GROUND
TERMPWR 17 33 34 51 TERMPWR
TERMPWR 18 35 36 52 TERMPWR
RESERVED 19 37 38 53 RESERVED
+ATN 20 39 40 54 -ATN
GROUND 21 41 42 55 GROUND
+BSY 22 43 44 56 -BSY
+ACK 23 45 46 57 -ACK
+RST 24 47 48 58 -RST
+MSG 25 49 50 59 -MSG
+SEL 26 51 52 60 -SEL
+C/D 27 53 54 61 -C/D
+REQ 28 55 56 62 -REQ
+1/0 29 57 58 63 -1/0
GROUND 30 59 60 64 GROUND
+DB(8) 31 61 62 65 -DB(8)
+DB(9) 32 63 64 66 -DB(9)
+DB(10) 33 65 66 67 -DB(10)
+DB(11) 34 67 68 68 -DB(11)

The leading plus and minus signs (e.g., "-BSY" and "+BSY") refers to the differential
pairs of a Differential Interface signal.

- The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

13 P

The SCSI-3 proposal notes that "Conductor Number" refers to the conductor position
when using 0.025 inch centerline flat ribbon cable. Other cable types may be used to
implement equivalent contact assignments.

Upgrade Path. But wait, there’s more! Because the P Cable carries a 16-bit data path
on a single cable, it can also carry an 8-bit data path on the same cable. This is pretty
nifty, because this means you can build Initiators and Targets that do 8-bit today, and

tomorrow replace them with 16-bit devices without changing your existing cabling! This
really simplifies field upgrades.

You do have to follow a rule, though. You must leave the following signals unconnect-
ed when using the P Cable on an 8-bit device:

e Single-Ended: -DB(8), -DB(9), -DB(10), -DB(11), -DB(12), -DB(13), -DB(14),
-DB(15), and -DB(P1).

» Differential: -DB(8), -DB(9), -DB(10), -DB(11), -DB(12), -DB(13), -DB(14),
-DB(15), -DB(P1), +DB(8), +DB(9), +DB(10), +DB(11), +DB(12), +DB(13),
+DB(14), +DB(15), and +DB(P1).

Connect the other signals normally, with RESERVED signals left open.

But what about 32-bits? The X379.2 Committee is considering a P Cable-compati-
ble method for expanding to 32-bits. A "Q Cable" would carry the additional 16-bits
and the REQB Signal and ACKB Signal needed for the 32-bit data path.

Warning! The P Cable is still under development by the X3T9.2 Committee. Contact
them for the latest information.

Parity. To quote Seymour Cray: "Parity is for farmers!". Mr. Cray will probably never
use SCSI since parity is a fact of life in SCSI bus transactions. Parity is the main
method used by SCSI for error detection on the bus (see Error Recovery). Parity
covers eight data bits; if Wide Data Transfers are used, then there is a parity bit for
each 8-bit byte (2 parity bits for 16-bit data, 4 parity bits for 32-bit data).

Parity on the SCSI bus is odd Parity (no we don’t mean strange!). Odd parity means
that the total number of True (one) bits in the eight data bits plus the parity bit is odd.
Parity is calculated on the logical state of the bus; i.e., one or zero. For example, if the
data bits are all zero, the parity bit would be one, since then the total number of bits
will be one, which is odd. If the data bits are all one, the parity bit would also be one,
with a total of nine bits set to one.

Table 7 and Table 8 give a complete list of parity values for all possible eight bit data
bytes.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 14

TABLE 7: TABLE OF EIGHT BIT ODD PARITY VALUES (0-127)

Binary Hex | Parity Binary Hex | Parity Binary | Hex | Parity Binary Hex | Parity

00000000 { 00 1 00100000 | 20 0 01000000 | 40 0 01100000 | 60 1
00000001 | Of1 00100001 | 21 1 01000001 | 41 1 01100001 | 61
00000010 | 02 00100010 | 22 1 01000010 | 42 1 01100010 | 62
00000011 | 03 1 00100011 | 23 0 01000011 | 43 0 01100011 } 63 1
00000100 | 04 0 00100100 | 24 1 01000100 | 44 1 01100100 | 64 0
00000101 { 05 1 00100101 | 25 01000101 | 45 01100101 | 65 1
00000110 | 06 1 00100110 | 26 01000110 | 46 01100110 | 66 1
00000111 | 07 00100111 | 27 1 01000111 | 47 1 01100111 | 67 0
00001000 | 08 00101000 | 28 1 01001000 | 48 01101000 | 68 0
‘00001001 | 09 1 00101001 | 29 01001001 | 49 01101001 | 69 1
00001010 | OA 1 00101010 | 2A 01001010 | 4A 01101010 | 6A 1
00001011 } OB 0 00101011 | 2B 1 01001011 | 4B 1 01101011 | 6B 0
00001100 | OC 1 00101100 | 2C 0 01001100 | 4C 0 01101100 | 6C 1
00001101 | OD 0 00101101 | 2D 1 01001101 | 4D 1 01101101 | 6D
00001110 | OE 0 00101110 | 2E 1 01001110 | 4E 1 01101110 | 6E
00001111 | OF 1 00101111 | 2F 0 01001111 | 4F 0 01101111 | 6F 1
00010000 | 10 0 00110000 | 30 1 01010000 | 50 1 01110000 | 70 0
00010001 11 1 00110001 | 31 01010001 | 51 0 01110001 | 71 1
00010010 | 12 1 00110010 | 32 01010010 | 52 0 01110010 | 72 1
00010011 13 0 00110011 | 33 1 01010011 | 53 1 01110011 | 73 0
00010100 | 14 1 00110100 | 34 0 01010100 | 54 0 01110100 | 74 1
00010101 { 15 00110101 | 35 1 01010101 | 55 1 01110101 | 75 0
00010110 | 16 00110110 | 36 1 01010110 | 56 1 01110110 | 76 0
00010111 17 00110111 | 37 01010111 | 57 01110111 | 77 1
00011000 | 18 1 00111000 | 38 01011000 | 58 01111000 | 78 1
00011001 | 19 00111001 | 39 1 01011001 | 59 1 01111001 | 79 0
00011010 | 1A 00111010 | 3A 1 01011010 | 5A 1 01111010 | 7A 0
00011011 | 1B 1 00111011 | 3B 0 01011011 | 5B 0 01111011 | 7B 1
00011100 | 1C 0 00111100 | 3C 1 01011100 | 5C 1 01111100 | 7C 0
00011101 | 1D 1 00111101 | 3D 01011101 | 5D 0 01111101 | 7D 1
00011110 | 1E 1 00111110 | 3E 01011110 | 5E 0 01111110 | 7E 1
00011111 1F 0 00111111 | 3F 1 01011111 | 5F 1 01111111 | 7F 0

o |o
o o

o | o

—

o |o

o |o

—_

o |o

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

15 p

TABLE 8: TABLE OF EIGHT BIT ODD PARITY VALUES (128-255)

Binary Hex [Parity Binary Hex | Parity Binary]Hex Parity Binary Hex | Parity

10000000 | 80 0 10100000 | AO 1 11000000 | CO 1 11100000 | EO 0
10000001 | 81 1 10100001 | At 0 11000001 | Ct 0 11100001 | Ef 1
10000010 | 82 1 10100010 | A2 0 11000010 | C2 0 11100010 | E2 1
10000011 | 83 0 10100011 | A3 1 11000011 | C3 1 11100011 | E3 0
10000100 ; 84 1 10100100 | A4 0 11000100 | C4 0 11100100 | E4 1
10000101 | 85 0 10100101 | A5 1 11000101 | C5 1 11100101 | ES 0
10000110 | 86 0 10100110 | A6 1 11000110 | C6 1 11100110 | E6 0

10000111 | 87 1 10100111 | A7
10001000 | 88 1 10101000 | A8

11000111 | C7
11001000 | C8

11100111 | E7 1
11101000 | E8 1

10001001 | 89 0 10101001 | A9 1 11001001 | C9 1 11101001 | E9 0
10001010 | 8A 0 10101010 | AA 1 11001010 | CA 1 11101010 | EA 0
10001011 | 8B 1 10101011 | AB 0 11001011 | CB 0 11101011 | EB 1
10001100 | 8C 0 10101100 | AC 1 11001100 | CC 1 11101100 | EC 0
10001101 | 8D 1 10101101 | AD 0 11001101 | CD 0 11101101 | ED 1
10001110 | 8E 1 10101110 | AE 0 11001110 | CE 0 11101110 | EE 1
10001111 | 8F 0 10101111 | AF 1 11001111 j CF 1 11101111 EF 0
10010000 | 90 1 10110000 | BO 0 11010000 | DO 0 11110000 | FO 1
10010001 | 91 0 10110001 | Bt 1 11010001 | D1 1 11110001 | F1 0
10010010 { 92 0 10110010 | B2 1 11010010 | D2 1 11110010 | F2 0
10010011 | 93 1 10110011 | B3 0 11010011 | D3 0 11110011 | F3 1

10010100 | 94 0 10110100 | B4 1 11010100 | D4 1 11110100 | F4 0
10010101 | 95 1 10110101 | B5 0 11010101 | D5 0 11110101 | F5 1
10010110 | 96 1 10110110 | Bé6 0 11010110 | D6 0 11110110 | F6 1
10010111 | 97 0 10110111 | B7 1 11010111 | D7 1 11110111 | F7 0
10011000 | 98 0 10111000 | B8 1 11011000 | D8 1 11111000 | F8 0
10011001 | 99 1 10111001 | B9 11011001 | D9 11111001 Fo 1
10011010 | 9A 1 10111010 | BA 11011010 | DA 11111010 | FA 1
10011011 | 9B 0 10111011 | BB 1 11011011 | DB 1 11111011 | FB 0
10011100 § 9C 1 10111100 | BC 0 11011100 | DC 0 11111100 | FC 1
10011101 | 9D 10111101 | BD 1 11011101 | DD 1 11111101 | FD 0
10011110 | 9E 10111110 | BE 1 11011110 | DE 1 11111110 | FE 0
10011111 | 9F 1 10111111 | BF 0 11011111 | DF 0 11111111 FF 1

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

o 16

Path Control. "Path Control" is an archaic SCSI term that disappeared after the
early revs of SCSI-1 (back in the pre-history of the early 1980’s...). When an Initiator is
Connected to a Target, it may be said that a "path" exists between the two devices.
All commands, status, and data may pass over this path as long as the Connection
exists. The Connection Phases are used to begin to establish this path.

Now, we have a path between two devices. In order to ensure the integrity of the
commands, status, and data on the path, we use Parity to check each byte on the
path. And technology marches on; we have new options for the high-speed data
transfer on the path, such as Synchronous Data Transfer and Wide Data Transfer.

With all of these parity checks and options, there must be some way of handling these
details:

e Establishing the path to the appropriate Nexus.

e Agreement between two SCS/ Devices on the data transfer option to use for
the path.

e Reporting parity errors and retrying the transfer.

e Breaking the connection, and therefore the path, with the agreement of both
devices.

e Ending an f/O Process.

With all of these things to do besides commands, status, and data, it seems like we
could use a path control system. That's what the Pointers and the Message System
do. Using Pointers allows both devices to have agreement on where a COMMAND
Phase, STATUS Phase, or DATA Phase began, so that the transfer in the phase
may be retried. The Message System allows for small "messages" to be sent to
control the pointers and all of the other details listed above. The messages that control
these details are listed in Table 9 below.

We suggest you now read Pointers, and then Message System.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

17

TABLE 9: PATH CONTROL MESSAGE FUNCTIONS

Message Name

Path Control Function

ABORT (Out only)

Initiator Request End Connection and End 1/0 Process(es) Abnormally

ABORT TAG (Out only)

Initiator Request End Connection and End one 1/0 Process Abnormally

BUS DEVICE RESET (Out only)

Initiator Request End Connection and Reset Target

CLEAR QUEUE (Out only)

Initiator Request End Connection and all End I/0 Processes Abnormally

COMMAND COMPLETE (In only)

Target Report End Connection and End 1/0 Process Normally

DISCONNECT (Out)

Initiator Request End the Current Connection

DISCONNECT (In)

Target Report End of the Current Connection

HEAD OF QUEUE TAG (Out only)

Initiator Establish Path for Queued 1/0 Process (I_T_L_Q Nexus)

IDENTIFY (Out)

Initiator Establish Path for Logical Unit or Target Process (_T_x Nexus)

IDENTIFY (In)

Target Re-establish Path For Logical Unit or Target Process (I_T_x Nexus)

IGNORE WIDE RESIDUE (In only)

Target Report Adjustment to Wide Data Transfer Length

INITIATE RECOVERY (Out)

Begin Extended Contingent Allegiance Error Recovery

INITIATE RECOVERY (In)

Begin Extended Contingent Allegiance Error Recovery

INITIATOR DETECTED ERROR (Out only)

Initiator Report Command, Status, or Data Transfer Error with Target
(Request Retry)

LINKED COMMAND COMPLETE (In only)

Target Request Switch to Next Saved Pointer Set for I/0 Process (Do
Next Command for 1/0 Process)

LINKED COMMAND COMPLETE (WITH FLAG) (In only)

Target Request Switch to Next Saved Pointer Set for I/0 Process (Do
Next Command for I/0 Process). Echo "Flag" back to Host System.

MESSAGE PARITY ERROR (Out only)

Initiator Report MESSAGE IN Transfer Error (Request Retry)

MESSAGE REJECT (Out or In)

Report Inappropriate Message to Other Device

MODIFY DATA POINTER (In only)

Target Request to Apply Specified Offset to Active Data Pointer

NO OPERATION (Out only)

Do Nothing

ORDERED QUEUE TAG (Out only)

Initiator Establish Path for Queued 1/0 Process (I_T_L_Q Nexus)

RELEASE RECOVERY (Out only)

End Extended Contingent Allegiance Error Recovery

RESTORE POINTER (In only)

Target Request to Copy all Saved Pointers to Active Pointers

SAVE DATA POINTER (In only)

Target Request to Copy Active Data Pointer to Saved Data Pointer

SIMPLE QUEUE TAG (Out)

Initiator Establish Path for Queued 1/0 Process (_T_L_Q Nexus)

SIMPLE QUEUE TAG (In)

Target Re-establish Path for Queued 1/0 Process (I_T_L_Q Nexus)

SYNCHRONOUS DATA TRANSFER REQUEST (Out or In)

Request/Agree to Synchronous Data Transfer Option

TERMINATE 1/0 PROCESS (In only)

Initiator Request Immediate Controlled End of Current I/0 Process

WIDE DATA TRANSFER REQUEST (Out or In)

Request/Agree to Wide Data Transfer Option

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

P 18

Peripheral Device. A Peripheral Device is defined by SCSI to refer to the
physical components of, or attached to, a SCS/ Device, which is usually a Target. A
peripheral device is often a Logical Unit, but you can also have a Logical Unit made
up of several peripheral devices (for example, some disk drive arrays). Or, you can
even have more than one Logical Unit access the same peripheral device (for
example, logical partitions of a disk drive). The Peripheral Device is often coupled to a
Controller to create a complete SCSI Target.

Other examples of peripheral devices include:

e Tape Drives

e Optical Disk Drives
e Printers

e Scanners

e efc....

Phase. See Bus Phases. See also Conditions.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

19 P

Pointers. No this is not the "Hints and Tips" section. What we mean is Pointers to
memory, as in "indirect" or "indexed" addressing. Before reading further here, be sure
to read the section on Path Control as an introduction to the topic, and specifically
the need for Pointers.

Okay, now you are thoroughly confused. It is often difficult to describe one topic
without already describing other related topics. This section will begin to explain the
concepts hinted at in Table 9 under Path Control, and the section on the Message
System will finish it.

There are three types of Information Transfer Phase, other than the Message
Phases: COMMAND Phase, STATUS Phase, and DATA Phase (only one data
transfer direction is possible during a SCSI Command). Therefore, we need pointers
for each of these phases:

@ Command Pointer
e Status Pointer
e Data Pointer

(By the way, only one data transfer direction is possible because the SCSI data
transfer model has only one data pointer...)

We have to remember, though, that we have more to do than have Pointers to
Command, Status, and Data, we must also be able to retry any of these transfers. To
do that, we need to remember where the transfer started. This means we need a set
of two Pointers for each phase; an Active Pointer and a Saved Pointer. Our set of
Pointers is now:

e Active Command Pointer e Saved Command Pointer
® Active Status Pointer e Saved Status Pointer
e Active Data Pointer e Saved Data Pointer

The Message System has its own position management system to handle MESSAGE
IN Phase and MESSAGE OUT Phase.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 20

Diagram 2 shows a graphical representation of these six Pointers and how they relate
to host memory. The left side of the diagram shows the Saved Pointers. The top set of
three Pointers is for the Current [/O Process. The other three sets represent the
Saved Pointers for each pending }/O Processes in the Initiator. One set of Saved
Pointers exists for each Nexus that is currently established between the Initiator and
all Targets. The Saved Pointers must exist for at least the duration of the SCSI
Command, and for any additional time that the host requires them. When a Discon-
nect occurs, the Saved Pointers are set aside until a later Reconnect occurs. Put
another way, the Saved Pointers become active when a Nexus is established or
revived, and become inactive (but are retained) when the Nexus is Disconnected. The
Saved Pointers may be discarded when the Command is completed or when the /O
Process is completed (see Linked Commands).

The middle of the diagram shows the Active Pointers. There is only one set of Active
Pointers on each Initiator. The Active Pointers are used only for the Current I/O
Process. When an I/O Process is Disconnected by a DISCONNECT Message, the
contents of the Active Pointers are discarded. When a Nexus is revived by a Recon-
nect, the Saved Pointers for the Nexus are copied to the Active Pointers.

The right side of the diagram shows the Host Memory in the usual "arbitrary square
box format". This box is not to be taken literally! What it represents is a place some-
where in the host where Commands, Status, and Data are kept. These could be main
host memory, a special cache, or even inside some kind of super protocol Chip.
These blocks (pointed to by each Active Pointer) are contiguous as far as the SCSI
bus is concerned; if the host can manage scattered data buffers such that they appear
contiguous, that is fine (in fact, some do).

A word now on exactly what these Pointers represent. To the target, a Pointer
represents the Initiator’s byte position in the transfer. This is also true for the Initiator,
though it may be associated with a memory location. For example:

® The Saved Command Pointer points at byte 0 of the command. To the
Target, this might represent the first byte in its local command buffer. To the
Initiator, the Pointer might represent the cache memory location in the Host
Adapter where the Command is stored.

e The Active Data Pointer may point at byte 1023 of the data transfer. To the
Target, this might be the last byte of the 2nd disk sector of the transfer. To
the Initiator, the Pointer might be a memory location in a main memory buffer.

There is a key point here. It does not matter what the physical nature or represen-
tation of the Pointer, as long as each device manages the Pointer in a manner
consistent with the SCSI Pointer model.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

21 P

& COMMAND PHASE Data

Saved COMMAND Pointer 3y Active COMMAND Pointer

Saved DATA Pointer €———y

Saved STATUS Pointer
Current I/O Process

~ DATA PHASE Data

Ty

Saved COMMAND Pointer

Saved DATA Pointer

—3{ Active DATA Pointer

Saved STATUS Pointer
Pending /O Process #1

STATUS PHASE Data

Saved COMMAND Pointer

Saved DATA Pointer

Saved STATUS Pointer
Pending /O Process #2

A 4
————)| Active STATUS Pointer

A1OoWwas\ 1SOH Ul SYo0|g SnieiS pue ‘eleq ‘PuUBWIWOD

Saved COMMAND Pointer

Saved DATA Pointer

Saved STATUS Pointer
Pending I/O Process #3

Saved Pointers Active Pointers Host Memory

DIAGRAM 2: POINTERS AND HOST MEMORY

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 22

Diagram 3 shows the state of the Pointers prior to the start of a new Command. The
Active Pointers are empty/null/"Don’t Care" and the Saved Pointers have been loaded
and are ready for use. Note that the Active Pointers are not loaded until the Nexus is

established.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

23 P

Saved COMMAND Pointer Active COMMAND Pointer

Points to byte O Pointer is NULL
of Command Block

Saved DATA Pointer Active DATA Pointer

Points to byte 0 Pointer is NULL
of Data Block

AIOWBS\ 1SOH Ul SH¥00|g SNielS pue ‘el ‘puewwo)

Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Pointer is NULL
Saved Pointers Active Pointers Host Memory

DIAGRAM 3: POINTERS AT THE START OF A COMMAND

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 24

Diagram 4 shows the state of the Pointers after the Nexus has been established.
Specifically, the following events have happened:

(1) The Initiator has entered the ARBITRATION Phase and successfully
acquired the bus.

(2) The Initiator then entered the SELECTION Phase to select the Target. The
Initiator also set the ATN Signal to create the Attention Condition.

(3) The Target saw the ATN Signal and entered the MESSAGE OUT Phase so
that the Initiator could send the messages to the Target that establish the
Nexus.

(4) The Initiator sends the IDENTIFY Message to establish the Nexus. The
Initiator may also send a Queue Tag Message to further define and restrict
the Nexus.

When the Nexus is established to the Initiator’s satisfaction, it copies the contents of
the Saved Pointers for the Nexus to the Active Pointers. Both sets of Pointers now
point at the same locations in the Command, Status, and Data blocks.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

25 P

Copy the contents of the Saved Pointers to the Active Pointers

O

Saved COMMAND Pointer H Active COMMAND Pointer CB)

Points to byte 0 Points to byte 0 3

of Command Block of Command Block D

3

o

O

=4

L

O]

3

O

wn

—

Saved DATA Pointer Active DATA Pointer %

Points to byte 0 Points to byte 0 w

of Data Block of Data Block

W

@)

%)

=

0p]

—

I

o]

7]

—

<

@

=

Saved STATUS Pointer Active STATUS Pointer Q

Points to Status Byte Points to Status Byte <
Saved Pointers Active Pointers Host Memory

DIAGRAM 4: POINTERS AFTER THE NEXUS IS ESTABLISHED

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 26

Diagram 5 shows the state of the Pointers after the Command Block transfer:
(1) After the MESSAGE OUT Phase, the Target enters COMMAND Phase.
(2) The Initiator sends a twelve byte Command Descriptor Block (CDB).

After the CDB is transferred, the Active Command Pointer has been incremented 12
times. An Active Pointer increments once after every byte that is transferred. An Active
Pointer always increments (or changes) by bytes no matter what the actual transfer
width is (see Wide Data Transfer). As a result, an Active Pointer always points at the
next byte that will be sent or received by the Initiator.

In this case, the Active Command Pointer points at the starting address plus 12. This
is not an overrun of the Command block, since the next byte pointed to by the Active
Command Pointer hasn’t been transferred, and shouldn’t be.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

27 | &

Active Command Pointer is incremented 12 times

< COMMAND PHASE Data
12 Byte Command Transferred

O
Saved COMMAND Pointer |———— Active COMMAND Pointer C3)
Points to byte 0 Points to byte 12 3
of Command Block of Command Block
(end of block) Command QD)
Block
o
O
QY]
—
o
Q)
3
(@}
n
—
Saved DATA Pointer Active DATA Pointer 9«»
Points to byte 0 Points to byte 0 %
of Data Block of Data Block
Y
S
Dat.
Block 23
=
I
@)
0p]
—
<
®
3
Saved STATUS Pointer Active STATUS Pointer 9
Points to Status Byte Points to Status Byte sg?/rtus .
e
Saved Pointers Active Pointers Host Memory

DIAGRAM 5: POINTERS AFTER THE COMMAND TRANSFER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 28

Diagram 6 shows the state of the Pointers part of the way through a data transfer:

(1) After processing the Command, which happens to be a disk READ com-
mand for two 512 byte sectors, the Target begins transferring the data.

(2) The Initiator responds to the DATA IN Phase and transfers the data to the
Data block.

This diagram shows the state of the Pointers after one sector (512 bytes) have been
transferred. The Active Data Pointer is incremented 512 times, while the Saved Data
Pointer remains pointing at the start of the Data block.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

29 P

Active Data Pointer is incremented 512 times

O

Saved COMMAND Pointer Active COMMAND Pointer ©

Points to byte 0 Points to byte 12 =

of Command Block of Command Block 3

(end of block) Q:)

L

@,

L

o

)

DATA PHASE Data) 3

512 Byte Sector Transferred Q

—AL &

Saved DATA Pointer Active DATA Pointer 9)'_

oints 10 byte 0 Points to byte 512 c

of Data Block of Data Block n

o

©

@)

>

w

=

I

@)

2]

—

<

)

- 3

Saved STATUS Pointer Active STATUS Pointer @)

Points to Status Byte Points to Status Byte ‘2
Saved Pointers Active Pointers Host Memory

DIAGRAM 6: POINTERS IN THE MIDDLE OF A DATA TRANSFER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 30

Diagram 7 shows an example of the use of the SAVE DATA POINTER Message. We
are not recommending the use of this Message after every sector (use it to break up
longer transfers). The example does show how a transfer can be broken into smaller
parts to limit the amount of data that must be re-transferred when an error occurs:

(1) After sending the first sector, the Target changes to MESSAGE IN Phase to
send the SAVE DATA POINTER Message.

(2) The Initiator receives the Message and copies the contents of the Active
Data Pointer to the Saved Data Pointer. Both Data Pointers are now equal
to the beginning of the data block plus 512 bytes.

It should be noted that, by accepting the SAVE DATA POINTER Message, the Initiator
is indicating that the data was transferred successfully with no errors. Once the
Message is accepted by the Initiator, there is no possibility of a retry of that Data
without use of the MODIFY DATA POINTER Message, or repeating the Command.

Another note: A more common use of the SAVE DATA POINTERS is prior to a
Disconnect. After Reconnection, the transfer may continue from the point where the
data transfer was interrupted.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

31

Active Data Pointer is copied to Saved Data Pointer

Saved COMMAND Pointer Active COMMAND Pointer
Points to byte O Points to byte 12
of Command Block of Command Block

(end of block)

DATA PHASE Data
512 Byte Sector Transferred

\ 4
Saved DATA Pointer Active DATA Pointer
Points to byte 512 Points to byte 512
of Data Block of Data Block
Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Points to Status Byte
Saved Pointers Active Pointers

AJOWBN\ 1SOH Ul SX}00|g SNIeIS pue ‘eleq ‘puewwo))

Host Memory

DIAGRAM 7: POINTERS AFTER SAVE DATA POINTER MESSAGE

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

P 32

Diagram 8 shows the state of the Pointers after the completion of the data transfer.
But there was a catch: The Initiator detected a Parity error during the transfer, and
must perform an Error Recovery:

(1) After the MESSAGE IN Phase, the Target returned to the DATA IN Phase
to complete the transfer.

(2) During the transfer the Initiator detected a Parity error on the bus. As soon
as it detected the error, it asserted the ATN Signal to create the Attention
Condition.

(3) When the data transfer is complete, the Target responds to the Attention
Condition by going to the MESSAGE OUT Phase.

(4) The Initiator sends an INITIATOR DETECTED ERROR Message to the
Target. This informs the Target of the error, and leaves the next step up to
the Target.

The Target didn’t have to wait until the end of the transfer to respond to the Attention
Condition. It can respond at any time, as long as it responds with a MESSAGE OUT
Phase before going to any other Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

33 p

Active Data Pointer is incremented 512 more times

Saved COMMAND Pointer Active COMMAND Pointer
Points to byte 0 Points to byte 12
of Command Block of Command Block

(end of block)

DATA PHASE Data)
Two 512 Byte Sectors Transferred \L

Saved DATA Pointer Active DATA Pointer
Points to byte 512 Points to byte 1024
of Data Block of Data Block

(end of block)

AJOWS\ 1SOH Ul SY00|g SNlelS pue ‘ele ‘PUBWIWOD

Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Points to Status Byte
Saved Pointers Active Pointers Host Memory

DIAGRAM 8: POINTERS AFTER DATA TRANSFER & PARITY ERROR

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 34

Diagram 9 shows the state of the Pointers after the preparation for the data transfer
retry has been completed:

(1) After the MESSAGE OUT Phase, the Target goes to MESSAGE IN Phase
to send the RESTORE POINTERS Message to retry the DATA Phase.

(2) The Initiator receives the message and copies all Saved Pointers to the
Active Pointers.

Notice what happens here: The Active Command Pointer now points back at the start
of the Command block. This is not a problem; the COMMAND Phase is history. The
Initiator (Host Adapter or host driver software) cannot (repeat, cannot) rely on the
state of the Active Pointers to determine if a Phase occurred or how many bytes were
transferred, because the RESTORE POINTERS function can cause this modification
to all of the Active Pointers.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

35 P

Saved Paointers are copied to Active Pointers

Saved COMMAND PoinH Active COMMAND Pointer

Points to byte O Points to byte 0
of Command Block of Command Block -
(start of block) - Command

Block

DATA PHASE Data
512 Byte Sector Transferred

AJOWB|N 1SOH Ul SY00|g SNnIeliS pue ‘ele ‘pPuewwo)

Saved DATA Pointer Active DATA Pointer
Points to byte 512 Points to byte 512
of Data Block of Data Block
Data
Block
Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Points to Status Byte : Status
Byte
Saved Pointers Active Pointers Host Memory

DIAGRAM 9: POINTERS AFTER RESTORE POINTERS MESSAGE

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

p 36

Diagram 10 shows the state of the Pointers after the data transfer retry. This time, the
data transfer completed without incident. The Active Data Pointer increments to point
at the end of the Data block. The Saved Data Pointer still points at byte 512.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

37 P

Active Data Pointer is incremented 512 more times again

Saved COMMAND Pointer Active COMMAND Pointer
Points to byte 0 Points to byte 0
of Command Block of Command Block

(start of block)

DATA PHASE Data
Two 512 Byte Sectors Transferred J'

Saved DATA Pointer Active DATA Pointer
Points to byte 512 Points to byte 1024
of Data Block of Data Block

(end of block)

AIOWBIN 1SOH Ul SY00|g SNielS pue ‘eleq ‘PUBWILLIOD

Saved STATUS Poainter Active STATUS Pointer
Points to Status Byte Points to Status Byte
Saved Pointers Active Pointers Host Memory

DIAGRAM 10: POINTERS AFTER THE DATA TRANSFER RETRY

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 38

Diagram 11 shows the state of the Pointers after Status byte transfer:

(1) The Target has completed the DATA IN Phase and switches to STATUS
Phase.

(2) The Initiator takes the Status byte from the Target and stores it in the Status
byte location in host memory.

The Status byte needs a Pointer pair only because of the need to be able to retry the
Status transfer. It was simpler to define Status Pointers rather than define a special
"Status retry" procedure similar to the Message System. (Also, back in the earlier days
of the SCSI-1 development, the draft Standard had two Status bytes!)

This diagram also shows the final state of the Pointers just prior to Disconnect:

e The Saved Command Pointer still points at the start of the Command block,
since the Saved Command Pointer cannot be changed during the execution
of the Command.

e The Active Command Pointer also points at the start of the Command block
because of the RESTORE POINTERS Message during the DATA IN Phase.

e The Saved Data Pointer points at the middle of the Data block because of the
SAVE DATA POINTERS Message during the DATA IN Phase.

® The Active Data Pointer points at the end of the Data block as a result of
being incremented during the DATA IN Phase. No other events intervened to
modify the Active Data Pointer after the DATA IN Phase.

® The Saved Status Pointer still points at the Status byte, since the Saved
Status Pointer cannot be changed during the execution of the Command.

e The Active Status Pointer points after the Status byte as a result of being
incremented once during the STATUS Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

39 P

Active Status Pointer is incremented once

Saved COMMAND Pointer ————— Activa COMMAND Pointer
Points to byte 0 Points to byte 0
of Command Block of Command Block

(start of block)

Saved DATA Pointer Active DATA Pointar
Points to byte 512 Points to byte 1024
of Data Block of Data Block

(end of block)

STATUS PHASE Data
One Status Byte Transferred

AIOWS|N 1SOH Ul SHM00|g SNIelS pue ‘ele ‘PUBWIWIOD

¥
Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Points after Status Byte
Saved Pointers Active Pointers Host Memory

DIAGRAM 11: POINTERS AFTER THE STATUS TRANSFER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 40

Diagram 12 shows the state of the Pointers after the completion of the Command:

(1) The Target changed from STATUS Phase to MESSAGE IN Phase to send
the COMMAND COMPLETE Message.

(2) The Initiator accepts the COMMAND COMPLETE Message and discards
the Active Pointers.

(3) The Target goes to BUS FREE Phase and the Command (and I/O Process)
is completed.

The Saved Pointers should be discarded since they cannot be counted upon to
contain meaningful data. For example, the Saved Data Pointer now points into the
middle of the Data block. In many systems the host would have no knowledge of

messages exchanged with the Target, and so would not know why the Saved Data
Pointer had changed.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

41 P

Active Pointers are no longer valid

Saved COMMAND Pointer Active COMMAND Pointer
Points to byte 0 Pointer is NULL
of Command Block

Saved DATA Pointer Status DATA Pointer

Points to byte 512 Pointer is NULL
of Data Block

AIOWB\ 1SOH Ul SY00|g SNielS pue ‘ele ‘PUBWIWOYD

Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Pointer is NULL
Saved Pointers Active Pointers Host Memory

DIAGRAM 12: POINTERS AFTER THE END OF A COMMAND

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 42

We will now proceed with some other examples of Path Control using the DISCON-
NECT Message and the MODIFY DATA POINTER Message.

Diagram 13 picks up the action in the previous example after the transfer of the SAVE
DATA POINTERS Message from the Target to the Initiator (as shown in Diagram 7).
Unlike the previous example, the Target will now Disconnect from the bus so that it
may perform a seek to the other sector:

(1) After the 512 byte DATA IN Phase, the Target changes to MESSAGE IN
Phase and sends the SAVE DATA POINTERS Message.

(2) The Initiator accepts the Message and copies the Active Data Pointer to the
Saved Data Pointer.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

43

Active Data Pointer has been copied to Saved Data Pointer

Saved COMMAND Pointer

Points to byte O
of Command Block

Saved DATA Pointer

Points to byte 512
of Data Block

Saved STATUS Pointer

Activa COMMAND Pointer

Points to byte 12
of Command Block
(end of block)

Active DATA Pointer

Points to byte 512
of Data Block

Active STATUS Pointer

Points to Status Byte

Saved Pointers

Points to Status Byte

Active Pointers

AJOWS| 1SOH Ul SY00|g SnielS pue ‘eleq ‘PUBWIWIO)D

Host Memory

DIAGRAM 13: POINTERS BEFORE A DISCONNECT

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

| 44

Diagram 14 shows the state of the Pointers after the Disconnect:

(1) After sending the SAVE DATA POINTER Message, the Target stays in
MESSAGE IN Phase to send the DISCONNECT Message.

(2) The Initiator accepts the DISCONNECT Message and discards the Active
Pointers.

(8) The Target goes to BUS FREE Phase and the Command is Disconnected.
The Target will continue to process the Command off-line.

Once the Command is Disconnected, the Initiator sets the Saved Pointers aside. They
remain set aside until the Target Reconnects to that Nexus. Other Nexuses may be
revived in the intervening time, so the Initiator must be sure to have enough space to
store the Saved Pointers for all pending Commands.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

Active Pointers are no longer valid; Saved Pointers are set aside

Saved COMMAND Pointer Active COMMAND Pointer

Points to byte 0 Pointer is NULL
of Command Block

Saved DATA Pointer Active DATA Pointer

oints to byte 512 Pointer is NULL
of Data Block

AIOWS|\ 1SOH Ul SY00|g SNielS pue ‘el ‘puewwo)

Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Pointer is NULL
Saved Pointers Active Pointers Host Memory

DIAGRAM 14: POINTERS AFTER A DISCONNECT

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 46

Diagram 15 shows the state of the Pointers after a Reconnect:

(1) The Target enters the ARBITRATION Phase and acquires the bus.

(2) The Target then enters the RESELECTION Phase to reconnect to the
Initiator.

(8) The Target then enters the MESSAGE IN Phase to send the Messages to
the Initiator that revive the Nexus.

(4) The Initiator receives the IDENTIFY Message to revive the Nexus. The
Target may also send a Queue Tag Message to further define and restrict
the Nexus, but only if the Nexus was originally established by the Initiator
with a Queue Tag Message.

When the Nexus is identified to the Initiator’s satisfaction, the contents of the corre-
sponding Saved Pointers are copied to the Active Pointers. Both sets of Pointers now
point at the same locations in the Command, Status, and Data blocks.

The command now proceeds as in Diagram 6.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

Copy the contents of the Saved Pointers to the Active Pointers

Saved COMMAND Pointer H{ Active COMMAND Pointer

Points to byte O Points to byte 0
of Command Block of Command Block

Saved DATA Pointer H Active DATA Pointer

AIOWBSN 1SOH Ul SY00|g SNielS pue ‘eleq ‘pPuBWIWLIOD

Points to byte 512 Points to byte 512
of Data Block of Data Block
Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Points to Status Byte
Saved Pointers Active Pointers Host Memory

DIAGRAM 15: POINTERS AFTER A RECONNECT

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 48

The next example demonstrates the MODIFY DATA POINTER Message.

Diagram 16 shows the state of the Pointers before a MODIFY DATA POINTER
Message. The Target has just completed the COMMAND Phase (see Diagram 5) and
taken in a READ command. In this example, however, the Target is a caching device,
which means that it may have some of the requested sectors resident in a cache
memory for faster access.

In this example, the Target has the second sector requested already available in
cache, but it must get the first sector from disk. The optimum solution for the Target is
to begin sending the second sector to the Initiator while fetching the first sector from
disk. The MODIFY DATA POINTER Message is used to achieve this solution.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

49 P

Command Transfer Complete; Ready for DATA IN Phase

¢ COMMAND PHASE Data
12 Byte Command Transferred

Saved COMMAND Pointer Active COMMAND Pointer
Points to byte 0 Points to byte 12
of Command Block of Command Block

(end of block)

Alows|y 1SOH Ul SY00|g SNielS pue ‘el ‘puewlwo)

Saved DATA Pointer Active DATA Pointer
Points to byte 0 Points to byte O
of Data Block of Data Block
Saved STATUS Pointer Active STATUS Pointer
Points to Status Byte Points to Status Byte
Saved Pointers Active Pointers Host Memory

DIAGRAM 16: POINTERS BEFORE MODIFY DATA POINTER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 350

Diagram 17 shows the state of the Pointers after the MODIFY DATA POINTER
Message:

(1) The Target changes from COMMAND Phase to the MESSAGE IN Phase to
send the MODIFY DATA POINTER Message. The Message contains an
offset of +512 bytes.

(2) The Initiator accepts the Message and adds 512 bytes of offset to the Active
Data Pointer. The Saved Data Pointer is not affected.

Note that even though the Active Data Pointer now points at byte 512 of the Data
block, no data has yet been transferred.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

51 | &

Add 512 Bytes to Active Data Pointer

O

Saved COMMAND Pointer Active COMMAND Pointer Cg)

Points to byte 0 Points to byte 12 3

of Command Block of Command Block . o

(end of block) - Command 5

_ Block a

O

...... Q)

=

o

QO

3

o

@D}

—

Saved DATA Pointer Active DATA Pointer | e———— ,Qé)p

Points to byte 0 Points to byte 512 %)

of Data Block of Data Block

58,

@)

O

%

w

=

J=

...... O

w

—t

<

D

3

Saved STATUS Pointer Active STATUS Pointer 9

Points to Status Byte Points to Status Byte Sé?‘éus =<
i e
Saved Pointers Active Pointers Host Memory

DIAGRAM 17: POINTERS AFTER A MODIFY DATA POINTER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 52

Diagram 18 shows the state of the Pointers after the first sector data transfer after the
MODIFY DATA POINTER Message:

(1) The Target switches from MESSAGE IN Phase to DATA IN Phase and
begins transferring the data for the second sector.

(2) The Initiator responds to the DATA IN Phase and transfers the second
sector to the second half of the Data block.

This diagram shows the state of the Pointers after only the second sector (512 bytes)
has been transferred. The Active Data Pointer is incremented 512 times and now
points at byte 1024, while the Saved Data Pointer remains pointing at the start of the
Data block.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

Active Data Pointer is incremented 512 times

Saved COMMAND Pointer Active COMMAND Pointer

Foints to byte 0 Points to byte 12

of Command Block of Command Block
(end of block) Command

Block

DATA PHASE Data : o
One 512 Byte Sector Transferred

Saved DATA Pointer Active DATA Pointer
Points to byte O Points to byte 1024
of Data Block of Data Block

(end of block)

Data
Block

AloWs|N 1SOH Ul SY00|g SNl lS pue ‘Ble ‘puewiwo)

Saved STATUS Pointer Active STATUS Pointer —
Points to Status Byte Points to Status Byte . .Sé?;us'
Saved Pointers Active Pointers Host Memory

DIAGRAM 18: 1ST SECTOR AFTER MODIFY DATA POINTER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 54

In order to send the first requested sector, the Target must modify the Active Data
Pointer again. Diagram 19 shows the state of the Pointers after the second MODIFY
DATA POINTER Message:

(1) The Target changes from DATA IN Phase to MESSAGE IN Phase to send
the second MODIFY DATA POINTER Message. The Message contains an
offset of -1024 bytes.

(2) The Initiator accepts the Message and subtracts 1024 bytes of offset from
the Active Data Pointer. Again, the Saved Data Pointer is not affected.

Note that now the Active Data Pointer points at byte 0 of the Data block, even though
one sector’s worth of data has been transferred.

Note that technically the RESTORE POINTERS Message could also have been used
here instead of the MODIFY DATA POINTER Message. The MODIFY DATA POINT-
ER Message is used since it is a more general solution for random access within the
host data block.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

55 P

Subtract 1024 Bytes from Active Data Pointer

O
Saved COMMAND Pointer Active COMMAND Pointer o %
Points to byte 0 Points to byte 12 3
of Command Block of Command Block D
(end of block) Command =
_ Block o
@)
)
—t
o
4]
DATA PHASE Data =
One 512 Byte Sector Transferred
n
—
Saved DATA Pointer Active DATA Pointer %—
Points to byte 0 Points to byte O wn
of Data Block of Data Block
W
8
Dat
s;ggi- S
==
L
@)
09}
—
<
Q)
3
Saved STATUS Pointer Active STATUS Pointer Q
Points to Status Byte Points to Status Byte Slatus .
Byie
Saved Pointers Active Pointers Host Memory

DIAGRAM 19: POINTERS AFTER 2ND MODIFY DATA POINTER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume

p 56

The first sector requested is now available for transfer to the Initiator. Diagram 20
shows the state of the Pointers at the end of the data transfer after the second
MODIFY DATA POINTER Message:

(1) The Target switches from MESSAGE IN Phase to DATA IN Phase and
begins transferring the data for the first sector.

(2) The Initiator responds to the DATA IN Phase and transfers the first sector
to the first half of the Data block.

The diagram shows the state of the Pointers after two sectors (1024 bytes) have been
transferred. The Active Data Pointer is incremented 512 times and now points at byte
512, while the Saved Data Pointer remains pointing at the start of the Data block.
Note that now the Active Data Pointer points at byte 512 of the Data block, even
though two sectors’ worth of data have been transferred.

The Target now continues with STATUS Phase as shown in Diagram 11.

The use of Messages to control path options are covered under Synchronous Data
Transfer and Wide Data Transfer. See also Messages.

The use of Messages to manage the exchange of other Messages is covered in
Message System.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

57 P

Active Data Pointer is incremented 512 times

Saved COMMAND Pointer Activa COMMAND Paointar
Points to byte 0 Points to byte 12
of Command Block of Command Block

(end of block)

DATA PHASE Data
Two 512 Byte Sectors Transferred \L

Alows| ISOH Ul SY00|g SnielS pue ‘eleg ‘PUBWIWOD

Saved DATA Pointer Active DATA Painter
Points to byte 0 Points to byte 512
of Data Block of Data Block
Saved STATUS Pointer Active STATUS Pointer
Points to Status Bwte Points to Status Byte
Saved Pointers Active Pointers Host Memory

DiIAGRAM 20: 2ND SECTOR AFTER MODIFY DATA POINTER

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

P 58

Power-On to Selection Time. tpost = 10 sec recommended. This is defined
as the time from "power application" to when a Target is able to accept certain
Commands from an Initiator. This is one of those "funny" things in SCSI where you
aren’t even sure how anyone will know the difference. In those cases where the Host
actually knows when a Target’s power was applied (e.g., they share the same power
supply or the host controls the Target’s power sequence), this helps design timeouts
in the Host System.

The Commands that the Target must be able to execute (see later Volumes of the
SCSI Encyclopedia for details):

e TEST UNIT READY
¢ INQUIRY
e REQUEST SENSE

Protocol Chips. See Chips.

Pull-Up. See Active Pull-Up.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

39 Q

Queue.

Queue Tag.
Queue Tag Messages. I

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 60

Queue. A Queue is used by a Target to manage more than one J/O Process at a
time. My dictionary says that a Queue is a pigtail (whoops); the second definition is "A
line, as of persons waiting to be served". A SCSI Queue is a line of I/O Processes
waiting to be executed.

The need for a Queue is illustrated in Diagram 21. The need arises because of the
ability of a Target to Disconnect from the bus in the middle of an |/O Process.

e |nitiator #1 (we could call him Isaac) Connects to the Target (who we could
call Tanya) to start an /O Process and send her a SCSI Command. Tanya
decides to complete the operation without further interaction with Isaac, so
she Disconnects from Isaac (recall that she says good-bye by sending the
DISCONNECT Message!).

e |nitiator #2 (who we could call |1zzy) calls up, er, Connects to Tanya to send
her a SCSI Command.

Tanya now has a problem. She has a request (I/O Process) outstanding from Isaac,
and here comes l|zzy with another request:

e She could just say to lzzy "Sorry I'm Busy" by returning BUSY Status. This is
legal under SCSI, but not very nice; this is something an old SAS/ Target
would do. Also, it kind of defeats the benefits of Disconnect.

e A better thing to do is to Queue the new I/O Process from Izzy. All Tanya has
to do is Disconnect from lzzy (who was likely expecting it anyway; Tanya is
popular). The other thing she has to do is save Izzy’s Command in a safe
place (i.e., a "Queue") until she is done with Isaac.

After she finishes Isaac’s request, she retrieves Izzy’s request from the Queue
(activates his 1/O Process), and starts executing it. In this case, 1zzy’s request takes
longer to complete because of the delay caused by finishing Isaac’s request.

An Important Note. During this discussion, we are referring to a Queue for a single
Logical Unit. Each Logical Unit has its own Queue. If a Target has more than one
Logical Unit, then it will have a Queue for each. Each Queue operates independently
for the most part. The only exception is that an I/O Process ready to be executed at
the front of a Queue may have to wait if an Active [/O Process is using Target
resources required by the Queued I/O Process.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

61

Initiator #1
(Isaac)

b o am o mr — mm

Initiator #2
(Izzy)

— e e = = - —

Isaac Connects to Tanya
and sends a Command.
Tanya Disconnects.

------ > Target
...... y (Tanya)

Izzy Connects to Tanya and
sends a Command while
Tanya is still working on
Isaac’'s Command.

DIAGRAM 21: THE CASE FOR QUEUING

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Q 62

There are two types of Queuing defined by SCSI:

e Untagged Queuing. This is the simplest type of Queue, and very easy for a
Target to manage. At most, one command is accepted from each Initiator.
More than one command from each Initiator cannot be accepted because, on
Reconnect, the Initiator would not know which |/O Process was Reconnect-
ing. (Why? Because the IDENTIFY Message only indicates which Logical
Unit, not which I/O Process. See Nexus.) The maximum Queue length is a
number of elements per Logical Unit equal to the possible number of SCSI-1
or SCSI-2 Initiators in the system, minus one for the actively executing com-
mand. For example, if up to 7 Initiators are supported in the system, then the
maximum Queue length per Logical Unit is 6. A shorter Queue length may
also be implemented.

e Tagged Queuing. This type of Queuing solves the limitation of Untagged
Queuing, and is really not that much harder for a Target to manage. The
difference is that the Initiator follows the IDENTIFY Message with a Queue
Tag Message. This allows the Target to accept up to 256 commands from
each Initiator. The maximum Queue length is a number of elements per
Logical Unit equal to 256 Tags times the possible number of SCSI-2 Initiators
in the system, minus one for the actively executing command. For example, if
up to 7 Initiators are supported in the system, then the maximum Queue
length per Logical Unit is (256 * 7) - 1, or 1791 elements. A shorter Queue
length may also be implemented.

Untagged Queuing. Diagram 22 shows how Untagged Queuing works. The Queue
itself records the Initiator and (optionally) the Command Descriptor Block (CDB)
itself. Note that the Standard does not require First-In First-Out (FIFO) queuing of the
commands, but we feel this is implementation is the fairest (of them all...).

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

63 Q

All Commands Enter Here

Rear of

Queue

o Initiator .

§ Address Command Descriptor Block
© Initiator :

g Address Command Descriptor Block
= Initiator :

9 Address Command Descriptor Block
C

©

£ Initiator :

g Address Command Descriptor Block
2 Initiat

— nitiator :

o Address Command Descriptor Block
(_% Initiator

(U .

v Address Command Descriptor Block
Front of

Queue

I/O Processes exit here and are executed

Initiator , :
Address Active Command Descriptor Block

Each Initiator Address in the Queue or Actively
Executing must be unique

DIAGRAM 22: UNTAGGED QUEUING

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 64

The Queue can be described as a "C" language data structure:

// define Untagged Queue data structures and constants

#define MAX CDB SIZE 10 // 6 and 10 byte CDBs accepted
#define MAX QUEUE SIZE 6 // number of Initiators supported
struct queue element ({

unsigned initiator : 3; // Initiator SCSI Address
unsigned char cdb[MAX CDB SIZE]; // Command Block

struct queue element queue [MAX QUEUE SIZE]; // this is the queue
// itself

int last element = -1; // index to last element in queue
// -1 means the Queue is empty

struct queue_ element new process; // new incoming process

NOTE: The "//" indicates a code comment to the end of the line. This convention is
relatively new for the ANSI "C" definition.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

65 Q

Lotsa notes:

e MAX CDB_SIZE can be setto 12, if 12 byte CDBs are supported.

® MAX QUEUE_ SIZE can be reduced to save storage allocated to the Queue. it
does not have to be 6; a Target will seldom, if ever, be presented with a full
complement of commands.

e The struct statement defines the fields of each element in the Queue. The
"3" makes the initiator fields 3 bits wide.

e The second struct declares the queue itself as an array of queue elements,
and the third one declares a single element used as a holder for the new
incoming I/O Process.

® The variable 1last element is an index for the queue array, which always
points at the last valid entry in the queue. When last element is set to
"-1", the queue is empty.

If you don’t know "C", try and treat this (and later examples) as "pseudo-code". We will
endeavor, for clarity, not to use "clever C tricks". We know you "C" hacks out there
could polish up this code nicely. Also, we know you assembly language hacks out
there can convert this to assembly in your sleep...

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 66

Queue management is a snap (well, compared to the Message System....). When a
Target receives a new |/O Process from an Initiator, the first step is to see if there is a
place for it:

// test whether to accept the new I/0 Process

// test that the I/0 Process is valid and is not redundant

for (i = 0; 1 <= last_element; i++)
if (queue(i] .initiator == new process.initiator)
abort command (queue(i]); // abort the queued command

// and dump the new one

// 1f no other I/0 Process is active,
// and the Queue is empty, then just start the I/O Process

if ((lun_active == INACTIVE) && (last element == -1))

activate process(new_process) ;

// if the IDENTIFY Message does not allow the Target to
// Disconnect

if (disconnect okay == NOT_ OKAY)
return_status (BUSY STATUS) ;

// if the last element in the queue is occupied

if (last_element == MAX QUEUE SIZE-1)
return_status (BUSY STATUS) ;

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

67 Q

Notes:

® The first test determines whether the new 1/O Process is correct. If the new
I/O Process is for a Nexus that already exists (i.e., there is already a com-
mand queued for the Initiator), then both the new and the queued I/O Pro-
cess are aborted.

® The second test determines whether queuing is even necessary. If the
Logical Unit is currently inactive, meaning no other |/O Process is active, then
there may be no need to queue the new I/O Process. We also check for an
empty Queue just in case the Target has not had a chance to start the next
I/O Process at the front of the Queue.

¢ The third test checks to see that the Initiator allowed the Target to Disconnect
when it sent the IDENTIFY Message (a bit in the Message selects this). If
not, then the Target cannot Disconnect to finish the currently Active I/O
Process. A Target doing Untagged Queuing should then change to STATUS
Phase and return BUSY Status.

® The fourth test checks to see if the Queue is full. If the Queue is full, the test
fails and the Target returns BUSY Status. If the MAX QUEUE SIZE is 6 (the
maximum possible number of Initiators), then the test will always pass.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 68

At this point the new I/O Process can be accepted into the Queue, and the following
code fragment illustrates how:

// put the new I/O Process into the Queue

// Put it at the front

last _element++; // increment to next element
queue [last _element] = new process; // copy new to gqueue
Notes:

e First, we increment last element so that it points at the first empty ele-
ment at the end of the queue. The ++ is an increment operator in "C".

e Then we copy the new_process information to the end of the queue.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

69

Q

Told you it was easy. Taking the next element from the front of the queue is almost as
easy ("Next Please!"):

// get the next I/O Process off the Queue

activate process(queue[0]); // start the next process
for (i = 1; 1 <= last element; 1i++)

queue [i-1] = queue[i]; // shift everybody up
last_element--; // decrement element index
Notes:

¢ First, we activate the process at the front of the Queue, which by definition is
queue [0]. Depending on what the activate process function does, it
may be better to do this last. If the code that follows may not get executed,
then queue (0] will have to be copied to a temporary variable before activat-
ing it. (This is illustrated in Tagged Queuing below.)

e The next step is a for loop that copies the Nth element to the N-1th element.
This effectively "moves up" the line.

® last element is decremented to account for the element removed from the
list.

Easy!
What about the Initiator? The only responsibilities of the Initiator are:

¢ |ssue the |/O Process using the IDENTIFY Message with the "Disconnect OK"
bit set to one.

¢ Only have at most one I/O Process issued to each Logical Unit. Don’t issue
two I/O Processes to the same Logical Unit at the same time. At best, both
processes are aborted. At worst, you'll screw up the Target.

Easy!

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 70

Tagged Queuing. We know this sounds scary, but it really isn’t too bad. The good
news is that the SCSI/-2 Standard gives a very good description of how to reorder
Tagged I/O Processes and handle new Tagged I/O Processes coming in (really rather
remarkable...). See the section in the standard on "Queued |/O Processes", and the
Appendix on "Data Integrity and I/O Process Queuing". We’'ll be elaborating and filling
in the cracks here.

Diagram 23 shows the flow of commands in a Tagged Queue. Commands Tagged
with Ordered or Simple Queue Tags, and untagged commands, are always placed at
the rear of the Queue initially. Tagged commands with Ordered Queue Tags and
untagged commands keep their place in line. Tagged commands with Simple Queue
Tags may be rearranged amongst themselves.

Commands tagged with Head of Queue Tags always enter at the front of the Queue.
If another command with a Head of Queue Tag comes into a Queue that already has
a Head of Queue Tag, then the new command bumps the existing command and
takes the front of the Queue for itself.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

71 Q

Commands with no Queue Tags,
Ordered Queue Tags, and
Simple Queue Tags enter here

Rear of
Queue
A group of Simple Queue

Tags is bounded by

Ordered Queue Tags

or Head of Queue Tags

or the ends of the queue.
___The position of

Simple Queue Tags within a
group, but not between
groups, may be changed by
the Target at any time.

Ordered Queue Tags maintain
Tag 13 ~ their position in the queue
relative to other

Ordered Queue Tags and to
groups of Simple Queue Tags

)
Q
©
@
N

Flow of Commands in the Queue

Head of Queue Tags

P always enter the queue
Front of ______here, ready to be
Queue ' executed next

Once an /O Process exits the

This is not queue, the type of Tag

Executing Taq 14 (_____fs meaningless. The Target
ff?er ’(ﬁfeue, 949 Reconnects the I/O Process

with a Simple Queue Tag.

DIAGRAM 23: TAGGED QUEUING

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 72

Like we did for Untagged Queuing, the Tagged Queue can be described as a "C"
language data structure:

// define Tagged Queue data structures and constants

#define MAX CDB SIZE 10 // 6 and 10 byte CDBs accepted

#define MAX QUEUE SIZE 100 // max space available in Target

struct queue element {

unsigned initiator : 3; // Initiator SCSI Address
unsigned tag type : 2; // Queue Tag Message type
unsigned char tag; // Queue Tag

unsigned char cdb[MAX CDB SIZE]; // Command Block

// possible values for tag type

#define TAG _NONE 0 // no tag (I_T x Nexus)
#define TAG_SIMPLE 1 // simple queue tag
#define TAG_HEAD 2 // head of queue tag
#define TAG_ORDERED 3 // ordered queue tag

struct queue element queue [MAX QUEUE SIZE]; // this is the queue
// itself

int last element = -1; // index to last element in queue
// -1 means the Queue is empty

struct queue element new process; // new incoming process

struct queue element temp element; // temporary element storage

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

73 Q

Notes:

® MAX CDB_SIZE can be setto 12, if 12 byte CDBs are supported.

® MAX QUEUE_ SIZE for a Logical Unit can be chosen to save storage allocated
to the Queue. It does not have to be 256 * the number of Initiators supported.
A Target is unlikely to be presented with a full complement of I/O Processes.

e The struct statement defines the fields of each element in the Queue. The
"3" makes the initiator fields 3 bits wide. The "2" makes the tag type
field 2 bits wide. No sense wasting memory.

® The tag type field indicates which Queue Tag Message was received. This
field is used to decide where to put newly received |/O Processes, and also
how to handle re-ordering them. The tag field is the Queue Tag from the
Queue Tag Message.

e The second struct declares the queue itself as an array of queue elements,
and the third one declares a single element used as a holder for the new
incoming I/O Process.

® The variable last element is an index for the queue array, which always
points at the last valid entry in the queue. When last element is set to
"-1", queue is empty.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 74

Like Untagged Queuing, when a Target receives a new |/O Process from an Initiator,
the first step is to see if there is a place for it. There is the same number of steps as
Untagged Queuing, only a couple of details change:

// test whether to accept the new I/O Process
// test that the I/0 Process is valid and is not redundant
// Abort all commands for the Initiator on any conflict
// see if there is an I T x Nexus already in the Queue
// for the Initiator
for (i = 0; i <= last _element; i++)
if ((queue(i].initiator == new process.initiator)
&& (queue[i].tag type == TAG NONE)) // "&&" is "AND"
abort _all (new process.initiator); // abort all

// commands

// see if there is an I T L Q Nexus already in the Queue

// for the same Initiator and Queue Tag

for (i = 0; 1 <= last element; i++)
if ((queue(i] .initiator == new process.initiator)
&& (queue[i] .tag == new _process.tag))
abort_all (new process.initiator); // abort all

// commands

// 1f no other I/0 Process is active,
// and the Queue is empty, then just start the I/O Process

if ((lun_active == INACTIVE) && (last element == -1))
activate process(new_process);
// 1f the IDENTIFY Message does not allow the Target to

// Disconnect
if (disconnect okay == NOT OKAY)
return status (BUSY STATUS) ;
// 1if the last element in the queue is occupied

if (last _element == MAX QUEUE SIZE-1)
return_status (QUEUE FULL STATUS) ;

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

75 Q

Notes:

® The first two tests determine whether the new |/O Process is correct. If the
new I/O Process is for an I_T_x Nexus that already exists (i.e., there is
already an untagged command queued for the Initiator), then both the new
and the queued I/O Process are aborted. If the new I/O Process is for an
I_T_L_Q Nexus that already exists (i.e., there is already a tagged command
queued for the Initiator for the same Tag value), then the new I/O Process
and all other queued I/O Processes for that Initiator are aborted.

Unit is currently inactive, meaning no other I/O Process is active, then there
may be no need to queue the new /O Process. We also check for an empty
Queue just in case the Target has not had a chance to start the next I/O
Process at the front of the Queue.

® The third test determines whether queuing is even necessary. If the Logical l

® The fourth test checks to see that the Initiator allowed the Target to Discon-
nect when it sent the IDENTIFY Message (a bit in the Message selects this).
If not, then the Target cannot Disconnect to finish the currently Active I/O
Process. A Target doing Tagged Queuing should then change to STATUS
Phase and return BUSY Status.

e The fifth test checks to see if the Queue is full. If the Queue is full, the test
fails and the Target returns QUEUE FULL Status (note that BUSY Status is
returned for Untagged Queuing). If the MAX QUEUE SIZE is the maximum
possible number of Initiators times the maximum number of Queued I/O
Processes, then the test will always pass.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

At this point the new I/O Process can be accepted into the Queue. For Tagged
Queuing, this is a little harder, but not much:

// put the new I/O Process into the Queue at the
// appropriate place

// 1f the Queue is empty, then put it at the front

if (last element == -1)
{
last element++; // increment to 0th element
queue [0] = new process; // copy new to queue
}
else if ((new_process.tag_type == TAG ORDERED)
| | (new_process.tag type == TAG NONE)) // "[|" is "OR"
{
last element++; // increment to next element
queue [last element] = new process; // copy new to last
}
else if (new process.tag type == TAG SIMPLE)
{
last element++; // increment to next element
queue[last_element] = new process; // copy new to last
re order (queue) ; // redefine the order
I
else if (new process.tag type == TAG HEAD)
{
for (i = 0; 1 <= last element; i++)
queue [i+1] = queue(i]; // shift everybody back
last element++; // increment element index
queue (0] = new_process; // copy new to front

}

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

77 Q

Notes:

e If the Queue is empty (last_element = -1), then we put the new |/O
Process at the start of the Queue. This first test is done to skip the overhead
that may be associated with later tests (e.g., shifting or re-ordering elements).
An index of "0" is specified because it may be a little faster to execute....

e |f the Tag is an "Ordered" Queue Tag, or there is no Tag because this is an
I_T_x Nexus, then the I/O Process is always added to the end of the Queue.
last_element is incremented to point at the new last element in queue.

e |f the Tag is a "Simple" Queue Tag, then the I/O Process is added to the end
of the Queue. last element is incremented to point at the new last ele-
ment in queue. Then, a call to a "re-order" function is made to see if the new
element can be rearranged relative to the other "Simple" elements in the
Queue. More on that later.

e |f the Tag is a "Head of Queue" Queue Tag, then the I/O Process is always
added to the front of the Queue. First, all of the other elements in the Queue
are moved back one place; this is the purpose of the for loop.
last element is incremented to point at the new last element in queue.
Finally, the new I/O Process is copied to the empty element at the front of the
Queue. Note that any prior "Head of Queue" Tags in the Queue will be
pushed back as well.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 78

That wasn’t too bad, we hope. Taking the next element from the front of the queue is
same as Untagged Queuing. This time, we’ll do the "activate" last:

// get the next I/O Process off the Queue

temp element = queue[0]; // copy front element to temporary
// variable

for (i = 1; 1 <= last element; i++)

queue [i-1] = queue(i]; // shift everybody back
last _element--; // decrement element index
activate process(temp element) ; // start the next process
Notes:

¢ First, we copy the element at the front of the Queue (queue [0]) to a tempo-
rary variable for later use. We want to finish the management of the Queue
before starting the next Process.

e The next step is a for loop that copies the Nth element to the N-1th element.
This effectively "moves up" the line.

® last element is decremented to account for the element removed from the
list.

e The I/O Process is activated by calling activate process and specifying
the temporary variable we set earlier.
Easy!

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

79 Q

What about the Initiator? The main responsibilities of the Initiator are:

e |[ssue the I/O Process using the IDENTIFY Message with the "Disconnect OK"
bit set to one.

e Each Queue Tag issued by the Initiator must be unique for each Logical Unit.
The Initiator may not start an /O Process with a Queue Tag that is the same
as the Queue Tag for an I/O Process that the Target already has queued or
active.

Easy!

Getting the Most out of your Tagged Queue. The only real reason to use Tagged
Queuing is to allow the Target to re-order the I/O Processes received. It might be nice
to be able to toss every command from the Host System out to the Target, but an
Initiator could also do that kind of queuing with little problem. Tagged Queuing really
comes into its own when the Target is allowed to decide the execution order of
Tagged I/O Processes.

This re-ordering is done for some very typical reasons. For example, when several
requests are received by a disk, the amount of time spent seeking for different sectors
can be reduced by sorting the requests into the appropriate order. Table 10 shows
how this re-ordering into ascending order can improve performance.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

TABLE 10: TAGGED QUEUING RE-ORDERING EXAMPLE

Without Tagged Queuing With Tagged Queuing
Block Accessed Seek Time (ms) Block Accessed Seek Time (ms)
start at block 0 start at block 0

1000 10 0 0

2000 10 1 0

0 15 1000 10

3000 20 1003 0

2005 10 2000 10

1003 10 2005 0

1 10 3000 10
Total Seek Time 85 ms Total Seek Time 30 ms

On the left side of the table, a sequence of Logical Block requests is shown. Each
block request is serviced in the order received. As a result, a lengthy seek is per-
formed to service each request. On the right side of the table, Tagged Queuing is
used, so the requests can be sorted into ascending order. This cuts the amount of
time spent seeking to almost a third in this example.

Note that the example shows all requests sorted. In practice, the first request would
be acted on before the second request is received. The actual result would depend on
when each |/O Process was received by the Target.

Re-ordering may also be called for when the Target has a Cache. The Logical Blocks
in a Cache have a faster effective seek time which enters into the re-ordering equa-
tion.

In general, Targets should re-order I/O Processes in the Queue if they bother to do
Tagged Queuing at all. Targets should also follow the "Data Integrity" guidelines in the
Appendix of the SCSI-2 Standard.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

81 Q

Again, What About Initiators? Initiators must use the three Queue Tag Messages
properly:

SIMPLE QUEUE TAG Message is the "all-purpose" Queue Tag to use for all I/O
Processes. This message should be used unless there is an overriding reason
to use one of the other two Messages. This Message gives the Target the most
freedom to re-order for best performance.

ORDERED QUEUE TAG Message is used when the Initiator wants to control the
ordering of 1/O Process execution. We can think of two uses for this:

e Use it to finish off a set of requests. The Initiator issues several READ
Commands to get a file from a disk. If it issues the last READ as an Ordered
Tag, then it knows that when that last Tagged I/O Process is completed, it
has the whole file. Think of it as a "Synchronize Queue" function.

® The Initiator may not trust the Target to handle the re-ordering of WRITE
Commands relative to READ Commands. As described in the Appendix of
the SCSI-2 standard, if a WRITE to a block is moved in order relative to a
READ of the block, the Initiator may get the old version of the block or the
updated version. The Initiator can either handle it by never mixing those kinds
of requests, or it can just issue Ordered Tags for a WRITE Commands. This
can impact performance, so try and treat this as a last solution.

HEAD OF QUEUE TAG Message is used for special cases only. If an Initiator needs
to get a Command to the Logical Unit right now, it can use this type of Queue
Tag. This only puts it at the front of the Queue; it does not interrupt the current-
ly executing I/O Process(es) (even to break a series of Linked Commands).
This makes the HEAD OF QUEUE TAG Message a bit limited as an "emergen-
cy" operation, since the currently executing I/O Process could take a long time
for all the Initiator knows.

Another use might be for high demand/high bandwidth data, such as data
acquisition or video data. These types of data need to be dumped now. In order
to get timely service to write this data to a disk, the Initiator can use Head of
Queue Tags to get serviced sooner, at the expense of the performance of other
processes.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 82

The three Messages previously described allow an Initiator to add I/O Processes to
the Queue. The following Messages allow an Initiator to remove and abort I/O
Processes from the Queue:

ABORT TAG Message is used to remove a single I/O Process from the Queue. The
Initiator usually issues this Message by Connecting for just that purpose. After
BUS FREE Phase, the Initiator Connects to the Target via ARBITRATION
Phase and SELECTION Phase. Then during MESSAGE OUT Phase, the
following Messages are sent by the Initiator in the following order:

e IDENTIFY Message is sent to establish which Logical Unit is to be accessed;
and by extension, which Queue.

e SIMPLE QUEUE TAG Message is sent to establish which I/O Process is to
be removed and aborted. The Tag field of the Message is set to the Tag
value of the I/O Process to be removed and aborted.

e ABORT TAG Message is sent to remove and abort the I/O Process specified
by the SIMPLE QUEUE TAG Message. Note that the 1/O Process is aborted
whether it is in the Queue or it is currently executing. After this Message, the
Target goes to BUS FREE Phase.

ABORT Message is used to remove from the Queue and abort all |/O Processes that
belong to the Initiator. Any I/O Processes that belong to other Initiators are not
affected. As with the ABORT TAG Message, the Initiator Connects to the
Target and then sends the following Messages:

o IDENTIFY Message is sent to establish which Logical Unit is to be accessed,;
and by extension, which Queue.

e ABORT Message is sent to remove and abort the I/O Processes belonging to
the currently Connected Initiator. Note that the I/O Processes are aborted
whether they are in the Queue or are currently executing. After this Message,
the Target goes to BUS FREE Phase.

CLEAR QUEUE Message is used to remove from the Queue and abort all I/O
Processes (queued or actively executing) that belong to any Initiators. This
should only be used in extreme circumstances! As with the ABORT Message,
the Initiator Connects to the Target and then sends the following Messages:

e IDENTIFY Message is sent to establish which Logical Unit is to be accessed,;
and by extension, which Queue.

e CLEAR QUEUE Message is sent to remove and abort all I/O Processes for
the Logical unit. Note that the I/O Processes are aborted whether they are in

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

83 Q

the Queue or are currently executing. After this Message, the Target goes to
BUS FREE Phase, and the Queue for the Logical Unit is empty.

Other Considerations. Tagged Queuing requires some other special considerations
for Initiators and Targets:

e Contingent Allegiance Condition: When the Target returns CHECK CONDI-
TION Status at the end of an I/O Process, both the Initiator and Target drop
out of Tagged Queuing temporarily for that Logical Unit. Until the Initiator
clears the Condition, the Queue is halted; the Target returns BUSY Status
for any subsequent I/O Processes received, and may not execute any I/O
Process in the Queue. The Initiator sends the REQUEST SENSE Command
that clears the Condition without a Queue Tag Message. After the Condition
is cleared, Tagged Queuing is resumed. (There is an option under the MODE
SELECT Command to clear the Queue when the Condition is cleared.)

e Extended Contingent Allegiance (ECA) Condition: The ECA Condition
follows exactly the same rules as the Contingent Allegiance Condition. All I/O
Processes sent by the Initiator while the Condition exists are sent without a
Queue Tag Message.

e Mixing Tagged and Untagged Queuing: We can easily envision a situation
where an old Initiator (that can’t do Tagged Queuing) is attached to a SCSI
Bus where the other Initiators and Targets support Tagged Queuing. The
Target must accept Untagged Commands from the old Initiator in a manner
consistent with Untagged Queuing, at least from the old Initiator’s point of
view.

The answer is easy: The Target takes the Untagged I/O Process and queues
it as if it were an Ordered Tag (there is no real Tag number). This ensures
that the 1/O Process is executed in the order issued, exactly like the old
Initiator expects.

An Initiator should never mix Untagged I/O Processes with Tagged I/O
Processes for a Logical Unit, unless a Contingent Allegiance or ECA Condi-
tion currently exists for that Initiator. If it does mix them, the Target will dump
all of the Initiator’s queued and actively executing /O Processes and return
an error.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Q 84

Queue Tag. A Queue Tag is an arbitrary 8-bit number that is used to "identify" a
particular Queued I/O Process. The Queue Tag is the final element of a Nexus that
includes the SCSI Address of the Initiator and Target, and the Logical Unit Number
(LUN). Once a particular Queue Tag value is sent by the Initiator to a Logical Unit
during the Initial Connection, that value is associated with that §/O Process until the
process is terminated. The Queue Tag value may then be used for a new |/O Process
on that Logical Unit.

Queue Tag Messages. The "Queue Tag Messages" refers to the three
Messages that are used to pass a Queue Tag between two SCS/ Devices. These
Messages are:

e SIMPLE QUEUE TAG Message: The Target Queues the {/O Process any-
where between the end of the Queue and the last ORDERED QUEUE TAG

received (if any).

e ORDERED QUEUE TAG Message: The Target puts the I/O Process at the
end of the Queue, and puts no subsequent SIMPLE QUEUE TAGS or
ORDERED QUEUE TAGS in front of it.

e HEAD OF QUEUE TAG Message: The Target puts the 1/O Process at the
front of the Queue.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

Reconnect.

Reconnection.

RELEASE RECOVERY Message.
Release Signal.

REQ/ACKH Oifiset.

REQ Signal.

REQB Signal.

RESELECTION Phase.
Reselection Timeout.

Reserved.

Reset Condition.

Reset Hold Time.

Reset to Selection Time.
RESTORE POINTERS Message.
RST Signal.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 86

Reconnect. "Reconnect" is a verb used in the SCSI standard to describe the
action that the Target performs to re-establish a "working relationship" with an Initiator,
also known in SCSI as a Nexus. Contrast this with a "Connect", which the Initiator
performs. A "reconnect" includes:

(1) RESELECTION of an Initiator by a Target.

(2) The transfer of an IDENTIFY message from the Target to the Initiator to
establish the Logical Unit.

(3) If Queuing is used, the transfer of (specifically) a SIMPLE QUEUE TAG
Message to establish a tag to identify the [/O Process.

The flow to reconnect to various types of Nexuses is shown in Diagram 24 on the
following page.

When the Target has "reconnected" to the Initiator, a Nexus (relationship) that was
previously established between the two devices is revived. The SCSI standard calls
this a Reconnection. A reconnection is performed to continue an //O Process.

Usually after the reconnect is completed, the Target requests a DATA Phase with the
Initiator. Or, the Target may go to the STATUS Phase and complete the command.

Sometimes, as with "connect", it helps to use a word in a sentence to better define it:

"The Target reconnects to an Initiator to continue the execution of a com-
mand."

"The Target will now reconnect to the Initiator to complete the 1/O Process
issued the last time the Initiator connected to the Target."

"An Initiator connects to a Target, but a Target reconnects to an Initiator."

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

87 R

Target
Resge/ects the 2 ESELECT|O
Initiator P h ase
i T Nexus
is now identified
Identify the
LUN or

Target Process

IDENTIFY
MESSAGE [N

{ T_L Nexus or

If the command
was Queued
then....

No

Send the Initiator
the Queue
Identifier

QUEUE TAG
MESSAGE IN

LT_L_Q Nexus
n

is now identified

Reconnected

DIAGRAM 24: RECONNECT FLOW DIAGRAM

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R

88

Reconnection. A "reconnection” is what exists after:
(1) A Target has Reconnected to an Initiator.

A reconnection ends when the next BUS FREE phase occurs. Note that reconnection
is a subset of Connection.

RELEASE RECOVERY Message. The RELEASE RECOVERY message
is sent from an Initiator to a Target to clear an Extended Contingent Allegiance
(ECA) Condition. RELEASE RECOVERY is a single-byte message:

Bit

Byte

0 Message Code = 10 hex

This message is only sent in the OUT direction; i.e., a MESSAGE OUT Phase from
the Initiator to the Target. If the Initiator sends this message, it must follow the
IDENTIFY Message of an Initial Connection (no Queue Tag Messages allowed!).
The Initiator should only send this message after completing any extended recovery
that may have been required after the Target sent the INITIATE RECOVERY Mes-
sage.

When the Target receives this message, it clears the ECA Condition. If there was no
ECA Condition in effect at the time the Target received the message, then the
message has no effect. In any case, the Target goes to BUS FREE Phase after
receiving this message.

Summary of Use: The RELEASE RECOVERY message is sent only by an Initiator to
end an ECA condition.

Release Signal. To allow a signal to return to the "false" state. "Released" is
used in the SCSI standard to indicate that a signal or signal pair is no longer driven to
the "true" or "one" state, and is also not driven to the "false" or "zero" state; the signal
is allowed to return to the "false" by the effect of the bus Termination. Compare to
Negate and Assert. See Signal Levels.

REQ/ACK Ofiset. See Synchronous Offset.

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

89 R

REQ Signal. The REQ signal is asserted by the Target to begin either an
Asynchronous Data Transfer or a Synchronous Data Transfer. REQ is never
asserted by an Initiator. The Initiator responds to REQ with the ACK Signal. For
transfers from the Target to the Initiator, the REQ signal indicates that the data is
available on the bus. For transfers from the Initiator to the Target, the REQ signal
indicates that the Target is ready to accept data from the Initiator.

REQB Signal. The REQB Signal is used in systems that use the B Cable to do
Wide Data Transfers. It has the same control over data transfer on the B Cable as
the REQ Signal on the A Cable. The REQB Signal is independent of the REQ signal;

it only reacts to the ACKB Signal, and it is only related to the Data Bus Signals on
the B Cable.

RESELECTION Phase. The RESELECTION Phase is used by a Target to
Reconnect to an Initiator and continue an l/O Process. The RESELECTION Phase,
like the SELECTION Phase, is always preceded by the ARBITRATION Phase, and is
always followed by a MESSAGE IN Phase to send the IDENTIFY Message, and
possibly a SIMPLE QUEUE TAG Message.

Diagram 25 and Diagram 26 show how Initiators and Targets handle RESELECTION
Phase. Except for some details, RESELECTION Phase is just like SELECTION Phase
with the Initiator and Target roles reversed. During RESELECTION Phase, the Target
sets the bus signals that define the phase, and then waits for a response from the
Initiator. After the Initiator response, the Target releases those signals and begins
sequencing through the Information Transfer Phases, starting with the MESSAGE IN
Phase.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 90

Last action of
[Assert SEL J ARBITRATION Phase

y

Delay
1200 nsec minimum

For bus settling

y
{ASSGIT "My Bus |D",J Establish who | am,

the Initiator's Bus ID, who | am reselecting,
and that the phase is

and 1/0 RESELECTION Phase
A4
Delay. . To ensure
90 nsec minimum interlock with BSY
v

RESELECTION Phase
[Release BSY] begins here a

Wait for Initiator
response

Initiator
Asserting Yes
BSY? 4
(Assert BSY]
Has 4
250 msec Delay

Sce the Target 90 nsec minimum
released BSY ¢

Yes [Negate SEL j

Ends RESELECTION Phase
RESELECTION
Timeout

MESSAGE IN
DIAGRAM 25: RESELECTION FLow DIAGRAM FOR TARGETS

Elapsed?

Phase

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

91 R

\ : Validate SEL and I/O asserted,
RESELECTION Phase BSY negated

s My
Bus ID bit
sserted?

200 psec No Am | reselected?

(Assert BSY] Yes, respond to

the Target

Wait for the Target
to see my response
(no timeout!)

BSY asserted now

MESSAG E |N Target will send
P h ase IDENTIFY message

(Negate BSY] The Target has

DIAGRAM 26: RESELECTION FLow DIAGRAM FOR INITIATORS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 92

Figure 2 shows the exact timing of RESELECTION Phase:

ARBITRATION - - -> |- - cmmmmmme e m e RESELECTION Phase ------------cmmnmm it >| <-Info.
Phase Transfer Phase
Tom’s c
Boy . - \ I —
| |
[€<rmmmmmes tstd-----" - > |
| 250 ms | |
| <---tds*tds---->|<-tpsd-> | | d |
Iris’ | 90 ns | 400 ns8 |__ I 1 _
BSY _ I _/ /| \
| d | | £
| I__1
BUS BSY | \ / A XXXXX
| | |
| | [<---tds*tds >
| | 90 ns |
Tom’s a _ | | |
SEL L | N 1 d \
| | | | |
| <-tphcd*tbsd- - | 1< tsat > | e
1200 ns | | 400 ns |
Tom’s | o |
1/0 /) | N
| |
| b |
Tom’s | e e |
DB7-0,P __Watson’s_Bus_ID _X__Holmes_& Watson & Parity Bit . x_
| |
| I g
|<- 0 ns8 ->|
All Other
M

Signals (*1) _ _ o

(*1): Other signals = MSG, C/D, REQ, and ACK. They may not be asserted until RESELECTION Phase is completed. ATN
may be asserted but it is not part of the normal protocol and the Target does not respond to it until after the Nexus
is established.

FIGURE 2: RESELECTION PHASE TIMING

Here’s how events proceed in RESELECTION Phase. Compare them to SELECTION
Phase:

(a) Tom has successfully acquired the bus during the preceding ARBITRATION
Phase by asserting the SEL Signal to take the bus (Iris must not have been
trying to call...).

(b) After a Bus Clear Delay of 800 nsec to allow the losers to release their bus
signals, and after an additional Bus Settle Delay of 400 nsec to allow the
bus to settle (imagine that?) from the signal releases (total delay 1200
nsec), Tom begins setting up for RESELECTION Phase. He asserts his
SCSI Bus ID (which is 0) and Iris’ SCSI Bus ID (which is 7) on the DATA
BUS Signals; Iris is the Initiator that Tom will be reselecting. The data bus
value is then 10000001 with the Parity bit also asserted. Tom also asserts
the /O Signal to differentiate RESELECTION Phase from SELECTION
Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

93 R

(c) At least two Deskew Delays (total 90 nsec) after asserting the data bus and
the 1/O signal, Tom releases the BSY Signal to begin the selection.

(d) Other devices may now examine the bus to determine who the lucky
Initiator to be reselected is. The other devices must delay a minimum of
400 nsec (Bus Settle Delay again) before examining the data bus. Iris, the
"One Who is Reselected", examines the bus and sees that she is rese-
lected. Tom has certain expectations about how Iris will respond:

e Iris should respond within 250 msec (Selection Timeout Delay) from the
start of the RESELECTION Phase (Tom released BSY in step (c)). In
other words, a SCSI device should look for a RESELECTION Phase at
least every 250 msec if interrupts are not used or are disabled.

e |ris must respond within 200 psec (Selection Abort Time) of noticing that
she is reselected. This is done to facilitate a smooth Reselection Time-
out.

Iris responds to the Reselection by Tom by asserting the BSY signal.

(e) Tom sees that Iris has asserted BSY in response to the selection. Tom then
also asserts the BSY signal. Then, after delaying 90 nsec (two Deskew
Delays) to ensure the signal interlock, Tom may release the SEL signal.

(f) As soon as Iris sees the SEL signal go false (no delay), she releases the
BSY signal. The release of the BSY signal can cause a Wire-OR Glitch of
up to 400 nsec in duration. This is not a problem if everybody meets the
BUS FREE Delay requirement (see also BUS FREE Phase).

(g) As soon as Tom releases the SEL signal, he may begin setting up for the
MESSAGE IN Phase by changing the Bus Phase Signals.

Other observations on RESELECTION Phase:

® Note that Parity is valid during the RESELECTION Phase. Since two data
bits are always asserted true during RESELECTION, the Parity bit (DB(P)) is
always asserted as well, since SCSI Parity is odd (that is, as opposed to
even....).

e The Selection Timeout Delay exists to provide an upper limit to the time an
Initiator takes to respond. If the Initiator hasn’t responded within that time, the
Target may respond in a couple of ways:

e The Target may reasonably assume that the Initiator no longer exists at
that SCSI/ Address. When this happens, the Target may discard the
pending I/O Process (as with an ABORT Message or ABORT TAG

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 94

Message) and also may hold the Aborted status of the operation in antici-
pation of a later selection by the Initiator. It's kind of the same as an
Unexpected BUS FREE Phase, except the Initiator doesn’t see the event.
The Target is assuming that the timeout only occurs when the Initiator
suffers a catastrophic failure, such as some bozo tripping over the power
cord (and who was the bozo who left the cord out there anyway?).

e A smarter Target might assume the Initiator is just too busy to respond to
the RESELECTION Phase. In this case the Target waits some long period
of time and tries again. The Target may keep trying forever, or it may give
up after some number of times and respond as above. Our humble opinion
is that modern Initiators are able to at least assert BSY in response to
RESELECTION Phase. Once the Initiator responds to BSY, there is no
timeout. A well-behaved Initiator will be able to send the DISCONNECT
Message to the Target if it can’t handle the Reconnection.

Table 12 shows the timing values used during RESELECTION Phase.

TABLE 12: TIMING VALUES USED DURING RESELECTION PHASE

Symbol [Timing Name MIN or MAX? Time
tosd Bus Settle Delay MINIMUM 400 nsec
tocd Bus Clear Delay MINIMUM 800 nsec
tg Selection Timeout Delay MINIMUM 250 msec
tys Deskew Delay MINIMUM 45 nsec
teat Selection Abort Time MAXIMUM 200 psec

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

95 R

This page is nearly blank!
We use the space to improve Readability.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 96

Reselection Timeout. The Reselection Time-out is a formal procedure to
prevent bus hangs when a Target decides to give up on a pending RESELECTION
Phase. Please see Selection Time-out for an explanation of how the bus can hang.

The Reselection Time-out procedure is almost the same as the Selection Time-out
procedure, except that the Target must manage the //O Signal.

(1) After the Target has maintained RESELECTION Phase for a Selection
Time-out Delay, it decides to abort the reselection. The first thing the Target
does is release all Data Bus Signals. This is the same as in Selection
Time-out.

(2) The Target waits for at least a Selection Abort Delay plus two Deskew
Delays (200.09 psec total), and if the Initiator has not yet responded,
releases the SEL Signal and the l/O Signal, returning to the BUS FREE
Phase.

Diagram 27 shows how Targets handle Reselection Timeout.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

97

RESELECTIO
Phase

N
Negate "My Bus ID"
and Initiator’s Bus ID

Enter from
RESELECTION Phase

Prevent further
validation by an Initiator

Delay
200.09 psec minimum

Wait for pending
Initiator validation
to complete

No response to
RESELECTION: Give up
and get off the bus

BSY
Asserted?

\

/

Yes

Initiator barely responded
in time: complete
RESELECTION Phase

[Negate SEL and I/Oj

BUS FREE
Phase

N
Negate SEL]
y
MESSAGE IN
Phase

DIAGRAM 27: RESELECTION TIMEOUT FLOW DIAGRAM

Copyright © 1991 ENDL Publications The

SCSI Encyclopedia, Volume |

R 98

Reserved. In SCSI, "Reserved" refers to any bit, field, byte, or code in a Com-
mand Descriptor Block (CDB), Message, or Parameter Data that serves no current
purpose. The X3T9.2 Committee "reserves" these bits, fields, and bytes for future
use. These uses usually include new functions or options for existing functions.

If the SCSI Standard says that a field (or bit or byte or code) is Reserved, believe it!

e For an Initiator sending a CDB or Parameter Data, or any SCS/ Device
sending a Message, a Reserved field must be set to zero. If you don’t set
them to zero, you could be invoking an option you don’t know about, and
then you wouldn’t get the effect you wanted.

e For a Target returning Parameter, INQUIRY, or SENSE Data, setting a
Reserved bit to one could cause the Initiator to misinterpret the data.

Reset Condition. The Reset Condition exists as long as the RST Signal is

asserted by any SCSI Device. The Reset Condition also exists for a minimum of a
Reset Hold Time. Figure 3 shows the Reset Condition timing.

Any Phase-->|<------------------ Between Phases --------------------- >|<--- BUS FREE Phase -->|<-- ARB
Phase

|
|
|
RST /
|
|

BSY

All Other
Signals (*1)

(*1): Other signals = All Data Bus Signals, SEL, ATN, MSG, C/D, I/O, REQ, and ACK.

FIGURE 3: RESET CONDITION TIMING

Here’s how events proceed during the Reset Condition:

(a) A SCSI Device asserts the RST signal for some reason (see below for
some possibilities). This begins the Reset Condition on the bus. A Hard
Reset or Soft Reset is also begun at this time.

(b) All of the other devices detect the RST signal and begin to clear off of the
bus if they are currently Connected. All devices must clear their signals off

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

the bus within a Bus Clear Delay (800 nsec) of receiving the RST signal. At
this time, the Bus Phase is always BUS FREE Phase.

(c) After a Reset Hold Time from asserting the RST signal, the SCSI Device
that started the Reset Condition finishes it by releasing the RST signal. This
ends the Reset Condition.

(d) The soonest a device may assert the BSY Signal to begin an ARBITRA-
TION Phase is 400 nsec (a Bus Free Delay) after the release of RST.

Other observations on the Reset Condition:

e There is no validation time for ensuring that we really have a Reset Condition.
According to the standard, a device is not supposed to react to glitches on
the RST signal, but there is no other guidance given, other than that glitch
rejection must take less than a Bus Clear Delay (800 nsec). Since you are
likely at the mercy of the SCSI protocol chip manufacturer for glitch rejection,
this is another good reason to use good Cables.

e If for some reason two devices both decide to assert the RST signal, the
Reset Condition ends when both devices have released RST. This is be-
cause the RST signal is an "OR-tied" signal. This may occur when two
devices both recognize the need to reset at the same time. One example is
when a Target fails and it is connected to the bus. Two Initiators may decide
to "nail" the bus due to a system time-out or operator intervention.

It should be noted that creating the Reset Condition is a pretty drastic step. A SCSI
Device should attempt all other options, including:

e The TERMINATE I/O PROCESS Message, ABORT Message, or the
ABORT TAG Message. These messages will just clear the command or
commands involved (each in their own way, of course). This option is avail-
able only to a connected Initiator. Of course, if the Target in question is
misbehaving and won’t accept the message, you may not have any choice
other than the Reset Condition.

e The BUS DEVICE RESET Message. The advantage of this message is that
it causes the Target to execute a "Power-On" type reset, and it doesn’t
directly affect any other device like the Reset Condition can. Of course, this
option has the same disadvantage as the first one.

¢ Beat on the offending device with a hammer. Actually, if the device has a
user accessible reset button this may be less traumatic to a system than the
Reset Condition....

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 100

The Reset Condition also causes all SCSI Devices on the bus (including Devices that
are usually Initiators!) to execute a reset procedure; either a Soft Reset or a Hard
Reset.

Table 13 shows the timing values used during the Reset Condition.

TABLE 13: TIMING VALUES USED DURING THE RESET CONDITION

Symbol |Timing Name MIN or MAX? Time
toid Bus Free Delay MINIMUM 400 nsec
tocd Bus Clear Delay MAXIMUM 800 nsec
tnt Reset Hold Time ' MINIMUM 25 psec

Reset Hold Time. trht = 25 usec. If a device asserts the RST Signal, it must
assert RST for a minimum of a Reset Hold Time. See Reset Condition. There is
really no good reason why this time is so long. It just is. Some folks on the original
X3T9.2 Committee wanted to be sure everything got reset, even if the device had a
really slow clock!

Reset to Selection Time. trst =250 msec recommended. After the Reset
Condition is over (the RST Signal is negated after it is asserted), all SCSI Targets
must be able to respond to a SELECTION Phase no later than this period of time.
Further, it must also be able to execute the following commands:

e TEST UNIT READY
e REQUEST SENSE
¢ INQUIRY

Now, as a practical matter, this number is fairly meaningless except as a way to
encourage Targets to be ready to respond to an Initiator in a reasonably short period
of time. Why?

e This is a "recommended" time. As such, a procurement spec may specify a
different number, and your Target may be required to meet a looser or tighter
number.

e Once the Target responds to SELECTION Phase, it must then be able to
execute the commands listed above. But, what does execute mean?

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

101 R

e TEST UNIT READY: Pop back to the Initiator with a Status code. That's
easy. But, the Target may not yet have loaded its microcode (say, from
reserved sectors on a disk), and may not be able to respond with the
Sense Data that best describes the Status.

e REQUEST SENSE: Return something. Again, the data may not meaningful
because of delays loading microcode.

¢ INQUIRY: Same as REQUEST SENSE. The data may be a minimal set
saying: "I am this Device Type and that’s all | know right now".

As it turns out, most of the time all the Initiator really wants to know is whether a
Target exists at that SCS/ Address. It is then usually okay if the Target takes a little
while longer to gather more complete information that can be provided at a later time.

RESTORE POINTERS Message. A RESTORE POINTERS Message is

sent from a Target to an Initiator to retry an Information Transfer Phase. RESTORE
POINTERS is a single byte message:

Bit 7 6 5 4 3 2 1 0

Byte

0 Message Code = 03 hex

Specifically, this message is used to retry a COMMAND Phase, STATUS Phase, or a
DATA Phase. The Target sends this message when it gets an indication that one of
these phases must be retried. This indication can include one of the following:

e Bus Parity error detected by the Target.
¢ Internal error within the Target; e.g., a buffer memory failure.
e An INITIATOR DETECTED ERROR Message received from the Initiator.

When the Initiator receives this message, it copies all Saved Pointers to the Active
Pointers. In most cases, this effectively goes back to the beginning of the transfer; an
exception is when the SAVE DATA POINTER Message or MODIFY DATA POINTER
Message is used. See Pointers and Path Control for all the details.

Summary of Use: The RESTORE POINTERS is sent only by a Target to request that
the Initiator copy its Saved Pointers to its Active Pointers for purposes of retrying an
Information Transfer Phase.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

R 102

RST Signal. The RST Signal is asserted by any SCSI Device to cause a Reset
Condition on the bus. The RST signal must never be Negated,; it should only be
Released since this is an "OR-tied" signal. If the RST Signal is to be asserted by a
device, it must be asserted for a minimum of a Reset Hold Time, which is 25 psec.
Like the BSY Signal, the RST Signal is "OR-tied"; no device may "negate" the RST
signal. It may only be "asserted" or "released". This allows more than one SCSI
Device to assert the signal. See Signal Levels.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

103 S

SASI.

SAVE DATA POINTER Message.
Saved Pointers.

SCSI, SCSI-1, and SCSI-2.
SCSI-32

SCSI Address.

SCSI Bus.

SCSI Bus ID.

SCSI Commands.

SCSI Device.

SCSI ID.

Seclection Abort Time.
SELECTION Phase.

Selection Time-out.

Selection Time-out Delay.

SEL Signal.

Signal Levels.

SIMPLE QUEUE TAG Message.
Single-Ended Interface.

Soft Reset.

Status.

STATUS Phase.

Status Pointer.

Synchronous Data Transfer.
Synchronous Data Transfer Negotiation.
SYNCHRONOUS DATA TRANSFER REQUEST Message.
Synchronous Offset.

Synchronous Transfer Period.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

104

SASI. The "Shugart Associates System Interface" (or SASI), is the direct predeces-
sor to SCSI. The name was changed to SCSI because ANSI rules prohibited the use
of a company name in the name of an ANSI standard. SASI defined the basic Bus
Phases, Control Signals, and the 8-bit Data Bus Signals, along with a primitive
Message System and a minimal set of disk-oriented commands.

SAVE DATA POINTER Message. The SAVE DATA POINTER is used to
establish a new starting point for any later DATA Phase retries. This is a single byte
message:

Bit 7 6 5 4 3 2 1 0

Byte

0 Message Code = 02 hex

SAVE DATA POINTER is sent by a Target to request that the Initiator copy its
Current Data Pointer to the Saved Data Pointer. This message is usually seen in
one of the following situations:

® Prior to a Disconnect. In this case, the Target is preparing to disconnect
from the bus for a time and wishes to continue the data transfer from where it
left off.

¢ |n the middle of a long data transfer. In this case, the Target has transferred
a lot of data and wants to establish a new place to begin retries. The sim-
plest motivation for doing this is to avoid a very lengthy retry in case of a
transfer error (such as a Parity error). Another reason, however, may be that
the Target is incapable of re-sending the data transferred prior to this point.
An example of this might be a SCSI communication bridge to a network.

e At the end of a data transfer, if the Target wants to Disconnect before
sending Status. In this case, the Target is ensuring that the Saved Data
Pointer matches the Current Data Pointer. Some Initiators have been de-
signed to require this, but this author does not recommend this for future
Initiator designs (see Etiquette).

See Pointers and Path Control for more details on this message.

Summary of Use: The SAVE DATA POINTER message is sent only by a Target to
request that the Initiator copy its Current Data Pointer to its Saved Data Pointer.

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

105 S

Saved Pointers. The Saved Pointers (as opposed to the Active Pointers) are
three pointers that refer to the starting command, status, and data locations within the
Initiator for an /O Process. A Saved Pointer indicates the starting byte of each of
those locations. There are three Saved Pointers:

(1) Saved Command Pointer
(2) Saved Status Pointer
(3) Saved Data Pointer

Technically, the Saved Data Pointer may not point at the start of the Initiator data
location. The Saved Data Pointer may be modified by the Target by the use of the
SAVE DATA POINTER Message. Note that the MODIFY DATA POINTER Message
does not modify the Saved Data Pointer; it only modifies the Active Data Pointer.

See Pointers for the whole story.

SCSI, SCSI-1, and SCSI-2. Yes, you've heard these terms, and you may
have noticed that no distinction is made between them in this volume. There is a good
reason; this volume is targeted (SCSI pun not intended) at designers and users setting
out to learn and initiate (SCSI pun intended) SCSI designs today. SCSI today is SCSI-
2. However, we do recognize that the reader may have to know what the difference
between SCSI-1 and SCSI-2 is, thus we include this topic.

SCSI: Anything that conforms or refers to the current SCSI standard; as of this
writing, SCSI-2.
SCSI-1: Anything that conforms or refers to ANSI Standard X3.131-1986.

SCSI-2: Anything that conforms or refers to ANSI Standard X3.131-199x.

Oh, and one other item:

CCS: Anything that conforms to the working document X3T9.2/85-52 revision
4B, the "Common Command Set". This internally inconsistent document
formed a basis for SCSI-2. Modern SCSI products don’t design to CCS, they
design to SCSI-2. Just say "No" to CCS!

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 106

New features, within the scope of this volume, that were added to SCSI-2 include:

¢ High density connectors

¢ Fast data transfers

e Active termination

e ARBITRATION and IDENTIFY Message are required
e Wide data transfers

e Command Queuing and Queue Tags

e Extended Contingent Allegiance

e TERMINATE I/O PROCESS Message

e DISCONNECT Message sent by the Initiator

SCSI-3?! No, we will NOT use the old "...just when you thought it was safe to..."
line! However, it does seem very appropriate here. It seems that the X3T9.2 commit-
tee, whose job it is to maintain the SCSI Standard, just can’t keep their hands off....

Enough editorializing. The features currently planned for SCSI-3 as of this writing
include:

¢ Single cable 16-bit wide transfers (already a de facto standard).

® The Standard will be broken into several pieces to simplify the documentation
of new features.

e Packetized transfers over fiber optic and copper interfaces.
¢ Dual or multiple port operation.

¢ Additional Caching control features.

SCSI Address. See also SCSI Bus ID. The SCSI address is the numerical
representation of the bus address assigned to a SCS/ Device. Since up to eight
devices can be connected to the bus, the possible addresses are 0 thru 7.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

107 S

Each device has a unique address. If two devices on a single bus cable have the
same address, it is likely they will contend for the bus and, at best, hang the bus. At
worst, data could be lost. Be careful with your address settings!

Since the address must be unique, SCSI devices are designed so that the address
may be changed at installation time. This is usually a DIP switch, jumper, or other
mechanical connection. There is no standard method for changing the address over
the bus, but you will see some devices that have contrived a non-standard method.

The address also determines the priority of the device during ARBITRATION Phase.
The higher the value of the address, the more likely the device is to win ARBITRA-
TION. Therefore, in certain situations the addresses of your SCSI devices must be
chosen with some care. For example, if the devices use the bus for long periods of
time, then there is less free time on the bus for others to use it. This will force more
competition during ARBITRATION Phase.

SCSI Bus. The SCSI Bus is a generic term that refers to the complete set of
signals that define the activity of the interface. These signals include the Control
Signals and the Data Bus Signals. That's about all that can be said here without
writing the rest of this book....

SCSI Bus ID. The Bus ID is the SCSI Address expressed as a single bit on the
Data Bus. The Bus ID is used by a SCS/ Device to:

e Broadcast its address during ARBITRATION Phase. The device that is
broadcasting the largest address (e.g., 7 is greater than 6) wins.

e Transmit the address of the device to be selected (or reselected) during
SELECTION Phase (or RESELECTION Phase). The device being selected
(or reselected) sees its Bus ID and responds.

® Transmit its address during SELECTION Phase so that the selected device
knows who is selecting it. The selected device (the Target) uses this informa-
tion to Reconnect later, and to maintain many different Initiator-related types
of information and operating conditions.

® Transmit its address during RESELECTION Phase so that the reselected
device knows who is reselecting it. The reselected device (the Initiator) uses
this information to re-establish the Nexus.

Table 16 shows the SCSI Address, the corresponding Bus ID, and how that address
fares during ARBITRATION Phase:

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 108

TABLE 16: SCSI Bus ADDRESSES AND IDS

Address Bus ID (DB7-0, Binary) Wins ARBITRATION Over Loses ARBITRATION To
0 00000001 None Everyone Else
1 00000010 Address 0 only Addresses 2 thru 7
2 00000100 Addresses 0 & 1 Addresses 3 thru 7
3 00001000 Addresses 0 thru 2 Addresses 4 thru 7
4 00010000 Addresses 0 thru 3 Addresses 5 thru 7
5 00100000 Addresses 0 thru 4 Addresses 6 & 7
6 01000000 Addresses 0 thru 5 Address 7 only
7 10000000 Everyone Else None

SCSI Commands. A SCSI Command is an operation performed by a Target for
an Initiator. A SCSI command is fully specified by the following items:

e The Command Descriptor Block (CDB) which specifies the function to be
performed.

e The Logical Unit Number (LUN) which specifies the Logical Unit for the
commanded function. This is usually specified in the IDENTIFY Message. In
older SCSI-1 devices, the LUN is specified in the second byte of the CDB.

® The optional Queue Tag which further defines the Nexus.

¢ If the command function requires that a DATA Phase must occur, that data
may contain any or all of the following:

o Additional Command Parameters to or from the Initiator.
e Data to or from the Logical Unit.

e A SCSI command may also be influenced by parameters set up by previous
commands such as MODE SELECT.

SCSI Device. A SCSI Device is anything that can plug into the SCSI Bus and
actively participate in bus activity. The term "SCSI Device" is usually used as an
inclusive term for "Initiator or Target".

SCSI ID. See scsI Bus ID.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

109 S

Selection Abort Time. tsat = 200 usec. The Selection Abort Time has been
defined to prevent bus hangs during SELECTION Phase or RESELECTION Phase.
This time is defined as the maximum amount of time that a device may take between
detecting that it is being selected, and when it responds by asserting the BSY Signal.
See Selection Timeout and Reselection Timeout for how this timing value is used.

SELECTION Phase. The SELECTION Phase is used by an Initiator to choose
the Target and begin an [/O Process. The SELECTION Phase is always preceded by
the ARBITRATION Phase, and is always followed by:

e A MESSAGE OUT Phase to send the IDENTIFY Message, and possibly a
Queue Tag Message. This is preferred.

e A BUS FREE Phase, because of a Selection Timeout.

e A COMMAND Phase if the Target is an older SCSI device. Modern SCSI
Targets do not transition directly from SELECTION Phase to COMMAND
Phase, and modern SCSI Initiators do not make Targets change directly by
neglecting the use of the Attention Condition.

Diagram 28 and Diagram 29 show how Initiators and Targets handle SELECTION
Phase. During SELECTION Phase, the Initiator sets the bus signals that define the
phase, and then waits for a response from the Target. After the Target response, the
Initiator releases those signals and waits for the Target to begin sequencing through
the Information Transfer Phases, starting with the MESSAGE OUT Phase.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

110

4 ™
Assert SEL
. A
v
Delay
1200 nsec minimum

J

(Assert "My Bus ID",)
the Target's Bus ID,
L and ATN)

V
Delay
90 nsec minimum
v
P
Release BSY
| J

Target
Asserting
BSY?

Last action of
ARBITRATION Phase

For bus settling

Establish who | am,
who | am selecting,
and that MESSAGE
OUT should follow

To ensure
interlock with BSY

SELECTION Phase
begins here

Wait for Target
% response

y

Has

[Negate SEL]

250 msec
Elapsed?

| Yes

SELECTION
Timeout

WSince the nitiator
refeased BSY

Usually MESSAGE
QUT Phase

Ends SELECTION Phase

information
Transfer

DIAGRAM 28: SELECTION FLow DIAGRAM FOR INITIATORS

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

111 S

Va"date SEL asserted,
| SELECTION Phase BSY and 110

s My
Bus D bit
sserted?

200 usec No
max

Am | selected?

(Assert BSY] Yes, respond to

the Initiator

Initiator Wait for the Initiator

to see my response
(no timeout!)

No

SCSI-2 or Advanced

Simple SCSI-1
SCSI-1 Initiator

N o) Initiator

COMMAND
Phase

_Yes

Asserted?

Do first
transfer phase

DIAGRAM 29: SELECTION FLow DIAGRAM FOR TARGETS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S

112

Figure 4 shows the exact timing of SELECTION Phase.

ARBITRATION - -->|C----cmaee oo SELECTION Phase -----------ctenmman. >|<-Information
Phase Transfer Phase
Iris’ c
BSY T
|
[tstd - >
| 250 ms |
[<---tds*tds---->|<-tphsd->| | d
Tom’s | 90 ns | 400 ns | (.
BSY _ I / /
| d |
| |
BUS BSY I \ / /
| |
| I < tdsttds >
| | 90 ns |
Iris’ a .. | |
SEL _/ | d | \
| | | | |
| <-tbcd*tbsd- - | 1< tsat > | e
Iris’ 1200 ns | | 200 us |
1/0 _ R |
I |
| |
Iris’ ol 1 |
DB7-0,P __Holmes’_Bus_ID X_ Holmes & watson & Parity Bit A X
| | |
| b | |
Iris’ | _ - A | |
ATN L / | |
| | £
|<- 0 ns ->|
All Other |
Signals (*1) _ o o - o - _ o X
(*1): Other signals = MSG, C/D, REQ, and ACK. They may not be asserted until SELECTION Phase is completed.

FIGURE 4: SELECTION PHASE TIMING

Here's how events proceed in SELECTION Phase:

(@)

(b)

Iris has successfully acquired the bus during the preceding ARBITRATION
Phase by asserting the SEL Signal to take the bus (Iris is often successful
at what she does).

After a Bus Clear Delay of 800 nsec to allow the losers to release their bus
signals, and after an additional Bus Settle Delay of 400 nsec to allow the
bus to settle (imagine that?) from the signal releases (total delay 1200
nsec), lris begins setting up for SELECTION Phase. She asserts her SCS/
Bus ID (which is 7) and Tom’s SCSI Bus ID (which is 0) on the DATA BUS
Signals; Tom is the Target that Iris will be selecting. The data bus value is
then 10000001 with the Parity bit also asserted. Iris also asserts the ATN
Signal to indicate that a MESSAGE OUT Phase should follow the SELEC-
TION Phase. The [/O Signal must be false during SELECTION Phase; lIris
must leave it released.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

113 S

(c) At least two Deskew Delays (total 90 nsec) after asserting the data bus and
the ATN signal, Iris releases the BSY Signal to begin the selection.

(d) Other devices may now examine the bus to determine who the lucky Target
to be selected is. The other devices must delay a minimum of 400 nsec
(Bus Settle Delay again) before examining the data bus. Tom, the "One
Who is Selected", examines the bus and sees that he is selected. Iris has
certain expectations about how Tom will respond:

e Tom should respond within 250 msec (Selection Timeout Delay) from
the start of the SELECTION Phase (Iris released BSY in step (c)). In other

words, a SCSI device should look for a SELECTION Phase at least every
250 msec if interrupts are not used or are disabled.

e Tom must respond within 200 psec (Selection Abort Time) of noticing
that he is selected. This is done to facilitate a smooth Selection Timeout.

Tom responds to the selection by Iris by asserting the BSY signal.
(e) Iris sees that Tom has asserted BSY in response to the selection. After

delaying 90 nsec (two Deskew Delays) to ensure signal interlock, lris may
release the SEL signal.

(f) As soon as Tom sees the SEL signal go false (no delay), he may begin

setting up for the MESSAGE OUT Phase by changing the Bus Phase
Signals.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 114

Other observations on SELECTION Phase:

¢ Note that Parity is valid during the SELECTION Phase. Since two data bits
are always asserted true during SELECTION, the Parity bit (DB(P)) is always
asserted as well, since SCSI Parity is odd (that is, as opposed to even....).

e The Selection Timeout Delay exists to provide an upper limit to the time a
Target takes to respond. If the Target hasn’t responded within that time, the
Initiator may reasonably assume that no Target exists at that SCS/ Address.
In practice, the timeout only becomes a factor during /nitialization, which is
when the Initiator is trying to determine the devices that are available. Most
Targets today will respond within a very short period of time. A Target that
fails to respond is usually non-existent, powered-down, or broken.

Table 17 shows the timing values used during SELECTION Phase.

TABLE 17: TIMING VALUES USED DURING SELECTION PHASE

Symbol |Timing Name MIN or MAX? Time
tosd Bus Settle Delay MINIMUM 400 nsec
L Bus Clear Delay MINIMUM 800 nsec
td Selection Timeout Delay MINIMUM 250 msec
tys Deskew Delay MINIMUM 45 nsec
teat Selection Abort Time MAXIMUM 200 psec

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

115 S

This page is nearly blank!
We use the space to improve Readability.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 116

Selection Time-out. The Selection Time-out is a formal procedure to prevent

bus hangs when an Initiator decides to give up on a pending SELECTION Phase.

How does this prevent bus hangs? Let's see what happens without a formal time-out
procedure:

(1) A device (call him "Tom"; deja vu....) enters SELECTION phase (intending to
become an Initiator), attempting to select another device (call her "Iris") as a
Target.

(2) Iris sees Tom trying to select her, but she’s too busy at the moment to

respond (something about keeping a tape streaming), so she ignores Tom
for the moment.

(3) Tom gets tired of waiting (probably after a Selection Time-out Delay, but

before all night....) and gives up, going directly to BUS FREE Phase; a bad
thing to do, as we will see.

(4) Just as Tom gives up, Iris decides she has time for him now, so without
checking the bus, she asserts BSY to respond to his selection.

(5) Poor Iris. She is connected to the bus, but she has no one to talk to. And
Poor Tom. He gave up and isn’t there to acknowledge her requests.... As a
result the bus is hung with no recourse but a Reset Condition.

As you can see, there has to be some way of giving up gracefully. In the above
example, even if Iris tried to respond right away, but Tom gave up the selection just
after Iris examined the bus, a hang would still occur. To solve this problem, the
following procedure has been defined:

(1) After Iris (the Initiator) has maintained SELECTION Phase for a Selection
Time-out Delay, she decides to abort the selection. The first thing Iris does
is release all Data Bus Signals.

(2) Iris waits for at least a Selection Abort Delay plus two Deskew Delays
(200.09 psec total), and if Tom (the Target) has not yet responded, releases
the SEL Signal and the ATN Signal, returning to the BUS FREE Phase.

Let's see how this prevents a bus hang. If Tom does not check the bus for a Selection
until after step (1) above, then he will not see his SCSI Bus ID asserted on the Data

Bus. If Tom detects selection just before Iris decides to give up, Iris will still catch
Tom'’s response just in time.

Diagram 30 shows the Selection Time-out Procedure.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

117

No response to

SELECTION
Phase

Negate "My Bus ID"}

and Target's Bus ID

b

Delay

SELECTION: Give up

and get off the bus

\

/

200.09 usec minimum

@egate ATN and SEL]

/
BUS FREE
Phase

BSY
Asserted?

Yes

Enter from
SELECTION Phase

Prevent further
validation by
the Target

Wait for pending
Target validation
to complete

Target barely
responded in
time: complete
SELECTION Phase

W

[Negate SEL j

\
MESSAGE OU
Phase

DIAGRAM 30: SELECTION TIMEOUT PROCEDURE

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

S 118

Selection Time-out Delay. tstg = 250 msec recommended. The Selection
Time-out Delay establishes an upper limit on how long an Initiator should wait before
deciding to give up on selecting a Target. If the Target hasn’t responded after this
delay, the Initiator begins a Selection Time-out procedure. This delay also applies to
Targets trying to reselect an Initiator; in the case of a time-out, the Target would begin
a Reselection Time-out procedure.

Note that this time is "recommended": The SCSI committee shied away from defining
a firm time-out delay. It may be good that they didn’t, because new SCSI chips are
capable of automatically responding to SELECTION Phase immediately. It is very
uncommon today to see devices that take longer than a millisecond to respond. If your
application requires a faster Initialization time, then you may be able to use a shorter
time-out delay.

SEL Signal. The SEL signal is used to indicate a SELECTION Phase or a
RESELECTION Phase, or an impending transition to one of those phases:

o A SCSI Device asserts SEL at the end of ARBITRATION Phase when it has
won arbitration and wishes to take the bus.

e The SEL signal asserted with the [/O Signal negated or released (and the
BSY Signal released) indicates a SELECTION Phase.

e The SEL signal asserted with the l[/O Signal asserted (and the BSY Signal
released) indicates a RESELECTION Phase.

One other note; the SEL signal is never driven to the false state. It is always released.
See Signal Levels.

Signal Levels. The signal levels on the bus determine the state of the signal;
either true or false. A signal that is true is Asserted. A signal that is false is either
actively driven to the Negated level, or passively allowed to return to the false state by
Releasing the signal. The following paragraphs describe these levels; they are also
illustrated under Single-Ended Interface and Differential Interface.

The signal levels for the Single-Ended Interface are:

¢ A signal is asserted when it is driven low on the cable. "Low" is defined as
driving to no more than 0.5 Volts at 48 mA sinking. A receiving device sees
an asserted signal when the input is lower than 0.8 Volts.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

119 S

e A signal is negated when it is driven high on the cable. "High" is defined as
driving to at least 2.5 Volts. A receiving device sees a negated signal when
the input is higher than 2.0 Volts.

® A signal is released when it is allowed to float high on the cable. "Float High"
is defined as the voltage to which the terminator holds the bus when no
active device is driving. A receiving device sees a negated signal.

The signal levels for the Differential Interface are:

® A signal is asserted when its "+" signal is driven higher than the "-" signal is
driven low. The driver drives the "+" signal at least 1.0 Volts higher than the
"-" signal. A receiving device sees an asserted signal when the "+" input
voltage is higher than the "-" input voltage.

e A signal is negated when its "+" signal is driven lower than the "-" signal is
driven low. The driver drives the "-" signal at least 1.0 Volts higher than the
"+" signal. A receiving device sees a negated signal when the "-" input
voltage is higher than the "+" input voltage.

e A signal is released when its "-" signal is allowed to float higher than the "+"
signal is allowed to float. "Float High" is defined as the voltage to which the
terminator holds the bus when no active device is driving. A receiving device
sees a negated signal.

SIMPLE QUEUE TAG Message. The SIMPLE QUEUE TAG Message is

used by an Initiator to get a command executed in an optimum order decided by the
Target when a Queue is used by the Target. The Target may also send this Message
during a Reconnection. SIMPLE QUEUE TAG is a two byte message:

Bit 7 6 5 4 3 2 1 0

Byte

0 Message Code = 20 hex

1 Queue Tag

The second byte of the message specifies the Queue Tag associated with the Nexus
being established by this message.

This message causes the new l/O Process associated with the Nexus to be put in the
Queue, and allows the Target to reorder it relative to other commands that currently
may be queued. If no I/O Process is currently being executed for that Logical Unit,
then the new I/O Process is executed immediately.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 120

An |/O Process with a SIMPLE QUEUE TAG may be placed anywhere in the Queue,
subject to the following rules:

e |f there are no I/O Processes with ORDERED QUEUE TAGS or HEAD OF
QUEUE TAGS in the Queue, the Target may place the new I/O Process
anywhere in the Queue.

o |f there are |/O Processes with ORDERED QUEUE TAGS or HEAD OF
QUEUE TAGS in the Queue, the Target may place the new |/O Process in
the Queue between the rear of the Queue and the ORDERED QUEUE TAG
or HEAD OF QUEUE TAG I/O Process closest to the rear of the queue
received by the Target.

There are other rules for reordering I/O Processes. See Queue for an illustration of
this behavior.

Summary of Use: The SIMPLE QUEUE TAG Message is sent by an Initiator to a
Target to cause the 1/O Process to be placed in the queue. The SIMPLE QUEUE TAG
Message is sent by a Target to an Initiator to re-establish a Nexus during a Recon-
nect.

Single-Ended Interface. The Single-Ended Interface is one of two electrical
interfaces (see Differential Interface) defined for SCSI. The electrical interfaces are
the means by which the Data Bus Signals and Control Signals are transmitted and
received by SCSI Devices.

The Single-Ended Interface transmits the signals using a single wire with a ground
return. The driver pulls the wire to ground to Assert the signal, and either goes to a
high-impedance state or pulls the wire high to Negate the signal. In any case, the
driver must be able to go to a high impedance state when the device is not enabled
on the bus. The receiver detects the voltage and decides the state of the signal. The
top half of Diagram 31 shows the operating characteristics of the driver, and the
bottom half shows the operating characteristics of the receiver.

Note that the "Signal Negated" portion of the Driver Requirements is only meaningful
for SCSI Devices with Active Pull-ups. Devices with "open-collector" drivers can only
Release a signal.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

121 S

\ /) output false \

— \ / 2.5V min \
_ .Signal \ output true / _ \

\ 0.5V max @ 48 mA / \

Signal Asserted Signal Negated

Driver Requirements

\ [input false \
/ 2.0V min \

Switching _Threshold Hysteresis \
1.4V nominal 200 mV min \

g),gl(/t true / \
\ .8V max / \

Signal Asserted Signal Negated

Signal

Receiver Requirements

DIAGRAM 31: SINGLE-ENDED DRIVER AND RECEIVER VOLTAGES

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 122

Other characteristics of the Single-Ended Interface are:

e The current at any signal input must not exceed:
¢ -0.4 mA when the input voltage is 0.5 V.
¢ 0.1 mA when the input voltage is 2.7 V.
These must also hold when the device is powered down.

® The capacitance on any signal input must not exceed 25 pF. Note that this is
measured at the connector and includes:

e Connector capacitance;
¢ Printed circuit trace capacitance;
e SCSI protocol Chip capacitance.

® The Termination biases each signal when Released between 2.85 V and
2.7 V when using the "Preferred" Circuit. When using the "OId Style" Circuit,
the bias is between 3.5 V and 2.1 V. The variation in bias voltage is due to
resistor tolerances at the Terminator, and, in the case of the "Old-Style"
Circuit, is also due to variation in the Terminator Voltage.

The advantages of the Single-Ended Interface are:

¢ The Single-Ended Interface uses less power than the Differential Interface.
Single-Ended drivers have less current to sink than Differential drivers, and
there are half as many lines to drive.

¢ The Single-Ended Interface dissipates less power than the Differential
Interface. An 8-bit Differential driver set will dissipate up to about 4 watts,
while an 8-bit Single-Ended driver set dissipates less than 1 watt.

e As of this writing, the Single-Ended Interface is several dollars cheaper to
implement than a Differential Interface.

The disadvantages of the Single-Ended Interface are:

e Cable length (6 meters) is actually pretty short. By the time the cable is
routed through a decent sized computer cabinet, there is little extra length
available to go outside the box. You should use the Differential Interface
when the cable must leave a cabinet for a total cable length longer than 6
meters.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

123 S

e Signal quality is "poorer" than with the Differential Interface. This must be
qualified: If you use cheap flat ribbon cable, route it poorly within the cabinet,
exceed stub lengths, and use passive termination with low terminator power
voltage, you can expect to have signal quality problems. If you use good
quality cable, route with care, use active termination, and generally observe
the requirements and recommendations of the standard, you should have no
trouble. In other words, the Single-Ended Interface is more susceptible to
carelessness in following the standard.

Soft Reset. "Gently return to your initial state." Not quite. Soft Reset is one of two
ways that a SCS/ Device can respond to the Reset Condition (the other way is, of
course, Hard Reset). The problem with Hard Reset is that everything on the Device
gets cleared. This includes Devices that were minding their own business off the bus.

That seems kind of unfair. Why should a behaving Device get nailed? The Reset
Condition is usually used to get a failed Device off the bus, usually when the Device is
refusing to respond to the Attention Condition. This could be bad, particularly if the
Device gets nailed in the middle of a sector write.

Soft Reset attempts to address that problem. A Device that has implemented Soft
Reset does not get nailed by the Reset Condition. In fact, the first rule is easy:

e |f the Device that has implemented Soft Reset is not currently Connected to
the bus, it ignores the Reset Condition.

If the Device is Connected, it gets a little stickier, but not too bad. What? You've read
the standard? It's ugly? Well, I'm here to tell you to forget what you read, because
there is a little loophole. It turns out that if the Target can’t determine where exactly it
was interrupted during the Connection, it can abort the [/O Process and return
SENSE Data (if asked) that says the I/O Process was Aborted. The Target can
choose when to continue or abort the /O Process based on the capabilities of your
SCSI Protocol Chip.

Nonetheless, we will comment on each of the nine requirements/conditions for
implementing Soft Reset (the numbers refer to the numbers in the SCS/-2 Standard
under Soft Reset):

(1) An Initiator cannot be sure the Target really has safely stored the informa-
tion required for the Nexus to be established unless the Target has been
able to change to another Bus Phase. Until then, the Target could still be
examining the contents of the Messages.

(2) If the Target knows what it’s got, then it knows the Nexus, and can consider
the 1/O Process fully identified.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 124

(3) In this case, the Initiator believed that the Target had discarded the I/O
Process in question. Or, the Initiator implemented Hard Reset and forgot all
about the previous I/O Process. The result is overlapped I/O Processes.

(4) Same reasons as (3) with reversed roles.

(5) The falling edge of the ACK Signal defines the end of this Bus Phase. If the
Initiator knows it did it, then it has accepted the Message and can consider
the 1/O Process completed.

(6) Same reasons as (5). The Target knows that the Initiator understands and
accepts a Message when it negates ACK (with the ATN Signal false) for
the last (or only) byte of the Message.

(7) In general, the Initiator should perform an action called for by a Message
before negating the ACK Signal for the Message.

(8) Same reasons as (6) and (7).

(9) This is one of those situations where a Device can’t be sure that something
has happened. This allows the I/O Process to be aborted.

There! Now that isn’t so hard....

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

125 S

Status. Status is a brief indication of what the Target did with the SCSI Command
or [/O Process. The Status Code is sent from the Target to the Initiator during the
STATUS Phase. Before we get into specifics, we can summarize the kinds of
conditions reported in the Status Code:

e Successful completion of the command.

e The command failed to be completed; the I/O Process terminates.

® The Target could not do the 1/O Process now, but will be able to later.
Table 19 shows the currently defined SCSI Status Codes:

TABLE 19: STATUS BYTE CODE VALUES

Hex Code Status Indicated
00 GOOD STATUS
02 CHECK CONDITION
04 CONDITION MET/GOOD STATUS
08 BUSY
10 INTERMEDIATE GOOD STATUS
14 INTERMEDIATE/CONDITION MET/GOOD STATUS
18 RESERVATION CONFLICT
22 COMMAND TERMINATED
28 QUEUE FULL

All others Reserved

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 126

We will now briefly define each code within the categories described above. More
detailed definitions are found in the Device-Specific volumes of the SCSI Encyclope-
dia. The first group of codes report successful completion:

GOOD STATUS: This is the most typical status returned since it indicates that
the command was performed as requested with no problems or other condi-
tions deemed necessary (by the Target) to report.

CONDITION MET: This status is reported for a very short list of commands.
This status indicates that there were no problems with the command, and a
further indication that a condition specified by the command was met. This

status causes the Contingent Allegiance Condition to be created. Specifi-
cally, the commands that can return this status are:

e SEARCH DATA commands for Direct Access Devices; the data to be
searched for was found

e PRE-FETCH command for Direct Access Devices; there was sufficient
cache space for all blocks requested to be pre-fetched.

e MEDIUM SCAN command for Optical Memory Devices; the area of the
media that met the scan condition (e.g., blank media) was found.

INTERMEDIATE GOOD STATUS: This is the same as GOOD STATUS, except
that the command was part of a sequence of Linked Commands. If the
Target is to return GOOD STATUS, and the LINK bit in the Command
Descriptor Block (CDB) is set to one, then this Status Code is returned

instead. If the command is the last of a sequence of Linked Commands, then
GOOD STATUS is returned since the LINK bit is zero.

INTERMEDIATE/CONDITION MET/GOOD STATUS: This is the same as
CONDITION MET, except that the command was part of a sequence of
Linked Commands. If the Target is to return CONDITION MET, and the
LINK bit in the Command Descriptor Block (CDB) is set to one, then this
Status Code is returned instead. If the command is the last of a sequence of

Linked Commands, then CONDITION MET is returned since the LINK bit is
zero.

The second group reports the failure of the command to complete. Note that the state
of the LINK bit in the CDB does not affect this kind of Status Code; in fact, the

sequence of Linked Commands is broken when one of these codes is returned (the
I/O Proc_ess is terminated).

CHECK CONDITION: This code is returned for any failure or fault in the
execution of the command. Technically, the "CHECK" means to check
SENSE DATA, by issuing a REQUEST SENSE command. This status causes

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

127 S

the Contingent Allegiance Condition to be created; the Target returns this
code if it has some condition to report by Sense Data.

COMMAND TERMINATED: This code is returned only if the Initiator sent a
TERMINATE |/O PROCESS Message. When the Initiator sends that mes-
sage, and the Target did not fully complete the command, and no other
failure occurred that would require CHECK CONDITION Status, this Status
Code is sent. This status causes the Contingent Allegiance Condition to be
created.

The third group of codes reports conditions that prevented the acceptance of the |/O
Process at this time. In all cases, the Initiator can try again later in hopes that the
condition of the Target has changed.

BUSY: This Status Code is returned when the Target is incapable of accepting
the command. This can occur:

e When the Target does not implement a Queue and is busy with another
I/O Process from another Initiator.

e When a Contingent Allegiance Condition exists and the Target cannot
allocate more space for SENSE DATA.

e When an Extended Contingent Allegiance Condition exists for another
Initiator for the Logical Unit.

RESERVATION CONFLICT: This code is returned when a reserved unit or
portion of the unit must be accessed in order to execute the command.

QUEUE FULL: This code is returned when the Queue has no space to receive
another I/O Process. This status is only used for Tagged Queuing.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 128

STATUS Phase. The Status byte is transferred from the Initiator to the Target
during the STATUS Phase. The STATUS Phase can follow one of these four phases:

® Following a COMMAND Phase. In this case, the SCSI Command had no
DATA Phase associated with it, or the command could not be accepted at
this time, or the [/O Process was terminated before the DATA Phase could
occur.

¢ Following an IDENTIFY Message or Queue Tag Message from the Initiator
to the Target. In this case, the command could not be accepted at this time,
or the IDENTIFY Message was for an unsupported LUN or function.

e Following an IDENTIFY Message or Queue Tag Message from the Target to
the Initiator. This is usually for the completion of a command that was
executing after a Disconnect. An example of this is a disk write which may
be completed while disconnected after the data is transferred to the Target’s
data buffer.

¢ Following a DATA Phase (IN or OUT). This signals the completion status of
the command following the data transfer associated with the command.

The STATUS Phase may only be followed by a completion MESSAGE IN Phase;
either a COMMAND COMPLETE Message, one of the two LINKED COMMAND
COMPLETE Messages, or the INITIATE RECOVERY Message (see Extended

Contingent Allegiance (ECA).

Diagram 32 on the following page illustrates these possible phase transitions into and
out of the STATUS Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

129 - S

Preceded by SELECTION
with ATN asserted

E OUT DATA [N or
MES%?;SSG © DATA OUT

: f Preceded by
Example: command with no data
transfer like TEST UNIT READY RESELECTION Phase

COMMAND | - MESSAGE IN
Phase Phase

STATUS
Phase

COMMAND COMPLETE INKED COMMAND COMPLETE
MESSAGE IN MESSAGE IN

May be Preceded by INITIATE
RECOVERY Message In

DIAGRAM 32: STATUS PHASE TRANSITIONS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S | 130

Status Pointer. The Status Pointer refers to the destination of Status within the
Initiator. This pointer, like all pointers, has a Saved Pointer and a Active Pointer.
Since there can only be a single Status byte, it might seem silly to have a whole
pointer for that one byte. It turns out that it is easier to handle Status the same way as
Commands and Data for phase retry purposes. (Also, in the early stages of the SCSI
standard development, STATUS Phase could have multiple bytes). This pointer can
therefore have only two states; it is either equal to the Saved Status Pointer, or equal
to the Saved Status Pointer plus one. See Pointers.

Synchronous Data Transfer. Synchronous Data Transfer is an alternate,

optional method for moving data between two SCS/ Devices. Depending on imple-
mentation details, a significant (2 times or more) performance gain can be realized.
Synchronous Data Transfer may only be used during a DATA IN Phase or a DATA
OUT Phase.

We recommend that you understand Asynchronous Data Transfer before diving into
this subject!

Let’s review the Asynchronous Data Transfer, which proceeds with the steps shown in
Table 20.

TABLE 20: REVIEW OF ASYNCHRONOUS DATA TRANSFER

Steps During Transfer OUT Steps During Transfer IN
Target Asserts REQ Target Asserts Data
Initiator Asserts Data Target Asserts REQ
Initiator Asserts ACK Initiator Asserts ACK
Target Negates REQ Target Negates REQ
Initiator Negates ACK Initiator Negates ACK

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

131 S

This works very well, but there is a lot of wasted time. The actual work of sending the
data occurs in the first two or three steps. Also, since each step must wait for the
previous step to complete, there are several delays due to the speed of signals and
data propagating down the Cable. Recall the performance equation from the Asyn-
chronous Data Transfer:

txfer T tu::d M tpd + 1:d:?. + tcs + tcd + tpd + tcd + tpd + tcd + tpd

= 4tcd * 4tpd + tds + tcs
Where: t_, is the cable propagation delay.
tpd is the internal device delay from receiving a signal to responding with
another signal.
tys is the Deskew Delay.
t.s is the Cable Skew Delay.

It would be nice to eliminate, or at least minimize, the wasted time. Funny thing, that's
what Synchronous Data Transfer attempts to do; the transfer time is not a function of
these delays. Instead, the transfer time is equal to the clock period, known as the
Synchronous Transfer Period.

Synchronous Data Transfer uses the REQ Signal and the ACK Signal as clocks to
directly latch data into the destination, and to clock circuits that keep track of the state
of the transfer. In this transfer mode, the REQ and ACK signals do not interlock; they
are issued independently by each device. In other words, the REQ and ACK signals
are sent out as a string of clock pulses. In a nutshell:

¢ During a transfer IN, the Target clocks data into the Initiator on each REQ
pulse. The Initiator returns an ACK pulse for each REQ pulse.

¢ During a transfer OUT, the Target sends a REQ pulse for each data transfer
requested from the Initiator. The Initiator returns an ACK that clocks the data
into the Target, one for each REQ pulse.

Note that the number of REQ pulses sent by the Target must be equal to the number
of ACK pulses sent by the Initiator at the end of the data transfer. If the Target has not
received ACK pulses equal to the REQ pulses, it may not change to another phase
until all ACKs are received. Note also that a "received ACK pulse" is the whole pulse;
the trailing edge must also be received. These facts allow the Initiator to hold the end
of the Phase until it can check for Parity or other errors.

The diagrams that follow on the next pages illustrate a Synchronous Data Transfer
system. It should be noted that this is a simplified model, and that other implementa-
tions (e.g., a single FIFO) are possible.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 132

Each Target contains the following elements (Diagram 33):

e A Data Send FIFO: The data to be sent to the Initiator is passed through this
FIFO. Data is clocked into the FIFO in a Controller specific manner; e.g., a
DMA channel. Data is clocked out of the FIFO on the trailing edge of the
REQ signal (with a catch; more on this later). If the Send FIFO is empty, the
transfer is held up (see below).

e A Data Receive FIFO. The data received from the Initiator is passed through
this FIFO. Data is clocked into the FIFO on the leading edge of the ACK
signal. Data is clocked out of the FIFO in a Controller specific manner. If the
Receive FIFO is full, the transfer is held up (see below).

¢ A Transfer Counter. This counter keeps track of the number of bytes trans-
ferred with the Initiator. The counter is decremented once on every leading
edge of the REQ signal. When the count is zero, the transfer is completed.

e An Offset State Machine. This is actually a state machine and counter. This
block keeps track of the Synchronous Offset. When the offset is exceeded,
the transfer is held up. More on this in a couple of pages.

e A REQ Generator. The REQ generator creates the REQ timing for the
transfer. The REQ generator emits REQ pulses as long as one of the ’hold’
conditions listed above doesn’t occur. The spacing between the pulses is the
previously agreed to Synchronous Transfer Period.

To begin a transfer, the Target sets the Transfer Counter. For a transfer IN, the Target
loads data into the Send FIFO. For a transfer OUT, the Target lets the REQ signals
go out, and when the Initiator responds with ACK signals, takes the data out of the
Receive FIFO. Details of this flow follow the block diagrams.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suoneolignd TANA 1661 @ }ybuidon

| swnjoA ‘elpado|oAougz |SOS 3y

WYHOVIQ XO0Tg 1394V] HIASNVH] ONAS :£€ NVHOVI(

Controller Data to Send

Data Send FIFO

Data Bus Signals «. w
-

To_
? SCSI
Bus

REQ Signal >)

'
o
FIFO Empty
Hold
REQ Signal
4 A 4
Transfer REQ
Counter [.Count == O; Generator
OffsetA
Hold
REQ Signal
7 Offset
State
7~ _ACK Signal .| Machine
ol
From
SCSI< FIFO Full
Bus Hold
Data Bus Signals | Receive Data FIFO
Pl

Controller Receive Data >

cel

S 134

Each Initiator contains the following elements (Diagram 34):

e A Data Send FIFO: The data to be sent to the Target is passed through this
FIFO. Data is clocked into the FIFO in a Host specific manner; e.g., a DMA
channel. Data is clocked out of the FIFO on the trailing edge of the ACK
signal (with a catch; more on this later). If the Send FIFO is empty, the
transfer is held up (see below).

e A Data Receive FIFO. The data received from the Target is passed through
this FIFO. Data is clocked into the FIFO on the leading edge of the REQ
signal. Data is clocked out of the FIFO in a Host specific manner. If the
Receive FIFO is full, the transfer is held up (see below).

¢ A Transfer Counter. This counter keeps track of the number of bytes trans-
ferred with the Target. The counter is decremented once on every leading
edge of the ACK signal. When the count is zero, the transfer is completed.

e An Offset State Machine. This is actually a state machine and counter. This
block keeps track of the Synchronous Offset. When the offset is exceeded,
the transfer is held up. More on this in a couple of pages.

e An ACK Generator. The ACK generator creates the ACK timing for the
transfer. The ACK generator emits ACK pulses as long as one of the 'hold’
conditions listed above doesn’t occur. The spacing between the pulses is the
previously agreed to Synchronous Transfer Period.

As will be seen, the Initiator has a tougher job than the Target (it's about time!!). Since
the Initiator cannot be sure exactly when the Target will change to a DATA Phase, the
Initiator circuit must always be ready to receive REQ pulses and possibly data (on a
DATA IN Phase). The Initiator detects that the Target has begun a DATA Phase
when the Offset State Machine indicates a non-zero current offset. Then the Initiator
can set the Transfer Counter. For a transfer OUT, the Initiator loads data into the
Send FIFO. For a transfer IN, the Initiator detects the REQ signals coming in, and
responds with ACK signals while taking the data out of the Receive FIFO. Details of
this flow follow the block diagrams.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suoneolqnd TANH 1661 @ bukdon

| swnj|oA ‘elpadojoAou3] 1SOS ay]

WYHOVIQ MOO1g HOLVILIN] H34SNVH] ONAS :$€ WVYHOVIQ

From
SCSI
Bus

ﬁ

Host Data to Send

| Data Send FIFO

Data Bus Signals >\

To
>SCSI
Bus

ACK Signal >)

FIFO Empty
Hold
ACK Signal
Y y
Transfer ACK
Counter LSount == 04| Generator
OffsetA
Hold
ACK Signal .
re Offset
Statga
7~ _REQ Signal N Machine
FIFO Full
\ Hold

Data Bus Signals

Receive Data FIFO

Host Receive Data

-

Gel1

S 136

The alert student will notice how similar the two block diagrams are. The exact
differences are:

¢ The roles of the REQ Signal and the ACK Signal are reversed.
e The Target has a REQ Generator, and the Initiator has an ACK Generator.

e There are some minor differences in the Offset State Machine, which are not
evident in the block diagrams. We will discuss these differences now.

The Offset State Machine state transition diagram for the Target is shown in

Diagram 35 on the next page. The Offset State Machine actually consists of a finite
state machine and a Current Offset Counter. The counter is able to compare the
setting of the Synchronous Offset with the current state of the counter. The Offset
State Machine provides a HOLD output to the REQ Generator. There are four states:

(1) Okay to Transfer. The Target begins all DATA Phases in this state. As long
as the Offset State Machine is in this state, the "HOLD" output is false. The
Offset State Machine stays in this state until the leading edge of a REQ
pulse or an ACK pulse.

(2) Increment Offset. When the Offset State Machine detects the leading edge
of a REQ pulse, it momentarily enters this state to increment the Current
Offset Counter. If the current state of the counter is less than the Synchro-
nous Offset, the next state is Okay to Transfer. If the current state of the
counter is equal to the Synchronous Offset, the next state is Transfer Hold.
The Offset State Machine should stay in this state for less than an Asser-
tion Period to be sure that it can detect an outstanding ACK pulse and the
next REQ pulse.

(3) Decrement Offset. When the Offset State Machine detects the leading edge
of an ACK pulse, it momentarily enters this state to decrement the Current
Offset Counter. The next state is always Okay to Transfer. The Offset State
Machine should stay in this state for less than an Assertion Period to be
sure that it can detect an outstanding REQ pulse and the next ACK pulse.

(4) Transfer Hold. When the Offset State Machine is in this state, all transfers
are inhibited; the HOLD output is true. The Offset State Machine stays in
this state until the next ACK pulse is received. This causes a transition to
the Decrement Offset state.

Note that the Offset State Machine must be in the Okay to Transfer state, with the
Current Offset Counter at zero, before the Target can proceed to another phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

137

Decrement offset on
every rising edge of ACK Decrement
Offset

ACK Asserted
Offset is zero

on entry to
DATA Phase

Okay to
Transfer
(Initial
State)

ACK Asserted

REQ Asserted

Phase
Completed

Hold transfer when
the number of REQs
sent is equal to

the maximum offset

Offset is
less than
maximum

Increment
Offset

Offset is at maximum

Transfer
Hold

Increment offset on
every rising edge of REQ

DIAGRAM 35: SYNC OFFSET STATE MACHINE FOR TARGETS

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

S 138

The Offset State Machine state transition diagram for the Initiator is shown in

Diagram 36 on the next page. As with the Target, the Offset State Machine consists of
a finite state machine and a Current Offset Counter. The use of the counter is different
for the Initiator: the counter is compared with zero instead of the Synchronous
Offset. The Offset State Machine provides a HOLD output to the ACK Generator.
There are four states:

(1) Transfer Hold. The Initiator begins all DATA Phases in this state. In this
state, the number of REQ pulses received equals the number of ACK pulses
sent. When the Offset State Machine is in this state, all transfers are
inhibited; the HOLD output is true. The Offset State Machine stays in this
state until the next REQ pulse is received. This causes a transition to the
Increment Offset state.

(2) Increment Offset. When the Offset State Machine detects the leading edge
of a REQ pulse, it momentarily enters this state to increment the Current
Offset Counter. The next state is always Okay to Transfer. The Offset State
Machine should stay in this state for less than an Assertion Period to be
sure that it can detect an outstanding ACK pulse and the next REQ pulse.

(3) Decrement Offset. When the Offset State Machine detects the leading edge
of an ACK pulse, it momentarily enters this state to decrement the Current
Offset Counter. If the current state of the counter is greater than zero, the
next state is Okay to Transfer. If the current state of the counter is zero, the
next state is Transfer Hold. The Offset State Machine should stay in this
state for less than an Assertion Period to be sure that it can detect an
outstanding REQ pulse and the next ACK pulse.

(4) Okay to Transfer. As long as the Offset State Machine is in this state, the
"HOLD" output is false. The Offset State Machine stays in this state until the
leading edge of a REQ pulse or an ACK pulse. In this state, the number of
REQ pulses received is greater than the number of ACK pulses sent.

Note that the Offset State Machine must be in the Transfer Hold state, with the
Current Offset Counter at zero, before the Target can proceed to another phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

139

Increment offsgt onf 0
Al pa

every rising edge o Increment

Offset

REQ Asserted

REQ Asserted

Transfer in DATA phase

ACK Asserted

Offset is zero
on entry to
DATA Phase

Hold transfer when
the number of REQs
received is equal to
the number of ACKs sent

Offset is
not zero

Transfer
Hold

(Initial

State)

Decrement Offset is zero

Offset

Decrement offset on
every rising edge of ACK

REQ Asserted
in next phase

DIAGRAM 36: SYNC OFFSET STATE MACHINE FOR INITIATORS

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

S 140

Table 21 summarizes the differences between the Target and the Initiator machines.

TABLE 21: OFFSET STATE MACHINE: INITIATOR VS. TARGET

Target Offset State Machine Initiator Offset State Machine
Initial State is Okay to Transfer Initial State is Transfer Hold
Hold when current offset is equal to Hold when current offset is equal to zero

Synchronous Offset

Exit Transfer Hold state on leading edge | Exit Transfer Hold state on leading edge

of ACK of REQ
Enter Transfer Hold state after an offset | Enter Transfer Hold state after an offset
increment decrement
Final State is Okay to Transfer; current Final State is Transfer Hold; current
offset is zero offset is zero

There are two fundamental reasons for these differences:

e The Target issues REQ pulses, and these cause the current offset to in-
crease. The Target can only cause the current offset to increase; it cannot
decrease it. Therefore, the Target must inhibit itself so that it does not exceed
the limit imposed by the Synchronous Offset.

¢ The Initiator issues ACK pulses, and these cause the current offset to de-
crease. The Initiator can only cause the current offset to decrease; it cannot
increase it. Therefore, the Initiator must inhibit itself so that it does not issue
more ACK pulses than the number of REQ pulses received.

The next four diagrams show the details of Synchronous Data Transfer flow for
Targets and Initiators and for DATA IN Phase and DATA OUT Phase. Refer to the
previous block diagrams while studying these diagrams.

Diagram 37 shows the flow for DATA IN Phase for the Target. The Target sets up the
Synchronous Data Transfer circuit by loading the Transfer Counter. It then begins
presenting data to the Initiator by loading the Send FIFO. This allows the REQ
Generator to begin sending REQ pulses to the Initiator.

If the Initiator doesn’t start responding with ACK pulses immediately, the Offset State
Machine will cause a Transfer Hold. A Transfer Hold could also occur if the Send
FIFO is empty.

The data transfer continues until the Transfer Count decrements to zero. At this point,
all data has been transferred from the Target to the Initiator. The Target now waits for
the Initiator to finish sending the rest of the ACK pulses. When the current offset
returns to zero, the Phase is completed.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

141

Establish
DATA IN Phase;
Set Transfer Count

v

Assert Next Data

J

v

Delay
55 nsec minimum

Initialize
for Phase

When Offset is zero
the transfer is complete;
all ACKs have been received

X

[Assert REQ

J

4 Decrement

L Transfer Count

)

v

Delay
90 nsec minimum

v

Negate REQ

v

Delay
35 nsec minimum

Transfer
Count
Zero?

All Bytes
Feguested?

Offset
Zero?

No

Yes

Delay is from
the assertion
of REQ

Delay is from the
negation of REQ
to the next data
asserted

No Hold

Done]

Transfer?

Transfer is held by
Offset State Machine
or Send FIFO empty

DIAGRAM 37: SYNC TRANSFER: DATA IN PHASE FOR TARGETS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 142

Diagram 38 shows the flow for DATA IN Phase for the Initiator. When the Target
changes to DATA IN Phase, it begins sending data immediately with the first REQ
pulse, which clocks the data into the Receive FIFO. As a consequence, unless the
Initiator is very fast, the Initiator's Receive DATA FIFO is already full of data from the
Target. The Initiator sets up the Synchronous Data Transfer circuit by loading the
Transfer Counter. It then begins taking data from the Target by unloading the Receive
FIFO. This allows the ACK Generator to begin sending ACK pulses to the Target.

If the Target doesn’t start responding with REQ pulses immediately, the Offset State
Machine will cause a Transfer Hold. A Transfer Hold could also occur if the Receive
FIFO is full.

The data transfer continues until the Transfer Count decrements to zero. At this point,
all data expected by the Initiator has been transferred from the Target to the Initiator.
When the current offset returns to zero, the Phase is (hopefully) completed.

If the current offset is not zero, then more REQ pulses are still outstanding. The
Target is expecting to send more data. The Initiator must take this data from the
Target even if it must discard it. An appropriate Initiator response is to create the
Attention Condition and continue to take and discard data until the ATN Signal is
recognized by the Target, and then issue the ABORT Message. In general, the
Initiator should stay prepared for more DATA IN Phase data until the REQ Signal is
asserted in another Information Transfer Phase. (Note: Some SCSI protocol
controllers have a mode called "Transfer Pad", which is used for this situation).

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

143

S

The Transfer Count is set
to the number of transfers
the Initiator expects to complete

Target changes to
DATA IN Phase

DATA IN

v
[Set Transfer Countj

Phase
Change

Hold Yes

Transfer?

Transfer is held by
Offset State Machine
or Receive FIFO full

[Assert ACK
v
(Decrement h
. Transfer Count |
\
Delay
90 nsec minimum
v
4 ™
Negate ACK
. J
|
Delay
90 nsec minimum

ransfer

Yes

When Offset is zero
the transfer is complete;
all ACKs have been sent

The delay is
measured from
the assertion
of ACK

The delay is measured
from the negation

of ACK to the next
ACK asserted

Count
Zero?

All Bytes
Expected?

Prepare to receive more data!

No

.

L Set New Count J

DIAGRAM 38: SYNC TRANSFER: DATA IN PHASE FOR INITIATORS

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

S 144

Diagram 39 shows the flow for DATA OUT Phase for the Target. The Target sets up
the Synchronous Data Transfer circuit by loading the Transfer Counter. It then begins
requesting data from the Initiator because the REQ Generator is allowed to begin
sending REQ pulses to the Initiator.

If the Initiator doesn’t start responding with ACK pulses immediately, the Offset State
Machine will cause a Transfer Hold. A Transfer Hold could also occur when the
Receive FIFO is full. The Initiator ACK pulses clock data into the Receive FIFO, and
the Target takes the data by removing it from the Controller end.

The data transfer continues until the Transfer Count decrements to zero. At this point,
all data has been requested from the Initiator. The Target now waits for the Initiator to
finish sending the rest of the ACK pulses and data. When the current offset returns to

zero, the Phase is completed.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

145 S

Establish h
DATA OUT Phase; Iniiaize
Set Transfer Count) When Offset is zero
the transfer is complete;
A’V] all ACKs have been received
N
[Assert REQ
\l, S
Offse
(Decrement) Zerso’; No
L Transfe‘]; Count)
Del ay g]e/ay is g(om Yes
A e assertion
90 nsec minimum of REQ
\L ™
[Negate REQ
¢, vy
Delay morion of BEG
90 nsec minimum to the assertion
of the next REQ
Transfer
Count
All Bytes
Requ}ggred? Ze ro?
v
“No Hold [Done]
Transfer?

Transfer is held by
Offset State Machine
or Receive FIFO full

DIAGRAM 39: SYNC TRANSFER: DATA OUT FOR TARGETS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 146

Diagram 40 shows the flow for DATA OUT Phase for the Initiator. The Initiator sets up
the Synchronous Data Transfer circuit by loading the Transfer Counter with the
expected transfer count. It then begins sending data to the Target by loading the Send
FIFO. This allows the ACK Generator to begin sending ACK pulses to the Target and
clocking data into the Target’s Receive FIFO.

If the Target doesn’t start responding with REQ pulses immediately, the Offset State
Machine will cause a Transfer Hold. A Transfer Hold could also occur if the Send
FIFO is empty.

The data transfer continues until the Transfer Count decrements to zero. At this point,
all data expected by the Initiator has been transferred to the Target from the Initiator.
When the current offset returns to zero, the Phase is (hopefully) completed.

If the current offset is not zero, then more REQ pulses are still outstanding. The
Target is expecting to receive more data. Just like with DATA IN Phase, the Initiator
must send data to the Target even if it is garbage data. An appropriate Initiator
response is to create the Attention Condition and continue to send "data" until the
ATN Signal is recognized by the Target, and then issue the ABORT Message. In
general, the Initiator should stay prepared for more DATA OUT Phase data until the
REQ Signal is asserted in another Information Transfer Phase. (Note: The "Transfer
Pad" mode can also be used for this situation).

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

147 S

Target changes to
DATA OUT Phase

The Transfer Count
is set to the number
of transfers the Initiator
expects to complete

[Set Transfer Countj

-
Hold Yes No
Transfer?
Transfer is held by When Offset is zero
Offset State Machine the transfer is complete;
or Send FIFO empty No all ACKs have been receivec],YES
7 ™
Assert Next Data [Done J
S
h N The del I I
De|ay e delay allows
A for setup time at
nsec minimum the Target
55
\ 4
~
[Assert ACK
J/
4 ™
(Decrement
L Transfe\; Count)
De| ay The delay is
. measured from
90 nsec minimum thfeAaCS;ertion
o
4 ¥ ™
Negate ACK
e vy
A 4 The de/ady fis
measured from
Delay. . the negation of Yes
35 nsec minimum ACK to the next
data asserted
No ransfer

Count

All Bytes

Expected? Zero? Prepare to receive more datal
.
Set New Count]
.

DIAGRAM 40: SYNC TRANSFER: DATA OUT FOR INITIATORS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S

148

What? There’s more? Well, we thought it would be nice to show the exact timing of a
Synchronous Data Transfer...

Triton's
1/0

Iapetus’'s
ACK OUT

Triton's
ACK IN

Triton’s
Data Bus IN

[Crmmm e EXPp(E) - ---mmmee e >
Triton's o a | |
REQ OUT \ / \ { \
| | |
| <-mm - - tast------- MEGEEEEEREE tnp--------- >
| 90 ns | 90 ns |
Iapetus’s
REQ IN \ / \ / \
Iapetus’s b

Data Bus OUT --X XXXX XXXX
|
|
|

c | e f __
__/ \ / \ /
| | |
| < tast----- MR tnp----- >
| 90 ns | 90 ns |
(REEERER txp(i)----------- >
d
- R \ / \ I
|
| <0 ms8>|<--tht-->|
| | 45 ns |
[-
----- X XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXX

<-tdsttcs->|<--tds+tcs+tht-->|
55 ns | 100 ns |

FIGURE 5: SYNCHRONOUS DATA TRANSFER OUT - INITIATOR TO TARGET

The Details are shown in Figure 5:

(a) Triton has begun sending a sequence of REQ pulses to lapetus. The

leading edge of the first REQ pulse defined this as a DATA OUT Phase.
Triton sends out a number of REQ pulses appropriate to the amount of data
that it can accept from the Initiator. While the number of REQ pulses
outstanding is usually equal to the Synchronous Offset, Triton may decide
not to send REQ pulses until he is ready to receive more data. This usually
happens when Triton’s data path stalls; he can’t take data until an internal
resource becomes available.

After the signal propagates down the cable for a time, lapetus detects the
REQ signal going true at her input, which increments her Current Offset
Counter. Depending on the chip and other implementation details, lapetus
may be able to respond to the new phase immediately (particularly if the
phase was expected next), or she may need to do some cleanup of the
previous phase and bookkeeping before she can get started. In any case,
the Current Offset Counter must accept the incoming REQ pulses to the
limit of the Synchronous Offset.

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

149 S

(b) Now lapetus is ready to start sending data to the Target. The first thing she
does is to set the data bus to the value of the first data byte (or word, see
Wide Data Transfer) to send.

(c) After a 55 nsec delay, lapetus asserts the ACK signal true for no less than
90 nsec, after which she may negate ACK. The 55 nsec delay provides
deskew time for the Target receiving latch or FIFO. The Initiator may extend
the assertion of the ACK signal to prevent the Target from changing Phase
for purposes of checking for errors and possibly creating the Attention
Condition.

(d) After the data and ACK signal propagate down the cable for a time, Triton
detects the ACK signal going true at his input. When he sees the ACK, he
knows the data is valid on the bus, so he clocks it from the bus directly with
the ACK signal and eventually stores the data to its final destination. The
ACK also decrements his Current Offset Counter.

Note what happened to the set up time and hold time for the data. When it
left lapetus, there was 55 nsec of set up time between the data arriving and
the leading edge of the ACK signal, and 100 nsec of hold time after the
ACK. But when it reached Triton, there was no more lead time, and the hold
time was 45 nsec. A total of 55 nsec disappeared from both times.

The 55 nsec time is intended to account for skew in the circuit, and is made
up of two parts. The first part is called the Deskew Delay (45 nsec), which
is intended to compensate for internal skews in both devices (Initiator and
Target). The second part is called the Cable Skew Delay (10 nsec), which
is intended to compensate for propagation speed differences between
signals on the cable. The SCSI standard allows 10 nsec for this signal skew,
and therefore the user ought to use a Cable that at least meets this require-
ment.

In practice the set up time and/or hold time will be larger, since the worst
case conditions cannot occur both ways. These numbers are intended as a
guideline for designers of the receive data circuit.

(e) After a delay of 100 nsec from the leading edge of the ACK pulse, lapetus
is allowed to change the data bus. This delay provides hold time for the
Target receiving latch or FIFO.

(f) Triton continues sending REQ pulses until he has requested all of the data.
The leading edges of the REQ pulses must be separated by no less than
time t,_ ., which is the Synchronous Transfer Period that lapetus said she
could handle during Synchronous Data Transfer Negotiation. lapetus
continues sending data and ACK pulses until the Offset State Machine and
transfer count reach zero, as described above. As with the REQ pulses, the

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 150

leading edges of the ACK pulses must be separated by no less than time
teoiy which is the Synchronous Transfer Period that Triton said he could
handle during Synchronous Data Transfer Negotiation.

Some additional observations on Synchronous Data Transfer OUT:

e OUT and IN: These terms are used throughout the SCSI standard to indicate
the current data direction. They are relative to the Initiator; data goes OUT
from the Initiator to the Target and IN from the Target to the Initiator.

¢ Since the transfer is synchronous, cable propagation time does not affect the
transfer rate. One device throws data and pulses out on the cable. The other
device has plenty of time (relatively) to respond with its pulses. Cable skew
(that is, the difference in delay between any two signals), on the other hand,
is significant with regard to set up and hold time, as noted above.

e The MSG, C/D, and l/O Signals must be stable for the 400 nsec (or more)
delay after changing to the DATA OUT Phase before the Target may begin
sending REQ pulses to begin the transfer. The phase does not begin until the
leading edge of the first REQ pulse. Some Initiator chip implementations, in a
sincere effort to gain some performance, detected phase changes when the
MSG, C/D, and/or I/O signal(s) changed state. If the three lines changed at
different times, the device would indicate the one or more wrong phases
before indicating the correct phase. A person using one of these devices
should ensure that the phase detected in such a manner is the same phase
when the REQ pulses begin. See Bus Phases and Between Phases for
more on this.

Now we’'ll look at how to get data in from a Target:

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

151 S

Triton's
1/0 true

Triton’s
Data Bus OUT --X XXXX XXXX
| |
|<-tds*tcs->|<-tds+tcs+tht->| e
| 55 ns 100 ns |

Triton’s b

|
| - —
REQ OUT / N\ / \ / _
| | |
|<----tast--->[<----- tnp------ >
| 90 ns | 90 ns |
Iapetus’s e, -
REQ IN / \ . \ /
|
| <0 m@>|<-tht->|
| | 45 ns | f
Iapetus’s c | |
Data Bus IN ------------ X XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXX
K S tast----- M ECEREEE tnp------- >
| 90 ns | 90 ns |
Iapetus’s | | |
ACK OUT / \ /
Triton's
ACK IN / \ /

FIGURE 6: SYNCHRONOUS DATA TRANSFER IN - TARGET TO INITIATOR
The Details are shown in Figure 6:

(a) Triton begins by setting the data bus to the value of the first data byte (or
word, see Wide Data Transfer) to send.

(b) After a 55 nsec delay, Triton asserts the REQ signal true for no less than 90
nsec, after which he may negate REQ. The 55 nsec delay provides deskew
time for the Initiator receiving latch or FIFO. The leading edge of the first
REQ pulse defined this as a DATA IN Phase. Triton continues sending out
a number of REQ pulses (with data) appropriate to the amount of data that
the Initiator can accept, which is the Synchronous Offset agreed to during
Synchronous Data Transfer Negotiation.

Note that lapetus must be able to take what Triton sends, no matter what.
This means that, no matter what circuitry lapetus uses to receive data, he
must always be ready to accept the data after the phase change to DATA
IN Phase. The Target gives no warning to the Initiator until the first REQ
pulse with data comes down the cable.

(c) After the signal propagates down the cable for a time, lapetus detects the
REQ signal going true at her input, which increments her Current Offset
Counter and clocks the data into her Receive FIFO. Depending on the chip
and other implementation details, lapetus may be able to respond to the

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 152

new phase immediately (particularly if the phase was expected next), or she
may need to do some cleanup of the previous phase and bookkeeping
before she can get started. In any case, the Current Offset Counter and
Receive FIFO must accept the incoming REQ pulses and data to the limit of
the Synchronous Offset.

Again, the set up time and hold time for the data is reduced. When it left
Triton, there was 55 nsec of set up time between the data arriving and the
leading edge of the ACK signal, and 100 nsec of hold time after the ACK.
But when it reached lapetus, there was no more lead time, and the hold
time was 45 nsec. Like the transfer OUT, the 55 nsec that disappeared from
both times is intended to account for skew in the circuit, and is made up of
the two parts described there; the Deskew Delay (45 nsec) and the Cable
Skew Delay (10 nsec).

(d) After a delay of 100 nsec from the leading edge of the ACK pulse, Triton is
allowed to change the data bus. This delay provides hold time for the
Initiator receiving latch or FIFO.

(e) When lapetus is able to absorb the data from Triton, she begins returning
ACK pulses to Triton. Each ACK pulse returned indicates to Triton that
another REQ pulse and data may be sent. The ACK pulse decrements
Triton’s Current Offset Counter.

(f) Triton continues sending REQ pulses until he has sent all of the data. The

leading edges of the REQ pulses must be separated by no less than time

t. o Which is the Synchronous Transfer Period that lapetus said she
cou{d handle during Synchronous Data Transfer Negotiation. lapetus
continues sending ACK pulses until the Offset State Machine and transfer
count reach zero, as described above. The leading edges of the ACK pulses
must be separated by no less than time t, ..., which is the Synchronous
Transfer Period that Triton said he could handle during Synchronous Data
Transfer Negotiation.

At the end of the Phase, the Initiator may extend the assertion of the ACK
signal to prevent the Target from changing Phase for purposes of checking
for errors and possibly creating the Attention Condition.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

153 S

The additional observations on Synchronous Data Transfer IN are the same as for
OUT (see above). Table 22 shows the timing values used during Synchronous Data
Transfer.

TABLE 22: TIMING VALUES USED DURING SYNCHRONOUS DATA TRANSFER

Symbol [Timing Name MIN or MAX? Time
st Assertion Period MINIMUM 90 nsec
tys Deskew Delay MINIMUM 45 nsec
tes Cable Skew Delay MAX/MIN 10 nsec
tht Hold Time MINIMUM 45 nsec
tho Negation Period MINIMUM 90 nsec

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 154

Synchronous Data Transfer Negotiation. Synchronous Data Transfer
Negotiation (SDTN) is used to establish the data transfer method to be used between
two SCSI Devices. If two devices never engage in a SDTN, the default transfer
method is Asynchronous Data Transfer. After the SDTN process has completed, the
two devices will (hopefully) have agreed to a set of parameters that result in a
Synchronous Data Transfer.

The specific purpose of SDTN is to provide a procedure where two devices can agree
on a set of parameters for Synchronous Data Transfer. The two parameters are
Synchronous Transfer Period and Synchronous Offset (these two topics are
defined in their own sections below). The intent is to arrive at an agreement such that
the maximum performance is achieved.

Note that the agreement is between two SCSI devices. This agreement is independent
of Initiator and Target role, and is also independent of Logical Unit on each device. In
other words, the same agreement is used in all of the following situations:

e Device A takes the Initiator role and Selects Device B (which then takes the
Target role) and transfers data with Logical Unit #X.

¢ Device B takes the Target role and Reselects Device A (which then takes the
Initiator role) and transfers data with Logical Unit #Y.

e Device B takes the Initiator role and Selects Device A (which then takes the
Target role) and transfers data with Logical Unit #Y.

¢ Device A takes the Target role and Reselects Device B (which then takes the
Initiator role) and transfers data with Logical Unit #X.

If there is a Device C on the bus, both Device A and Device B must each reach their
own agreement with Device C.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

155 S

Any device may begin the SDTN process at any time (see Etiquette). Typically, the
process is begun on the first Connection following a Hard Reset on either device. For
example:

e An Initiator Connects to a Target. After the MESSAGE OUT Phase in which
the IDENTIFY Message is sent by the Initiator, the Target changes to
MESSAGE IN Phase and sends the Synchronous Data Transfer Request
(SDTR) to begin the SDTN process.

e A Target Reconnects to an Initiator. During the MESSAGE IN Phase in
which the IDENTIFY Message is sent by the Target, the Initiator creates the
Attention Condition. In response, the Target changes to MESSAGE OUT
Phase, and the Initiator sends the SDTR message to begin the SDTN
process.

You might also see the SDTN process begin just prior to the DATA Phase, after the
COMMAND Phase, or after a Queue Tag Message.

Diagram 41 and Diagram 42 illustrate how SCSI devices negotiate synchronous data
transfer parameters. Note that the diagrams do not refer to Initiators and Targets,
rather, they refer to the Originator and Responder.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

156

[Make Best Set]

[Send SDTR Messagej

W
[Get Response]

Does the Originator's
best set match the
Responder’'s set?

SDTR

No

The "Best Set" consists of the
largest Offset and smallest
Transfer Period that the
Originator can receive

Initiator: Set ATN and send in
next MESSAGE OUT Phase
Target: Send in MESSAGE

IN Phase

Initiator: Get in MESSAGE IN
Phase immediately following
Target: Initiator sets ATN
during MESSAGE IN and
sends response

Misunderstood
or can't do it

Message?

A

Yes

[Setting = Async J

Yes

[Make New Set j

No

Acceptable
Set?

Make the "Best Set" derated from
the response (see text)

Yes

\
[Record Setting]

Remember what was said
and what was received

DIAGRAM 41: SDTR FLOW DIAGRAM FOR ORIGINATORS

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

157 S

Initiator: Receive during

MESSAGE IN Phase
{Get SDTR Messagej Target: Detect ATN and receive

during MESSAGE OUT Phase

Does the Originator's
set match the
Responder’s
best set?

Yes

Acceptable Yes

Set?

W\
[Make Best Set]

Make the "Best Set" derated from
the response (see text)

The "Best Set" consists
of the largest Offset and

(Make New Set] smallest Transfer Period

that the Responder can
receive

Initiator: Selg é\TN and send in
next MESSAGE OUT Phase
Send SDTR Message Target: Send in MESSAGE IN Phase

Initiator: Get during MESSAGE IN
Phase immediately following
Target: Initiator sets ATN during
MESSAGE IN and sends during
next MESSAGE OUT Phase

SDTR
Response?

Yes

and what was received

[Record Settmg] Remember what was said

DIAGRAM 42: SDTR FLow DIAGRAM FOR RESPONDERS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 158

When a device decides it needs to begin the SDTN process (more on why it might
decide that later), it first sets up its "Best Set" of synchronous transfer parameters.
This Best Set is usually the maximum Offset and minimum Transfer Period that the
device can accept. The Best Set is sent as part of the SDTR message. The device
has now taken the role of the Originator in the SDTN process.

The other device, upon receiving the SDTR message from the Originator, becomes
the Responder. In response, it can do one the following:

e |f the parameters are acceptable, and also happen to be equivalent to the
Responder’s Best Set, it repeats the same SDTR message back to the
Originator. Parameters are acceptable in this case when the Responder is
able to perform synchronous data transfer with the Originator, and:

e Accept a REQ Signal or ACK Signal that meets the maximum Offset and
minimum Transfer Period specified by the Originator; and

e Not exceed the Originator’s maximum Offset and minimum Transfer Period
when sending the REQ Signal or ACK Signal.

e If the parameters are acceptable, but they are not equivalent to the Respond-
er's Best Set, the Responder creates an SDTR message with the Re-
sponder’s Best Set that is also less aggressive than the Originator’s parame-
ters, and sends it to the Originator. "Less aggressive" means that one or both
of the following are true:

¢ The Offset is less than the Originator’s Offset;
e The Transfer Period is greater than the Originator’s Transfer Period.

The parameters are acceptable in this case when the Responder is able to
perform synchronous data transfer with the Originator, and not exceed the
Originator’s maximum Offset and minimum Transfer Period when sending the
REQ Signal or ACK Signal.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

159 S

s If the parameters are not acceptable, the Responder creates an SDTR mes-
sage with the Offset set to zero, and sends it to the Originator. With this
response, the Originator and Responder are agreeing that Asynchronous
Data Transfer is the data transfer method that will be used.

The parameters are not acceptable in this situation because the Responder is
able to perform synchronous data transfer with the Originator, but is unable to
proceed without exceeding the Originator’'s maximum Offset and/or minimum
Transfer Period when sending the REQ Signal or ACK Signal. In practice,
modern SCSI devices are able handle a wide range of parameters. This case
can only happen if the Responder is not flexible enough to come down to the
level of the Originator.

e |f the Responder hasn’t a clue about Synchronous Data Transfer, or just
doesn’t support it, it will probably respond to the SDTR Message with a
MESSAGE REJECT Message. In this case the Originator should get the hint
and stick to Asynchronous Data Transfer with the Responder from now on.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 160

When is Negotiation Required? A device should originate an SDTN whenever it has
no record of a previous negotiation. This, of course, implies that a device that com-
pletes an SDTN should keep a record of it. This record is maintained for each SCSI
Device on the bus, and could be represented as a simple data structure consisting of
the following elements:

e SDTN flag, where:

e 0 = No SDTN completed with that device.

e 1 = SDTN has been completed with that device.
e Transfer Period, if the SDTN flag is 1.
e REQ/ACK Offset, if the SDTN flag is 1.

The ways that a device could lose the value stored in this data structure are some-
what unique to each device, but we think we can all agree that at least the following
events would clear the data structure:

® A power-on reset.

e A Hard Reset.

e A BUS DEVICE RESET Message.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

161 S

SYNCHRONOUS DATA TRANSFER REQUEST Message.
The SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) Message is used to
establish the parameters that will be used during a Synchronous Data Transfer. This
is an Extended Message.:

Bit 7 6 5 4 3 2 1 0

Byte

0 Message Code = 01 hex

1 Additional Message Length = 03 hex

2 Extended Message Code = 01 hex
3 Transfer Period
4 REQ/ACK Offset

Besides the message code, this message also carries the Synchronous Transfer
Period (byte 3) and the Synchronous Offset or "REQ/ACK Offset" (byte 4).

The Transfer Period is specified as a multiple of four. For example, a value of 50 (32
hex) indicates a 200 nsec Transfer Period. If Fast Data Transfer timing is used, the
minimum value for byte 3 is 25 (19 hex); otherwise, the minimum value is 50 (32 hex).

The REQ/ACK Offset is specified as the number of pulses of the REQ Signal that the
Target may issue beyond the number of pulses of the ACK Signal is has received. If
a device sets the REQ/ACK Offset to zero, it is requesting an Asynchronous Data
Transfer. If a device sets the REQ/ACK Offset to FF hex, it is capable of handling an
unlimited Synchronous Offset.

See Synchronous Data Transfer Negotiation for a complete description of the use
of this message.

Summary of Use: The SDTR Message is sent by any SCSI Device to establish the
parameters to be used during Synchronous Data Transfer.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

S 162

Synchronous Offset. The Offset specifies the number of pulses on the REQ
Signal that the Target may have outstanding before receiving a pulse on the ACK
Signal.

We'll say it another way: The REQ Pulses of the Target may lead the ACK pulses of
the Initiator by a number less than or equal to the Synchronous Offset.

Or how about: The "Current Offset" is the number of REQ pulses issued by the Target
minus the number of ACK pulses issued by the Initiator. The Current Offset must not
exceed the Synchronous Offset at any instant during a Synchronous Data Transfer.

OK, how about a picture? The example in Diagram 43 shows a Synchronous Offset of
3. The Current Offset is shown in the space between the REQ Signal and ACK Signal.
The sequence begins when the Target issues three REQ pulses. At that point, the
Current Offset reaches 3 and the Target is held from issuing any more REQ pulses
(as indicated by the shaded areas of the example).

Some time later, the Initiator starts issuing ACK pulses. With the rising edge of ACK,
the Current Offset decrements. The Target is then allowed to issue another REQ
pulse, which increments the Current Offset. This incrementing by REQ and decre-
menting by ACK continues until the Target has sent all of its REQ pulses. The Initiator
sends all of its ACK pulses and the Current Offset returns to zero.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

163

asuodsal Jojeniu] ue 1o} yem pue asned jsnw jobie] ey aseym sewn jusesaidas sesse papeys 8yl

8

AJV

0

18S}0O
waung

/ O34

DIAGRAM 43: SYNCHRONOUS OFFSET

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

S 164

Synchronous Transfer Period. The Synchronous Transfer Period specifies
how close together pulses on the REQ Signal or the ACK Signal can be during
Synchronous Data Transfer. The Transfer Period is the minimum time between
leading edges of pulses on the REQ Signal, or the ACK signal. Note that there is no

time specification between any edges of the REQ and ACK pulses. Figure 7 illustrates
the Transfer Period.

REQ / \ / \ / \

ACK / \ / \ / \

FIGURE 7: SYNCHRONOUS TRANSFER PERIOD

The Transfer Period is established during Synchronous Data Transfer Negotiation.
If Fast Data Transfer timing is used, the minimum Synchronous Transfer Period is
100 nsec; otherwise, the minimum value is 200 nsec.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

165 T

Tagged Queuing.

Target.

Target Routine.

Target Routine Number (TRN).
TERMINATE I/O PROCESS Message.
Termination.

Terminator Power (TERMPWR).
Transfer Period.

True.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

T 166

Tagged Queuing. Tagged Queuing is a Queue for [/O Processes for a Logical
Unit which uses Queue Tags. Contrast to Untagged Queuing. Tagged Queuing
allows for several I/O Processes to be active from a single Initiator for that Logical
Unit. See Queue for the big description....

Target. From the dictionary: "...any object that is shot at...". Well, that works! On

the SCS/ Bus, the Target receives a bus transaction (which is called an [/O Process)
"shot" at it by an Initiator.

In general, the Target is a role assumed by any SCS/ Device able to receive a SCS/
Command from another SCSI Device that can assume the Initiator role. In traditional
terms, the Target is usually part of, or attached to, a peripheral of some sort; usually
referred to as a Controller or a Peripheral Device. A Host Adapter may also
assume the Target role to receive an Asynchronous Event Notification (AEN) or
data from another Host Adapter acting as an Initiator.

Diagram 44 shows the Target role in a system, and also shows which signals on the
SCSI Bus the Target drives and receives. The following bullets give a flavor of the
Target’s contribution to the execution of an I/O Process:

e A Target responds to Selection by an Initiator to begin an I/O Process.

e After SELECTION Phase, the Target is in charge of changing to different
Bus Phases. The Initiator must respond to these Phases and transfer
information as requested by the Target.

e The Target must respond to the Attention Condition when it is created by
an Initiator.

e The Target is responsible for Error Recovery. The Initiator can request a
recovery through the Attention Condition, but the Target controls the actual
recovery process. This includes error recovery within the Message System.

e The Target manages the Initiator’s Pointers during the Current [/O Process.
The Initiator uses Pointers to maintain the current state of Command, Status,
and Data transfer.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suoneolignd "TANA 1661 ® 1YybuAdos

| awnjoA ‘eipadojoAoul |SOS dylL

S32IA3Q 1SOS HO4 I10Y 1394V b WvHOVIQ

Commands N

Dat
<=2 >

<8tatus

INITIATOR

Signal received by either device

Driven by Initiator

at different times <

SCSI
BSY
SEL S
MSG Commands,
”
’ C/D
. I/O Eﬂ
5
. REQ O v Dat&L>
ACK . M
i o
ATN R
” Status
. RST .
‘ Data Bus '

Signal driven by either device
> at different times

Driven by Target

Received by Initiator £

3 Received by Target

LIl

T 168

Target Routine. A Target Routine is an arbitrary "unit" which represents the
Target itself. The Initiator can issue commands directly to a Target Routine instead of
a Logical Unit. As of SCSI-2, the only commands that can be issued to a Target
Routine are:

e INQUIRY: This is used to return data about the Target that is not appropriate
to any Logical Unit.

e REQUEST SENSE: This is used mostly to return error information regarding
the INQUIRY command....

The use of a Target Routine is optional. Most Target implementations return informa-
tion about the Target as part of the information for each Logical Unit.

Target Routine Number (TRN). The Target Routine Number (TRN) is the

address of the Target Routine within a Target. If there is a Target Routine there must
be a Target Routine #0.

The TRN is used by the Initiator and Target to specify that a Target Routine is being
referred to. The IDENTIFY Message is used to exchange the TRN between the
Initiator and Target. The exchange of TRN is part of establishing an I_T_R Nexus
between two devices.

TERMINATE I/O PROCESS Message. The TERMINATE I/O PRO-

CESS Message is used by the Initiator to "interrupt" and terminate an //O Process.
This is a single byte Message:

Bit 7 6 5 4 3 2 1 0

Byte

0 Message Code = 11 hex

When the Target receives this message, it is supposed to stop the I/O Process as
soon as possible. It is also supposed to stop the I/O Process without "breaking"
anything: No Logical Blocks or any other internal data structures are to be left in a
damaged state by a TERMINATE 1/O PROCESS Message.

This Message is different from the ABORT Message and ABORT TAG Message,
those Messages require the Target to stop immediately. An ABORT can leave a
Logical Block only partially written, or some MODE SELECT data structure corrupted.

Table 25 shows how the Target should respond to the TERMINATE 1/O PROCESS
Message. The table is in the order that the conditions should be evaluated. Note that

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

169 T

some of the responses call for "Sense Data" to be returned. The meaning of these
Sense Data terms (such as "residue") is given in the SCSI-2 standard, and in later
Volumes of this Encyclopedia.

TABLE 25: TERMINATE 1/O PROCESS RESPONSES

The Target receives TERMINATE 1/O Then the Target response is:
PROCESS and:

The Nexus for the Current I/O Process is | Return COMMAND TERMINATED Status
not "active" or Queued; i.e., no Command | and then a COMMAND COMPLETE Mes-
has been transferred for the Nexus. sage. SENSE Data is set as follows:

Valid =0

Sense Key = NO SENSE

Sense Code = I/O PROCESS TERMINATED

It hasn’t started executing the I/O Process | Return COMMAND TERMINATED Status
and/or the 1/O Process is Queued. and then a COMMAND COMPLETE Mes-
sage. SENSE Data is set as follows:

Valid = 0

Sense Key = NO SENSE

Sense Code = |/O PROCESS TERMINATED

It can’t stop the I/O Process. Return the MESSAGE REJECT Message
and continue.

The 1/O Process is already done; e.g., all | Ignore the TERMINATE I/O PROCESS Mes-

Logical Blocks have been transferred. sage.
The I/O Process has an error condition. Ignore the TERMINATE 1/O PROCESS Mes-
sage.

The Command has started executing and | Return COMMAND TERMINATED Status
there is a DATA Phase required to exe- and then a COMMAND COMPLETE Mes-
cute it. sage. SENSE Data is set as follows:

Valid = 1

Information Field = "residue" (see text)
Sense Key = NO SENSE

Sense Code = I/O PROCESS TERMINATED

Summary of Use: The TERMINATE I/O PROCESS Message is sent only by an
Initiator to cause the Target to end an I/O Process in an orderly manner that does not
corrupt the storage medium.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

T 170

Termination. Any transmission line, as we all learned in school (or somewhere...),
must be terminated to prevent reflections from degrading the signal. Well, a SCSI
Cable is a transmission line, and therefore, for proper operation, it must be terminated
at both ends.

The design of the termination for the Single-Ended Interface is different than that for
the Differential Interface. However, they both require the Thevenin equivalent
resistance looking into the terminator to be matched to the characteristic impedance of
the Cable (see Cable for the definition of a good "match"). Diagram 45 shows the
Thevenin model of SCSI Bus Termination. When Z, = Z , then reflections back from
the terminator are zero. For each interface and terminator type, V, and Z, are defined
as shown in Table 26.

TABLE 26: TERMINATOR THEVENIN VOLTAGE AND IMPEDANCE

Interface Type Thevenin Voltage (Open Circuit) Thevenin Impedance
(Terminator Voltage varies from
4,00 Vto 5.25 V)

Single-Ended "Preferred" 285V 110 Q
Single-Ended "OId Style" 240Vt03.15V 132 Q
Differential +Signal 1.64Vto214V 122 Q
Differential -Signal 2.36 Vto 3.10 V 122 Q

Note that the impedance will vary dependent on the tolerance of the resistors used to
create it. The voltage variation is function both of the resistor tolerance and the level
of the Terminator Power voltage available at the terminator. The table shows the
voltage variation for nominal resistor values that can occur due to possible variations
in Terminator Power.

Note also that the table shows Terminator Power as low as 4.0 Volts for the Single-
Ended termination. While SCSI-2 increases the minimum Terminator Power voltage to
4.25 Volts, there is the potential for a new device to encounter the SCS/-T minimum of
4.0 Volts.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suoneoliqnd TANA 1661 @ 1YybuAdoD

| swnjoA ‘elpadojohous (SIS ayL

G NVHOVI(

NOILVNINH3] INITIVAIND3 NINIAIH |

Z,

Signals propagate down the line...

>

...and are reflected back from the terminator

&._
Z

A

Termination Network
V,

Bus is biased by V¢
when the bus is released

AW

Termination Network

VA

(o]

Zo is the characteristic
impedance of the cable

Vi

=]

IL1

T 172

The "Preferred" Single-Ended Termination is shown in Diagram 46. This terminator
directly models the Thevenin circuit. A "low dropout voltage" regulator is used to
create the bias voltage for the bus signal. This bias voltage is applied across each
termination resistor to bias each bus signal.

Why "Preferred"? A little history will explain. The original SAS/ terminator is shown in
Diagram 47; this is the "Old Style" Terminator. This terminator worked just fine for the
data transfer rates used on a SASI Bus. The problem with the old terminator is that it
has very little worst case margin for the bias voltage, and the impedance is too high
for the high density Cables and Connectors typically used today. The new "Preferred"
terminator was devised to stabilize the bias voltage high enough and also to present a
lower termination impedance to the Cable.

The bias voltage is a function of R1 and R2 and the characteristics of the voltage
regulator; typically 2.85 V. The termination impedance is equal to the value of resistors
R3-R20; 110 Q.

Using the "Preferred" terminator at both ends of the cable is best, but it turns out that
using a "Preferred" terminator at one end of the cable, and an "Old Style" terminator
at the other end, is far better than using an "OIld Style" at both ends (yes, they can be
mixed).

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suonedliand TANH 166} © 1ybuidon

| awn|oA ‘elpadojohoul |SOS 8yl

91 NvHOVI(J

NOILVNIWH3| ,,d3"d34d34Hd, A3AN3-I1ONIS

B AAN,—> DBO)

This node must be no less
than 2.85 V plus the regulator R4 DB(1
dropout voltage for proper operation 285V at this node »——/\/\/\[—> -DB(1)
‘;RL&/\/\/———) ‘DB(2)
' Vi
TERMPWR ¥ Vin U1 out v A A A _DB(4)
+ + .
—1 8 i
~ ad) <~ “
+ R11 -DB(P)
| R12 -ATN
¢ R13 -BSY
| R14 -ACK
R2
U1: Low Dropout Voltage Regulator RIS -RST
such as LT1086 or equivalent
Imax = 600mA
Voo = 2.85 V ¢ R16 -MSG
C1: 10 pF Aluminum or 4.7 pF Tantalum, 15 V R17 /\/\/\/—, -SEL
C2: 150 pF Aluminum or 22 pF Tantalum, 10 V
(Note: Effective Series Resistance (ESR) R18 -C/D
at 120 Hz should be < 4 Q) 1
C3: 0.1 pF Ceramic, 25 V
L R19 -REQ
R1: 121 Q 1%, Ya Watt
R2: 154 Q, 1%, Va Watt R20 -1/0

R3-
R20: 110 Q, 1%, Ya Watt

eLl

T 174

The "OId Style" terminator in Diagram 47 is built from a resistor divider. The bias
voltage is the divider voltage given by the equation:

Vt= Vterm_&— =0.6 Vrerm
Raz0+Rppo

(nominal)

As you can see, the actual bias voltage can vary based on the Terminator Power
voltage (V,.,,) and the resistor tolerance of the two resistors. For example, with
Vierm = 425 V and nominal resistor values, V, = 2.55 V.

The termination impedance is given by:

Z,=——1—— =132Q(nominal)

1 1

<+

R220 RGGO

Like the bias voltage, the impedance can vary as the resistor tolerance varies. We
recommend using 1% tolerance resistors if you must use this terminator.

An additional termination method was presented to the X379.2 Committee just before
our publication deadline. Please see Forced Perfect Termination (FPT) for a quick
discussion of another alternative.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suonediiand "TANM 1661 ® 1Ybukdos

| @wnjoA ‘elpado|oAou3z |SOS 3y

/Y WVHOVIJ

NOILYNINYGT] ,JTIALS 10, AIANT-TIONIS

This node must be no less

than 4.25V for proper operation

TERMPWR

v

24V to 3.1V at this node
when the signal is released

220Q, 1%, aW

330Q, 1%, %W

AN AA

2200, 1%, 4W

330Q, 1%, W

FAAA—TAAAA

v

220Q, 1%, 4 W

330Q, 1%, W

FAAA—AAAA

bl

22060, 1%, VAW

330Q, 1%, WBW

FAAMTAAAA

k4

220, 1%, W

330Q, 1%, “W

amAVAVAVan ceAVAVAVES

v

220Q, 1%, W“WwW

330Q, 1%, %W

FAAATAAA

v

2200, 1%, W

330Q, 1%, %W

FAAAAA A

b 4

22002, 1%, W

3304, 1%, “W

AN AAAA

L'

220Q, 1%, UWW

330Q, 1%, W

e AVAVAVES S AVAVAVES

h i

~7

¥

2.2uF

-DB(0)

-DB(1)

-DB(2)

-DB(3)

-DB(4)

-DB(5)

-DB(6)

-DB(7)

-DB(P)

2200, 1%, %W < 3300, 1%, %W

FAAAATAAM

220Q, 1%, W

aAVAVAVES SAVAVAVES

330Q2, 1%, %W

A 4

2200, 1%, aW

FAAATAAA

330Q, 1%, W

v

2200, 1%, AW

aAVAVAVES

330Q2, 1%, W

—\/ N\

v

2200, 1%, %W

S VAVAVan sndVAVAVES

33002, 1%, %W

220Q, 1%, W

FAAA

33002, 1%, “W

A

v

v

220, 1%, W

audVAVAVES

33002, 1%, VaW

—\/\/\—1

2200, 1%, VaW

FAAA~

330Q, 1%, LW

—\/ N\

h-4

22040, 1%, “BW

anAVAVAVES

330Q, 1%, %W

—\/\/\—

L 4

N

W

-ATN

-BSY

-ACK

-RST

-MSG

-SEL

-C/D

-REQ

-1/0

QLI

T 176

The termination for the Differential Interface is shown in Diagram 48. Note that it is
similar in design to the "OIld Style" Single Ended Terminator. In principle, it is. It is
adequate for the Differential Interface because this interface is less sensitive to the
actual bias voltage on the bus. It works as long as the -Signal is greater than the
+Signal. Also, the cable has a higher impedance when used for the Differential
Interface, because all those grounds in the Single-Ended Interface cause the cable to
have a lower impedance.

The terminator is built from a resistor divider. The bias voltage on each signal (+Signal
and -Signal) is the divider voltage given by the equations:

V,_=V, Raso*Riso =0.59V,

(nominal)
- F? {
' o Riy30+Ry50*Rag0 o

Vo=V rm Roao =0.41V,,,, (nominal)
Rig0*Ryso* Rago

As before, the actual bias voltage can vary based on the Terminator Power voltage
(Vierm) @nd the resistor tolerance of the three resistors. For example, with
torm = 4.0 V and nominal resistor values, V,, =24 VandV, =16 V.

The termination impedance is actually measured across the +Signal and -Signal, and
is given by:

Z-= 1 =122Q(nominal)

' [1, 1
Riso Razo*Razo

Like the bias voltage, the impedance can vary as the resistor tolerance varies. We
recommend using 1% tolerance resistors.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suoneodljgnd TAN™ 1661 © WybuAdos

| awnjoA ‘elpadojohoul |SOS 9yl

NOILVNINH3] TVILN3IH344Ig 8 WvdoviI(g

1

RMPWR

This node must be no less
than 4.0 V for proper operation

|

24 Vto 3.1V at this node
when the signal is released

1.6 V to 2.1 V at this node
when the signal is released

&

&

&

3 L 1%, VAW W 3300, 1%, Yaw

330Q, 1%, YaW

15062, 1%, VaW

3300, 1%, YaW

-

3300, 1%, “aW

W

330Q, 1%, Va W

-

3300, 1%, YaW

1500, 1%, YaW

33002, 1%, YaW

-

3300, 1%, AW

1500, 1%, YaW

330€2, 1%, YaW

-

3300, 1%, VaW

15002, 1%, YaW

330G, 1%, VaW

W

1500, 1%, YaW

3306, 1%, YaW

*

330, 1%, VAW

15002, 1%, 4 W

330Q, 1%, YaW

-

3300, 1%, VaW

1506, 1%, VaW

330G, 1%, 'aW

-

.

00, 1%, Ya WA/ 1500, 1%, YawWN/ 3300, 1%, WawW

S+ATN

3300, 1%, aW

150Q2, 1%, YaW

’_Ww_‘

>_ATN

»+BSY

3300, 1%, VaW

1506, 1%, YaW

W

>_BSY
»+ACK

00, 1%, VaW

052, 1%, BW

>_ACK
+RST

Y

00, 1%, Vaw

15002, 1%, YaW

0Q, 1%, YaW

-

-RST
+MSG

LA 4

00, 1%, VaW

1500, 1%, YaW

0Q, 1%, aW

-MSG

,+SEL

00, 1%, MW

150Q, 1%, VawW

P_W

>_SEL

»+C/D

0, 1%, VaW

15002, 1%, WaW

0G, 1%, YaW

>.C/D

—»+REQ

00, 1%, Ja W

150Q, 1%, YA W

0Q, 1%, Yaw

-

>_REQ
+I/O

v Y

-1/0

~7

LL1

178

Terminator Power (TERMPWR). The TERMPWR signal (and it is a
signall) supplies the power necessary for the active bus Termination at each end of
the Cable. Depending on the interface option (Single-Ended Interface or Differential
Interface) and the Cable type (A Cable, B Cable, or P Cable) the TERMPWR signal
is carried on one or more physical conductors. Terminator Power on the B Cable is
called TERMPWRB.

TERMPWR has the characteristics shown in Table 27. The table shows the allowable
voltage range for TERMPWR, and the minimum source drive current requirement
(which is actually the maximum the device is expected to support). Note that these are
measured at the device supplying TERMPWR.

TABLE 27: TERMINATOR POWER VOLTAGE AND CURRENT

Interface Option

Single-Ended Interface Differential Interface

A Cable 425V 105.25V DC 400V 1t05.25V DC

900 mA (minimum) 600 mA (minimum)

CT:?/ELG B Cable 425V 105.25VDC 4.00 Vto 525V DC
1500 mA (minimum) 1000 mA (minimum)

P Cable 425V 105.25V DC 4.00 Vt05.25V DC

1500 mA (minimum) 1000 mA (minimum)

TERMPWR is supplied by any or all SCSI Devices on the Cable. Initiators are
required to be able to supply TERMPWR; Targets may or may not be able to supply it.
See Diagram 49 for an example schematic. In general, the following guidelines apply
when supplying TERMPWR to the Cable:

e TERMPWR should be supplied through some circuit which protects the power
supply of the SCSI Device from backflow current from other devices also
supplying TERMPWR. Happily, a diode meets this criteria. The best diode to
use is a diode that has a minimum voltage drop when forward biased, such
as a Schottky power diode capable of handling the minimum current require-
ment. A low voltage drop is desirable because it improves noise margin on
each signal line (particularly when using the "Old Style" Termination). The
diode circuit is shown as part of Diagram 49.

e |t is also a good idea to locate a fuse after the diode. A 1.5 Amp quick-blow
fuse will do the trick (use 2 Amp for TERMPWRB).

(...more...)

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suonealiqnd TANA L1661 @ YBLAdoD

| awnjoA ‘eipadojohou] |SOS @Yyl

67 WYHOVI(

OILVINIHOS HIaMOd NOILVYNINYT |

+5V H Q
Diode: Schottky power diode,

such as 1N5818 or 1N5822 fuse: 1.5 Amp
(low voltage drop = 0.3V) quick-blow

TERMPWR

The best place for decoupling capacitors

|+ is as part of the Termination Networks.

22 WF It doesn't hurt to have one as part of
the device as well, just in case.

)|

Termination Network

7 Bus Signal

Termination Network

Ground

1] |-

_[> _Dﬁ,_l> _D_‘,_D stub length

Driver & Receiver Pairs

on each SCSI Device

D] B -

Up to eight driver & receiver
pairs on each Bus Signal

6L1

T 180

e The TERMPWR signal can fluctuate due to instantaneous changes in the
current drawn through the Termination as signals are asserted, negated, and
released. To smooth out these fluctuations, a 2.2 pyF tantalum capacitor
should be installed on TERMPWR at each Terminator. If you can’t do that
(for instance, you have old encapsulated terminators), install the capacitor at
the TERMPWR pin on the connector on each SCSI Device.

e If you can, supply TERMPWR as high as possible. The Cable resistance can
drop a lot of voltage from TERMPWR by the time it reaches the Terminator. If
you can afford the extravagance of power and money, use a 3-terminal
regulator to supply 5.0V or 5.25V from a higher voltage source (like 12V).
This improves voltage margins greatly, as described in the section on Termi-
nation.

¢ Don’t have too many devices supplying TERMPWR to the same wire. You
might end up exceeding local safety regulations. On a heavily loaded bus,
disable the TERMPWR supply on some devices if regulations are exceeded.

® The best placement for TERMPWR sources is as close to the Terminators as
possible. This can minimize the voltage drops that occur as TERMPWR
propagates the length of the Cable (can approach one volt!).

Why Terminator Power? Why not just power terminators directly from the devices
which contain the Terminators or are located closest to them? Using local power
works just fine, actually, in most cases. The reason for the more complicated system
described above goes back to the SCSI philosophy of shared peripherals: The bus
should be able to operate no matter which devices are powered up. For example,
consider a three device system, with two PCs sharing a single SCSI printer. If one of
the PCs was the only device that could power the Termination, and it was powered
off, then the other PC could not use the printer.

Timing. See Bus Timing.

Transfer Period. ttp = set by SYNCHRONOUS DATA TRANSFER REQUEST
Message. See Synchronous Transfer Period.

True. "Not False", of course! In SCSI, a signal that is Asserted is in the True state.
The definition of Asserted is specific to the Interface type, either Single-Ended or
Differential. The following are equivalent from a logical point of view in SCSI:

° Il1ll

® One

e True

e Asserted

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

181 U

Unexpected BUS FREE Phase.
Unit Attention Condition.
Untagged Queuing.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

U 182

Unexpected BUS FREE Phase. The Unexpected BUS FREE Phase is the
Target’s "last way" to indicate an error to the Initiator. This method is to be used only
if the Target has attempted to perform Error Recovery without success, or it cannot
complete a STATUS Phase properly. In those cases, the only recourse for the Target
is to "drop the bus"; in other words, Release the BSY Signal.

Targets should not use Unexpected BUS FREE Phase to indicate an error if there is
another way, such as STATUS Phase or the Message System. |f Unexpected BUS
FREE Phase is necessary, something may be broken.

When the Target does an Unexpected BUS FREE Phase, it has the option of creating
SENSE Data to describe the failure; in other words, the Contingent Allegiance
Condition. It is entirely up to the Target whether to do this:

e The Target can decide to be "good" and always create SENSE Data just in
case the Initiator wants to know why the Target went away.

* On the other hand, if something so awtul happened that the Target couldn’t
use normal Status and/or Messages, what’s the point of creating data that
can’t be transferred?

It’s your call!

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

183 U

Unit Attention Condition. The Unit Attention Condition is used by the Target
to inform the Initiator of an important change in the operating environment of the
Target and the associated Logical Unit. Let’s look at the operating environment of the
Target:

e There is a particular storage medium installed.

s There is a set of parameters that the Initiator can control via the MODE
SELECT Command. These parameters tell the Target, among other things,
how to handle errors, when to Disconnect and Reconnect, and how to
handle various other high level SCSI functions.

e The Target is executing a particular microcode program in its control micro-
processor.

e The Target has a Queue of commands, or has commands pending with
several Initiators.

e There is data that the Initiator may read (via an INQUIRY Command), but
may not change.

e The mechanical or electrical aspects of the Target can change.

¢ Anything else you can think of that seems appropriate.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

U 184

The Target is expected to create the Unit Attention Condition whenever any of the
above aspects of the operating environments changes:

¢ The installed storage medium changes. This can be caused by an operator
popping in a new cartridge, or a change effected by a "jukebox".

e The MODE SELECT Parameters change. This can be caused by a MODE
SELECT Command from another Initiator, or by a Hard Reset.

® The Target loads a different set of microcode for execution. This does not
include swapping in an overlay to perform a particular function. This can be
caused by a CHANGE DEFINITION Command or a WRITE BUFFER Com-
mand to download the microcode. It can also be caused by a Hard Reset.

® One SCSI Device causes the Commands of another device to be lost by the
Target. This can be caused by a Hard Reset, by a CLEAR QUEUE Mes-
sage, or by a BUS DEVICE RESET Message.

e The INQUIRY Command data can be changed by anything that can change
the microcode (see above). It can also be changed when a Logical Unit
becomes "ready". Many Targets load their full set of INQUIRY data from the
storage medium.

e The types of mechanical aspects that can change include a disk spindle that
has changed its synchronization state relative to other spindles in a system.
Or, the medium is reformatted.

The Target creates the Unit Attention Condition for each Logical Unit that the change
affects. For example, when a Hard Reset occurs, the Target should create the Unit
Attention for all valid Logical Units on the Target. The Target should not create the
Unit Attention Condition for Logical Units that are not valid.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

185 U

The Target also creates the Unit Attention Condition for each SCSI Device that should
be informed of the change. In theory, all of the other possible devices could be
Initiators, and therefore can be devices that would be informed of the Unit Attention
Condition. The Target does not create the Unit Attention for an Initiator if it directly and
provably caused the condition. For instance, if an Initiator issues a CLEAR QUEUE
Message to the Target, the Target would create the Unit Attention Condition for all of
the other Initiators, but not that one. On the other hand, if that Initiator Asserted the
RST Signal to create the Reset Condition, the Target creates the Unit Attention
Condition for all Initiators, since it cannot know which Initiator asserted the RST
Signal.

A typical method for implementing this is a bit map for each Logical Unit. After a Hard
Reset, the bit map is cleared to zero. Bit O of the bit map corresponds to the Initiator
with a SCSI Address of 0. If a bit in the bit map is zero, then a Unit Attention Condi-
tion exists. If the bit is one, then there is no Unit Attention Condition for that Initiator.
Anything that requires reporting the Unit Attention Condition clears the appropriate bits
in the bit map.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

U 186

So how does the Target report Unit Attention? Diagram 50 shows how Targets
handle Unit Attention once it is created. Unit Attention is treated something like an
error condition in the Logical Unit. The Unit Attention Condition is reported as a
Contingent Allegiance Condition (kind of figures, doesn’t it?). In other words, as an
error on the Logical Unit. It is more involved as you can see in the flow chart.

Bear with us in this discussion, because the Commands involved (REQUEST SENSE
and INQUIRY) are fully described in later Volumes of this Encyclopedia. This is one of
those difficult gray areas between the basic SCSI protocols and commands.

After the Unit Attention Condition is created, the Target starts to receive Commands
from Initiators. If the Command is not REQUEST SENSE or INQUIRY, the Target
returns an error via STATUS Phase (CHECK CONDITION Status). The SENSE Data
includes a SENSE Key that indicates that a Unit Attention Condition occurred. Once
the SENSE Data is transferred, the Unit Attention (and Contingent Allegiance)
Condition is cleared.

If the Command was REQUEST SENSE, the Target can report and clear the Unit
Attention Condition directly.

If the Command is INQUIRY, the Unit Attention Condition is put on hold to execute the
INQUIRY Command. In other words, never report a Unit Attention Condition in
response to an INQUIRY Command. The reasons are somewhat historical: Unit
Attention is most often reported in response to a Hard Reset. The first thing an
Initiator often does after a Hard Reset is issue an INQUIRY Command. It was felt that
the Initiator, which is in the process of configuring its drivers, should not get CHECK
CONDITION Status during this process. This is why INQUIRY is special.

Note at the bottom of the flow chart are tests to see if there are "more" Unit Attention
Conditions pending. The Target is allowed to "stack" Unit Attentions if there is more
than one change. In general, this ability should not be used at all, or only used
sparingly:

e |f the Target gets a Hard Reset, it may get its microcode changed, its MODE
SELECT Parameters changed, and its Queue cleared. Only the Reset itself is
of any interest.

¢ On the other hand, it may be interesting to know about both a spindle sync
change and a MODE SELECT Parameter change, and the only way to report
both is to create two Unit Attention Conditions.

Use your own discretion...

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

187

An event occurs on the Target
that requires the attention
of the Initiator

UNIT
ATTENTION
Condition

A CDB from the Initiator,
whenever it happens

(7o

ceive a Command |

REQUEST SENSE

Return
INQUIRY
Data

Do the Commandj

INQUIRY

othenwvise

Return
‘CHECK CONDITION*
Status

{

Create CONTINGENT
ALLEGIANCE Condition

\

A CDB from the Initiator,
whenever it happens

&ieceive a Commar@

REQUEST SENSE

Report the

Test
Command
Code

otharwisa

UNIT ATTENTION

and clear it
In the

:

) EJNIT ATTENTION @
CONT. ALLEGIANCE

Clear Conditions:

returned
SENSE Data

Is there
another
U.A.?

No

Yes

[U.A. CleareH Do the Command]

DIAGRAM 50: UNIT ATTENTION FLOW DIAGRAM FOR TARGETS

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

U 188

Untagged Queuing. Untagged Queuing is a Queue for [/O Processes for a
Logical Unit which does not use Queue Tags. Contrast to Tagged Queuing.
Untagged Queuing only allows one I/O Process to be active or queued from a single
Initiator for that Logical Unit. This was the only form of Queuing available under SCSI-
1. See Queue for the big description....

The SCSI Encyclopedia, Volume | Copyrlght © 1991 ENDL Publications

189 \"

Vendor Specific or Unique.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Vv 190

Vendor Specific or Unique. These words describe any feature added by a
Target or an Initiator that is not covered by SCSI. Typically, it is a new Command or
Command feature, but there is also the potential for Vendor Specific Messages (see
Extended Messages and Etiquette).

As an example, vendors will often add Vendor Unique "Pages" to the MODE SELECT
Command to control special features of their product. See later Volumes of this
Encyclopedia for details.

As a rule, don’t invent a Vendor Specific feature if a standard one will do. It just
makes things harder on your users since they have to have special drivers or utilities
to deal with it.

As a user, try not to use a Vendor Specific feature if you can use a similar standard
feature (many vendors actually offer two ways of doing things!). A better way is to
ignore the feature completely, if possible. Also, do yourself a favor and resist the urge
to demand Vendor Specific functions from your vendors. It just reduces the availability
of alternate sources.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

191 A%

Wide Data Transfer.

Wide Data Transfer Negotiation.

WIDE DATA TRANSFER REQUEST Message.
Wire-OR Glitch.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

wW 192

Wide Data Transfer. "Wider! Faster! Deeper! (Deeper?)" was the rally cry of
SCSI-2, wherein the data transfer performance of the SCSI Bus was improved. Like
Fast Data Transfer, Wide Data Transfer is a method that can be used to go beyond
the SCSI-1 data transfer rates. Wide Data Transfer, like Synchronous Data Transfer,
is only used during a DATA Phase. All other Information Transfer Phases use only
8-bit Asynchronous Data Transfer. Table 28 summarizes all combinations of Wide

Data Transfer with the other modes: Asynchronous Data Transfer, Synchronous
Data Transfer, and Fast Data Transfer.

TABLE 28: PossIBLE DATA TRANSFER RATES

Transfer Width
Transfer Mode 8-bit (A Cable) 16-bit (P or A/B Cable) 32-bit (A/B Cable)
I .y
Asynchronous Data Transfer set by device and cable =2 times the 8-bit rate =4 times the 8-bit rate
delays
Synchronous Data Transfer 5 Megabytes per second 10 Megabytes per second 20 Megabytes per second
Fast Data Transfer 10 Megabytes per second 20 Megabytes per second 40 Megabytes per second

There are two ways to implement Wide Data Transfer:

e Technically (according to the SCSI-2 Standard), there is only one way to
achieve Wide Data Transfer, which is by adding a second cable to each
SCSI Device. This second cable is known as the B Cable (the original 8-bit
cable is known as the A Cable). The B Cable can provide a 16-bit data path
or a 32-bit data path. The problem is that, well, you need two cables.

¢ Since SCSI-2 was finished, a new proposal for Wide Data Transfer has been
developed by the X3T79.2 Committee as part of the SCS/-3 effort. Since this
proposal has received a lot of attention and work, it is included here. This is a
single cable, 16-bit data path known as the P Cable. When using the
P Cable, it replaces the A Cable as the only cable between each SCSI
Device.

The different methods of achieving Wide Data Transfer are shown in Diagram 51.

We recommend the P Cable for Wide Data Transfers (in fact, it could be useful for
new 8-bit designs; see P Cable). You will find that many of the newest SCSI Chips
will only support the P Cable method, since it is much easier to implement in silicon.

As we cover both methods, the disadvantages of the B Cable method will become
clear.

If you have a 32-bit requirement, contact the X3T9.2 Committee first. They are also
working on something called the "Q Cable", which extends the P Cable to 32-bits.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suonedlignd TANA 1661 © Wybukdo)

SNOILVHNDIINOD H3I4SNVH] Yivq 3AIM 1§ WYHDVI(

| awnjop ‘elpadoldAous |SOS ayL

~.___REQ ~____REQ .
e ACK i [L ACK
Lo DB7 - DBO | ' b DB7 - DBO ’
- l . DBP) — .\ DBP —
+ — S ! -~ “ ! ! » 3
oy ,r = 3 ¢ . __DB15 - DB8 > =
= A Cable S A —
IC_U é" | '(_U - DBP1 o
P Cable
A Cable 8-bit Transfer § P Cable 16-bit Transfer
— o — = ,
.. ' ACK 5 —
‘E . DB7 - DBO b 5 ¢- —__ 00 SE—
AR DBP | — B Cable
‘g s 3. 5 | _Acae REQB RN =)
= e Bcale | ® | D ACKB - o
= REQB S | 8 < DB15 - DB8 L > o
. ACKB P § DBP1 L7,
DB15 - DB8 e DB23 - DB16 Lo
. DBP1 L § . DBP2 R
— _ S ¢ DB31_. DB24 L >
A/B Cable 16-bit Transfer ; DBP3 L

A/B Cable 32-bit Transvfer

€61

\" " 194

The B Cable Method. As shown in Diagram 51, the B Cable adds the necessary
additional data signals to the existing 8-bit A Cable signals as a second cable.
Because of the danger of skew between unequal length cables, the B Cable also has
its own REQB Signal and ACKB Signal. This ensures that the data on the B Cable is
clocked properly (setup and hold times for the B Cable data are met).

Diagram 52 shows the data path for a B Cable system. Note that there are two unigue
and independent data paths on the Initiator and the Target. Each data path transfers
data independently of the other: ACK responds only to REQ, and ACKB responds only
to REQB. Data moves through each data path from one device to the other with no
interaction with the other path. Note again that the B Cable is used only during a
DATA Phase.

Data for each path is split at the entrance to the data paths. The data is recombined
at the exit from the data path in the receiving device.

The behavior of each cable follows the rules for either:
e Asynchronous Data Transfer; or,

e Synchronous Data Transfer, if it has been negotiated via Synchronous Data
Transfer Negotiation (SDTN).

Note that both data paths must use the same transfer modes and parameters
(Synchronous Offset and Synchronous Transfer Period).

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suoneolignd TANA 166} @ ybuAdon

| awnjoA ‘elpadojohou] |SOS 9yl

HLVd V1V Y34SNvd] v1ivQ 3AIpA 318vD g 126 WvHDVIQ

A Cab/ele
Handshake REQ > Handshake
Logic ACK Logic
A Cable A Cable Data . ! A Cable
o [P Data Path § bits =T1” Data Path [
= T
S o)
D a
o w)
Combined c |Combined
4P 23 @ —>
Data %) § Data
§ B Cable %
@
oy Handshake REQB —* Handshake 3
o Logic ACKB '. Logic
B Cable B Cable Data ' | B Cable «—>
— Data Path 8 or 24 extra bits*.: > Data Path
Target Initiator

G61

W 196

The P Cable Method. As shown in Diagram 51, the P Cable adds 8 additional data
signals to the existing 8-bit A Cable signals within one cable. Since only one cable is
used, only one REQ Signal and ACK Signal are required.

Diagram 53 shows the data path for a P Cable system. As we can see, this is simpler
than the B Cable method. Only one data path is required. In fact, this is as simple as
a basic SCSI data path; only the number of data bits is increased.

This shows why the P Cable is gaining popularity, even though it is not technically
standardized. It is easy for chip manufacturers to create a 16-bit device from an
existing architecture just by increasing the data path width (and they are doing it).
Creating a B Cable 16-bit device requires two data paths to be included in the
architecture, which is much more difficult. Also, in this age of smaller and smaller
devices, it is difficult to conceive of mounting two cable connectors on a single device.

Byte Ordering. When doing Wide Data Transfer, it's important to get the byte order
right. The following diagrams give an example of an eight byte transfer, and how each
of the bytes are handled in each Wide Data Transfer method. Diagram 54 shows how
the eight bytes are transferred over the 8-bit A Cable. Eight bytes (designated Byte a
through Byte f) are transferred using eight REQ/ACK handshake cycles. No surprises
there... (I hope!)

Diagram 55 shows the byte ordering for a Wide Data Transfer on the P Cable. Eight
bytes are transferred in four 16-bit handshake cycles. The first handshake transfers
Byte a on the Data Bus Signals DB7-DBO0, and Byte b on DB15-DB8.

Diagram 56 shows the byte ordering for a 16-bit Wide Data Transfer using the B
Cable to supplement the A Cable. Eight bytes are transferred in eight 8-bit handshake
cycles on two cables. The first handshake on the A Cable transfers Byte a on DB7-
DBO, and the first handshake on the B Cable transfers Byte b on DB15-DB8.

Diagram 57 shows the byte ordering for a 32-bit Wide Data Transfer using the B
Cable to supplement the A Cable. Eight bytes are transferred in two 8-bit handshake
cycles on the A Cable, and two 24-bit handshake cycles on the B Cable. The first
handshake on the A Cable transfers Byte a on DB7-DBO, and the first handshake on
the B Cable transfers Byte b on DB15-DB8, Byte ¢ on DB23-DB16, and Byte d on
DB31-DB24.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

197 W

°
[¢))
=2 3
ol ks
1
@]
&)
Host Bus Interface
i .
O
|
o
=
T O P Ow
g5~ o3
~ Q
Fy A
o1 T
I A 5
© ®
ol3
aje
]
oS Ofs
| < A [xm
; v
o o)
55 — 8%
T O Ow
g o ®
T @) -
O
O
S
I @
Peripheral Bus Interface
o]
QO
Elwm
_D L
EIS
&)
O

DIAGRAM 53: P CABLE WIDE DATA TRANSFER DATA PATH

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

W 198

Receiver

>

D87 DBO

Byte a Handshake #1

—P>

Byte b Handshake #2

—>>

Handshake #3

o)
=
©

e}

—>

Byte d Handshake #4

.

Handshake #5

o8]
=
CD
®

Handshake #6

)
—» 5 >

Byte ¢ Handshake #7

—>

Byte h Handshake #8

Ll

Sender

DIAGRAM 54: A CABLE DATA TRANSFER BYTE ORDERING

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

199 W

Receiver
A
DB15 DB8\DB7 DBO
Byte b Byte a Handshake #1
Byte d Byte c Handshake #2
A
Byte f Byte e Handshake #3
A
Byte h Byte g Handshake #4
A
Sender I

DIAGRAM 55: P CABLE 16-BIT DATA TRANSFER BYTE ORDERING

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

200

Receiver
315 DB8 87 T DBO
Handshake # 1B Byte b Byte a Handshake #1A
Handshake #2B Byte d Byte ¢ Handshake #2A
Handshake #3B Byte f Byte e Handshake #3A
Handshake #4B Byte h Byte g Handshake #4A
A A
"B Cable A Cable

Sender

DIAGRAM 56: A/B CABLE 16-BIT TRANSFER BYTE ORDERING

The SCSI Encyclopedia, Volume |

Copyright © 1991 ENDL Publications

201 W

L Receiver I

DB31 DB8 - DBZ DB0

Byte d Byte ¢ Byte b : Byte a
Handshake #1B A A Handshake #1A
Byte h Byte g Byte f Byte e
Handshake #2B A A Handshake #2A
B Cable : A Cable
Sender]

DIAGRAM 57: A/B CABLE 32-BIT TRANSFER BYTE ORDERING

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

W 202

Wide Data Transfer Negotiation. Wide Data Transfer Negotiation (WDTN)
is used to establish the data transfer width to be used between two SCSI/ Devices.
The process is almost the same as Synchronous Data Transfer Negotiation. If two
devices never engage in a WDTN, then the default data transfer width is 8 bits. After
the WDTN process has completed, the two devices will (hopefully) have agreed to a
bus width that results in a Wide Data Transfer.

The specific purpose of WDTN is to provide a procedure where two devices can agree
on a bus width for Wide Data Transfer. The intent is to arrive at agreement such that
the maximum performance is achieved.

Note that the agreement is between two SCSI devices. This agreement is independent
of Initiator and Target role, and is also independent of Logical Unit on each device. In
other words, the same agreement is used for all /O Processes in all of the following
situations:

¢ Device A takes the Initiator role and Selects Device B (which then takes the
Target role) and transfers data with Logical Unit #X.

e Device B takes the Target role and Reselects Device A (which then takes the
Initiator role) and transfers data with Logical Unit #Y.

e Device B takes the Initiator role and Selects Device A (which then takes the
Target role) and transfers data with Logical Unit #Y.

o Device A takes the Target role and Reselects Device B (which then takes the
Initiator role) and transfers data with Logical Unit #X.

If there is a Device C on the bus, both Device A and Device B must each reach their
own agreement with Device C.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

203 W

Any device may begin the WDTN process at any time. Typically, the process is begun
on the first Connection following a Hard Reset on either device. For example:

® An Initiator Connects to a Target. After the MESSAGE OUT Phase in which
the IDENTIFY Message is sent by the Initiator, the Target changes to
MESSAGE IN Phase and sends the Wide Data Transfer Request (WDTR)
to begin the WDTN process.

e A Target Reconnects to an Initiator. During the MESSAGE IN Phase in
which the IDENTIFY Message is sent by the Target, the Initiator creates the
Attention Condition. In response, the Target changes to MESSAGE OUT
Phase, and the Initiator sends the WDTR message to begin the WDTN
process.

You might also see the WDTN process begin just prior to the DATA Phase, after the
COMMAND Phase, or after a Queue Tag Message.

A WDTN must always precede an SDTN. After a WDTN is completed, the data
transfer method is always reset to Asynchronous Data Transfer. The two devices
may begin an SDTN process after completing the WDTN process.

Diagram 58 and Diagram 59 illustrate how SCSI devices negotiate Wide Data Transfer
bus width. Note that the diagrams do not refer to Initiators and Targets, rather, they
refer to the Originator and Responder.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

W 204

S d WDTR M lnitiat%r’:E gs/g éIgNO?Jr’TdPsivend in
next ase
en essage TargPet: Send in MESSAGE
IN Phase

Initiator: Get in MESSAGE IN

Phase immediately following
[Get Response] Target: Initiator sets ATN
during MESSAGE IN and

sends response

Misunderstood
NO or can't do it

WDTR
Message?

\
[Width = 8-bits]

| Yes

Yes

Acceptable
Width?

Reme&nber what was "
H agreed to; reset synchronous
Record Settmg agreement to Asynchronous

Data Transfer

N

Send MESSAGE
REJECT Message |

DIAGRAM 58: WDTR FLOW DIAGRAM FOR ORIGINATORS

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

205 W

lnitis\t&:e Reclsi\;pe during

. ME E IN Phase

(Get, WDTR Message } Target: Detect ATN and receive
] during MESSAGE OUT Phase

Yes

Acceptable Yes

Width?

/ YV
[Return Same Messagé

Make new message with bus

width smaller (see text) If the Originator's request

can be performed by the

Responder, return the
Make New Message WO Mossans o

by the Originator

N
Initiator: Set ATN and send in

[Send WDTR Message] next MESSAGE OUT Phase

Target: Send in MESSAGE IN Phase

Initiator: Get during MESSAGE IN
Phase immediately following
Target: Initiator sets ATN during
MESSAGE IN and sends during
next MESSAGE OUT Phase

No

MESSAGE
REJECT?

(Width = 8-bits J
N

y
Remember what was
Record Setting agreed to; reset synchronous

agreement to Asynchronous
Data Transfer

DIAGRAM 59: WDTR FLOwW DIAGRAM FOR RESPONDERS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

W 206

When a device decides it needs to begin the WDTN process (more on why it might
decide that later), it first requests the maximum bus width it can perform, and sets up
the WDTR message accordingly. The bus width is sent as part of the WDTR mes-
sage. The device has now taken the role of the Originator in the WDTN process.

The other device, upon receiving the WDTR message from the Originator, becomes
the Responder. In response, it can do one the following:

¢ |f the bus width is acceptable, it repeats the same WDTR message back to
the Originator. The bus width is acceptable when the Responder is able to
perform a data transfer with the Originator at that bus width.

e |f the bus width is too big, it sends a WDTR message back to the Originator
set for the desired bus width.

¢ If the Responder cannot perform Wide Data Transfer, the Responder does
one of the following:

e |t creates a WDTR message with the Transfer Width set to zero (indicates
8-bit transfer), and sends it to the Originator (this is preferred);

e It returns a MESSAGE REJECT Message.

With either response, the Originator and Responder are agreeing that an 8-bit
bus width is the data transfer width that will be used.

o |f the Responder hasn’t a clue about Wide Data Transfer, it will probably
respond to the WDTR Message with a MESSAGE REJECT Message. In this
case the Originator should get the hint and stick to 8-bit data transfers with
the Responder from now on. Note that Synchronous Data Transfer is still a
possibility.

After the first or second response, the Originator may have to respond to the response
if it can’t support the bus width requested by the Responder. For example: The
Originator can handle 32-bit and 8-bit transfers, but not 16-bit transfers. The Respond-
er can handle 16-bit and 8-bit transfers, but not 32-bit transfers:

¢ The Originator issues a WDTR Message requesting 32-bit transfers.

® The Responder returns a WDTR Message requesting 16-bit transfers.
The Originator can’t handle 16-bit transfers, so it must respond with a MESSAGE
REJECT Message. This tells the responder that its response was unacceptable. In this

case, the two devices must transfer at an 8-bit bus width. Call your System Integrator
right away!

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

207 A%

When is Negotiation Required? A device should originate a WDTN whenever it has
no record of a previous negotiation. (Notice this is the same rule as for Synchronous
Data Transfer Negotiation) This, of course, implies that a device that completes a
WDTN should keep a record of it. This record is maintained for each SCSI Device on
the bus, and could be represented as a two bit code:

e 00 = No WDTN completed with that device.

e 01 = WDTN completed with that device; 8-bit transfers.
e 10 = WDTN completed with that device; 16-bit transfers.
e 11 = WDTN completed with that device; 32-bit transfers.

The ways that a device could lose the value stored in this code are somewhat unique
to each device, but we think we can all agree that at least the following events would
clear these two bits to zero:

® A power-on reset.

e A Hard Reset.

e A BUS DEVICE RESET Message.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

W 208

WIDE DATA TRANSFER REQUEST Message. The WIDE DATA
TRANSFER REQUEST (WDTR) Message is used to establish the parameters that will
be used during a Wide Data Transfer. This is an Extended Message:

Bit 7 6 5 4 3 2 1 0
Byte
0 Message Code = 01 hex
1 Additional Message Length = 02 hex
2 Extended Message Code = 03 hex
3 Transfer Width

Byte 3 of this message carries the Transfer Width. Table 30 shows the codes for each
Transfer Width.

TABLE 30: WIDE DATA TRANSFER WIDTH CODES

Transfer Width Code Bus Width
00 hex 8 bits
01 hex 16 bits
02 hex 32 bits
03-FF hex Reserved for future use

See Wide Data Transfer Negotiation for a complete description of the use of this
message.

Summary of Use: The WDTR Message is sent by any SCSI Device to establish the
parameters to be used during Wide Data Transfer.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

209 \"%

Wire-OR Glitch. "Yow! What's that? A feature?" No, it's a physical fact. A Wire-
OR glitch can occur on any signal path where more than one devices can Assert and
Release the signal. The glitch occurs when two devices are Asserting the signal
(pulling it low) and then one of them Releases it.

Before delving into this topic, we expect you have already studied Cables, Termina-
tion, BUS FREE Phase, ARBITRATION Phase, and RESELECTION Phase.

In SCSI, a glitch may occur during RESELECTION Phase. After the Initiator has
responded to the Reselection by the Target, and the Target has Released the SEL
Signal, both devices are Asserting the BSY Signal. The next step is for the Initiator to
Release the BSY Signal. This is where the glitch may occur. (The glitch may also
occur when the SEL Signal is asserted during ARBITRATION Phase, and all losing
devices Arbitrating for the bus release their BSY Signals. We will examine the
RESELECTION Phase Wire-OR Glitch here because it is more predictable.)

Note that when two devices are asserting a signal, both devices are taking current
from the Terminators. Usually, one device has a better transistor than the other, and
so takes more current. This discussion assumes that the Initiator is taking all of the
current. If the Target were taking all of the current, there would be no glitch. The
worst-case magnitude of the glitch occurs when the Initiator is taking all of the current
from both Terminators.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

w 210

Diagram 60 shows the bus topology and the cause of a Wire-OR glitch during the
RESELECTION Phase:

(1) The Initiator releases its BSY output, represented by a transistor pull-down.
When that occurs, the Initiator BSY output is no longer providing a ground
to the BSY Signal. This means the Initiator is no longer taking current from
the both Termination networks. The problem is that at the instant when BSY
is released by the Initiator, the terminators are still supplying current to the
Cable. This causes an instantaneous voltage to appear on the BSY Signal,
and to propagate away from the Initiator in both directions. The magnitude
of the voltage for each glitch (in each direction) is given by the equation (re-
member Ohm’s Law?):

|4 lirch =Irerm xZ

8 (4]

Where V., is the voltage magnitude of the glitch; |, is the current
supplied %y the terminator to the Initiator BSY output; and Z is the charac-
teristic impedance of the cable.

(2) The instantaneous voltage transition propagates to the left Terminator and
quickly dissipates. Since the Initiator is no longer sinking the terminator bias
voltage, the terminator is now allowed to pull the BSY Signal up to the bias
voltage. The other voltage transition travels to the right down the cable. As it
passes the third device, that device sees the transition in the level of the
BSY Signal, At this point the third device might begin to assume that this is
the start of a BUS FREE Phase.

(3) The glitch arrives at the Target output and dissipates on the ground there.
This causes a high to low transition to propagate back to the left from the
Target.

(4) When the high to low transition arrives at the third device, it sees the end of
the glitch, and knows that it isn’t really a BUS FREE Phase (we hope). The
glitch actually ends when it arrives back at the left Terminator. Worst case,
the glitch can last for the time it takes to propagate twice the length of the
cable.

This explains why the Bus Free Delay is as long as it is. This is the time it takes to
propagate down a worst-case slow Cable for a Differential Interface (yes, it can
happen on Differential too!) and back, plus some extra margin.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

suolealiand TANMA 166} © ybuAdoD

| awn|oA ‘elpadojafous |SOS ayy

JILVINIHOS HO1IMY) YO-3IHIM 09 WvHDVIQ

Termination Network Any other device on the Initiator side Termination Network
7 of the Target may see the glitch; and 7
t the closer to the Initiator, the longer t
the glitch (up to 2 full cable delays!) BSY- Signal
Initiator BSY ™. Device BSY Target BSY
¥ B > e ¥
V, vV,
The magnitude of the glitch is equal to
L the current supplied by the right Terminator _
- Bus is biased by Vi times the Cable Impedance:
when the bus is released
Vg = /,(ng,,,) x Z0
N
Vft)lhen thﬁ Initiator re/ea%es its BSY output,
the glitches propagate both _
d,-,eéi,-o,,s onpmé’ cgab/e 3 The glitch from the Initiator BSY output
> continues down the cable until it
disappears at the Target, which is
— L still pulling down the BSY Signal
The glitch that travels to the left
from the Initiator BSY output
disappears quickly at the near e o
Terminator, which stops
supplying current to the cable.
€ The cancelling reflection from the Target BSY
4 output now propagates back down the cable.

e

The glitch officially ends when the cancelling
&—— reflection from the Target arrives at the left
Terminator.

The duration of the pulse as seen by the third device

is the time it takes for the glitch to propagate from the third
device to the Target and back to the device. The duration

can be up to two full length cable propagation delays (worst case).

116

w 212

This page is nearly blank!

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

213 X

X3T9.2 Committee.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

X 214

X3T9.2 Committee. The X3T9.2 Committee is the "Keeper of the Flame" for
SCSI. That's the group that created the original SCS/-1 standard (X3.131-1986) and
then created the update to the standard which is called SCS/-2. X3T9.2 is a "task
group" of the X3T9 Committee, which oversees "I/O Interfaces", such as SCSI, IPI
(Intelligent Peripheral Interface), and Fiber Channel. X3T9 is a "sub-committee" of X3,
which oversees ANSI (American National Standards Institute) standards activity in the
USA related to "Information Processing Systems".

If you want to get more information regarding membership in X3T9.2, call the X3
Secretariat at (202)737-8888.

At the time of this writing, the Chairperson of X3T79.2 was John Lohmeyer of NCR
Corp. You can reach John at:

John Lohmeyer

NCR Corp.

3718 North Rock Road
Wichita, KS 67226

John also operates a computer "Bulletin Board System" (BBS) dedicated to SCSI. The
phone number is (316) 636-8700. Set your modem to 2400 baud, 8 data bits, 1 stop
bit, no parity. The SCSI BBS is the place to find the latest information on what’s
happening today in SCSI-3.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

215 Examples

Examples of SCSI Behavior.
Example #1 (Disk Read).
Example #2 (Disk Write).
Example #3 (Tape Read).

Example #4 (Tape Write).

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 216

This page is nearly blank!
We use the space to improve Readability.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

217 Examples

Examples of SCSI Behavior. This section gives several examples of SCSI
I/O Processes. Each example has the following elements:

® A description of the "scenario".
o A Block Diagram showing the model for the system described in the scenario.
e Text describing the steps in the scenario in more detail.

® Any other diagrams and tables needed to describe details of the scenario.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 218

Example #1: The first example shows a simple disk read operation. Diagram 61
shows the system for this example. The Host System has a system bus, such as the
VME Bus or the EISA Bus, which connects to a Host Adapter. The Host Adapter
performs the Initiator function for the Host System. The Host Adapter communicates
with the Host System via Direct Memory Access (DMA) with the Host Memory on the
system bus. This DMA Channel is used to transfer all Commands, Data, and Status
between the Host System and the SCS/ Bus. In other words, this is a classic Host I/O
Channel.

The Target is a simple (!) "Embedded" SCSI Disk Drive with a single Logical Unit
that corresponds to the physical hard disk mechanism. The sectors on the hard disk
are mapped to SCSI Logical Blocks. The Target contains a "Data Buffer" consisting
of a local memory block that holds sectors during a transfer:

e When writing, the Data Buffer holds the data from the Host System prior to
writing the data to the hard disk.

e When reading, the Data Buffer holds the data read from the hard disk prior to
transfer to the Host System.

The hard disk has a mechanical head positioning system which is located by the
Target on the disk track which contains the desired Logical Blocks. Moving the head
takes a relatively long period of time to complete. In other words, this is a classic
Intelligent Disk Drive. As we will see in the other volumes of this Encyclopedia, an
Intelligent Disk Drive is called a Direct Access Device in SCSI.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

219 Examples
FTTT LTI
I : | o1
5% 188
IO : |Ifg:
‘ | i T
| 1 _
gl £
o c
O C
~ J
W ox
ar A
T
I | | o
851 1gdig
Ll ' 0&a &)
L____IE
[_..
| SCSI Chip |

SCSI Bus

M et s o

| SCSI Chip | @

__________ 2

o

T

<L

3=

O . 2
| DMA Channel | 1

Host
System

Host System Bus _

Host
Memory

DIAGRAM 61: DISK EXAMPLE SYSTEM ARCHITECTURE

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 220

The file read request must filter down through the different layers of the Host System,
as shown in Diagram 62. At each level, the request is translated into a standard form
understood by the next lowest level. Note that the diagram shows the flow of informa-
tion between levels; it does not show the time order of that flow.

e An application program on the Host System makes a request to the Operat-
ing System to read a file; for example, a spreadsheet program loads a user
spreadsheet. The application specifies to the Operating System which file,
how much of the file to read, and where to put the data.

e The Operating System takes the file read request from the application. Using
its internal file system data structures, it determines which file system blocks
make up the requested file. From this information, the Operating System
creates a read disk block request and issues it to the SCSI Driver program.

e The SCSI Driver program takes the block read request from the Operating
System. It converts the file system block read request into a SCSI Command
Descriptor Block (CDB). It then incorporates the CDB into a Host Adapter
Control Block (see Host Adapter). This Control Block is set up in Host
Memory. The Host System then tells the Host Adapter to begin executing the
Command specified in the Control Block.

e When the SCSI /O Process is completed, Status has been returned and
stored in the Host Adapter Control Block. The data has been transferred
directly to the application data area. If the Command caused "CHECK
CONDITION" Status, the Host Adapter may also have fetched Sense Data
from the Target disk drive.

e The SCSI Driver translates the returned Status and Sense Data (if any) to
driver completion codes understood by the Operating System and passes
them back up.

e The Operating System passes OS completion codes back to the application.
The operation is complete, and the application has its data.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

221 Examples

Application ————— e —— — — .

P
rogram | Application Data

F-3

3
File Read Request: OS Result: Direct Data
- File Name - OS Specific Codes Transfer to
- Transfer Size Application
- Application Data Pointer Data Area

L i

Operating System

A
Read Disk Block Request: Driver Result:

- Starting Block - OS Specific Codes
- Number of Blocks

- Memory Data Pointer

W

SCsl SR :
river
: Host Control Block :
_____ —_—————
SCSI Read Request: SCSI Result:
- Starting Logical Block -Status
- Number of Blocks -SENSE Data
- Memory Data Pointer
v
Host Adapter
I 3 A
READ Command GOOD Status DATA IN

L 4

SCSI Bus

DIAGRAM 62: DISK READ EXAMPLE SOFTWARE LEVELS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 222

The Disk Read Command example begins with the request for a file by the application
program, as described above. We’'ll pick it up after the Host Adapter receives the Host
Adapter Control Block from the SCSI Driver:

e The Host Adapter performs the Initiator function for the Host System. The
Initiator enters the ARBITRATION Phase (after validating the BUS FREE
Phase) to get control of the bus. It asserts the BSY Signal and its own SCS/
Bus ID.

e The Initiator wins Arbitration by having the highest SCSI Bus ID asserted. The
Initiator then takes control of the bus by asserting the SEL Signal. It then
asserts the ATN Signal (to create the Attention Condition) and the SCSI
Bus ID of the Target. It releases the BSY Signal to begin the SELECTION
Phase.

e The Target recognizes the Selection by the Initiator and asserts the BSY
Signal in response. The Initiator releases the SEL Signal in response. This
completes the SELECTION Phase.

e The Target now takes charge of Bus Phase selection. Since the Initiator
asserted the ATN Signal, the Target goes to MESSAGE OUT Phase (see
Message System). The Initiator sends the IDENTIFY Message to establish
the Nexus for the I/O Process. The IDENTIFY Message indicates which
Logical Unit is going to receive a Command from the Initiator.

e The Target then changes to COMMAND Phase to fetch the CDB from the
Initiator. The Initiator sends the CDB via DMA from Host Memory in re-
sponse. The Target examines the first byte to determine how many bytes of
CDB to transfer.

e After receiving and decoding the CDB, the Target determines that a seek
must be performed on the Logical Unit to the location of the Logical Blocks.
In other words, it has to seek to the track with the requested sectors. Since
this takes some time, the Target decides to Disconnect from the SCSI Bus.
To do this, it changes to the MESSAGE IN Phase and sends the DISCON-
NECT Message. The Initiator receives the Message and clears the Active
Pointers. The Target then releases the BSY Signal to go to BUS FREE
Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

223

Examples

Host System

l

Initiator

Target

Logical Unit

An Application Program gen-
erates a Read File Request to
the Operating System.

The Operating System trans-
lates the Read File Request
to a Read Blocks Request,
and issues it to the SCSI Driv-
er.

The SCSI Driver translates the
Read Blocks Request to a
Host Adapter Control Block,
which includes a SCSI Com-
mand Descriptor Block (CDB),
and issues the Control Block
to the Host Adapter.

The Initiator Arbitrates for
control of the SCSI Bus.

The Initiator wins control of
the SCSI Bus and Asserts the
SEL Signal. The Initiator As-
serts the ATN Signal and be-
gins the SELECTION Phase.

The Target Asserts BSY to
respond to the Selection by
the Initiator.

The Initiator Releases the SEL
Signal to complete the SELEC-
TION Phase.

The Target changes to the
MESSAGE OUT Phase in re-
sponse to the Attention Con-
dition.

The Initiator sends the IDENTI-
FY Message to establish the
Nexus and Negates the ATN
Signal. The Initiator copies the
Saved Pointers to the Active
Pointers.

The Target changes to COM-
MAND Phase to receive the
CDB from the Initiator.

The CDB is DMA transferred
from Host Memory.

The Initiator sends the CDB to
the Target.

The Target changes to MES-
SAGE IN Phase and sends the
DISCONNECT Message.

The Logical Unit begins a
Seek to the requested
Blocks.

The Initiator receives the DIS-
CONNECT Message and sus-
pends the 170 Process.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

Disk READ COMMAND EXAMPLE (1 OF 2)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 224

The read request continues after the disk seek has completed:

e The seek completes on the Logical Unit, and the first sector of the read
request begins transfer into the Target Data Buffer.

e Sometime before the end of the transfer of the first sector into the Target
Data Buffer, the Target enters the ARBITRATION Phase (after validating the
BUS FREE Phase) to get control of the bus. It asserts the BSY Signal and its
own SCSI Bus ID.

e The Target wins Arbitration by having the highest SCSI Bus ID asserted. The
Target then takes control of the bus by asserting the SEL Signal. It then
asserts the 1/O Signal (to choose the RESELECTION Phase) and the SCSI
Bus ID of the Initiator. It releases the BSY Signal to begin the RESELEC-
TION Phase.

¢ The Initiator recognizes the Reselection by the Target and asserts the BSY
Signal in response. The Target asserts the BSY Signal and releases the SEL
Signal in response. When the Initiator sees the SEL Signal go False, it
releases the BSY Signal. This completes the RESELECTION Phase.

e The Target again takes charge of Bus Phase selection. The first Phase after
Reselection is always the MESSAGE IN Phase (see Message System). The
Target sends the IDENTIFY Message to re-establish the Nexus with the
Initiator for the I/O Process. The IDENTIFY Message indicates which Logical
Unit is going to continue a Command from the Initiator.

® The Target then changes to DATA IN Phase to begin sending the requested
data to the Initiator. The Initiator passes the data via DMA to the location in
Host Memory requested by the Host System. The Target continues until all
data is transferred.

e After completing the data transfer, the Target changes to STATUS Phase to
return completion Status to the Initiator. The Initiator passes the Status via
DMA to the Host System.

¢ The last task of the Target for this I/O Process is to change to MESSAGE IN
Phase and transfer the COMMAND COMPLETE Message to complete the
I/O Process. The Initiator receives the Message and gives the Host System
some indication that I/O Process has been completed. This indication is
usually a system interrupt, although it may also be indicated by setting a bit
in a status register on the Host Adapter.

e The SCSI Driver takes the SCSI Status, converts it into an Operating System
completion code (SCSI and OS codes will seldom coincide), and returns
control to the Operating System. The Operating System returns completion to
the application program, which can then start using the requested file.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

225

Examples

Host System

Initiator

I

Target

Logical Unit

The Host System is waiting
for completion and may be
doing other processing.

The Initiator is waiting for the
Target to Reconnect and may
be handling other SCSI I/0
Processes.

The Target is waiting for the
Logical Unit to be ready and
may be handling other 1/0
Processes.

The Logical Unit Seek Com-
pletes. The Logical Unit starts
transferring data into the
Target Data Buffer.

The Target Arbitrates for con-
trol of the SCSI Bus.

The Target wins control of the
SCSI Bus and Asserts the SEL
Signal. The Target Asserts the
1/0 Signal and begins the RE-
SELECTION Phase.

The Initiator Asserts BSY to
respond to the RESELECTION
Phase. It Releases BSY when
the Target Releases SEL.

The Target Asserts BSY and
Releases SEL to end the RE-
SELECTION Phase. The Target
switches to MESSAGE IN Phase
to send the IDENTIFY Message
to re-establish the Nexus.

The Initiator receives the
IDENTIFY Message and copies
the appropriate Saved Point-
ers to the Active Pointers.

The Logical Unit completes
the Data transfer to the Tar-
get Data Buffer.

The Target changes to DATA
IN Phase to send the Read
Data to the Initiator.

The Data is DMA transferred
into Host Memory.

The Initiator receives the DA-
TA IN from the Target and
passes it on to the Host.

The Target changes to STATUS
Phase and sends Completion
Status to the Initiator.

The Status is DMA transferred
into Host Memory.

The Initiator receives the Sta-
tus and passes it on to the
Host.

The Target changes to MES-
SAGE IN Phase and sends the
COMMAND COMPLETE Message.

The Initiator receives the
COMMAND COMPLETE Message
and closes the Nexus. The
Initiator indicates to the Host
System that the Command is
completed.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Host System SCSI Driver
receives the indication and
returns the Data and Status
back to the Operating Sys-
tem.

The Operating System passes
the Data and Status back to
the Application.

Disk READ COMMAND EXAMPLE (2 OF 2)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 226

Table 31 shows the SCSI Bus Phases used during the Disk Read example. The table
shows the Bus Control Signals that define each phase, but does not include any
REQ/ACK handshakes for clarity. The Data Bus contents are shown when appropri-
ate; "--" indicates several bytes are transferred in the Phase.

The Initiator SCS/ Address is assumed to be 7, and the Target SCSI Address is
assumed to be 0.
TABLE 31: DiISk READ EXAMPLE Bus PHASES

[BSY SEL | ATN| MSG| C/D | 170 | RST Data ([Phase
0 0 0 0 0 0 0 00 BUS FREE
1 0 0 0 0 0 0 80 ARBITRATION Phase
1 1 1 0 0 0 0 81 Initiator takes Bus after winning
0 1 1 0 0 0 0 81 SELECTION Phase
1 1 1 0 0 0 0 81 Target responds to Selection
110 1 0 0 of| o XX Initiator releases SEL to end SELECTION Phase
1 0 0 1 1 0 0 co MESSAGE OUT Phase - IDENTIFY Message (Logical Unit 0, Disconnect OK)
1 0 0 0 1 0 0 -- COMMAND Phase - Target receives CDB
1 0 0 1 1 1 0 04 MESSAGE IN Phase - DISCONNECT Message
0 0 0 0 0 0 0 00 BUS FREE Phase
1 0 0 0 0 0 0 01 ARBITRATION Phase
1 1 o] o 0 1 0 81 Target takes Bus after winning
0 1 0 0 0 1 0 81 RESELECTION Phase
1 1 0 0 0 1 0 81 Initiator responds to Reselection
1 0 0 0 0 1 0 XX Target asserts BSY and releases SEL to end RESELECTION Phase
1 0 0 1 1 1 0 80 MESSAGE IN Phase - IDENTIFY Message (Logical Unit 0)
1 0 0 0 0 1 0 - DATA IN Phase - Initiator receives read data
1 0 0 0 1 1 0 00 STATUS Phase - GOOD Status
1 0 0 1 1 1 0 00 MESSAGE IN Phase - COMMAND COMPLETE Message
0 0 0 0 0 0 0 00 BUS FREE Phase

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

227 Examples

This page is nearly blank!
We use the space to improve Readability.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 228

Example #2: The second example shows a simple disk write operation. The
system for Example #2 is the same as that for Example #1, as shown in Diagram 61.

Like the read request, the file write request must filter down through the different
layers of the Host System, as shown in Diagram 63. At each level, the request is
translated into a standard form understood by the next lowest level. Note that the
diagram shows the flow of information between levels; it does not show the time order
of that flow.

® An application program on the Host System makes a request to the Operat-
ing System to write a file; for example, a word processing program saves a
user document. The application specifies to the Operating System which file,
how much of the file to write, and where to get the data.

e The Operating System takes the file write request from the application. Using
its internal file system data structures, it determines which file system blocks
are free for writing in a file. From this information, the Operating System
creates a write disk block request and issues it to the SCSI Driver program.

¢ The SCSI Driver program takes the block write request from the Operating
System. It converts the file system block write request into a SCSI Command
Descriptor Block (CDB). It then incorporates the CDB into a Host Adapter
Control Block (see Host Adapter). This Control Block is set up in Host
Memory. The Host System then tells the Host Adapter to begin executing the
Command specified in the Control Block.

e When the SCSI //O Process is completed, Status has been returned and
stored in the Host Adapter Control Block. The data has been transferred
directly to the application data area. If the Command caused "CHECK
CONDITION" Status, the Host Adapter may also have fetched Sense Data
from the Target disk drive.

e The SCSI Driver translates the returned Status and Sense Data (if any) to
driver completion codes understood by the Operating System and passes
them back up.

e The Operating System passes OS completion codes back to the application.
The operation is complete, and the application has saved its data.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

229

Application
P
rogram | Application Data

b
OS Result:

File Write Request: Direct Data
- File Name - OS Specific Codes Transfer from
- Transfer Size Application
- Application Data Pointer Data Area
W
Operating System
A
Write Disk Block Request: Driver Result:
- Starting Block - OS Specific Codes
- Number of Blocks
- Memory Data Pointer
o
SCs| AR -1
Driver | |
| Host Control Block |
——————————
SCSI Write Request: SCSI Result:
- Starting Logical Block - Status
- Number of Blocks - SENSE Data
- Memory Data Pointer
v Y
Host Adapter
ry
WRITE Command GOOD Status DATA OUT

Y

SCSI Bus

DIAGRAM 63: DIk WRITE EXAMPLE SOFTWARE LAYERS

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 230

The Disk Write Command example begins with the request for saving a file by the
application program, as described above. We’'ll pick it up after the Host Adapter
receives the Host Adapter Control Block from the SCSI Driver:

e The Host Adapter performs the Initiator function for the Host System. The
Initiator enters the ARBITRATION Phase (after validating the BUS FREE
Phase) to get control of the bus. It asserts the BSY Signal and its own SCSI/
Bus ID.

¢ The Initiator wins Arbitration by having the highest SCSI Bus ID asserted. The
Initiator then takes control of the bus by asserting the SEL Signal. It then
asserts the ATN Signal (to create the Attention Condition) and the SCSI
Bus ID of the Target. It releases the BSY Signal to begin the SELECTION
Phase.

e The Target recognizes the Selection by the Initiator and asserts the BSY
Signal in response. The Initiator releases the SEL Signal in response. This
completes the SELECTION Phase.

e The Target now takes charge of Bus Phase selection. Since the Initiator
asserted the ATN Signal, the Target goes to MESSAGE OUT Phase (see
Message System). The Initiator sends the IDENTIFY Message to establish
the Nexus for the [/O Process. The IDENTIFY Message indicates which
Logical Unit is going to receive a Command from the Initiator.

e The Target then changes to COMMAND Phase to fetch the CDB from the
Initiator. The Initiator sends the CDB via DMA from Host Memory in re-
sponse. The Target examines the first byte to determine how many bytes of
CDB to transfer.

e After receiving and decoding the CDB, the Target determines that a seek
must be performed on the Logical Unit to the location of the Logical Blocks.
In other words, it has to seek to the track with the requested sectors. While
the seek is proceeding, and since this is a Write Command, the Target then
changes to DATA OUT Phase to begin sending the requested data to the
Initiator. The Initiator passes the data via DMA to the location in Host Memo-
ry requested by the Host System. The Target continues until all data is
transferred. By overlapping the seek with the data transfer the Target saves
command processing time.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

231

Examples

| Host System

Initiator

Target

Logical Unit

An Application Program gen-
erates a Write File Request
to the Operating System.

The Operating System trans-
lates the Write File Request
to a Write Blocks Request,
and issues it to the SCSI Driv-
er.

The SCSI Driver translates the
Write Blocks Request to a
Host Adapter Control Block,
which includes a SCSI Com-
mand Descriptor Block (CDB),
and issues the Control Block
to the Host Adapter.

The Initiator Arbitrates for
control of the SCSI Bus.

The Initiator wins control of
the SCSI Bus and Asserts the
SEL Signal. The Initiator As-
serts the ATN Signal and be-
gins the SELECTION Phase.

The Target Asserts BSY to
respond to the Selection by
the Initiator.

The Initiator Releases the SEL
Signal to complete the SELEC-
TION Phase.

The Target changes to the
MESSAGE OUT Phase in re-
sponse to the Attention Con-
dition.

The Initiator sends the IDENTI-
FY Message to establish the
Nexus and Negates the ATN
Signal. The Initiator copies the
Saved Pointers to the Active
Pointers.

The Target changes to COM-
MAND Phase to receive the
CDB from the Initiator.

The CDB is DMA transferred
from Host Memory.

The Initiator sends the CDB to
the Target.

The Target changes to DATA
OUT Phase and receives the
write data from the Initiator.

The Logical Unit begins a
Seek to the requested
Blocks.

The write data is DMA trans-
ferred from Host Memory.

The Initiator sends the write
data to the Target.

Disk WRITE COMMAND EXAMPLE (1 OF 2)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 232

The write request continues after the DATA OUT Phase:

® The seek completes on the Logical Unit, and the first sector of the write
request begins transfer from the Target Data Buffer to the disk.

e Since there is still data to write to the disk, and this takes some time, the
Target decides to Disconnect from the SCSI Bus. To do this, it changes to
the MESSAGE IN Phase and sends the DISCONNECT Message. The
Initiator receives the Message and clears the Active Pointers. The Target
then releases the BSY Signal to go to BUS FREE Phase.

e Sometime before the end of the transfer of the last sector from the Target
Data Buffer to the disk, the Target enters the ARBITRATION Phase (after
validating the BUS FREE Phase) to get control of the bus. It asserts the BSY
Signal and its own SCSI Bus ID.

e The Target wins Arbitration by having the highest SCSI Bus ID asserted. The
Target then takes control of the bus by asserting the SEL Signal. It then
asserts the 1/O Signal (to choose the RESELECTION Phase) and the SCSI
Bus ID of the Initiator. It releases the BSY Signal to begin the RESELEC-
TION Phase.

¢ The Initiator recognizes the Reselection by the Target and asserts the BSY
Signal in response. The Target asserts the BSY Signal and releases the SEL
Signal in response. When the Initiator sees the SEL Signal go False, it
releases the BSY Signal. This completes the RESELECTION Phase.

e The Target again takes charge of Bus Phase selection. The first Phase after
Reselection is always the MESSAGE IN Phase (see Message System). The
Target sends the IDENTIFY Message to re-establish the Nexus with the
Initiator for the 1/O Process. The IDENTIFY Message indicates which Logical
Unit is going to continue a Command from the Initiator.

e After completing the Message transfer, the Target changes to STATUS
Phase to return completion Status to the Initiator. The Initiator passes the
Status via DMA to the Host System.

e The last task of the Target for this I/O Process is to change to MESSAGE IN
Phase and transfer the COMMAND COMPLETE Message to complete the
I/O Process. The Initiator receives the Message and gives the Host System
some indication that the 1/O Process has been completed. This indication is
usually a system interrupt, although it may also be indicated by setting a bit
in a status register on the Host Adapter.

e The SCSI Driver takes the SCSI Status, converts it into an Operating System
completion code (SCSI and OS codes will seldom coincide), and returns
control to the Operating System. The Operating System returns completion to
the application program, which then knows the data has been saved.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

233

Examples

[Host System

Initiator

|

Target

Logical Unit

The Target changes to MES-
SAGE IN Phase and sends the
DISCONNECT Message.

The Initiator receives the DIS-
CONNECT Message and sus-
pends the I/0 Process.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Logical Unit Seek Com-
pletes. The Logical Unit starts
transferring data from the
Target Data Buffer to the
hard disk.

The Host System is waiting
for completion and may be
doing other processing.

The Initiator is waiting for the
Target to Reconnect and may
be handling other SCSI I/0
Processes.

The Target is waiting for the
Logical Unit to finish and may
be handling other I/0 Process-
es.

The Logical Unit finishes writ-
ing data on the hard disk.

The Target Arbitrates for con-
trol of the SCSI Bus.

The Target wins control of the
SCSI Bus and Asserts the SEL
Signal. The Target Asserts the
1/0 Signal and begins the RE-
SELECTION Phase.

The Initiator Asserts BSY to

respond to the RESELECTION
Phase. It Releases BSY when
the Target Releases SEL.

The Target Asserts BSY and
Releases SEL to end the RE-
SELECTION Phase. The Target
switches to MESSAGE IN Phase
to send the IDENTIFY Message
to re-establish the Nexus.

The Initiator receives the
IDENTIFY Message and copies
the Saved Pointers to the
Active Pointers.

The Logical Unit completes
the Data transfer to the Tar-
get Data Buffer.

The Target changes to STATUS
Phase and sends Completion
Status to the Initiator.

The Status is DMA transferred
into Host Memory.

The Initiator receives the Sta-
tus and passes it on to the
Host.

The Target changes to MES-
SAGE IN Phase and sends the
COMMAND COMPLETE Message.

The Initiator receives the
COMMAND COMPLETE Message
and closes the Nexus. The
Initiator indicates to the Host
System that the Command is
completed.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Host System SCSI Driver
receives the indication and
returns the Status back to
the Operating System.

The Operating System passes
the Data and Status back to
the Application.

Disk WRITE COMMAND EXAMPLE (2 OF 2)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 234

Table 32 shows the SCSI Bus Phases used during the Disk Write example. The table
shows the Bus Control Signals that define each phase, but does not include any
REQ/ACK handshakes for clarity. The Data Bus contents are shown when appropri-
ate; "--" indicates several bytes are transferred in the Phase.

The Initiator SCSI Address is assumed to be 5, and the Target SCSI Address is
assumed to be 2.
TABLE 32: DiISk WRITE EXAMPLE Bus PHASES

BSY| SEL | ATN|MSG) CD | I#0 [RST| Data |Phase
0 0 0 0 0 0 0 00 BUS FREE
1 ofofojo 0 0 20 ARBITRATION Phase
1 1 1 0 0 0 0 24 Initiator takes Bus after winning
0 1 1 0 0 0 0 24 SELECTION Phase
1 1 1 0 0 0 0 24 Target responds to Selection
1 0 1 0 0 0 0 XX Initiator releases SEL to end SELECTION Phase
1] 0] O 1 1 0 0 ()] MESSAGE OUT Phase - IDENTIFY Message (Logical Unit 0, Disconnect OK)
1 0 0 0 1 0 0 -- COMMAND Phase - Target receives CDB
1 0 0 0 0 0 0 -- DATA OUT Phase - Initiator sends write data
1 0 0 1 1 1 0 04 MESSAGE IN Phase - DISCONNECT Message
0 0 0 0 0 0 0 00 BUS FREE Phase
1 0 0 0 0 0 0 04 ARBITRATION Phase
1 1 0 0 0 1 0 24 Target takes Bus after winning
0l 0] o0 0 1 0 24 RESELECTION Phase
1 1 0 0 0 1 0 24 Initiator responds to Reselection
1 0 0 0 0 1 0 XX Target asserts BSY and releases SEL to end RESELECTION Phase
1 0 0 1 1 1 0 80 MESSAGE IN Phase - IDENTIFY Message (Logical Unit 0)
1 0 0 0 1 1 0 00 STATUS Phase - GOOD Status
1 0 0 1 1 1 0 00 MESSAGE IN Phase - COMMAND COMPLETE Message
0 0 0 0 0 0 0 00 BUS FREE Phase

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

235 Examples

This page is nearly blank!
We use the space to improve Readability.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 236

Example #3: For a change of pace, the third example shows a tape restore
operation. Diagram 64 shows the system for this example. Like the previous exam-
ples, the Host System has a system bus, such as the VME Bus or the EISA Bus,
which connects to a Host Adapter. The Host Adapter performs the Initiator function
for the Host System. Unlike the previous examples, this Host Adapter communicates
with the Host System strictly via I/O Port access on the system bus. These |/O Ports
are used to transfer all Commands, Data, and Status between the Host System and
the SCSI Bus. In other words, this is a classic simple Peripheral 1/O Adapter.

The Target is a simple (!) "Embedded" SCSI Tape Drive with a single Logical Unit
that corresponds to the physical tape transport and head mechanism. The physical
blocks recorded on the tape are mapped to SCSI Logical Blocks. The Target
contains a large "Data Buffer" consisting of a local memory block that holds blocks
during a transfer:

e When writing, the Data Buffer holds the data from the Host System prior to
writing the data to the tape.

e When reading, the Data Buffer holds the data read from the tape prior to
transfer to the Host System.

The tape transport is a relatively slow mechanism that advances the tape past the
heads. The heads record data on the tape and read it back. The physical tape blocks
correspond directly to the desired Logical Blocks. Moving the tape at all takes a
relatively long period of time to complete. As a result, the physical transfer rate is very
slow relative to the capability of the SCSI Bus. Therefore, it is desirable to use the
Data Buffer to make use of the SCSI Bus more efficient:

e When writing, the Data Buffer is filled by data from the Host System. The
Target then Disconnects from the Bus to perform the actual write to tape.
The Target Reconnects to the Bus when the Data Buffer is (nearly) empty.

e When reading, the Target Disconnects from the Bus after receiving the read
request. Offline, the Data Buffer is filled by data from the tape. When the
buffer is (nearly) full, the Target Reconnects to the Bus to send the data.

In other words, this is a classic Intelligent Tape Drive. As we will see in the other
volumes of this Encyclopedia, an Intelligent Tape Drive is called a Sequential Access
Device in SCSI.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

Examples

The SCSI Encyclopedia, Volume |

237

Jo81e]
Sttt _
||||||| _ |
N
| odeL | 98T | IE |
. _C_
....... d o A |
| peoH _ A_ozco_u oam.rv mTT T :r)ﬁ
| ! IV B L
" Sdey “ | odep |
oo RIZRER] P - -
2 21depy 1SOH
= - _ AloUIsN
3 ol _m" 1SOH
“h_ “ O_
_C _ | B "
_ﬂ | _O_
A | =S A
L L 2
£
g
W
(Vs
z WIS)SAg
= 1SOH

DIAGRAM 64: TAPE EXAMPLE SYSTEM ARCHITECTURE

Copyright © 1991 ENDL Publications

Examples 238

The tape restore request must filter down through the different layers of the Host
System, as shown in Diagram 65. In this example, the application program bypasses
the Operating System because the Operating System does not support tape. At each
level, the request is translated into a standard form understood by the next lowest
level. Note that the diagram shows the flow of information between levels; it does not
show the time order of that flow.

¢ An application program on the Host System makes a request directly to the
SCSI Driver (bypassing the Operating System) to read the tape; for example,
a backup utility is going to restore a system file from the tape. The first step
is to read the file from the tape. The application specifies to the SCSI Driver
how many blocks to read from the tape, and where to put the data.

e The SCSI Driver program takes the tape read request from the application. It
converts the tape block read request into a SCSI Command Descriptor
Block (CDB). It then issues a command to the Host Adapter to Select the
Target and send the CDB. More commands are issued to the Host Adapter
until the operation is complete. Note that the SCSI Driver manages the [/O
Process: it responds to Phases and maintains the Pointers.

¢ When the SCSI l/O Process is completed, Status has been returned to the
SCSI Driver. The data has been transferred directly to the application data
area. If the Command caused "CHECK CONDITION" Status, the SCSI Driver
may also have fetched Sense Data from the Target disk drive. The SCSI
Driver translates the returned Status and Sense Data (if any) to driver
completion codes understood by the application and passes them back up.

e The operation is complete, and the application has its data.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

239 Examples

Application ————————— — — .
Program |

Tape Read Request: Driver Result: Direct Data
- Transfer Size - OS Specific Codes Transfer to
- Application Data Pointer Application

Data Area

Operating System

- Does not take part

Y

SCSI
Driver
A A\
SCSI READ Command SCSI Result: I/O Port Read
-Status Data Transfer
-SENSE Data
Host Adapter
F-y F:
READ Command GOOD Status DATA IN

4

SCSI Bus

DIAGRAM 65: TAPE READ EXAMPLE SOFTWARE LEVELS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 240

The Tape Read Command example begins with the request for a file by the applica-
tion program, as described above. We'll pick it up after the SCSI Driver receives
request from the application:

e The Host Adapter under control of the SCSI Driver performs the Initiator
function for the Host System. The Initiator enters the ARBITRATION Phase
(after validating the BUS FREE Phase) to get control of the bus. It asserts
the BSY Signal and its own SCS/ Bus ID.

e The Initiator wins Arbitration by having the highest SCSI Bus ID asserted. The
Initiator then takes control of the bus by asserting the SEL Signal. It then
asserts the ATN Signal (to create the Attention Condition) and the SCSI
Bus ID of the Target. It releases the BSY Signal to begin the SELECTION
Phase.

e The Target recognizes the Selection by the Initiator and asserts the BSY
Signal in response. The Initiator releases the SEL Signal in response. This
completes the SELECTION Phase.

e The Target now takes charge of Bus Phase selection. Since the Initiator
asserted the ATN Signal, the Target goes to MESSAGE OUT Phase (see
Message System). The Initiator sends the IDENTIFY Message to establish
the Nexus for the I/O Process. The IDENTIFY Message indicates which
Logical Unit is going to receive a Command from the Initiator.

e The Target then changes to COMMAND Phase to fetch the CDB from the
Initiator. The Initiator sends the CDB via an |I/O Port transfer with the SCSI
Driver in response. The Target examines the first byte to determine how
many bytes of CDB to transfer.

e After receiving and decoding the CDB, the Target begins reading data from
the tape. Since this takes some time, the Target decides to Disconnect from
the SCSI Bus. To do this, it changes to the MESSAGE IN Phase and sends
the DISCONNECT Message. The Initiator receives the Message and clears
the Active Pointers. The Target then releases the BSY Signal to go to BUS
FREE Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

241

Examples

Host System

Initiator

Target

Logical Unit

An Application Program gen-
erates a Read File Request to
the SCSI Driver.

The Logical Unit (i.e., the
tape) is currently positioned
where the Application wants
it.

The SCSI Driver translates the
Read Blocks Request to a
SCSI Command Descriptor
Block (CDB), and issues a Se-
lection command to the Host
Adapter.

The Initiator Arbitrates for
control of the SCSI Bus.

The Initiator wins control of
the SCSI Bus and Asserts the
SEL Signal. The Initiator As-
serts the ATN Signal and be-
gins the SELECTION Phase.

The Target Asserts BSY to
respond to the Selection by
the Initiator.

The Initiator Releases the SEL
Signal to complete the SELEC-
TION Phase.

The Target changes to the
MESSAGE OUT Phase in re-
sponse to the Attention Con-
dition.

The Initiator sends the IDENTI-
FY Message to establish the
Nexus and Negates the ATN
Signal. The Initiator copies the
Saved Pointers to the Active
Pointers.

The Target changes to COM-
MAND Phase to receive the
CDB from the Initiator.

The CDB is transferred to the
Host Adapter by the SCSI
Driver.

The Initiator sends the CDB to
the Target.

The Target changes to MES-
SAGE IN Phase and sends the
DISCONNECT Message.

The Logical Unit begins trans-
ferring data from the tape to
the Target Data Buffer.

The Initiator receives the DIS-
CONNECT Message and sus-
pends the I/0 Process.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

TAPE READ COMMAND EXAMPLE (1 OF 3)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 242

The read request continues after the Target Data Buffer is (nearly) full of data from the
tape:

e Sometime before the Target Data Buffer is actually full, the Target enters the
ARBITRATION Phase (after validating the BUS FREE Phase) to get control
of the bus. It asserts the BSY Signal and its own SCSI Bus ID.

e The Target wins Arbitration by having the highest SCSI Bus ID asserted. The
Target then takes control of the bus by asserting the SEL Signal. It then
asserts the 1/O Signal (to choose the RESELECTION Phase) and the SCSI
Bus ID of the Initiator. It releases the BSY Signal to begin the RESELEC-
TION Phase.

e The Initiator recognizes the Reselection by the Target and asserts the BSY
Signal in response. The Target asserts the BSY Signal and releases the SEL
Signal in response. When the Initiator sees the SEL Signal go False, it
releases the BSY Signal. This completes the RESELECTION Phase.

e The Target again takes charge of Bus Phase selection. The first Phase after
Reselection is always the MESSAGE IN Phase (see Message System). The
Target sends the IDENTIFY Message to re-establish the Nexus with the
Initiator for the 1/O Process. The IDENTIFY Message indicates which Logical
Unit is going to continue a Command from the Initiator.

e The Target then changes to DATA IN Phase to begin sending the requested
data to the Initiator. The Initiator passes the data via I/O Port access by the
SCSiI Driver, which then writes it to the location in Host Memory requested by
the Host System. The Target continues until all data is transferred.

¢ Only half of the data has been transferred to the Initiator, and data is still
coming off the tape. Since this will take a while longer, the Target decides to
Disconnect from the SCSI Bus again. This time is a little different than the
first time: the Target changes to the MESSAGE IN Phase and sends the
SAVE DATA POINTER Message. The Initiator receives the Message and
copies the Active Data Pointers to the Saved Data Pointer.

e The Target then sends the DISCONNECT Message. The Initiator receives the
Message and clears the Active Pointers. The Target then releases the BSY
Signal to go to BUS FREE Phase. The transfer of data from tape to Data
Buffer continues.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

243

Examples

Host System

] Initiator]

Target

Logical Unit

The Host System SCSI Driver
is waiting for the next opera-
tion and may be doing other
processing.

The Initiator is waiting for the
Target to Reconnect and may
be handling other SCSI I/0
Processes.

The Target is waiting for the
Logical Unit to be ready and
may be handling other 1/0
Processes.

The Logical Unit continues
transferring data from the
tape into the Target Data
Buffer.

The Target Arbitrates for con-
trol of the SCSI Bus.

The Target wins control of the
SCSI Bus and Asserts the SEL
Signal. The Target Asserts the
1/0 Signal and begins the RE-
SELECTION Phase.

The Initiator Asserts BSY to
respond to the RESELECTION
Phase. It Releases BSY when
the Target Releases SEL.

The Target Asserts BSY and
Releases SEL to end the RE-
SELECTION Phase. The Target
switches to MESSAGE IN Phase
to send the IDENTIFY Message
to re-establish the Nexus.

The Initiator receives the
IDENTIFY Message and copies
the appropriate Saved Point-
ers to the Active Pointers.

The Target changes to DATA
IN Phase to send the Read
Data to the Initiator.

The Data is 1/0 Port trans-
ferred from the Host Adapter
into Host Memory.

The Initiator receives the DA-
TA IN from the Target and
passes it on to the Host.

The Target changes to MES-
SAGE IN Phase and sends the
SAVE DATA POINTER Message.

The Initiator receives the
SAVE DATA POINTER Message
and copies the Active Data
Pointer to the Saved Data
Pointer.

The Target continues in MES-
SAGE IN Phase and sends the
DISCONNECT Message.

The Initiator receives the DIS-
CONNECT Message and sus-
pends the I/0 Process.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Logical Unit continues
transferring data into the
Target Data Buffer.

TAPE READ COMMAND EXAMPLE (2 OF 3)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 244

The read request again continues after the Target Data Buffer is (nearly) full of data
from the tape:

e Sometime before the Target Data Buffer is actually full or before the transfer
from tape is completed (whichever happens first), the Target enters the
ARBITRATION Phase (after validating the BUS FREE Phase) to get control
of the bus. It asserts the BSY Signal and its own SCSI Bus ID.

® The Target wins Arbitration by having the highest SCSI Bus ID asserted. The
Target then takes control of the bus by asserting the SEL Signal. It then
asserts the 1/O Signal (to choose the RESELECTION Phase) and the SCSI
Bus ID of the Initiator. It releases the BSY Signal to begin the RESELEC-
TION Phase.

¢ The Initiator recognizes the Reselection by the Target and asserts the BSY
Signal in response. The Target asserts the BSY Signal and releases the SEL
Signal in response. When the Initiator sees the SEL Signal go False, it
releases the BSY Signal. This completes the RESELECTION Phase.

e The Target again takes charge of Bus Phase selection. The first Phase after
Reselection is always the MESSAGE IN Phase (see Message System). The
Target sends the IDENTIFY Message to re-establish the Nexus with the
Initiator for the I/O Process. The IDENTIFY Message indicates which Logical
Unit is going to continue a Command from the Initiator.

e The Target then changes to DATA IN Phase to begin sending the requested
data to the Initiator. The Initiator passes the data via I/O Port access by the
SCSI Driver, which then writes it to the location in Host Memory requested by
the Host System. The Target continues until all data is transferred.

e After completing the data transfer, the Target changes to STATUS Phase to.
return completion Status to the Initiator. The Initiator passes the Status via
DMA to the Host System.

® The last task of the Target for this /O Process is to change to MESSAGE IN
Phase and transfer the COMMAND COMPLETE Message to complete the
I/O Process. The Initiator receives the Message and gives the Host System
some indication that I/O Process has been completed. This indication is
usually a system interrupt, although it may also be indicated by setting a bit
in a status register on the Host Adapter.

e The SCSI Driver takes the SCSI Status, converts it into a Driver or application
completion code (SCSI and application completion codes will seldom coin-
cide), and returns control to the application. The application program can then
start using the requested file.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

245

Examples

| Host System

Initiator

l

Target

Logical Unit

The Host System SCSI Driver
is waiting for the next opera-
tion and may be doing other
processing.

The Initiator is waiting for the
Target to Reconnect and may
be handling other SCSI I/0
Processes.

The Target is waiting for the
Logical Unit to be ready and
may be handling other 1/0
Processes.

The Logical Unit continues
transferring data into the
Target Data Buffer.

The Target Arbitrates for con-
trol of the SCSI Bus.

The Target wins control of the
SCSI Bus and Asserts the SEL
Signal. The Target Asserts the
1/0 Signal and begins the RE-
SELECTION Phase.

The Initiator Asserts BSY to
respond to the RESELECTION
Phase. It Releases BSY when
the Target Releases SEL.

The Target Asserts BSY and
Releases SEL to end the RE-
SELECTION Phase. The Target
switches to MESSAGE IN Phase
to send the IDENTIFY Message
to re-establish the Nexus.

The Initiator receives the
IDENTIFY Message and copies
the appropriate Saved Point-
ers to the Active Pointers.

The Target changes to DATA
IN Phase to send the Read
Data to the Initiator.

The Logical Unit completes
the Data transfer to the Tar-
get Data Buffer.

The Data is I/0 Port trans-
ferred from the Host Adapter
into Host Memory.

The Initiator receives the DA-
TA IN from the Target and
passes it on to the Host.

The Target changes to STATUS
Phase and sends Completion
Status.

The Status is received by the

SCSI Driver via 1/0 Port access.

The Initiator receives the Sta-
tus from the Target.

The Target changes to MES-
SAGE IN Phase and sends the
COMMAND COMPLETE Message.

The Initiator receives the
COMMAND COMPLETE Message
and closes the Nexus. The
Initiator indicates to the Host
System that the Command is
completed.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Host System SCSI Driver
receives the indication via 1/0
Port access and returns the
Status back to the Applica-
tion.

TAPE READ COMMAND EXAMPLE (3 OF 3)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 246

Table 33 shows the SCSI Bus Phases used during the Disk Read example. The table
shows the Bus Control Signals that define each phase, but does not include any
REQ/ACK handshakes for clarity. The Data Bus contents are shown when appropri-
ate; "--" indicates several bytes are transferred in the Phase.

The Initiator SCS/ Address is assumed to be 1, and the Target SCSI Address is
assumed to be 0.
TABLE 33: TAPE READ EXAMPLE BUS PHASES

BSY SELIATN]MSG o | o RSTl Data |Phase

0 0 0 0 00 BUS FREE
02 ARBITRATION Phase
03 Initiator takes Bus after winning

03 SELECTION Phase

03 Target responds to Selection

XX Initiator releases SEL to end SELECTION Phase

(€] MESSAGE OUT Phase - IDENTIFY Message (Logical Unit 0, Disconnect OK)
- COMMAND Phase - Target receives CDB

04 MESSAGE IN Phase - DISCONNECT Message

00 BUS FREE Phase

01 ARBITRATION Phase

03 Target takes Bus after winning

03 RESELECTION Phase

03 Initiator responds to Reselection

XX Target asserts BSY and releases SEL to end RESELECTION Phase
80 MESSAGE IN Phase - IDENTIFY Message (Logical Unit 0)

- DATA IN Phase - Initiator receives read data

02 MESSAGE IN Phase - SAVE DATA POINTER Message

04 MESSAGE IN Phase - DISCONNECT Message

00 BUS FREE Phase

01 ARBITRATION Phase

03 Target takes Bus after winning

03 RESELECTION Phase

03 Initiator responds to Reselection

XX Target asserts BSY and releases SEL to end RESELECTION Phase
80 MESSAGE IN Phase - IDENTIFY Message (Logical Unit 0)

- DATA IN Phase - Initiator receives read data

00 STATUS Phase - GOOD Status

00 MESSAGE IN Phase - COMMAND COMPLETE Message

00 BUS FREE Phase

o|—=|—|°|—~]© © © o|l|o|o|=|—=|o|]—=|o © o ojJ]o}jO|=]|]—=|—=|]O © © o]J]o|o
O|l=|=|=]|=]= = =« ~w|o|o|=w|=]|=]|=]= = =« a|olo|=w|oO|lo|o © © o|lco| o

O|l=|=]|=|=]|—= = O w]|lajo|=]=a|=]=]= w0 a]|=]|lOo|=a]|=|=]—= = O «]~«]O
o|o|o|o|o]© - = «|lOo|o|o|o|o|o|o = =« ~|]Oojo|o|o|Oo|© = —«~ ~«~|O
Oo|o}jo|o|o|o © © o|lo|o|o|o|lo|lo|lo o © o|lo|o}lo|lo|o|—= = = —~«|O
o|—-|o|o|—~|© © o o|l|o|o|—=|—~|o|]—-|o o o o|l|ocloj—=lo|]|—=-|]o © o o|o©
Oo|lo]o|o|j]o|o © ©O o|l|o|o|o|lo|o|lo|lo o o oj]o|o|]o|]o|ojo © © ofo©

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

247 Examples

This page is nearly blank!
We use the space to improve Readability.

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 248

Example #4: The fourth example shows a tape backup operation (WRITE to
tape), but this time the SCSI Bus is real flaky, so we have to go through some Error
Recovery. Diagram 64 from the third example shows the system for this example.

Let's recall from the third example that the Target is a "slow" tape drive that contains a
large "Data Buffer" consisting of a local memory block that holds blocks during a
transfer. When writing, the Data Buffer is filled by data from the Host System. The
Target then Disconnects from the Bus to perform the actual write to tape. The Target
Reconnects to the Bus when the Data Buffer is (nearly) empty.

As with the tape restore, the tape backup request must filter down through the
different layers of the Host System, as shown in Diagram 66. In this example, the
application program bypasses the Operating System because the Operating System
does not support tape. At each level, the request is translated into a standard form
understood by the next lowest level. Note that the diagram shows the flow of informa-
tion between levels; it does not show the time order of that flow.

e An application program on the Host System makes a request directly to the
SCSI Driver (bypassing the Operating System) to write the tape; for example,
a backup utility is going to save a system file to the tape. Prior to this step
the file, or the first part of the file, is read into Host System memory. The next
step is to write the file to the tape. The application specifies to the SCSI
Driver how many blocks to write to the tape, and where to get the data.

e The SCSI Driver program takes the tape write request from the application. It
converts the tape block write request into a SCSI Command Descriptor
Block (CDB). It then issues a command to the Host Adapter to Select the
Target and send the CDB. More commands are issued to the Host Adapter
until the operation is complete. Note that the SCSI Driver manages the //O
Process: it responds to Phases and maintains the Pointers.

e When the SCSI l/O Process is completed, Status has been returned to the
SCSI Driver. The data has been transferred directly from the application data
area to the tape. If the Command caused "CHECK CONDITION" Status, the
SCSI Driver may also have fetched Sense Data from the Target disk drive.
The SCSI Driver translates the returned Status and Sense Data (if any) to
driver completion codes understood by the application and passes them back

up.

e The operation is complete, and the application has saved the data.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

249 Examples

Application ————————— .
Program | o |
| Application Data |
-~
Tape Write Request: Driver Result: Direct Data
- Transfer Size - OS Specific Codes Transfer from
- Application Data Pointer Application
Data Area
Operating System
- Does not take part
L i JF
SCSI
Driver
SCSI WRITE Command SCSI Result: I/O Port Write
-Status Data Transfer
-SENSE Data
4 L
Host Adapter
7y
WRITE Command GOOD Status DATA OUT
¥ Y

SCSI Bus

DIAGRAM 66: TAPE WRITE EXAMPLE SOFTWARE LEVELS

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 250

The Tape Write Command example begins with the request to write a file by the
application program, as described above. We’'ll pick it up after the SCSI Driver
receives request from the application:

e The Host Adapter under control of the SCSI Driver performs the Initiator
function for the Host System. The Initiator enters the ARBITRATION Phase
(after validating the BUS FREE Phase) to get control of the bus. It asserts
the BSY Signal and its own SCS/ Bus ID.

e The Initiator wins Arbitration by having the highest SCSI Bus ID asserted. The
Initiator then takes control of the bus by asserting the SEL Signal. It then
asserts the ATN Signal (to create the Attention Condition) and the SCSI
Bus ID of the Target. It releases the BSY Signal to begin the SELECTI/ION
Phase.

e The Target recognizes the Selection by the Initiator and asserts the BSY
Signal in response. The Initiator releases the SEL Signal in response. This
completes the SELECTION Phase.

e The Target now takes charge of Bus Phase selection. Since the Initiator
asserted the ATN Signal, the Target goes to MESSAGE OUT Phase (see
Message System). The Initiator sends the IDENTIFY Message to establish
the Nexus for the /O Process. The IDENTIFY Message indicates which
Logical Unit is going to receive a Command from the Initiator.

e The Target then changes to COMMAND Phase to fetch the CDB from the
Initiator. The Initiator sends the CDB via an |/O Port transfer with the SCSI
Driver in response. The Target examines the first byte to determine how
many bytes of CDB to transfer.

® The Target then changes to DATA OUT Phase to begin receiving the write
data from the Initiator. The Initiator sends the data via I/O Port access by the
SCSI Driver, which it got from the location in Host Memory requested by the
Host System. The Target continues until its Data Buffer is full.

e When the Target gets enough data from the Initiator, it begins writing data to
the tape. Since this takes some time, the Target decides to Disconnect from
the SCSI Bus. To do this, it changes to the MESSAGE IN Phase and sends
the SAVE DATA POINTER Message, because it hasn’t transferred all the
data yet. The Initiator receives the Message, copies the Active Data Pointers
to the Saved Data Pointer, and sends the DISCONNECT Message. The
Initiator receives the Message and clears the Active Pointers. The Target
then releases the BSY Signal to go to BUS FREE Phase.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

251

Examples

Host System

Initiator

Target

Logical Unit

An Application Program gen-
erates a Write File Request
to the SCSI Driver.

The Logical Unit (i.e., the
tape) is currently positioned
where the Application wants
it.

The SCSI Driver translates the
Write Blocks Request to a
SCSI Command Descriptor
Block (CDB), and issues a Se-
lection command to the Host
Adapter.

The Initiator Arbitrates for
control of the SCSI Bus.

The Initiator wins control of
the SCSI Bus and Asserts the
SEL Signal. The Initiator As-
serts the ATN Signal and be-
gins the SELECTION Phase.

The Target Asserts BSY to
respond to the Selection by
the Initiator.

The Initiator Releases the SEL
Signal to complete the SELEC-
TION Phase.

The Target changes to the
MESSAGE OUT Phase in re-
sponse to the Attention Con-
dition.

The Initiator sends the IDENTI-
FY Message to establish the
Nexus and Negates the ATN
Signal. The Initiator copies the
Saved Pointers to the Active
Pointers.

The Target changes to COM-
MAND Phase to receive the
CDB from the Initiator.

The CDB is transferred to the
Host Adapter by the SCSI
Driver.

The Initiator sends the CDB to
the Target.

The Target changes to DATA
OUT Phase to get the Write
Data from the Initiator.

The Data is I/0 Port trans-
ferred from Host Memory to
the Host Adapter.

The Initiator sends the DATA
OUT from the Host to the
Target.

The Target changes to MES-

SAGE IN Phase and sends the
SAVE DATA POINTER and the
DISCONNECT Message.

The Logical Unit begins trans-
ferring data to the tape from
the Target Data Buffer.

The Initiator receives the
SAVE DATA POINTER and DIS-
CONNECT Message and sus-
pends the 1/0 Process.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

TAPE WRITE COMMAND EXAMPLE (1 OF 3)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 252

The write request continues after the Target Data Buffer is (nearly) empty from writing
data to the tape:

e Sometime before the Target Data Buffer is actually empty, the Target enters
the ARBITRATION Phase (after validating the BUS FREE Phase) to get
control of the bus. It asserts the BSY Signal and its own SCSI Bus ID.

e The Target wins Arbitration by having the highest SCSI Bus ID asserted. The
Target then takes control of the bus by asserting the SEL Signal. It then
asserts the 1/O Signal (to choose the RESELECTION Phase) and the SCSI
Bus ID of the Initiator. It releases the BSY Signal to begin the RESELEC-
TION Phase.

e The Initiator recognizes the Reselection by the Target and asserts the BSY
Signal in response. The Target asserts the BSY Signal and releases the SEL
Signal in response. When the Initiator sees the SEL Signal go False, it
releases the BSY Signal. This completes the RESELECTION Phase.

e The Target again takes charge of Bus Phase selection. The first Phase after
Reselection is always the MESSAGE IN Phase (see Message System). The
Target sends the IDENTIFY Message to re-establish the Nexus with the
Initiator for the I/O Process. The IDENTIFY Message indicates which Logical
Unit is going to continue a Command from the Initiator. The Initiator copies
the Saved Pointers for that Nexus to the Active Pointers.

e The Target then changes to DATA OUT Phase to continue receiving the data
from the Initiator. The Initiator sends the data via I/O Port access by the SCSI
Driver, which it got from the location in Host Memory requested by the Host
System. Normally, the Target continues until its Data Buffer is full. Unfortu-
nately, a Parity Error occurs during the transfer.

e To recover from the Parity Error, the Target changes to MESSAGE IN Phase.
The Target then sends the RESTORE POINTERS Message to restart the
DATA OUT Phase that had the error. The Initiator receives the Message and
copies the Saved Pointers for that Nexus, which define the state of things at
the start of this Connection, to the Active Pointers.

e The Target then changes to DATA OUT Phase to retry the data transfer from
the Initiator. The Target continues until its Data Buffer is full, or until all data
requested by the Initiator has been transferred. In this case, the latter occurs.

e The Target changes to MESSAGE IN Phase and sends the SAVE DATA
POINTER Message, and then sends the DISCONNECT Message. The
Initiator receives the Message and clears the Active Pointers. The Target
then releases the BSY Signal to go to BUS FREE Phase. The transfer of
data to tape from the Data Buffer continues.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

253

Examples

Host System

Initiator

| Target

Logical Unit]

The Host System SCSI Driver
is waiting for the next opera-
tion and may be doing other
processing.

The Initiator is waiting for the
Target to Reconnect and may
be handling other SCSI 170
Processes.

The Target is waiting for the
Logical Unit to be ready and
may be handling other 170
Processes.

The Logical Unit continues
transferring data from the
Target Data Buffer to the
tape.

The Target Arbitrates for con-
trol of the SCSI Bus.

The Target wins control of the
SCSI Bus and Asserts the SEL
Signal. The Target Asserts the
1/0 Signal and begins the RE-
SELECTION Phase.

The Initiator Asserts BSY to

respond to the RESELECTION
Phase. It Releases BSY when
the Target Releases SEL.

The Target Asserts BSY and
Releases SEL to end the RE-
SELECTION Phase. The Target
switches to MESSAGE IN Phase
to send the IDENTIFY Message
to re-establish the Nexus.

The Initiator receives the
IDENTIFY Message and copies
the appropriate Saved Point-
ers to the Active Pointers.

The Target changes to DATA
OUT Phase to get more Write
Data from the Initiator.

The Data is I/0 Port trans-
ferred from Host Memory.

The Initiator sends the DATA
OUT to the Target.

The Target detects a Parity
Error during the DATA OUT
Phase.

The Target changes to MES-
SAGE IN Phase and sends the
RESTORE POINTERS Message.

The Initiator receives the RE-
STORE POINTERS Message and
copies the Saved Pointers to

the Active Pointers.

The Target changes to DATA
OUT Phase to try again.

The Data is /0 Port trans-
ferred again.

The Initiator sends the DATA
OUT to the Target.

The Target changes to MES-
SAGE IN Phase and sends the
SAVE DATA POINTER and DIS-
CONNECT Messages.

The Initiator receives the Mes-
sages, copies the Active Point-
ers to the Saved Pointers, and
suspends the 1/0 Process.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Logical Unit continues
transferring data to tape
from the Target Data Buffer.

TAPE WRITE COMMAND EXAMPLE (2 OF 3)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 254

The write request again continues after the transfer from the Target Data Buffer to the
tape is complete:

e When the tape write is complete, the Target enters the ARBITRATION Phase
(after validating the BUS FREE Phase) to get control of the bus. It asserts
the BSY Signal and its own SCSI Bus ID.

e The Target wins Arbitration by having the highest SCSI Bus ID asserted. The
Target then takes control of the bus by asserting the SEL Signal. It then
asserts the I/O Signal (to choose the RESELECTION Phase) and the SCSI
Bus ID of the Initiator. It releases the BSY Signal to begin the RESELEC-
TION Phase.

¢ The Initiator recognizes the Reselection by the Target and asserts the BSY
Signal in response. The Target asserts the BSY Signal and releases the SEL
Signal in response. When the Initiator sees the SEL Signal go False, it
releases the BSY Signal. This completes the RESELECTION Phase.

® The Target again takes charge of Bus Phase selection. The first Phase after
Reselection is always the MESSAGE IN Phase (see Message System). The
Target sends the IDENTIFY Message to re-establish the Nexus with the
Initiator for the 1/O Process. The IDENTIFY Message indicates which Logical
Unit is going to continue a Command from the Initiator.

e The Target changes to STATUS Phase to return completion Status to the
Initiator. Unfortunately, the Initiator detected a Parity Error during the Status
transfer. Before Negating the ACK Signal of the Status transfer, the Initiator
asserts the ATN Signal to create the Attention Condition.

e The Target sees the ATN Signal asserted and changes to MESSAGE OUT
Phase. The Initiator sends the INITIATOR DETECTED ERROR Message to
the Target to indicate that it saw an error during the STATUS Phase.

e The Target changes to MESSAGE IN Phase to send the RESTORE POINT-
ERS Message. This facilitates the retry requested by the Initiator. The Initiator
copies its Saved Pointers for this Nexus to its Active Pointers.

e The Target changes to STATUS Phase again to return completion Status to
the Initiator. This time it works. The Initiator passes the Status via I/O port
transfer to the Host System.

....continued after the diagram...

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

255

Examples

Host System

Initiator

Target

l

Logical Unit

The Host System SCSI Driver
is waiting for the next opera-
tion and may be doing other
processing.

The Initiator is waiting for the
Target to Reconnect and may
be handling other SCSI I/0
Processes.

The Target is waiting for the
Logical Unit to be ready and
may be handling other I/0
Processes.

The Logical Unit completes
the transfer of data from the
Target Data Buffer to the
tape.

The Target Arbitrates for and
wins control of the SCSI Bus.
The Target Selects the Initia-
tor and re-establishes the
Nexus with the IDENTIFY Mes-
sage.

The Initiator receives the
IDENTIFY Message and copies
the appropriate Saved Point-
ers to the Active Pointers.

The Target changes to STATUS
Phase and sends Completion
Status.

The Logical Unit completes
the Data transfer to the Tar-
get Data Buffer.

The Data is I/0 Port
transferred from the Host
Adapter into Host Memory.

The Initiator receives the Sta-
tus from the Target, but de-
tects a Parity Error, so it as-
serts ATN before negating
ACK.

The Target sees the ATN sig-
nal and changes to MESSAGE
OUT Phase.

The Status is received by the
SCSI Driver via 1/0 Port access.

The Initiator sends the INITIA-
TOR DETECTED ERROR Message
to the Target.

The Target receives the Mes-
sage, switches to MESSAGE
OUT Phase, and sends the
RESTORE POINTERS Message.

The Initiator receives the Mes-
sage and copies the Saved
Pointers to the Active Point-
ers.

The Target changes to STATUS
Phase attempts to send Com-
pletion Status again.

The Initiator receives the Sta-
tus from the Target, success-
fully this time.

The Target changes to MES-
SAGE IN Phase and sends the

COMMAND COMPLETE Message.

The Initiator receives the
COMMAND COMPLETE Message
and closes the Nexus. The
Initiator indicates to the Host
System that the Command is
completed.

The Target Releases BSY and
the Bus goes to BUS FREE
Phase.

The Host System SCSI Driver
receives the indication via 1/0
Port access and returns the
Status back to the Applica-
tion.

TAPE WRITE COMMAND EXAMPLE (3 OF 3)

Copyright © 1991 ENDL Publications

The SCSI Encyclopedia, Volume |

Examples 256

e The last task of the Target for this I/O Process is to change to MESSAGE IN
Phase and transfer the COMMAND COMPLETE Message to complete the
I/O Process. The Initiator receives the Message and gives the Host System
some indication that I/O Process has been completed. This indication is
usually a system interrupt, although it may also be indicated by setting a bit
in a status register on the Host Adapter.

e The SCSI Driver takes the SCSI Status, converts it into a Driver or application
completion code (SCSI and application completion codes will seldom coin-
cide), and returns control to the application.

Table 34 shows the SCSI Bus Phases used during the Tape Backup example. The
table shows the Bus Control Signals that define each phase, but does not include
any REQ/ACK handshakes for clarity. The Data Bus contents are shown when
appropriate; "--" indicates several bytes are transferred in the Phase.

The Initiator SCSI Address is assumed to be 4, and the Target SCSI Address is
assumed to be 2.

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

257 Examples

TABLE 34: TAPE WRITE EXAMPLE BUS PHASES

BSY| SEL | ATN | MSG| ¢/D | 170 | RST Data |[Phase
0 0 0 0 0 0 0 00 BUS FREE
1 0 0 0 0 0 0 04 ARBITRATION Phase
1 1 1 0 0 0 0 06 Initiator takes Bus after winning
0 1 1 0 0 0 0 06 SELECTION Phase
11 1fofofo]o 06 |Target responds to Selection
1 0 1 0 0 0 0 XX Initiator releases SEL to end SELECTION Phase
11 0] 07[1 11 0]0 (0 |MESSAGE OUT Phase - IDENTIFY Message (Logical Unit 0, Disconnect OK)
1 0 0 0 1 0 0 -- COMMAND Phase - Target receives CDB
1 of o 0 0 0 0 -- DATA OUT Phase - Initiator sends write data
1 0 0 1 1 1 0 02 MESSAGE IN Phase - SAVE DATA POINTERS Message
1 0 0 1 1 1 0 04 MESSAGE IN Phase - DISCONNECT Message
0 0 0 0 0 0 0 00 BUS FREE Phase
1 0 0 0 0 0 0 02 ARBITRATION Phase
1 1 0 0 0 1 0 06 Target takes Bus after winning
0 1 0 0 0 1 0 06 RESELECTION Phase
1 1 0 0 0 1 0 06 Initiator responds to Reselection
1 of o 0 0 1 0 XX Target asserts BSY and releases SEL to end RESELECTION Phase
1 0 0 1 1 1 0 80 MESSAGE IN Phase - IDENTIFY Message (Logical Unit 0)
1 0 0 0 0 0 0 -- DATA OUT Phase - Parity Error Occurs!
1 0 0 1 1 1 0 03 MESSAGE IN Phase - RESTORE POINTERS Message to retry the Phase
tfoflof o] ofo 0 - DATA OUT Phase - Initiator sends the rest of the write data
1 0 0 1 1 1 0 02 MESSAGE IN Phase - SAVE DATA POINTER Message
1] o] o 1 1 1 0 04 MESSAGE IN Phase - DISCONNECT Message
o] of o 0 0 0 0 00 BUS FREE Phase
1 0 0 0 0 0 0 02 ARBITRATION Phase
1 1 0 0 0 1 0 06 Target takes Bus after winning
0 1 0 0 0 1 0 06 RESELECTION Phase
1 1 0 0 0 1 0 06 Initiator responds to Reselection
1 0 0 0 0 1 0 XX Target asserts BSY and releases SEL to end RESELECTION Phase
1 0 0 1 1 1 0 80 MESSAGE IN Phase - IDENTIFY Message (Logical Unit 0)
1 0 1 0 1 1 0 00 STATUS Phase - Parity Error
1} 0 1 1 1 0 0 05 MESSAGE OUT Phase - INITIATOR DETECTED ERROR Message
1 0 0 1 1 1 0 03 MESSAGE IN Phase - RESTORE POINTERS Message to retry the Phase
1 0 0 0 1 1 0 00 STATUS Phase - GOOD Status
1] 0] 0 1 1 1 0 00 MESSAGE IN Phase - COMMAND COMPLETE Message
0 0 0 0 0 0 0 00 BUS FREE Phase

Copyright © 1991 ENDL Publications The SCSI Encyclopedia, Volume |

Examples 258

This page is nearly blank!

The SCSI Encyclopedia, Volume | Copyright © 1991 ENDL Publications

A Hitchhiker’s Guide
to the
Small Computer Systems Interface

Hitchhikers know where they want 10 go, they just can't control how they get there.
Nesther can those trying to leam SCSI.

SCSI is a complex interface and you have to leam little bits and pieces about a whoie
ot of things before you leam the subject you onginally started trying to grasp.

The 600 pages in the SCSI-2 standard were not written as an aid for engineers and
programmers, but o define the requirements for conformance. Leaming is difficult
when references 10 a particular subject may be scattered anywhere throughout all
Enter the SCSI Encydiopedia

Inferesiad in a subject?

Just look it up.

Not only will you find a description of the subject itself, but all the other information you
need n order 1o leam the subject is referenced.

The SCSIEncyciopedia is no heavy, hard-to-follow tome: ithe information you need s
conveyed in a ight and informal style.

Both the beginner and the experienced designer will find the SCSI Encyciopedia o
be an invaluable tool to understanding all the new SCSI-2 features.

Volume | (A-M): Bus Phases and Protocols
Volume | (N-Z): Bus Phases and Protocols
VYolume Ik Disk Operations

Volume lik: Tape Operations

Volume IV: Optical Disk Operations

DIP2dojofouy [$HS

(Z-N)] 2uinjoA

1SL1LI8L0EL N
SMO0g.LdIdHL

(Mmwn <

