

Here are some reviews of Simpson Js bestselling titles:

"Simpson writes with a light, engaging style that will
appeal to readers put off by the ponderous and some

times impenetrable prose of some technical manuals."

-Business Software

On Understanding dBASE II: "Simpson's step-by-step

tutorial method is easy to follow and the layout of the

book helps enormously. If you have need for dBASE II,
you have need for Understanding dBASE II."

- United Press International

" even experienced dBASE programmers can benefit

from reading Understanding dBASE II. Its concise
explanations and clear examples can provide insights
that often escape long-time users and can help a pro
grammer with basic principles he may have forgotten or

never adequately understood."

-Digital Review

Advanced Techniques in dBASE III "is the best choice
for experienced dBASE III programmers."

-Data Based Advisor

.'
f

ndi� U

Cover art by Kurt Fink

Book design and illustrations by Rick van Genderen

Clipper is a trademark of Nantucket.

dBASE, dBASE II, dBASE III, and Framework are registered trademarks and dBASE III PLUS, dBRUN,

and RunTime + are trademarks of Ashton-Tate.

IBM PC, IBM XT, PC-DOS, and PC Network are trademarks of International Business Machines.

Lotus, Symphony, and 1-2-3 are trademarks of Lotus Development Corporation.

Microsoft Word, MS-DOS, and Multiplan are trademarks of Microsoft Corporation.

Novell Advanced NetWare/86 is a registered trademaIk of Novell, Inc.

Paradox is a trademark of Ansa Corporation.

pfs is a registered trademark and pfs:file is a trademarlc of Software Publishing Corporation.

R:base 5000 is a trademark of Microrim, Inc.

SuperCalc is a trademark of Sorcim, Inc.

Vi siC ale is a trademark of VisiCorp.

WordStar and MailMerge are trademarks of MicroPro International.

WordTech is a trademark of WordTech Systems, Inc.

SYBEX is a registered trademark of SYBEX Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX assumes no

responsibility for its use, nor for any infringements of patents or other rights of third parties which would

result.

Copyright©1986 SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA 94501. World rights reserved. No

part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including

but not limited to photocopy, photograph, magnetic or other record, without the prior agreement and written

permission of the JAlblisher.

Library of Congress Card Number: 86-60566

ISBN 0-89588-349-X

Manufactured in the United States of America

40 39 38 37 36 35 34 33 32 31

To Susan and the boys

ACKNOWLEDGMENTS

Many thanks to everyone at SYBEX who helped nurse this
book from the idea stage to your hands: Carole Alden , Acquisi

tions Editor, Karl Ray, Managing Editor, Barbara Graves , Editor,

David Clark , Word Processing , Brenda Walker, T ypesetting, Jon

Strickland , Proofreading.

I would like to thank Jannie Dresser, Indexing , and Nick

Wolfinger, Technical Support.

Also , I want to thank Bill and Cynthia Gladstone , my long-time

literary agents and new family.
Special thanks to Susan for being patient while I disappeared for

long hours to pound the keyboard.

x

CONTENTS

Introduction

Who This Book Is For xx

The Structure of This Book XXI

How to Buy the Sample Systems in This Book XXI

Installation and Configuration xxu

New Features of dBASE III PLUS xxu

C H A P T E R O N E

Understanding Databases

What Is Database Management?

Reviewing Database Terminology

C H A P T E R T W O

Building a Database

Starting dBASE III PLUS

Navigating the, Menu Screen

Getting Help

4

5

10

11

13

xi

15

18

19

25

29

31

32

36

52

62

68

71

Creating a Database

Opening a Database

Entering Data

Retrieving Database Records

Entering Commands at the Dot Prompt

Saving Your Work

Reviewing Database Basics

C H A P T E R T H R E E

Searching the Database

Building Search Commands with List

Searching from the Dot Prompt 43

EXACT Searching 50

Reviewing Search Techniques

C H A P T E R F 0 U R

Sorting the Database

Sorting with the Sort Option

Sorting with the Index Option

Sorts within Sorts

Indexing from the Dot Prompt

Searching for Records with an Index File

Reviewing Database Organization

56

70

72

xii

V EC H A P T E R F

Editing and Modifying

Databases

Editing with Edit 76

Editing with Browse 79

Dot-Prompt Commands for Editing 82

Global Editing 83

Deleting Records 85

Modifying the Database Structure 90

Reviewing Editing 93

xC H A P T E R s

Creating and Printing

Formatted Reports

Creating a Report 98

Modifying Report Formats 105

Creating Mailing Labels 105

Using LABEL and REPORT Commands 109

Reviewing Reports' and Labels 111

xiii

C H A P T E R 5 E V E N

Designing Custom
Screen Displays

Creating a Custom Screen Form

Moving Information on the Blackboard

Adding Field Labels

Drawing Boxes

Saving the Form

Templates

Using a Custom Form

Using Other Screen Painter Options

Creating Screens from the Dot Prompt

Reviewing Custom Data-Entry Screens

114

116

120

122

123

123

127

128

131

132

C H A P ·T E R E G H T

Managing Numbers and Dates

Creating a Sales Database 136

Summing Numbers 137

Averaging Numeric Amounts 140

Counting Records 140

Printing Totals and Subtotals in Reports 141

Creating Summary Reports 148

197

xiv

Using Dot-Prompt Commands 150

U sing Commands to Manage Dates 152

Reviewing Dates and Numbers 159

C H A P T E R N N E

Managing Multiple Data Files

An Accounts Receivable Database Design 164

Setting Up a View of Two Files 169

Printing a Report from Two Databases 173

Modifying a View 176

Closing a View 176

Entering Commands 178

An Inventory Database Design 181

Reviewing Multiple Databases 190

C H A P T E R T E N

File Maintenance and

Performance

T he Menu Tool Kit 194

Data Catalogs

Reusing Queries 201

Maximizing Search Performance 207

Reviewing File Maintenance and Performance 211

xv

C H A P T E R E L � V E N

Understanding Memory
Variables

Managing Data in RAM

Storing Data to Memory Variables with STORE

Math Functions

Reviewing Memory Variables

214

216

220

224

C H A P T E R T W E L V E

Creating Command Files

Creating Command Files with MODIFY

Running Command Files with DO

Setting Up Loops in Programs with DO WHILE and
ENDDO

Reviewing Command Files

228

229

230

238

C H A P T E R T H R T E E N

Making Decisions

Asking Questions 242

Making Decisions with IF and ENDIF 247

Making Decisions with DO CASE 252

xvi

254

257

273

275

Macro Substitution

Reviewing Decision Making

C H A P T E R F 0 U R T E E N

Designing and Developing

Programs

Step 1: Outline the General Idea 262

Step 2: Design the Database Structure 263

Step 3: Develop Pseudocode 263

Step 4: Writing the Program 264

Step 5: Run and Test the Program 266

Reviewing Program Design and Development 269

C H A P T E R F F T E E N

Debugging Techniques

Suspending a Program

Using DISPLAY Commands

Using HISTORY Commands

Debugging with SET Options 276

A nalyzing a Hard Copy of the Program 278

Reviewing Debugging Techniques 284

272

xvii

295

297

332

342

X T E E NC H A P T E R s

A Complete Mailing

System

Overview of the Main Menu Structure

Database Design

Overview of Screens, Reports, and Labels

Software Structure for the Mailing System

MAIL.PRG: T he Main Menu

MAILREPS.PRG: Printing Mail Reports

MAILEDIT.PRG: Editing Records

MAILDEL.PRG: Deleting Records

MAILDUPE.PRG: Checking for Duplicates

Reviewing the Custom System

299

301

305

312

318

323

328

C H A P T E R S E V E N T E E N

Some Useful Tips

Choosing Colors

Using Abbreviations 333

Multiple-Page Custom Screens 334

Memo Fields 338

Complex Sorts

Record Numbers in Reports

288

347

358

359

361

xviii

Custom Configurations 347

Network Considerations 350

RunTime + 353

W here to Go from Here 353

A P P E N D x A

Interfacing with Other
Software Systems

Interfacing with PFS:FILE

Interfacing with Spreadsheets

Interfacing with Word Processors

A P P E N D x B

The Applications Generator

Copying the Applications Generator Disk 368

Starting the Applications Generator 368

Coloring the Application 372

Automatic Applications Generator 372

Running the Application 376

Advanced Applications Generator 377

Modifying the Application Code 378

xix

A P P E N D I X C

dBA�E III PLUS Vocabulary

A P P E N D I X D

Converting dBASE II Files

to dBASE III PLUS Files'

The dCONVER T Program 402

Converting Databases 403

Converting Index Files 404

Converting Report Formats 404

Converting Memory Files 404

Converting Custom Screen Files 405

Converting Command Files 405

�x

INTRODUCTION

d BASE III PLUS is the third major version of the classic
dBASE database management system for microcomputers.
Like its predecessors, dBASE II and dBASE III, dBASE III

PLUS is a powerful and flexible system for storing, organizing,
analyzing, and retrieving information on a microcomputer.

dBASE III PLUS, however, has two major advantages over its
predecessors. The first is a much improved interface between you,
the user, and your information. Unlike earlier versions, the new
PLUS allows you to interact with your data through menu selections

rather than through programming-like commands. These menus
free you from memorizing commands and rules of syntax, and
thereby allow you to interact with your data with fewer trips to the
technical manuals.

dBASE III PLUS is also more powerful than any of its prede
cessors. Even the advanced dBASE III applications developer or
professional programmer will appreciate new commands, functions,
and debugging capabilities added to the programming language.
Although this book is designed for the novice rather than for the
professional, later chapters will touch upon some of these more
advanced features.

WHO THIS BOOK IS FOR

This book is written for the absolute beginner. However, the
reader who has some experience with either dBASE II or dBASE
III will gain from this book an understanding of the new PLUS
features.

xxi

To encourage rapid learning and complete mastery, we'll focus
on practical examples of what dBASE III PLUS can do for you.
When you see how easy it is to put its power to practical work,
you'll probably find that the more advanced capabilities are much
simpler than you expected.

Those of you with previous dBASE experience will probably
rush through the first few chapters. The newcomers to the dBASE

world should take the time to try the various examples presented
in each chapter.

THE STRUCTURE OF THIS BOOK

The first ten chapters of this book discuss the many tasks that
you can perform using dBASE III PLUS with no programming

whatsoever. Many readers will no doubt find this information
'

sufficient for their business needs.
Chapters 11 through 15 discuss programming with the dBASE

language, using simple examples that eventually culminate in a

complete, fully-automated mailing system in Chapter 16. Chapter
17 is a "catch-all" chapter of tips and tricks . This chapter also
includes brief discussions of networking and RunTime +.

Appendix A discusses techniques for interfacing dBASE III

PLUS data with other software systems . Appendix B discusses the
dBASE III PLUS Applications Generator. Appendix C is a dic
tionary of the dBASE III PLUS vocabulary, and Appendix D
shows how to transfer data from dBASE II to dBASE III PLUS.

HOW TO BUY THE SAMPLE SYSTEMS

IN THIS BOOK

This book contains a complete mailing list system which you
can type directly from the text. However, to save yourself some
time and effort, you can simply purchase a disk copy of all the
sample databases and command files discussed in this book.

Please keep in mind one point about purchasing this disk: it is

xxii

offered as an adjunct to your learning, not as custom business
software. I am only an author, not an international software devel
opment firm. Therefore, I cannot possibly supply telephone sup
port or custom modifications to meet a particular business need.

The disk is available in both Slf4-and 31h-inch disk sizes, in a

format compatible with all versions of DOS. See the last page of
the book for an order form.

INSTALL ATION AND CONFIGURATION

Before you can use dBASE III PLUS to follow the examples in

this book, you'll need to be sure that dBASE III PLUS is properly
installed on your computer. Installation instructions are listed in
the Getting Started manual that came with your dBASE III PLUS
package.

Note that installation procedures are different for computers with

two floppy-disk drives, hard disks, and networked computers. Also,

make sure to copy the CONFIG.SYS file from the dBASE III
PLUS System Disk #1 to your boot-up disk, as described in the
Getting Started manual.

Note: The Getting Started manual mistakenly states that the CON
FIG.SYS file should contain these commands:

FILES =

20 BUFFERS = 15

The correct contents of the CONFIG.SYS file are

FILES =20
BUFFERS = 15

If error messages appear on your screen as soon as you boot your
computer, you must correct these commands in your CONFIG

.SYS file.

NEW FEATURES OF dBASE III PLUS

For those of you who are already familiar with dBASE II or
dBASE III, we'll summarize some of the new features of the

xxiii

PLUS version. If you're a newcomer to dBASE, don't worry
about understanding the features that seem quite advanced. We'll
start at square one in Chapter 1 and discuss the basics. This book
assumes that every reader is a beginning user of these new PLUS
features:

-

Pull-Down Menus: Rather than displaying a dot prompt and wait
ing for you to figure out what to do next, the new dBASE III
PLUS displays a menu of options. Through the menus you can
use virtually all of the dBASE capabilities, including many that are
new to the PLUS version, without typing a single command. You
can also remove the menus from the screen temporarily if you
prefer the original dot-prompt method of entering commands.

-

Networking: The dBASE Administrator, which comes with your
dBASE III PLUS package, allows you to run dBASE III PLUS
on the IBM PC Network and the Novell Advanced NetWare/86.
The Getting Started manual includes complete instructions for install
ing the dBASE Administrator, and setting up a CONFIG.SY S file
for a Local Area Network (LAN) of computers. There are also
new commands in the dBASE III PLUS programming language
for use with networks.

-

Improved Custom Screens: A built-in Screen Painter makes it easy
to create custom screens in dBASE III PLUS by simply "draw
ing" them. Screens can contain multiple pages, so you no longer
need to write programs to handle multiple screens.

-

Applications Generator: An applications generator (or program generator)
is a program that writes programs. Program generators were once
expensive add-ons to programming languages. dBASE III PLUS
comes with a built-in Applications Generator that can help you to
customize dBASE applications more quickly.

xxiv

-

New Commands and Functions: For the advanced programmer,

dBASE III PLUS offers the ability to save and recall Queries, the
ability to combine FOR and WHILE commands in a single condi

tion, and the ability to use numeric functions for absolute value,

modulo, highest number, and lowest number. HISTORY, SUS

PEND, and RESUME commands are new debugging tools . With

dBASE III PLUS commands, you can call assembly-language sub
routines, and scan the keyboard for a keypress without halting

program execution. If you are primarily interested in these more

advanced programming topics, you will probably be better served

by a more advanced book that focuses on dBASE programming,

such as my own dBASE III PLUS Programmer's Reference Guide, also

published by SY BEX. It's available in most bookstores.

2 UNDERSTANDING dBASE III PLUS

hat is a database? While database management sounds so

W technical, it's as ordinary as driving a car. Think, for
instance, of a shoe box full of index cards with names

and addresses for a mailing list. The shoe box and its contents are
a database. Every time you juggle the index cards to get them in
alphabetical order, you are managing the database. The average
office file cabinet is a database too. It doesn't do anything; it just
holds information. If you open a drawer and look up the Johnson
account, you are searching a database, a way of managing it.

You typically keep your everyday databases in some order,
either by alphabet, by date, or perhaps by zip code. You do so to
structure your database, so that it is easier for you to work with. We
human database managers do not like messy file cabinets. Ditto for
computers. If you want to change the order of an alphabetical file,
you might want to be able to say a magic word and have them
instantly rearranged by zip code. Too bad you can't. Unfortu
nately, the task could take you hours of tedious labor. But with a
computer, and the right magic word, the rearrangement can take
place in seconds. But before we 'can discuss the magic words of
dBASE III PLUS, we need to discuss a computer's view of a
database.

In the computer world, a database is like a shoe-box file with a
very rigid structure. While the shoe box is filled with index cards, a
computer database is filled with records. And while each index card
in the shoe box may contain several written lines of information, a
record in a database contains folds of information. That is, a shoe
box contains cards, each of which has several lines of information

John Q. Smith

123 A St.

San Diego, CA 92122

(619)455-1212

-

Figure 1.1: Index Card Record

3 Understanding Databases

on it. A database contains records, each of which has several fields
within it. Take a look at the index card in Figure 1.1.

It has four lines of infonnation on it:

NAME
ADDRESS
CITY, STATE, ZIP
PHONE NUMBER

This single index card represents one record in a computer data
base. Each of the lines roughly represents one field of information
in the database.

There is a very important difference between human database
managers and computer database management systems. As people,
we can tell what each line on the index card represents. That is,
you know who this card refers to, his first and last name, as well
as his address, city, state, zip code, and phone number. You know
this simply by looking at the context of the infonnation. You can
tell that (619) 455-1212 is not a last name. Although this is obvi
ous to people, it is not at all clear to a computer. A computer
can't tell a phone number from a last name from a meat loaf.
Unfortunately, the computer doesn't understand anything about
infonnation based on its context. Thus; you have to structure a
database rigidly so the computer does not mistake a name for a
phone number, and you must be pretty explicit. Computers may
be fast, but they are definitely not smart.

How do you structure a database with dBASE III PLUS? First
you have to decide exacdy what you want to store. To do so, you
have to break down the infonnation on the index card into mean
ingful units of infonnation. In the above example, one card holds
a name, address, city, state, zip, and phone number. You will
want each record in your database to hold the same infonnation.
Recall that a given record in a database refers to one index card
in a shoe box, and that each field in a record refers to one piece
of infonnation on a given card. Hence, in this database, you
would want each record to -contain these fields:

NAME, ADDRESS, CITY, STAT E",ZIp, PHONE

Notice that there are six fields in this record. Let me warn you
here of the most common mistake that people make when structuring

4 UNDERSTANDING dBASE III PL US

databases. On the index card in Figure 1.1, you see four written
lines: one containing the name, one containing the address, one
containing the city, state and zip, and the other containing a
phone number. Looking at the card, you might be tempted to
structure the database with these four fields:

NAME,ADDRESS,CSZ, PHONE

The CSZ field would contain the city, state and zip. This is mis
leading in reference to computer databases because if you ever
wanted to sort your data file by zip code, you couldn't. Since the
zip would be combined with city and state, the computer couldn't
isolate it. Thus, you should assign each single meaningful piece of
information to a unique field. Therefore,

NAME, ADDRESS, CITY, STAT E, ZIp, PHONE

is a better structure because each piece of data is placed in a sepa
rate field. Learning to define meaningful items of information is an
important aspect of database management, as you will see
throughout this book. With the. proper database structure, you can
sort individuals by zip code, or search for individuals within a
given zip code range. Because the zip code field is isolated from
the city and state, it becomes a meaningful, individual piece of
data for the computer to sort.

So then, how does the computer know what a given piece of
information means? It doesn't. In the example above, you've told
the computer that in each record there are six fields. The first field
is NAME, the second is ADDRESS, the third field is CITY, etc.' If
you store "John Q. Smith" in the ZIP field, the computer is not
going to think about this and say to you, "That looks more like a
name to me!" It will just store John Q Smith as the zip code.
Therefore, it is up to you to put the correct data in the appropriate
field. You're the brains of the operation, not the computer.

WHAT IS DATABASE MANAGEMENT?

Once you've structured your database, you need to manage it
by giving the computer precise instructions. Managing a database

5 Understanding Databases

primarily involves the following tasks:

1. ADD new data to the database.

2. SORT the database into some meaningful order.

3. SEARCH the database for types of information.

4. PRINT data from our database onto formatted reports.

5. EDIT data on the database.

6. DELETE data from the database.

You need to do similar tasks with a shoe-box file. Occasionally
you may need to add some new index cards. You may also want
to sort the index cards into some meaningful order (say, alphabeti
cally or by zip code). You might want to search through them and
find all the people who live in Los Angeles, or all the people in
the 92123 zip code area, or perhaps just find out where a person
named Clark Kenney lives. If Clark Kenney moves, you may
want to edit the database and change his address. Then again, if
Clark Kenney stops paying his dues, you may want to delete him
from the mailing list altogether. This is database management.
With the shoe box, you do all the work. With the computer, you
think and the computer works.

Let's move on to Chapter 2 now and start talking about
dBASE III PLUS more specifically.

REVIEWING DATABASE

TERMINOLOGY

In this chapter you've learned some new vocabulary about
databases:

-

A database is an organized collection of information.

6 UNDERSTANDING dBASE III PLUS

-

A database management system is a tool for managing information

stored on a computer.

-

On a database, information is stored in records (rows) and folds
(columns) of information.

-

The general tasks you perform in managing databa;e include adding a

new information, sorting, searching, printing reports, editing, and
deleting data.

•

•

•

Building

a

Database

10 UNDERSTANDING dBASE III PLUS

n this chapter you'll learn the basic steps of getting dBASE (

I III PLUS "up-and-running" on your computer. Notice that
the instructions vary somewhat depending on the type of com

puter you have . You'll also learn techniques for managing the
-

menu that appears once dBASE is running on your computer.
This chapter will also teach you how to create a database and

add information to it . Techniques for getting immediate help on
the screen are discussed too . Finally, you'll learn how to save your
new data, retrieve it, and how to properly exit dBASE .

STARTING DBASE III PLUS

To try the examples in this section, you'll need to get dBASE
III PLUS up-and-running on your computer. Before you can start
dBASE you must install it according to the instructions in the Get
ting Started manual that came with your dBASE III PLUS package.
Then follow these starting instructions for the type of computer
you have:

Computers with Two Floppy-Disk Drives

If you are using a computer with two floppy-disk drives, place
the dBASE III PLUS System Disk #1 in Drive A and a blank,
formatted disk in Drive B. Next to the DOS A> prompt, type the
command

DBASE

(Note: The symbol means "Press the Return, or Enter key.")
You'll see a copyright notice and these instructions:

Insert System Disk 2 and press ENTER, or press Ctrl-C to abort.

Remove the disk from Drive A . Place your dBASE III PLUS
System Disk #2 in Drive A, and press the Return key. You'll see
the dBASE menu screen appear.

Building a Database 1 1

Computers wi� Hard Disks

If you are using a hard disk system and have already installed
dBASE III PLUS, simply log on to the appropriate directory on
your hard disk (using the DOS CHDIR or CD command). At the

c>

prompt, enter the command

DBASE

When the copyright notice appears, press Return to move into the
dBASE III PLUS menu screen.

Networked Computer Systems

For techniques in starting dBASE III PLUS on a networked
system of computers, see the Getting Started manual that came with
your dBASE III PLUS package. Procedures will vary depending
upon your particular network configuration.

NAVIGATING THE MENU SCREEN

Figure 2.1 shows the on-screen dBASE III PLUS menu screen.
This menu is also called the Assistant, because its job is to assist
you in building commands that dBASE can interpret and execute.
As you'll see later in the book, you can build your own commands
without the Assistant menu.

This screen consists of eight main menu options listed in a bar
across the top of the screen, eight submenus that pull down from
the main menu bar as you highlight one of its options, a status
bar and three message lines at the bottom of the screen.

If you press the +- or -. keys on the numeric keypad, you'll
notice - that the highlighting moves across the' main menu bar, and
pull-down menus representing sub-options appear beneath the

12 UNDERSTANDING dBASE III PLUS

-

Figure 2.1: The dBASE III PLUS Assistant Menu Screen

highlighted option. (Note: If your arrow keys don't work and the

"NUM" message appears at the bottom of your screen, press the
Num Lock key and try again.) You can also highlight items from
the main menu bar by typing the first letter of the option. For
example, typing the letter T brings the pull-down menu for the
Tools option.

Notice that some items on the pull-down menus are brighter
than others. The brighter options are those that are available for
selection. The dimmer options can only be selected after certain
pre-conditions are met. Don't worry, though. Most of the options
will be available to you the moment that you select a database.

Now type S to move the highlighting to the Set Up option.
You'll notice that the first selection, Database file, is highlighted in
reverse video. You can use the t and keys to move this highlight
ing up and down within the pull-down menu. Pressing the Return
key selects the currently highlighted option.

Building a Database 1 3

The Dot Prompt

Pressing the Escape (Esc) key "unselects" a pull-down menu
option. If you press Esc before selecting a sub-option, the menu
screen will disappear and the dBASE III PLUS dot prompt will
appear (which we'll discuss in a later chapter). While the dot
prompt is familiar to those with previous dBASE II or dBASE III
experience, it may not mean a lot to the novice. If you should
find that the menu disappears and only a period appears near the
bottom of the screen, type the command

ASSIST

to bring back the Assistant menu.
If you prefer entering commands at the dot prompt, there is a

way to completely bypass the dBASE III PLUS menu screen
(which we'll discuss in a later chapter). However, most of these
same commands are available as Assistant menu options. For more
details, see Entering ComTTUlnds at the Dot Prompt later in this chapter.

The Status Bar

At the bottom of your screen (and at the bottom of Figure 2.1),
you'll see the Status Bar in reverse video. The Status Bar keeps you
informed of the current status of various optional settings. Just
above the Status Bar, the Action Line will display the dBASE com
mands that you build from menu options. The action line is
empty right now, but when you select menu options later, it will
display dBASE III PLUS commands.

Beneath the status bar are the Navigation Line and Message Line.
These two lines provide instructions and explain the currently
highlighted option. When you're first learning, remember to read
these lines beneath the Status Bar to see what your options are
and to get instructions for your next selection.

GETTING HELP

Before we go any further, let's take a moment to discuss a way
to get help on-line (on the screen) while working with dBASE. Any

. • w.

'

I!!

14 UNDERSTANDING dBASE III PLUS

time a menu option is highlighted, you can press the Help (F 1)
key to get some additional information about the option. For

example, if you press Fl while the Create option is highlighted,

you'll see the brief description of the option shown in Figure 2.2.

Set. '" _....... "'Iti.. lebi.,. Qq••I_ iI' Taols

CU«rE &11 ... the de.ign of • dataha.e file stl'uctU". Once the new file
.buctllH :is CGMPleted. elltel' �nfo ... atioll into the datahase file.

ca.a.na" at: CIIM'I <_tUne file>
[PBOn (stl'uctU" extended file naMe)]

."" hg to cati i. ASSIST.
treat. a ••tahase file structure.

-

Figure 2.2: Help Screen for the Create Option

Some Help screens may seem a bit advanced at first because

they explain techniques for working with dBASE III PLUS from

the dot prompt (which we'll discuss later). Nonetheless, the Fl key
is a quick way to get information without looking through the
manuals.

When you finish viewing a help screen, press any key to resume

your work. Now, let's build a database for managing a basic mail

ing list to put dBASE to work and start learning about the many
capabilities dBASE III PLUS offers.

Building a Database 1 5

CREATING A DATABASE

To create a database, highlight the Create option from the main
menu either by moving the highlighting to the word or by typing
the letter C. The pull-down menu will present these options:

Database file
Format
View
Query
Report
Label

To create a database, select the Database file option by pressing
the Return key. The screen will then display these options:

A:
B:
c:

If you are using a computer with two floppy-disk drives, select
the B: option to create the database on the disk in Drive B . If you
are using a hard disk system, select the C: option .

Next, dBASE will ask you to

Enter the name of the file:

The name you enter can be up to eight characters long, but it
may not contain spaces or punctuation marks. For this example,
type the file name

MAIL

If you make a mistake typing the name, you can use the Back
space key to back up and make corrections. dBASE will automati
cally add the extension .DBF (for DataBase File) to the file name
you assign. Therefore, when you enter MAIL as the file name,
dBASE will actually store the database under MAIL.DBF.

After you name your database, dBASE provides some help at
the top of a new screen. Note: Some keys have a A symbol in
front of them, which means that you must press the Ctrl key as
you type the letter.

.' "
.'

'f
.. .. hi ,

Ay

..

••

= te •

'a .. :

1

16 UNDERSTANDING dBASE III PLUS

At the center of the screen, dBASE displays the blank form
shown in Figure 2.3. You must fill in this form to create a data
base structure.

CUlS" (..... --) IllSlIft' DELftl Up • lielaI
ell.,.: Cha.: Ina CIl .. : Daw. a lie.4:
WoN: IIau Ina 'iela: g" WoN: Exitllave: ".na

". tiel,: F1 'ie1il: AU t: lac

.. ta. ... 'I •• i
Plel4 nuan •• giD with. leU •• aM •• y coata" let""" cUltta aail u.... hCO ...

-

Figure 2.3: Form for Creating a Database Structure

Let's discuss what all of this means. Notice that dBASE is ask
ing for information about the fields in each record. For each field,
it needs to know the name, type, width, and number of decimal

places. The name of the field can be up to ten characters long,

but no spaces are allowed, and the only punctuation allowed is
the underscore character <_). dBASE also needs to know the type
of data being stored in the field. Data can be one of five types:
1) Character, for non-numeric data such as name, address, etc.;
2) Numeric, for numbers that we want to do some math with, like
dollar amounts or inventory quantity; 3) Date, for dates in MM/
DD/YY format; 4) Memo, for long passages of text; 5) Logical,

Building a Database 17

where the field is either true or false. Then, dBASE needs to know
the width of each field, the maximum number of characters that
the field will contain. Finally, it needs to know how many decimal

places are to be stored for numbers. For instance, in a dollar
amount, we typically store two decimal places ($999.99).

To fill in information on the screen, simply type in the field
name, followed by a press on the Return key. The cursor will
move to the type prompt. Type the first letter of the type of data:
Character data, Numeric data, Dates, Memos, or Logical data. In

your first example, just use all character types to keep things
simple. The curSOr will move to the "width" column. Type the
maximum width for the field followed by a press on the Return
key. If you make errors while typing data, you can use the arrow

keys on the numeric keypad (on the right side of the keyboard) to
position the cursor for making changes.

Structure the MAIL.DBF database like this:

Field Field Na me Type Width Dec

1 LNAME Character 15
2 FNAME Character 10
3 A DDRESS Character 25
4 CITY Character 15
5 STATE Character 5
6 ZIP Character 10

Rather than typing in a seventh field, just press the Return key.

dBASE will display the message

. Press ENTER to confirm. Any o ther key to resume

Press the Return key.

Notice that we've broken the first and last names into separate
fields. The last-name field (LNAME) can take a last name fifteen
letters long. The first-name field (FNAME) can hold up to ten
letters.

Why are there two separate fields? Because in the future, you
might want to sort the data alphabetically by last name. If you
just had one field for both first and last names, such as Joe Smith,
when you did your sort, dBASE would sort by first name. You
and I can look at Joe Smith and immediately see that Smith is the
last name. Since the computer doesn't understand this, you've

18 UNDERSTANDING dBASE III PLUS

established the difference between first and last name by providing
a separate field for each. You've also put address, city, state, and
zip into separate fields. Note that C indicates that each of these is
a Character data field.

Now you'll probably ask, "Why is zip code a Character string?
Isn't 92122 a number?" Yes, it is, but hyphenated zip codes like
92038-2802 could cause problems. In dBASE, the hyphen means
"subtract" when dealing with numbers. So at some point, 92038-
2802 might become 89236 if stored as a number (92038 minus

=2802 89236). This could wreak havoc on a mailing system.
Another problem is that some foreign zip codes have letters in

them, like A132-09. In dBASE III PLUS, letters are not allowed
in Numeric data fields. You will avoid a lot of trouble by making
ZIP a Character field. The only time you must make a field
Numeric is when you need to do math. Certainly, you'll never
need to total up zip codes!

So we now have a structured database. All meaningful pieces of
information are broken out into separate fields. Again, avoid the
temptation to combine several pieces of information into one field
(CITY: STATE: ZIP). dBASE III PLUS allows a maximum of 128
fields in each record, with their combined widths totalling up to a
maximum of 4000 characters. There is plenty of room.

On your screen, you will now see that the computer is asking if
you want to

Input data records now? (YIN)

Type N to answer No and return to the main menu. There you
have it-a database called MAIL.DBF. Now, let's discuss how to
open the database and how to add some- data to it.

OPENING A DATABASE

Imagine that you have a number of databases, like shoe boxes
filled with index cards. Before you can add cards (records) to one of
these databases, you must open its box. So let's discuss the easy
technique for opening your MAIL.DBF database now.

First, move the highlighting to the Set Up option on the main

Building a Database 19

menu bar. dBASE displays these options on the pull-down menu:

Database file

Format for Screen
Query

Catalog
View

Quit dBASE III

Press Return to select the lJaJohase file option. The screen displays

A:
B:
C:

for specifying a disk drive. As before, select B: if you are using a
computer with two floppy-disk drives, or C: if you are using a

hard disk. dBASE will display the names of all existing database
files on the drive. Move the highlighting to MAIL.DBF and press
Return. dBASE will ask

Is the file Indexed? [YIN]

We won't be creating index files until a later chapter, so just type

N to answer No. At the bottom of the screen, on the highlighted

status bar, you'll see

<B:> MAIL

or

<c:> MAIL

indicating that the MAIL.DBF database is open and ready for

work on either Drive B or C. Now let's add some data.

ENTERING DATA

To add data to the file, highlight the Update option on the main
menu, and select the Append option from the pull-down menu. A

� .. t

19111111"11' ••• 1_1

)
"V

20 UNDERSTANDING dBASE III PLUS

blank form for entering new data will appear, as in Figure 2.4.

CURSOR (-- -> UP DOW" DELETE Insert Mode: Ins
Char: Field: Char: Del Exit/Save: "End
Word: HOMe End Page: PgUp PgDn Field: Ahort: Esc

Help: F1 Record: "u Mello: "HOlle

LNAME

,"AME

ADDRESS

CITY

STATE

ZIP

�1f) I L

-

Figure 2.4: Blank Data Form

Notice the keys that appear at the top of the screen. You used

some of the same keys creating the MAIL database structure. Now

you'll have a chance to try some of them out as you add new

records to the database.

A Sample Database Record

The following information will become the first record for your

database:

John Q. Smith

123 A St.

San Diego, CA 92123

t- .. t ,
"y

"lIII0:

Building a Database 21

Because the order of the fields is slighdy different than this

Rolodex-card style, follow these steps to enter the first record.

Smith
John Q
123 A St.
San Diego
CA
92123

When you finish, your screen should look like Figure 2.5.

Reeol'd No.

CURSOR
Ch ... :
WOl'd:

(--)

HoM EM
Field:
Pate :
Help:

UP

PgUp
F1

DOWN

PIa.

DELETE
Cit ... : Del
Field:
Reeol'd: AU

Insep.t node:
Exit/Save:
Ahal't:

Ins
"End

Esc
AHoMe

utAH!
FMAttE
ADDRESS
CITY
STATE
ZIP

-

Figure 2.5: First MAIL Record

Press Return after entering the zip code, and a blank form for

filling in the second record will appear.

The Numeric Keypad and Cursor-Movement Keys

When you are entering a number of new records, it's easy to

•
� keyboards offer a

separate set of arrow

keys that you can use

instead of the cursor

control keys on the

numeric keypad.

22 UNDERSTANDING dBASE III PLUS

make mistakes. With dBASE it's also easy to correct mistakes as

you enter data.

Before adding the second record to the database, take a moment
to review the basic data-entry commands shown in Table 2.1.

(Remember that the " symbol means, "Hold down the Ctrl key

while typing the letter that follows.")

Alternate

Key Key Effect

t or "E Move cursor up one field

" or "X Move cursor down one field
- or "S Move cursor left one space
- or "D Move cursor right one space

Del or "G Delete character over cursor

Ins or "V Turn the insert mode on/off

PgUp or "R Move back to previous record

PgDn or "C Move forward to next record

"End or "W Save all newly added data and return to the menu

Home Move to first letter of word

End Move to end of word

"y Delete contents to the right of the cursor

"U Delete/Undelete entire record

-
Table 2.1 Basic Data-Entry Control Keys

Some enhanced All of the control-key commands are in the left-hand portion of
the keyboard, near the Ctrl key. This is so that you can hold
down the Ctrl key with your litde finger while pressing the appro
priate key. The position of the keys suggests the direction that the
cursor moves, as shown in Figure 2.6. The arrow keys and Ins
and Del keys on the numeric keypad are shown in Figure 2.7.

The arrow and control-key commands hold true for most

dBASE forms that appear on the screen, as you'll see throughout
the following chapters.

Building a Database 23

-

Figure 2.6: Cursor-Movement Keys

D

[Jot]

-

Figure 2. 7: Numeric Keypad

24 UNDERSTANDING dBASE III PLUS

Let's add a second record . Suppose that while adding the sec
ond record, you type the. following data:

LNAME
FNAME
ADDRESS
CITY
STATE
ZIP

:Appleby
:Andy
:35 Oak St.
:Los Angeless
:CA
_

Before typing the zip code, notice a couple of errors in the field
above. To fix these, first, you can move the cursor up to the

CITY field by pressing the t key twice, or by holding down the

Ctrl key and tapping the E key twice. The cursor moves to the

beginning of the CITY field like so:

CITY:!:os Angeless :

Now to move the cursor to the right, press the End key twice,
and then +- twice. The cursor will move to the first s in Angeless,

like this:

CITY:Los Angele!S :

Delete the character above the cursor using a "G or by press

ing the Del key. Now the city field looks like this:

CITY:Los Angele! :

You've eliminated the extra s.
Next notice that the address is supposed to be 345 Oak St.,

instead of 35 Oak St. Press the t key to move the cursor up to the

ADDRESS field like so:

ADDRESS:35 Oak St._

T hen press the +- key nine times to move the cursor to the 5 in
the ADDRESS field:

ADDRESS:35 Oak St. :

Now you want to squeeze a 4 in between the 3 and the 5. To

do so, you first have to go into an INSert mode by pressing the
Ins key. This puts the message "INS" at the bottom of the screen.

Building a Database 25

Now if you just type the number 4, the 4 is inserted between the
3 and the 5 like this:

ADDRESS:345 Oak St. :

Now move back down to the ZIP field by pressing the $ key
three times, then pressing the .- key twice to move the cursor to
the left of the entry box. T hen type a zip code (92123). Pressing
Return after the zip code will then move the cursor onto record 3
for appending.

More Sample Records

So far so good. You've created a database and added two

records to it. At this point, we suggest that you put in more data.
If the Append form is still showing on the screen, just start keying
in the following names and addresses. (Otherwise, use the Set Up,
Update, and Append options to return to APPEND mode.) Here are
some data (records 3-6) for you to type. You will use them for
future examples:

LNAME FNAME ADDRESS CIT Y S TATE ZIP
Smith Dave 619 Elm St. San Diego CA 92122
SMITH Betsy 222 Lemon Dr. New York NY 01234
Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234
Doe Ruth 1142 J. St. Los Angeles CA 91234

After you type the data for the last person on the list, dBASE will
still ask for more data. To stop adding names, just press the
Return key rather than typing a last name. Once you get all the
data entered, you need to learn ways to retrieve the information.

RETRIEVING DATABASE RECORDS

Data stored in a database doesn't do you much good until you
can get it back out. We'll discuss many ways to organize and

retrieve data throughout the next couple of chapters, but let's take
a moment now to try a simple retrieval to verify that the data
you've typed are stored on the disk.

'Wp" •• 11., •• 1.,'

' ..
EXI'(«ll

1----11

WM fag.
+-J.

•
...

26 UNDERSTANDING dBASE III PLUS

First, highlight the Retrieve option on the main menu bar. Then,
select the List option by pressing Return. The screen will display

new options, as. shown in Figure 2.8.

Set Up c.ute te PoaitiOR o.,..ize ily rools

Ca.and: LIST

lisplay fib· thl' ••.tnd

s,.ily scopeleport
LUeI Ca_btlct • liel. list

.11. a supc' co"itin

.11. a scope co"itio.

1_ 1_1_
.... iti •• selectio - U. Select -

Perfo ... the COMMand displayed above the status bar.

-

Figure 2.8: Menu Options for Data Display

Next, select the Execute the commo,nd option from the submenu by
pressing Return once again. dBASE will ask

Direct the output to the printer? [YIN]

If you answer Y to this question and if your printer is ready,
the data will be printed. For now, simply type N to display the
data on the screen. You'll see the six stored database records
appear, as in Figure 2.9.

Notice that the records were too wide for the screen, so they
wrapped around, placing the zip code over on the left side of the
screen. You can clean up this display by asking that only certain

If you have a laser
printer, and do

choose to print your
results, you may not see
results right away. You'11
need to eject. the page
after sending text to the
printer. To do so, press
Esc to access the dot
prompt and type
EJECT and press
Then type ASSIST and
press to return to
the Assistant menu.

"-" ••

FIW11 ST

sttlTM

5

(,

Building a Database 27

Set Up .-.te te Positl••••..... i_ Wil, raols

IecoM' IM .. I BDDRISS CITY
ltTI ZIP

1 SIIith John Q. 123 A St. San Diego CA
92123

2 Applehy IIndy 345 Oak St. Los Angeles CA
92123

3 BIIith Dave '19 II. St. San Diego CA
92122

4 Betsy 222 Leaon Dr. Mew York MY
81234

BIIithsonia!, Lucy 461 Ados St. San Diego CA
92122-1234

Doe Ruth 1142 J. St. Los Angeles CA
91234

-

Figure 2.9: On-Screen Display of MAIL Records

fields be displayed. First, as the instructions at the bottom of the
screen indicate, press any key to continue working in the Assist
mode (working from the menu options rather than dot-prompt
commands).

Specifying Fields for Display

Let's try another exercise, this time displaying only the
LNAME, FNAME and CITY fields. Again, highlight the Retrieve
option from the main menu bar, and select the List option from
the submenu. From the next submenu, select the Construct a.field list
option. T he screen displays a list of field names in the MAIL
database, as shown in Figure 2.10.

You can move the highlighting from one option to the next by
pressing the t and � keys. To select a field for display, simply press
the Return key as the option is highlighted. In this example, press

28 UNDERSTANDING dBASE III PL US

-

Figure 2.10: On-Screen Display of Field Names

Return to select the LNAME field. Then press Return again to
select the FNAME field. Press ,. to skip over the ADDRESS field,
and then press Return to select the CITY field. When you finish,

the LNAME, FNAME, and CITY fields will be dimmer than the

others. (Because they have already been selected, they are no
longer available for selection, and are shown in dimmer type). On
the Action Line near the bottom of the screen, you'll see this com
mand message:

Command: LIST LNAME, FNAME, CITY

Your menu selections have created a command that could have

been entered at the dot prompt:

LIST LNAME, FNAME, CiTy

dBASE can understand this command in its own language. Now,
press -+ to remove the submenu of field names. Then press t

I· "eMM

-

John 114

Building a Database 29

Set Up CNata te .. ltI.. i" r.ls

leeOPd. LNIItII FIIIII'tE CITY
1 .. ith S .. Die.o
Z Appleby Andy Los Anleles

3 "Ith Dave San Diqo

4 srUTH Bet.y lIew York

S "ltheoni .. Lucy San Dielo

6 Doe Buth Los Alageles

..... .." .." to cuti I. ASSISI'._

-

Figure 2.11: On-Screen Display of Selected MAIL Fields

twice to highlight the Execute th£ command option , and press Return.
When dBASE asks if you want to display the data on the printer,
answer N. dBASE will display the LNAME, FNAME, and CITY
fields from the MAIL database. as shown inFigure2.11.

In the next chapter, we'll look at more advanced techniques
for displaying data on the screen and printer. Let's first take a
moment to discuss the dBASE dot prompt, which is an alternative
method for accessing your data.

ENTE RING COMMANDS

AT THE DOT PROMPT

If you press the Esc key from the main menu, the menu will
disappear and a period will appear at the lower-left comer of the

http:inFigure2.11

30 UNDERSTANDING dBASE III PLUS

screen. From here, you can enter commands using the dBASE
language. Entering commands from the dot prompt is somewhat
faster and less tedious for more advanced users, although it does
require familiarity with the language.

Recall that when you selected menu options to display only the
LNAME, FNAME, and CITY fields from the MAIL database,
the screen displayed the command LIST LNAME, FNAME,
CITY. You can type this command (or any command) at the dot
prompt to achieve the same result. Type this command:

LIST LNAME, FNAME, CiTy

As before, dBASE will display the three fields. When the dot
prompt reappears, type this command:

LIST FNAME, LNAME, STAT E

Notice that dBASE displays the fields you requested:

• LIST FNAME, LNAME, STATE

Record# FNAME LNAME STATE

1 John Q. Smith CA

2 Andy Appleby CA

3 Dave Smith CA

4 Betsy SMITH NY

5 Lucy Smithsonian CA

6 Ruth Doe CA

To open a database when working at the dot prompt, you use
the USE command. For example, to open the MAIL.DBF data
base on a hard-disk system, you could enter this command:

USE MAIL

For a floppy-disk system, you would need to specify Drive B. In
this case, you would first enter the command

SET DEFAULT TO B

to tell dBASE that the data are stored on the disk in Drive B.
Then you can enter the command

USE MAIL

to open the MAIL.DBF database.

Building a Database 31

For the novice or occasional user, t.Ae Assistant menu will prob
ably be the preferred method for accessing your data for a while.
Later, you may want to learn about the dBASE language for more
speed or for more flexibility in entering your commands. If you
plan on learning to program in dBASE III PLUS , you'll need to
learn all the commands.

SAVING YOUR WORK

Before we proceed any further, there is one very important item
of information that you need to learn: Always exit dBASE before
turning off your computer. Failure to do so might cause you to
lose some data that you've entered in a database.

To exit dBASE from the menu screen , highlight the Set Up option
from the main menu bar, and select the Qyit dBASE III PLUS op
tion from the pull-down menu. (If the dot prompt is displayed, type
the command ASSIST to bring the menu back onto the screen.) You
can also exit dBASE by directly typing the command

QUiT

at the dot prompt.
Quitting dBASE will ensure that all your data are safely stored

on disk and return you to the DOS

A>

or

c>

prompt. To run dBASE again in the future , follow the steps we
discussed at the beginning of this chapter.

For now, you might want to take a break and review the basic
techniques we've discussed in this chapter for creating a database
and adding data to it.

32 UNDERSTANDING dBASE III PLUS

REVIEWING DATABASE BASICS

In this chapter we've discussed the following basic techniques for
creating a database, storing records, and retrieving the data:

-

To start dBASE on a single-user computer, enter the command
DBASE at the DOS A> or C> prompt, and press Return.

-

-+To select items from the main menu bar, use the .- and keys

to move the highlighting. (Optionally, you can select items from
the main menu bar by typing the first letter of the option.)

-

To select items from a pull-down menu, use the t and + arrows to
move the highlight bar, and press Return to select the highlighted
option.

-

To create a new database, select the Create and Database file options
from the menus .

.....

To get help on the screen at any time, just press the Fl key. After
reading the help message, press any key to resume your work.

-

To work with a particular database, select the Set Up and Database

file options from the menus.

-

To add new data to a database, select the Update and Append

options.

-

To . see data stored in a database, select the Retrieve and List options
from the menus. T hen, select the Execute the command option from
the submenu.

Building a Database 33

-

To work with dBASE from the dot prompt, press Esc to leave the

Assistant menu. To return to the Assistant menu, enter the com

mand ASSIST at the dot prompt.

-

To exit and save your work, select the Set Up and Quit dBASE III

PLUS options from the menus.

36 UNDERSTANDING dBASE III PLUS

n this chapter, we'll discuss basic techniques for searching, or

I querying a database. In other words, we'll be looking at tech

niques which allow you to view records that meet some search

criteria, such as California residents, or people in the 92123 zip

code area, or all the Smiths in the state of New York. As you'll
see in this chapter and throughout the book, there is really no

limit to the ways in which you can access data stored in a

database.

If you've exited dBASE since the last chapter, be sure to run
dBASE again and use the &t Up and Database file options from the

menu to open the MAIL.DBF database. The examples in this
chapter assume that the MAIL.DBF database is open.

BUILDING SEARCH COMMANDS

WITH LIST

The easiest and most common technique for searching a data
base for records that meet some search criteria is with the List
option. A simple example will demonstrate. Suppose that you want
to retrieve records of all individuals who live in the 92123 zip code

area. To do so, follow these steps from the Assistant menu screen

t' Highlight the Retrieve option on the menu.

t' Select List.

t' Select Build a search condition.

Notice that this menu of field names appears on the screen:

LNAME

FNAME

ADDRESS

CITY

STATE

ZIP

Because you want to view records from the 92123 zip code area,

you need to search on the ZIP field. So the next step is to select

Searching the Database 37

the ZIP field. Next, a menu of operators will appear on the screen:

= Equal to
< = Less than or equal to
< Less than
> Greater than
> = Greater than or equal to
< > Not equal to

In this example, you're looking for zip codes that are equal to
92123, so select the Equal to option.

Finally, you have to specify what ZIP should be equal to.
dBASE displays the prompt

Enter a character string (without quotes)

which translates into English as "Enter the thing that you're look
ing for, and don't use quotation marks." In this example, SInce
you're looking for records with zip codes of 92123, type

92123

At this point, you've built the command that appears on the
Action Line at the bottom of your screen:

Command: LIST FOR ZIP = '92123'

You've built this command from your menu selections. When
dBASE executes this command, it will display all records that con
tain the 92123 zip code. Before you execute the command, you'll
need to select the No more conditions opt, which tells dBASE that ion,
you've completed your request and are now ready to execute the
command on the Action Line. The last step now is to select the
Execute the command option.

When dBASE asks if the display should be printed, answer No.
dBASE will then display records in which the zip code is 92123:

1 Smith John Q. 123 A St. San Diego CA 92123
2 Appleby Andy 345 Oak St. Los Angeles CA 92123

(Note: Although the records may wrap around on your screen,
this text shows each record on a single line.) Press any key to
return to the Assistant menu screen.

38 UNDERSTANDING dBASE III PLUS

BUILDING SEARCH CONDITIONS

As you'll see in future chapters, the Build a search condition option

can be used in many situations, including those for printing

reports and mailing labels, for deleting records, and changing
information in groups of records. In fact, probably the biggest

advantage to using a computer to store information is the ability to
define search conditions which pull out information that meets

some criterion.

Now, on a different note, recall that in the last chapter we dis

played only specified fields. You can specify display fields while

performing a search, too. For example, suppose that you want to

view only Los Angeles residents, and furthermore, you only want

to see the name of each individual. You need to use the Construct a
field list and the Build a search condition options from the List sub

menus, as in these steps from the Assistant menu screen:

v' Highlight the Retrieve option.

v' Select List.
v' Select Construct a .field list.
v' Select the CITY, LNAME, and FNAME fields.

v' Press -+ to leave the field-names menu.

v' Select Build a search condition.
v' Select CITY.

v' Select =.

v' Type Los Angeles.
v' Press the key.

At this point, you've built the command that appears on the

Action Line at the bottom of your screen:

Command: LIST CITY, LNAME, FNAME FOR CITY = 'Los Angeles'

To execute this command, follow these steps:

v' Select No more conditions.

v' Select Execute the command.

v' Enter No in response to printer question.

Searching the Database 39

The result will be a listing of the city, last name, and first name
of Los Angeles residents:

2 Los Angeles Appleby Andy
6 Los Angeles Doe Ruth

Let's try a couple of other searches using operators other than
the equal sign. First, press any key to return to the menu.

Suppose that you want to view all residents whose zip codes are
greater than, or equal to, 90000. You'd need to use the > oper=

ator, rather than the operator. (Note: You're displaying only the =

ZIP, LNAME, and FNAME fields.) Here are the steps:

, Highlight the Retrieve option.
, Select List.
, Select Construct a.field list.
, Select the ZIP, LNAME, and FNAME fields.
, Press'" to leave the field-name menu.
, Select Build a search condition.
, Select ZIP.
, Select> =.

, Type 90000.

, Press

, Select No more conditions.

At this point, your on-screen command looks like this:

Command: LIST ZIP, LNAME, FNAME FOR ZIP > = '90000'

When you select the Execute the command option, and respond to the
printer question, you'll see records with zip codes greater than or
equal to 90000:

1 92123 Smith John Q.
2 92123 Appleby Andy
3 92122 Smith Dave
5 92122-1234 Smithsonian Lucy
6 91234 Doe Ruth

The less-than «) and less-than/equal-to « =) operators can be
used in a fashion similar to the > and > operators. For=

40 UNDERSTANDING dBASE III PLUS

example, to list records that have zip codes that are less than
90000, you would follow these steps:

¥ Highlight the Retrieve option.

¥ Select List.

¥ Select Construct a field list.

¥ Select the ZIP, LNAME, and FNAME fields.

¥ Press'" to leave the field-name menu.

¥ Select Build a search condition.

¥ Select ZIP.

¥ Select <.

¥ T ype 90000.

¥ Press

¥ Select No more conditions.

T his results in the command:

Command: LIST ZIP, LNAME, FNAME FOR ZIP < '90000'

When you select the Execute the command option and a printing
option, you'll see the only record on this database that has a zip
code less than 90000:

4 01234 SMITH Betsy

To view every record in the database except California residents,
you could use the < > (does not equal) operator, as in these steps:

¥ Highlight the Retrieve option.

¥ Select List.

¥ Select Build a search condition.

¥ Select STATE.

v' Select < > .

v' Type CA.

¥ Press

¥ Select No more conditions.

Searching the Database 41

The command on the A ction L ine looks like this:

Command: LIST FOR STATE < > "CA"

When the command is executed, the only non-California resi

dent will be displayed:

4 SM ITH Betsy 222 Lemon Dr. New York NY 01234

Combining Search Conditions

You can combine search conditions with AND and OR options
to be more specific about the information you wish to pull out of
the database. For example, suppose that you want to view all the
Smiths in the state of California. In computer argot, you want to
view records that have the name Smith in the LNAME field,
AND the word CA in the STATE field. To perform such a query,
displaying the STATE, LNAME, and FNAME fields in the
results, follow these steps:

v' Highlight Retrieve.

v' Select List.
v' Select Construct afield list.
v' Select STATE.

v' Select LNAME.

v' Select FNAME.

v' Press

v' Select Build a search condition.
v' Select LNAME.

v' Select =.

v' Type Smith.

v' Press

A t this point, this command appears at the bottom of your
screen:

Command: LIST STATE, LNAME, FNAME FOR LNAME = 'Smith'

42 UNDERSTANDING dBASE III PLUS

The screen also displays these options:

No more conditions

Combine with . AND.

Combine with .OR.

You need to add an AND condition, so continue by following

these steps:

v' Select Combine with . AND.

v' Select STATE.

v' Select =.

v' Type CA.

v' Press

v' Select No more conditions.

Now this command is displayed at the bottom of your screen:

Command: LIST STATE, LNAME, FNAME FOR LNAME = 'Smith'

.AND. STATE = 'CA'

In English, this command that you've constructed through
menu selections means, "Show me records that have Smith in the

LNAME field, AND CA in the STATE field." When you select

the Execute the command option, you'll see these results:

Record # STATE LNAME FNAME
1 CA Smith John Q.

3 CA Smith Dave
5 CA Smithsonian Lucy

You're probably wondering why Smithsonian was included in
the list. Well, unless you specify otherwise, Smith is the same as

Smithsonian because the first five letters match. L ater in the chapter,

you'll learn a technique that forces all letters in a specified field to

match exacdy.

Searching the Database 43

SEARCHING

FROM THE DOT PROMPT

By now you have probably noticed that as you select menu
items, dBASE builds a command with a very specific syntax:

<command> <field list> <search condition>

For example, the command

LIST LNAME, FNAME, CITY FOR CITY = "San Diego"

can be built first by selecting LiSt from the Retrieve menu. Then
select LNAME, FNAME, and CITY from the Select a field list
menu option, and select CITY and = from the Build a search condi
tif!Tl submenus. Eventually, you may find it easier just to key in
commands for searches at the dot prompt. Also, you'll find that

the dot prompt offers more flexibility.

Searching with the LIST Command

Let's try searching with dot-prompt commands rather than from

menu options. Press the Esc key from the main menu, and you'll
see the dot prompt. Then type the command

LIST LNAME, FNAME, CITY FOR CITY = "San Diego"

You'll see the San Diego residents displayed on the screen:

Record # LNAME FNAME CITY
1 Smith John Q. San Diego
3 Smith Dave San Diego
5 Smithsonian Lucy San Diego

Now, let's take a look at some other searches typed at the dot

prompt, and some of the unexpected results a search in dBASE
might produce. Suppose that you type a simple command to view
everyone with the last name Smith in the database:

LIST LNAME, FNAME FOR LNAME = 'Smith'

44 UNDERSTANDING dBASE III PLUS

The somewhat surprising result is

Record # LNAME FNAME
1 Smith John Q.
3 Smith Dave
5 Smithsonian Lucy

There are a couple of problems here. First, Betsy SMITH is
missing. Why? Because somebody typed her last name as SMITH,
and Smith is not the same as SMITH from the computer's point of
view. Second, what is Smithsonian doing in there? You wanted
Smiths, not everyone with Smith as the first five letters in their
last name. Let's start solving these problems.

You can get rid of Smithsonian easily. Recall that when you
created the MAIL.DBF structure, you allowed fifteen spaces for
the last name field. So all the Smiths are actually
"Smith__________" as far as dBASE is concerned. You can
omit Smithsonian in your display by specifying that only Smith,
followed by a blank space, be displayed:

LIST LNAME, FNAME FOR LNAME = 'Smith '

Now only the name Smith is listed:

Record # LNAME FNAME

1 Smith John Q.
3 Smith Dave

Smithson=an didn't make it this time, because the first six letters of
her last name are Smiths, not Smith . But you still have to deal
with the absence of SMITH.

The uppercase function UPPERO displays all lowercase letters
in a character field in uppercase. You can test this out by typing
the command

LIST UPPER(LNAME)

to get this list:

Record 	# UPPER(LNAME)

1 SMITH

2 APPLEBY

3 SMITH

Searching the Database 45

4 SMITH
5 SMITHSONIAN
6 DO E

Here every last name on the list is displayed in uppercase.
(They're still in upper and lowercase in the database, though.)
Now you can get dBASE to list all Smiths, ignoring upper and
lowercase by asking it to list all the people whose uppercase equivalent
last name is SMITH. In dBASE, that looks like this:

LIS T FOR UPPER(LNAME) 'SMITH ' =

In English, this statement reads, "List all the people whose last
name, when translated to uppercase, is SMITH."

Now dBASE displays the list you want:

Record # LNAME FN AME ADDRESS CITY S TAT E
1 Smith John Q. 123 A St. San Diego CA
3 Smith Dave 619 Elm St. San Diego CA
4 SMITH Betsy 222 Lemon Dr. New York CA

You really have to spell it out for these machines. They're so
literal. They hardly ever do what you mean; they always do what
you say. No imagination! You got rid of Smithsonian by listing for
Smith followed by a blank space, and you got SMITH in by
checking to see if the uppercase equivalent (UPPER) of the last
name was SMITH .

Searching with the LOCATE Command

The LOCATE command is used for locating the position of a
record based upon a desired characteristic. Since LOCATE does
not display its data like LIST, you have to use the DISPLAY com
mand along with it to see what dBASE has located. Like the LIST
command, you use the FOR statement to indicate the characteris
tic you wish to find. <-

Let's assume that you want dBASE to locate information on
Dave Smith. You could ask dBASE to search for Dave Smith by
last name:

LOCATE FOR LNAME 'Smith' =

ZIP
92123
92122
01234

46 UNDERSTANDING dBASE III PLUS

This would give you the dBASE display

Record 	 = 1

This number doesn't do much good, but you can see the con
tents of the record by typing

DiSPLAy

This record is displayed on the screen:

Record 	II LNAME FNAME ADDRESS CITY STATE ZIP
1 Smith John Q. 123 A St. San Diego CA 92123

Whoops, this isn't Dave Smith. You can continue the search for
Dave with the CONTINUE command.

CON TINUE

which gives you

Record 	 = 3

If you display this record by typing

DiSPLAy

you have found Dave:

So type

Record 	II LNAME FNAME ADDRESS CITY STATE ZIP

3 Smith Dave 619 Elm St. San Diego CA 92122

Not too bad. However, if you had 10,000 names on your mail
ing list, this process could take a long time. A quicker approach

would be to ask for the desired record more specifically. To do

this, use the .AND. operator:

LOCATE FOR LNAME 'Smith' .AND. FNAME 'Dave'= 	 =

Now, two statements must be true for LOCATE to find the correct

record. That is, the last name must be Smith, and the first name
must be Dave. The result of this command is

Record 	 = 3

Searching the Database 47

on the first shot. If you type

DiSPLAy

you see the following record:

Record # LNAME FNAME A DDRESS CITY STATE ZIP
3 Smith Dave 619 Elm St. San Diego CA 92122

Got it in one try. If you type CONTINUE, you get

End of LOCATE scope

because dBASE has checked all other records and there is not
another Dave Smith to be found .

Now, last but certainly not least, we will discuss the type of
search where you need to know if a field roughly matches some
thing you are looking for. For example, suppose you want to
search for people living on a street named Lemon, no matter what
the address number is or whether or not they live on Lemon St.,
Lemon Ave., or Lemon Blvd. If you LIST or LOCATE FOR
ADDRESS 'Lemon', no match will be found, because the =

word Lemon is embedded in the middle of the address field (222
Lemon Dr.). You need some way to say, "Display all records that
have the word Lemon embedded in the address field." That's
quite a mouthful, but not in dBASE, because the $ function will
find the embedded word. So, to locate an individual living on
Lemon, use the command

LOCATE FOR 'Lemon' $ADDRESS

Notice that the grammar iC reversed from what you've used
before. This is because the $ means embedded in. The syntax makes
sense because the above command says, "Find a record with the
word Lemon embedded in the address field." When you type the
above command, you see on your screen

Record = 4

If you then type

DiSPLAy

48 UNDERSTANDING dBASE III PLUS

you see

Record 	# LNAME FNAME ADDRESS CITY STATE
4 SM ITH Betsy 222 Lemon Dr. New York CA

Pretty good! It found a person living on Lemon. Keep in mind
that any of the search examples we've shown with the LOCATE
command work as well with the LIST command, and vice versa.
That is, you could also LIST FOR 'Lemon' $ADDRESS. With
this command, all individuals who live on Lemon would be dis
played on the screen.

You can also combine search conditions to your heart's content.
For example, if you want a listing of everyone who lives on either
Elm or Oak streets, you could

LIST FOR 'Elm' $ADDRESS .OR. 'Oak' $ADDRESS

which would give you

Record # LNAME FNAME ADDRESS CITY STATE
2 App leby Andy 345 Oak St. Lo s Angeles CA
3 Smith D ave 619 Elm St. San Diego CA

The result is a listing of the individuals who live on either Oak
or Elm streets. Be careful to distinguish and and or. If you had
asked for a LIST FOR 'Elm' $ADDRESS .AND. 'Oak'
$ADDRESS, you would end up with nothing, because a given
individual in your database can't possibly live on both Elm and
Oak streets at the same time (unless he did happen to live at 3421
OakElm St.).

In summary, the .OR. operator requires that only one of the
conditions has to be true to get a listing. The .AND. command
requires that both search conditions be true. For instance, the
command

LIST FOR 'Elm' $ADDRESS .AND. 'San Diego' $CITY

would tell dBASE to display all of the individuals who live on Elm
St. and in San Diego (San Diego residents who live on Elm). The
command

LIST FOR 'Elm' $ADDRESS .OR. 'San Diego' $CITY

ZIP
01234

ZIP
92123

92122

Searching the Database 49

would display all individuals living on Elm St., regardless of what
city, and all people living in San Diego, regardless of what street.
The .OR. command generally broadens a search, since only one
condition out of two must be met for dBASE to bring the data to
the screen. On the other hand, the .AND. function narrows the

search, since both search conditions must be met to find the cor
rect data.

We can combine .AND. and .OR. search conditions. Try the
following command:

LIST FOR STAT E 'CA' .AND. ('Oak' $ADDRESS .OR.; =

'Elm' $ADDRESS)

Note: Command lines that are too wide to fit on the page in this
book are broken with a semicolon (;). You must type the com

mand as one long line without the semicolon.

This command would first require that the individual live in
California. Furthermore, the individual must live on either Oak or

Elm to make it to the list. In other words, this command lists all
California residents who live on either Oak or Elm.

Incidentally, a LOCATE command can be built from the menu

just as a LIS T command can. For example, to view data for Ruth
Doe, you would first follow these steps from the Assistant menu
screen to create the LOCATE command line:

V Highlight the Position option.

v Select Locate.

v Select Build a search condition.

v Select LNAME.
v Select =.

v Type Doe

v Select Combine with . AND.

v Select FNAME.
v Select =.

v Type Ruth

At this point, your menu selections have built this command dis
played on the Action Line:

Command: LOCATE FOR LNAME = 'Doe' .AND. FNAME = 'Ruth'

50 UNDERSTANDING dBASE III PLUS

To continue, you need to execute the command by following
these steps:

vi Select No more conditions.
vi Select Execute the command.

The screen displays the message

Record = 6

indicating that dBASE is now pointing at Record 6. To verify this,
select the Display option from the menu (which displays only a
single record) by following these steps:

vi Highlight the Retrieve option.
vi Select Display.
vi Select Execute the command.

You'll see Ruth Doe's record appear on the screen, along with
the instructions to press any key to return to the menu.

EXACT SEARCHIING

Recall that earlier in the chapter, a search for people with the
last name Smith displayed Smithsonian as well as the Smiths. You
were able to leave Smithsonian out by performing a search for
Smith (with a blank space after the h). Another way to accom
plish the same goal is to change the way in which dBASE makes
search comparisons. To do so, press Esc until the menu disappears
and the dot prompt appears. Then type this command:

SET EXACT ON

If you now enter the command
.

LIST FOR LNAME "Smith" =

Searching the Database 51

or the command

LIST FOR UPPER(LNAME) "SMITH"=

you'll see the Smiths, but not Smithsonian, because Smithmnian is

not an exact match to Smith.
To return to the original EXACT setting, enter the command

SET EXACT OFF

at the dot prompt.

To check the status of the EXACT parameter at anytime, just
enter the command

SET

at the dot prompt. You'll see a whole menu of SET parameters, as

in Figure 3.1.

-

Figure 3.1: Menu of SET Parameters

52 UNDERSTANDING dBASE III PLUS

You'll see the Exact option in its alphabetical position and either
ON or OFF next to it. You can change the EXACT parameter
while this menu is displayed by using t and '" to move the high
lighting to the Exact option and pressing the Return key to change
settings on the highlighted parameter. Press Esc to return to the
dot prompt. T ype

ASSIST

to return to the Assistant menu screen.
If you have a color monitor, you can use the Screen option on

this menu to change the colors displayed on your screen. See
Chapter 17 for details.

REVIEWING SEARCH TECHNIQUES

In this chapter we've discussed numerous techniques and com
mands for searching through records in a database. Take a
moment to review these topics:

-

To search, or query, a database means to view records that match
some criterion.

-

To search for records that meet some criterion, select the Build a
search condition option from the List submenu.

-

You can use the (equal), < (less than), < (less than or= =

equal), > (greater than), > (greater than equal), and < > =

(not equal) operators to perform your searches from the menu.

-

To display only certain fields in a search, select the Construct a fold
list option from the submenu.

-

When performing searches from the dot prompt with the LIST

Searching the Database 53

and LOCATE command , you can also use the $ (embedded in)
operator, and the UPPER function to manage upper and
lowercase.

-

The SET EXACT command allows you to change the way in

which searches are performed.

56 UNDERSTANDING dBASE III PLUS

n most situations you add new records to a database as they

I become available. Then, at some point, you need to rearrange
the records into some meaningful order, such as by zip code

for bulk mailing, or by last name for a directory. dBASE provides
two options for sorting databases, Sort and Index. We'll discuss each
option in this chapter.

SORTING WITH THE SORT OPTION

When you use the Sort option to sort a database file, dBASE
requires that you create a new database to store the sorted records.
Once the sorting is done, you can Copy the contents of the sorted
database back into the original file. Let's try an alphabetical sort
with the MAIL file. When you Sort, store the newly arranged data
to a file called TEMP (for temporary). After dBASE sorts the
data, you will copy the contents of TEMP back over to MAIL, so
that the records in MAIL will be properly sorted.

First, make sure that the MAIL.DBF database is in use. (The
database name appears on the Status Bar). If not, use the Set Up
and Database file options from the Assistant menu screen to open
your database. Next, take a quick look at the current contents of
the database by highlighting the Retrieve option and selecting the
List and Execute the command options. You'll see the contents of the
MAIL.DBF database:

1 Smith John Q. 123 A St. San Diego CA
2 Appleby Andy 345 Oak St. Los Angeles CA
3 Smith Dave 619 Elm St. San Diego CA
4 SMITH Betsy 222 Lemon Dr. New York NY
5 Smithsonian Lucy 461 Adams St. San Diego CA
6 Doe Ruth 1142 J. St. Los Angeles CA

Now let's say that your database is not indexed, and you want
to put these records into alphabetical order by last name. To do
so, follow these steps from the Assistant menu screen:

v' Highlight the Organize option.

v' Select Sort.

92123
92123
92122
01234
92122-1234
91234

Sorting the Database 57

t' Select LNAME.
t' Leave the submenu by pressing -+.

t' Select a drive for the sorted file.
t' Type TEMP for the sorted file name.

After a few seconds, the screen displays this message:

100% Sorted 6 records sorted

Next, highlight the Retrieve option, and select the List and Execute

the comTTUlnd options to view the database again. You'll see these
records on the screen, along with a message to press any key to
continue:

1 Smith John Q. 123 A St. San Diego CA 92123
2 Appleby Andy 345 Oak St. Los Angeles CA 92123
3 Smith Dave 619 Elm St. San Diego CA 92122
4 SMITH Betsy 222 Lemon Dr. New York NY 01234
5 Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234
6 Doe Ruth 1142 J. St. Los Angeles CA 91234

Whoops! It doesn't look like anything happened here. That's
because you're looking at the MAIL.DBF database, but it is
TEMP.DBF that actually contains the sorted records. To verify
this, use the Set Up and Database file options from the menu to
open TEMP.DBF. Then, use the Retrieve, List, and Execute the com

TTUlnd options to view the contents of the database. You'll see that
the records are indeed in alphabetical order:

1 Appleby Andy 345 Oak St. Los Angeles LA 92123
2 Doe Ruth 1142 J. St. Los Angeles CA 91234
3 SMITH Betsy 222 Lemon Dr. New York NY 01234
4 Smith John Q. 123 A St. San Diego CA 92123
5 Smith Dave 619 Elm St. San Diego CA 92122
6 Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234

So TEMP.DBF has the sorted records on it, but the MAIL data
base is still in random order. How do you put the sorted contents of
TEMP into MAIL? Simple. Since the TEMP.DBF database is

58 UNDERSTANDING dBASE III PLUS

open, you can just copy it to the MAlL.DBF database, overwriting
the existing contents of MAlL.DBF. To do so, follow these steps:

t' Highlight the Organize option.
t' Select Copy.
t' Select a drive.

t' T ype MAIL as the name of the database to copy to.
t' Select Execute the command.

To make sure that you don't accidentally overwrite an impor
tant file, dBASE III PLUS will double check before copying the
file. You'll see this message:

MAIL.DBF already exists, overwrite It? (YIN)

If you answer yes, the existing contents of the mail database will
be replaced by the data in TEMP.DBF. Answer yes by typing Y.

Now, you need to open the MAIL.DBF database and see
what's in it. As usual, select the Set Up and Database file options to
open MAIL.DBF. T hen use the Retrieve, List, and Execute the com
mand options to view the contents of the database. You'll see the
records displayed like this:

1 Appleby Andy 345 Oak St. Los Angeles CA 92123
2 Doe Ruth 1142 J. St. Los Angeles CA 91234
3 SMITH Betsy 222 Lemon Dr. New York NY 01234
4 Smith John Q. 123 A St. San Diego CA 92123
5 Smith Dave 619 Elm St. San Diego CA 92122
6 Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234

Everything is in alphabetical order now.
Let's illustrate what took place on the disk with some pictures.

To start with, the disk had a database called MAIL.DBF on it,
with the records in random order (the order in which they were
entered). Figure 4.1 shows the contents of the disk.

dBASE requires that when you Sort the database, you must sort
to another file. In this example, you sorted to a database called
TEMP.DBF. After the sort was complete, you had two databases
on the disk: MAIL.DBF, still in random order, and TEMP.DBF,

Sorting the Database 59

-

Figure 4.1: Disk Contents before Sorting

-

Figure 4.2: Disk Contents after Sorting to TEMP

60 UNDERSTANDING dBASE III PLUS

which had the same contents as MAIL.DBF, but in sorted order,
as in Figure 4.2.

To see the names and addresses in sorted order, you needed to

open TEMP, then LIST the records. However, you wanted the

data on MAIL to be sorted too, so you used the COpy command

to copy the sorted contents of TEMP over to MAIL. After the

copy was complete, you had two identical databases, as shown in

Figure 4.3.

-

Figure 4.3: Copying a Sorted TEMP File

You just needed TEMP to temporarily hold the sorted records.

We'll discuss techniques for deleting unnecessary data files in the

next chapter.

Now suppose that you want to do a bulk mailing, and you need
these records in zip code order. What do you do? I bet you can
guess.

Select the Organize and Sort options from the menus. W hen the

submenu of field names appears on the screen, use + or t to high

light the field name ZIP, and press Return to select it. Press to

Sorting the Database 61

leave the submenu, select a drive from the next menu, and then
type TEMP for a file name. Before overwriting the TEMP file
with the new sorted file, dBASE will once again double check and
ask for permission before proceeding with the copy. Answer Y to
this prompt.

Now you can just quickly copy the contents of the TEMP.DBF
file over to the MAIL.DBF file. To do so, open the TEMP.DBF
database by selecting the Set Up and Database file options from the
menus.

Next, select Organize and Copy from the menus to begin copying.
Select a drive, enter MAIL as the database to copy to, and select
Execute the command. Once again dBASE will double check before
overwriting the MAIL.DBF database. Just type Y in response.

Finally, use the Set Up and Database file options to open the
MAIL.DBF database. Select the Retrieve, List, and Execute the com

mand options to view the records. You'll see that they are now in
order by zip code:

1 SMITH Betsy 222 Lemon Dr. New York NY 01234
2 Doe Ruth 1142 J. St. Los Angeles CA 91234
3 Smith Dave 619 Elm St. San Diego CA 92122
4 Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234
5 Appleby Andy 345 Oak St. Los Angeles CA 92123
6 Smith John Q. 123 A St. San Diego CA 92123

Sorting in this fashion is useful, but there are disadvantages.
First, sorting wastes disk space. Since dBASE does the sorting to
another database file, you need at least as much empty space on a
disk as the database itself fills. That means you can only use half a
disk for your entire database since you may need the other half for
the TEMP file. Second, sorting is quite slow. You may not think
so with this little database, but you would if you had 5000 records.
This can be especially painful when you want them sorted by
name for a directory, sorted by zip code for mailings, and so
forth. Also, since everyone's record number changes as the records
become rearranged, you can never be sure of an individual's
record number using the SORT command. This last disadvantage
may seem trivial now, but with large databases, it's nice to have
record numbers remain constant. The Index option is the solution
to these proble@s.

62 UNDERSTANDING dBASE III PLUS

SORTING WITH THE INDEX OPTION

The lrukx option provides you with a much quicker and more
efficient method of sorting records than does the, Sort option.

Creating an Index File

Let's give it a whirl by putting the MAIL.DBF back into alpha
betical order by name.

Highlight the Organize option from the main menu bar, and
select the lrukx option from the submenu. dBASE will display these
somewhat cryptic instructions:

The Index key can be any character, numeric, or date expression Involv
Ing one or more fields In the database file. It Is usually a single field.
Enter an Index key expression:

For now, simply type the name of the field you want to sort. In
this example, type

LNAME

(We'll deal with more complex index expressions later in the chapter,
as well as in Chapter 8.)

Next, you need to select a drive for storing the index file.
dBASE then displays the message:

Enter a file name (consisting of. up to 8 letters or digits) followed by a
period and a file name extension (consisting of up to 3 letters or digits.)
Enter the name of the file:

Names for index files follow the same rules as database files;
they can be up to eight characters long but may not contain spaces
or punctuation. dBASE will automatically assign the extension
.NDX to the file name you provide. For this example, type the

"
file name

NAMES

Now, to verify that the records are indeed back in alphabetical
order, select the Retrieve, List, and Execute the command options once
again. You'll see these results:

Sorting the Database 63

again. You'll see these results:

5 Appleby Andy 345 Oak St. Los Angeles CA 92123
2 Doe Ruth 1142 J. St. Los Angeles CA 91 234
1 SMITH Betay 222 Lemon Dr. New York NY 01234
3 Smith Dave 619 Elm St. San Diego CA 92122
6 Smith John Q. 123 A St. San Diego CA 92123
4 Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234

The records have changed to proper order, but the record num
bers have remained the same. This is helpful, because that means

Andy Appleby is still Record 5, Ruth Doe is still Record 2, etc.
Also, you didn't have to go through the Copy rigamarole to see the

records listed in proper order.

In the command you created, you asked dBASE to INDEX to
NAMES. Isn't NAMES a data file? Yes, but it is not a database.

It is a special file, an index file named NAMES.NDX. Its contents
look very much like an index in a book. A book's index has a list

of keywords in alphabetical order, and page numbers where the

keywords appear in text. Your database index has a list of last

names in alphabetical order, and the record numbers where they

appear in the database, like so:

Appleby 5
Doe 2
SMITH 1
Smith 3
Smith 6
Smithsonian 4

After the index is complete, when you view the records, dBASE
automatically uses information from the index file to determine the

proper order to display the records in MAIL.DBF. The records in

the MAIL.DBF database are still in their original order; the index
file, however, tells dBASE the correct order in which to display the
records.

After you do an index, the MAIL.DBF and NAME.NDX files
exist on the disk, as in Figure 4.4.

Let's try another example. This time you'll index on the ZIP
field. First, highlight the Organize option and select Index. Then,

enter Zip as the field to index, and select a drive for the index file.

64 UNDERSTANDING dBASE III PLUS

-

Figure 4.4: Disk Contents with an Index File

Type ZIP as the file name. When the indexing is done, select the

Retrieve and List options. Then use the Construct a field list option to

place the zip codes in the leftmost column to better show the new

order. Select the Execute option to view the records in the new
sorted order:

Record' ZIP LNAME FNAME ADDRESS
1 01234 SMITH Betsy 222 Lemon Dr.
2 91234 Doe Ruth 1142 J. St.
3 92122 Smith Dave 619 Elm St.
4 92122·1234 Smithsonian Lucy 461 Adams St.
5 92123 Appleby Andy 345 Oak St.
6 92123 Smith John Q. 123 A St.

The records are now displayed in zip code order. Furthermore,
you have a file called ZIP.NDX which tells dBASE the order in
which to display the records, as in Figure 4.5.

If you want a quick view of your mailing list sorted alphabeti

cally by name, you don't have to sort it again. Just use the Set Up

Sorting the Database 65

-

Figure 4.5: Disk Contents with Two Index Files

option from the Assistant menu screen to open the database with
the appropriate index file. Here's how:

� Highlight Set Up from the main menu bar.
� Select Database file.
� Specify a drive.
� Select MAIL.DBF.

� Answer Y to the "Is file indexed?" prompt.

At this point, a menu of all existing index file names will
appear on the screen. As with most menu options, you can simply

'
use t and to move the highlighting through the options, and
press Return to select items. The order in which you select items is
important, though.

Because you want to see names in alphabetical order in this
example, you need to select the NAMES.NDX index first. Then,
you can select other index files that were created for this database,
in any order you wish. (dBASE allows a maximum of seven index
files per database.) We'll discuss reasons for selecting multiple
index files in a moment.

66 UNDERSTANDING dBASE III PLUS

When you select the NAMES.NDX and ZIP.NDX index files,
you'll notice that the NAMES.NDX is called the Master index file:

NAMES.NDX Master
TEMP.NDX
ZIP.NDX 02

When you finish selecting index files, press � to leave the sub':'

menu. If you then select Retrieve, List, and Execute from the menus,
you'll see the names in alphabetical order:

Record# LNAME FNAME ADDRESS CITY
5 Appleby Andy 345 Oak St. Los Angeles
2 Doe Ruth 1142 J. St. Los Angeles
1 SMITH Betsy 222 Lemon Dr. New York
3 Smith Dave 619 Elm St. San Diego
6 Smith John Q. 123 A St. San Diego
4 Smithsonian Lucy 461 Adams St. San Diego

When you want a quick look at your mailing list in zip code
order, you don't have to re-sort anything because you've already
indexed on ZIP, and ZIP.NDX still exists. Just use the Set Up and
Database file options again to open the MAIL.DBF database.

Answer Yes to the "Is the file indexed?" prompt. This time, when
you select index files, be sure to select ZIP.NDX first, and
NAMES.NDX second, so the screen looks like this:

NAMES.NDX 02

TEMP.NDX
ZIP.NDX Master

When you select the Retrieve and List options to view the data
base, you'll see that the records are back in zip code order:

Record# ZIP LNAME FNAME ADDRESS
1 01234 SMITH Betsy 222 Lemon Dr.
2 91234 Doe Ruth 1142 J. St.
3 92122 Smith Dave 619 Elm St ..
4 92122-1234 Smithsonian Lucy 461 Adams St.
5 92123 Appleby Andy 345 Oak St.
6 92123 Smith John Q. 123 A St.

Sorting the Database 67

Don't Resort to Re-sorting

Now, you are probably wondering why I keep selecting more
than one index file, when only the Master (first selected) index file
affects the sorted order of the database. The reason for doing so is
to make the index files active.

Once an index file is active, it is automatically updated anytime
the database is altered. That means that as you add, change, or
delete records in the MAIL.DBF database, both the NAMES.NDX
and ZIP.NDX index files are also updated accordingly and instantly
re-sorted! Therefore, once you have created index files, you need
never use the Sort or Index options from the Organize menu again.
With a large database, this will save you a great deal of time because
you won't need to use the Index or Sort options to reorganize the data
base each time you add or change information.

You must remember to make the index files active before you
add or change data on the database. If you don't, the index files
will become corrupted. That is, they'll need to be recreated. If you
only make one index file active before adding, changing, or delet

ing data, then the active index file will still be correct, but the
unlisted index files will be corrupted.

You know when an index file has been corrupted because either

1. 	 dBASE does not display newly added records when you
enter the List option or command.

2. 	 dBASE will display the error message "Record out of

range" when you attempt to list the records.

In either cast" the index files will have to be recreated from
scratch. You'll have to select the Organize and Index options from
the menus again, and create the index file just as though you were
doing so for the first time.

dBASE III PLUS allows you to have up to seven index files
active at a time. You may want to wait until you have more expe
rience before you try managing that many index files, but you
should practice working with index files and experiment a bit.

68 UNDERSTANDING dBASE III PLUS

Don't worry about damaging the database; it's impossible to do so
by experimenting with index files.

SORTS WITHIN SORTS •

Although your MAIL.DBF database is too small to demonstrate
the point, sometimes a single field is not sufficient for organizing a
database. For example, suppose that there were 10,000 names on
the MAIL.DBF database, and 100 people had the last name Smith.
If you indexed on the LNAME field only, the Smiths might end up .
in a somewhat haphazard order:

Smith Rudolph

Smith Abigail

Smith Terri

Smith Barbara

Smith Prudence

Smith Zeke

Smith Oscar

T his order won't do you much good when you're attempting to
find a particular Smith.

To remedy this situation, you need to sort on more than one
field (or in other words, do a sort-within-a-sort). If you indexed

this hypothetical database on both the LNAME and FNAME
fields, your Smiths would come out in alphabetical order:

Smith Abigail

Smith Barbara

Smith Oscar

Smith Prudence

Smith Rudolph

Smith Terri

Smith Zeke

To index on multiple fields like this, you merely need to coru:atcnoJe

(stick together) the fields in the index expression with a plus (+)
sign. Let's give it a whirl. Select the Organize and Index options.

•
..

Sorting the Database 69

When dBASE displays the instructions

The Index key can be any character, numeric, or date expression Involv

Ing one or more fields in the database file. It Is usually a single field.
Enter an Index key expression:

type this expression:

LNAME + FNAME

Select a drive. Then enter a file name (BOTH).
When the indexing is complete, use the Retrieve, List and Execute

the command options to view the records. You'll see the records in
alphabetical order by last name and by first name within identical
last names:

5 Appleby Andy 345 Oak St. Los Angeles CA 92123
2 Doe Ruth 1142 J. St. Los Angeles CA 91234
1 SMITH Betsy 222 Lemon Dr. New York NY 01234
3 Smith Dave 619 Elm St. San Diego CA 92122
6 Smith John Q. 123 A St. San Diego CA 92123
4 Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234

More advanced Suppose now that you want all the records sorted by zip code,

examples of sorts- but within each zip code area, you want them sorted by last

within-sorts, and name. Furthermore, just in case there are several Smiths in the
descending sorts with
Numeric and Date 92123 zip code area, you want the names sorted by first name
fields, will be presented within common last names. This would be simple enough to
in Chapters 8 and 17. accomplish. You would just select the Organize and Index options

once again, and enter this Index expression:

ZIP + LNAME + FNAME

Notice the order of the entries. Since ZIP is listed first, the
records will be sorted into zip code mailing. However, within com
mon zip codes, records will be sorted by last and first name, as in
this small sample:

92111 Zeepers Zach

92122 Adams Archie

92122 Baker Anne

92122 Miller Arnie

92122 Miller Millie

70 UNDERSTANDING dBASE III PLUS

92122 Miller Pia
92122 Miller Wanda
92122 Peterson Wayne
92122 Wilson Arthur
92123 Ascii Antoine

INDEXING FROM THE DOT PROMPT

You can sort or index a database file using commands from the
dot prompt. As we discussed earlier, the USE command opens a

database file from the dot prompt. If you are using a computer

with two floppy-disk drives, you can store the database and index

files on Drive B simply by making B the default drive. To do so,

enter the command:

SET DEFAULT TO 8

Now to open MAIL.DBF enter this command:

USE MAIL

To create an index file from the dot prompt, you use the

INDEX ON command, along with the field(s) to be used in the

index file, and the name of the index file. For example, to create
the BOTH.NDX index file of the last and first name fields, you
would enter this command:

INDEX ON LNAME + FNAME TO 80TH

To view the results of the index, enter this command:

LIST

T ype the field names next to the LIST command to view spe

cific fields using the LIST command. For example, to view the
LNAME and FNAME fields only, enter this command:

LIST LNAME, FNAME

To use existing index files from the dot prompt, you can use the

INDEX command directly with the USE command. For example, to

open the MAIL.DBF database, with the NAMES.NDX index files

Sorting the Database 71

as the Master, and ZIP.NDX index files as secondary (02), you

would enter the command:

USE MAIL INDEX NAMES,ZIP

You can use the SE T INDEX command as well. For example,
to switch to zip code order, but still keep the NAMES.NDX index

file active, you could simply enter this command:

SET INDEX TO ZIp,NAMES

From this point on, records are displayed in order by zip code,
but both ZIP.NDX and NAMES.NDX are updated automatically
should any data be added to, deleted from, or changed in the
MAIL.DBF database.

SEARCHING FOR RECORDS

WITH AN INDEX FILE

Index files are certainly useful for creating and maintaining sort
orders, as we've seen in this chapter. Index files can also speed up
searches for information on very large databases. For example, if
you used LIST or LOCATE to look up information in a very

large database, you might have to wait a couple of minutes to get

the results. With an index file and the FIND option, the same

search would probably take only a second or two.
Even though your MAIL.DBF database is too small to demon

strate the full speed of searching with an index file, you can use it
to get some practice with general techniques .. Suppose that you
want to find Doe in the MAIL.DBF database using an index file.

First of all, you'll have to make sure that NAMES.NDX is the
Master index, because searches only work with the Master index.
Hence, from the dot prompt, enter this command:

USE MAIL INDEX NAMES,ZIP

Next, to quickly locate Doe, just enter this command:

FIND Doe

72 UNDERSTANDING dBASE III PLUS

Enter this command to verify that the correct record was located:

DISPLAY �

To locate a particular zip code, first enter the cFmmand

USE MAIL INDEX ZIp,NAMES

and then the command

FIND 92122

Again, entering the command DISPLAY will show the record
found, if any.

From the menus, you can assign indexes in the usual fashion
through the Set Up and Database file options . T hen, to look up data
in the Master index, highlight the Position option on the menu and
select Seek. dBASE will ask that you enter an expression. You need
to type the item that you are looking for, enclosed' in quotation
marks (if it is the Character data type). For this example, type

"Doe" �

dBASE will give you the message to press any key to return to the
menu. After doing so, highlight the Retrieve option, and select the
Display and Execute the command options. T his will display the single
record located by the Seek option.

REVIEWING DATABASE

ORGANIZATION

In this chapter we've discussed numerous techniques and com
mands for organizing a database:

-

dBASE provides two options for organizing a database into some
meaningful order,. Sort and Index.

-

To Sort a database, highlight the Organize option and select Sort.
You'll need to assign a file name for the sorted records, and

Sorting the Database 73

then use the Copy option to copy the sorted records back to the
original file .

-

To Index a database, highlight the Organize option and select the
Index option. Enter names for the index file and fields to index .

-

T he Index option is much faster and more efficient than the Sort
option, and it allows you to define and maintain sort orders
automatically.

-

For sorts-within-sorts, you can simply string together several fields

in an Index expression, using a plus sign

ZIP + LNAME + FNAME

-

When several index files are open, the first-selected (Master) index

file determines the sort order for displays of data, but any other
active index ,files are also updated instandy and automatically.

-

Another advantage of index files is quick lookups with the Find or
Seek options . Only the Master index file can be used in a search,
though.

76 UNDERSTANDING dBASE III PLUS

hen working with computers, the term edit means to

W change existing data on the database. For instance, if a
certain individual who is already on our database moves

to a new house, you would want to change his street address. That
would be a database edit. Suppose you decide that you want to
include phone numbers for each individual on our database, even

though you did not originally designate a field for storing phone

numbers. You would have to modify the structure of the database.

The options you can use to perform such feats are discussed in this
chapter.

EDITING WITH EDIT

Computer databases need editing for a variety or reasons.

People move and change their addresses, we make mistakes while

entering data and have to fix them, and so forth. Editing with
dBASE is a rather simple task if you know the number of the par

ticular record you are looking for. You can't possibly remember all
those numbers, but you can use the knowledge you've gained thus
far to look up a record number quickly.

Getting Ready

Before you actually begin editing a database, make sure that the
database is open, and that any index files that are used regularly
with the database are also open. The index files must be open to be
automatically updated as information is changed in the database.

In this example, select the &t Up and Database file options, and
open the MAIL.DBF database. When dBASE asks if the file is
indexed, answer Yes. Select the NAMES.NDX and ZIP.NDX

index files, so these will remain active throughout the exercises in
this chapter. Press ... to remove the index file menu.

Changing a Record

Now, let's suppose that Dave Smith moves, and you want to
update his record with his new address. If this were a large data

Editing and Modifying Databases 77

base, your first task would be to find his record in the database
file. There are a number of ways that you can do so, but the easi
est in this example would be to use the Locate option, as in these
steps from the Assistant menu screen:

! Highlight the Position option on the main menu bar.
! Select Locate.

! Select Build a search condition.

! Select LNAME.

! Select =.

! Type Smith

! Select Combine with . AND.

! Select FNAME.
! Select =.

! Type Dave

! Select No rrwre conditions.

Notice that your menu selections have created a command on
the Action Line:

Command: LOCATE FOR LNAME = 'Smith' .AND. FNAME = 'Dave'

which tells dBASE, "Find the first record that has 'Smith' in the

LNAME field, AND 'Dave' in the FNAME field." Select Execute
the command.

Now, to edit this record, move the highlight to the Update
option and select Edit. You'll see Dave Smith's data on the screen
ready for editing, as in Figure 5.1.

Notice that the cursor is under the S in Smith. Now we can use
the arrow keys and cursor-control keys to position the cursor to
make changes. (Remember that the " symbol means, "Hold
down the Ctrl key while pressing the next key.") Cursor com

mands for the EDIT mode are explained in Table 5.1.
To change Dave's address, press the + key twice to move down

two lines. This positions the cursor to the beginning of the
ADDRESS field. Press "Y to empty out the current address field,
and type the new address, 123 B St. Press the + key, then the +-

78 UNDERSTANDING dBASE III PLUS

-

DILETE
Chu: Del
,t.lel: "Y
lecol'd.: "U

Inel't Hoie: h.
lxi Vlaya: "'Iud
Abol't: Esc
"-0: "' be

Figure 5.1: Record Displayed in EDIT Mode

key a few times to move the cursor to the beginning of the CITY

field. Press "Y to erase the current city and type Los Angeles as

the new city. Press the / key twice, then the +- key a few times to

move to the beginning of the ZIP field. Press "Y to delete the

current zip code and type the new zip code, 90123. Now Dave

Smith's data looks like this:

LNAME :Smith
FNAME : Dave
ADDRESS :213 B St.
CITY :Los Angeles :
STATE :CA
ZIP :90123_

At this point, check to see if the data looks ok. If it does, save the
new data by pressing a " W or "End. This will bring back the
Assistant menu.

Ed£t£ng and Modify£ng Databases 79

Alternate

Key Key Effect

t or ;E Moves cursor up one line.

+ or ;X Moves cursor down one line.

- or ;S Moves cursor left one space.

- or ;D Moves cursor right one space.

Backspace Moves cursor left and erases.

Del or ;G Deletes character over cursor.

;T Erases one word to the right.

;y Erases all field contents to the right of the cursor

;U Deletes entire record.

Ins or ;V Turns INSert mode on/off.

PgUp or ;R Moves back one record.

PgDn or ;C Moves forward one record.

;End or ;W Saves changes and returns to Assistant or dot
prompt.

Esc or ;Q Abandons changes and returns to Assistant or dot

prompt.

-

Table 5.1: EDIT-Mode Control Keys

If you practice using the EDIT mode, you will find it easy to

use. It is a straightforward procedure; there is nothing particularly

tricky about it. At this point, you can try editing a few records of
your own.

EDITING WITH BROWSE

The Browse option allows you to scroll through the database,

horizontally and vertically, to edit or add records. As you pan,
dBASE shows as much data as will fit on the screen. You can

move the cursor to change whatever information you please. This

DOW"
I;, t ,

I:

LIWtI

ifiii M" he Ruh

Fl
"'Y

-
MY
CA

Sa1l

liel •••

,.,a:

80 UNDERSTANDING dBASE III PLUS

is a very useful technique for locating easily-corrected errors, like
misspellings.

You can use the Locate option to pinpoint a particular record to
edit, as you did in the last example. But in this case, since the
MAIL.DBF database is so small, you can just start editing from
the top of the database.

To start at the top of the database with the first record, highlight
the Position option on the main menu bar, and select the Coto Record
and Top options. To enter the BROWSE mode now, highlight the
Updote option and select the Browse option. You'll see as much infor
mation as will fit on the screen, as shown in Figure 5.2.

CUIISOI (--) ur IILftl In.ert no•• : Ins
Bece..d: CII ... : Del bit: "'En.'., CIa ... :net.: Hau 1M rap! r,Up p,la flel.: A t: Ise

....
 Help: Beeo"': "'u Set Options: "'HOMe

CITY STATI

Lo. A,..ele. CA
aniTA lets" 222 r..on Dl'. It .. Yopk
Sltlth Dave 123 B St. Los A,..ele.
8Itlth Joha fl. 123 A St. S•• li8fo CA
Sltithso.ian Lue" A Ilego CA461 St.

VI.. an. edit

-
Figure 5.2: Records on a BROWSE Screen

You can use the arrow keys to move the large highlighting bar
and the cursor within this bar. T hen make whatever changes you
want. The menu. at the top of the screen summarizes the command

2G

Editing and Modifying Databases 81

keys. The control-key commands for the BROWSE mode are
explained in more detail in Table 5.2.

Alternate

Key Key Effect

t or 2E Moves cursor up one line.

+ or 2X Moves cursor down one line.

- or 2S Moves cursor one space to the left.

- or 2D Moves cursor one space to the right.

Home or 2A Moves cursor one field to the left.

End or 2F
•

Moves cursor one field to the right.

2- or 2B Pans one field to the right.

2- or AZ Pans one field to the left.

Del or Deletes character over cursor.

2y Deletes infonnation to the right of the cursor in the

field.

Ins or 2V Enters INSert mode, so that newly entered data is

inserted into the field without overwriting existing

data.

2Home Displays/ erases help menu on the top of the

BROWSE screen.

2End or 2W Saves all newly edited data and

prompt.

returns to dot

Esc or 2Q Returns to dot prompt without saving changes made

in the BROWSE mode.

-

Table 5.2: BROWSE-Mode Control Keys

To change the information of a field or record, just position the

cursor where you want to make the change, and type the new

data on top of the old data.
In the above example, the ZIP field is not displayed because it

82 UNDERSTANDING dBASE III PLUS

can't fit on the screen with all the other information. To look at
that field, you need to pan to the right. Press "-+ to pan to the

right one field, so the zip code will be displayed and the last name
will be invisible. Press "+- to pan the screen back to the left.

For more options that you can use in BROWSE mode, press

"Home. A menu of options will appear:

Bottom Top Lock Record No. Freeze Find

These options are described in more detail in Table 5.3.

Option Purpose

Bottom:
•

Positions the highlighting to the last record in the database.

Top: Places the highlighting on the first record in the database.

Lock: Maintains the on-screen display of one or more fields to the left
of the screen even as you pan to the right using the "- or
"B keys.

Record No:

Freeze:

Asks you to enter the number of a record to highlight.

Locks the highlighting into a single field (like ZIP) for easier
editing of the same field in a number of records.

Find: Looks up data in an indexed field. For example, with
NAMES.NDX assigned as the Master index file, you could
select Find and type Doe to quickly move the highlighting to
Doe's record.

-
Table 5.3: BROWSE Menu Options

When you finish browsing, you can use a "W or "End to
save all data and return to the Assistant menu.

DOT-PROMPT COMMANDS

FOR EDITING

Like all Assistant menu options, you can edit a database directly

Editing and Modifying Databases 83

from the dot prompt. For example, to browse through the data
base, just use the database (and any index files) and enter the
BROWSE command at the dot prompt, as in these commands:

USE MAIL INDEX NAMES,ZIP
BROWSE

To edit an open database (and index files), use the EDIT com
mand with the number of the record to edit:

USE MAIL INDEX NAMES,ZIP

EDIT 2

GLOBAL EDITING

The term global ed£t refers to a change to a database that affects
more than one record. Global edits are used quite often in data
base management to perform a large task quickly. For example, if
you had an inventory system with several thousand parts on it,
and one of your manufacturers raised the price of all his products
by 10%, you could perform a global edit to increase the price of
all items made by that manufacturer in a single step.

Let's give it a try using the MAIL.DBF database and a hypo
thetical example. Suppose that you have two different secretaries
entering information into your MAIL.DBF database. One always
spells out Los Angeles, while the other uses the abbreviation L.A.
You decide to standardize the entry so that searches for Los
Angeles residents do not require two separate searches for Los
Angeles and L.A.

The least efficient way to make this change would be to work
through the database, finding each occurrence of Los Angeles and
retyping it as L.A. If there were 500 such cases, you'd be spend
ing a lot of time.

The faster way is to follow these steps from the Assistant menu
screen:

V Highlight the Updoie option.

v Select the Replace option.

84 UNDERSTANDING dBASE III PLUS

v' Select CITY.

v' Type L.A
v' Press-'.

Notice the command you've created on the Action Line:

Command: REPLACE CITY WITH 'L.A.'

This will replace the CITY field with the abbreviation L.A. in the
current record, but you want dBASE to do so for those records
which currendy contain Los Angeles. Therefore, you need to build

a search condition for these records following these steps:

v' Select Build a search condition.
v' Select CITY.
v' Select =.

v' Type Los Angeles

Now the command is more specific:

Command: REPLACE CITY WITH 'L.A.' FOR CITY = 'Los Angeles'

In English, this translates to "Everywhere you see the words Los
Angeles in the CITY field, put in the abbreviation L.A. instead."

Select No more conditions to leave the submenu, and then select Exe
cute the com:mand. The screen will display this message:

3 records replaced

If you now use the Retrieve and List options, you'll see that the
records which once contained Los Angeles now contain the abbre
viation L.A.:

Record# LNAME FNAME ADDRESS CITY
5 Appleby Andy 345 Oak St. L.A.
2 Doe Ruth 1142 J. St. L.A.
1 Smith Betsy 222 Lemon Dr. New York
3 Smith Dave 123 B St. L.A.
6 Smith John Q. 123 A St. San Diego
4 Smithsonian Lucy 461 Adams St. \ San Diego

Editing and Modifying Databases 85

You can use the REPLACE command quite easily from the dot
prompt as well, as long as you remember to use the FOR condi
tion to clearly define which records get changed. For example, exit

the menu by pressing Esc. Then enter this command at the dot
prompt:

REPLACE CITY WITH 'Los Angeles' FOR CITY = 'L.A:

All the L.A. records will change back to Los Angeles.

The REPLACE command can be helpful with standardizing
case in some situations. For example, in MAIL.DBF, you have a

record with SMITH in uppercase. From the dot prompt, you can
enter the command

REPLACE LNAME WITH "Smith" FOR LNAME = "SMITH"

to globally change all SMITHs to Smith. After trying these two
REPLACE commands from the dot prompt, you can enter the
command

LIST LNAME, CITY.....,

to quickly view the results.
Whether you make your global changes from the menu or from

the dot prompt, you must be certain to enter the correct FOR
condition to ensure that the command only acts upon the appro
priate records. REPLACE has a high whoops factor, which means
that by the time you realize that you've entered the wrong FOR
condition, dBASE has already changed all the wrong records. So
do be careful.

Now type

ASSIST,

to return to the Assistant menu screen.

DELETING RECORDS

Deleting records from a dBASE database actually involves two
steps. First, you mark the record for deletion. You can review.

86 UNDERSTANDING dBASE III PLUS

these marked records prior to permanendy deleting them, or you

can temporarily delete them to perform a certain task. Second,

whenever it's convenient, you can pack the database, which perma

nendy deletes the records that have been marked for deletion.

Marking Records

The easiest way to mark a record for deletion is to press "U

while the record is being edited via the Edit or Browse options. For

example, suppose that you want to delete Dave Smith from the

MAIL.DBF database. First, enter BROWSE mode from the

Assistant menu screen:

t' Select Update.

t' Select Browse.

Next, move the highlighting to Dave Smith's record, as shown

in Figure 5.3. Then press "U so that "Del" appears in the lower

right corner of the screen (also shown in the figure). The "U key

acts as a toggle, which means that pressing it repeatedly marks and

unmarks records for deletion.
After marking the record for deletion, save your work in

BROWSE by typing "W or "End. If you now select the Retrieve

and List options from the Assistant menu, you'll see that this

record is marked for deletion with a leading asterisk, but it has not
been deleted yet:

2 Doe Ruth 1142 J. St. Los Angeles CA

3 *Smith Dave 123 B St. Los Angeles CA

6 Smith John Q. 123 A St. San Diego CA
1 Smith Betsy 222 Lemon Dr. New York NY

4 Smithsonian Lucy 461 Adams St. San Diego CA

Packing the Database

Now, t� permanendy remove this record from the database, you

Editing and Modifying Databases 87

-

Figure 5.3: Record Highlighted on a BROWSE Screen

must select the Pack option from the Assistant menu screen:

¥ Highlight the Update option.
¥ Select Pack.

dBASE will display the message

5 records copied

which means that there are now only five records on the database.
You'll also see messages that the NAMES.NDX and ZIP.NDX
index files are being updated. (When records are deleted from the
MAIL.DBF database, they are automatically removed from

NAMES.NDX and ZIP.NDX if you remembered to open your
index files when you opened your database.)

88 UNDERSTANDING dBASE III PLUS

If you select the Retrieve and List options now, you'll see that
Dave Smith's record has indeed been deleted from the database:

4 Appleby Andy 345 Oak St. Los Angeles CA
2 Doe Ruth 1142 J. St. Los Angeles CA
1 Smith Betsy 222 Lemon Dr. New York NY
5 Smith John Q. 123 A St. San Diego CA
3 . Smithsonian Lucy 461 Adams St. San Diego CA

Deleting from the Dot Prompt

You can easily perform deletions from the dot prompt using the
DELE TE command. As usual, begin by pressing the Esc key to
leave the Assistant menu and bring up the dot prompt. Now, sup
pose that you want to delete all California residents from the
MAIL.DBF database. At the dot prompt, type this command:

DELE TE ALL FOR STATE = 'CA'

dBASE would respond with

4 records deleted

The effect of this command would be to mark all records with C A
in the S TATE field for deletion. If you were to list the contents of
the database now, you'd see

1

2

3

4

5

* Appleby
*Smith
* Smithsonian
* Doe

Smith

Andy
John Q.

Lucy
Ruth
Betsy

345 Oak St.
123 A St.

461 Adams St.
1142 J. St.
222 Lemon Dr.

Los Angeles
San Diego
San Diego
Los Angeles
New York

CA
CA
CA
CA
NY

92123

92123

92122·1234

91234

01234

All individuals who live in California are marked for deletion.

Don't PACK them now, or you'll end up with only one record in
your database, Betsy Smith, since she lives in New York. Rather
than packing, let's

RECALL ALL

so that you don't lose all your California residents permanently.
(The earthquake hasn't hit yet, but the practice might be useful.)

Editing and Modifying Databases 89

If you LIST after recalling all the records you'll see

1 Appleby Andy 345 Oak St. Los Angeles CA

2 Smith John Q. 123 A St. San Diego CA

3 Smithsonian Lucy 461 Adams St. San Diego CA

4 Doe Ruth 1142 J. St. Los Angeles CA

5 Smith Betsy 222 Lemon Dr. New York NY

Everyone is back in shape.
Global deletes are useful for getting the job done quickly, but

there is an element of danger: you might accidentally delete records
you wanted to keep. It's a good idea always to LIST the records
that are marked for deletion prior to packing the database. For
example, suppose that you decided to take a shortcut method for
deleting John Smith from the database using the command

DELETE ALL FOR LNAME 'Smith'=

You would end up with the response

2 records deleted

W hoops. You had actually only planned to delete one Smith, but
ended up with two deletions. So to see who else you've acciden
tally deleted, you would ask dBASE Bo

LIST FOR DELETEDO

That is, list all the records that are marked for deletion. The result
would be

2 *Smith John Q. 123 A St. San Diego CA
5 *Smith Betsy 222 Lemon Dr. New York NY

Apparendy we've gotten a litde carried away with our global
delete here. We only meant to delete John Q. Smith, but unfortu
nately our global delete marked Betsy Smith for deletion also. You
can bring back Betsy with the command to

RECALL RECORD 5

dBASE would release Record 5 from deletion. Global deletes are
useful in cases where you want to delete records of a certain type,
but be sure to LIST FOR DELETEDO prior to PACKing to

92123

92123

92122-1234

91234

01234

92123

02134

•
�

90 UNDERSTANDING dBASE III PLUS

make sure you won't be deleting any innocents. Now type this
command:

RECALL ALL

so that you don't lose John Q. Smith permanendy.

MODIFYING THE DATABASE

STRUCTURE

It is not at all unusual to change your mind about what to store
in a database after you have entered some records. For example,
phone numbers might come in handy on your MAIL database,
but you didn't make a field for them. dBASE III PLUS offers a
very easy technique to change the structure of a database, no
matter how much data you've already stored.

For example, to add a new phone number field to the
MAIL.DBF database, follow these simple steps from the Assistant
menu screen:

" Highlight the Modify option.
" Select the Database file option.

The current structure of the database appears on the screen,
ready for modification, as in Figure 5.4.

Now, pop quiz. What type of data will the phone number be? At
first you might think it should be Numeric data, but this is incorrect.
Phone numbers contain non-numeric characters, like parentheses and
hyphens. Remember, the numeric data type is for real numbers only.
Therefore, the phone number will be character data.

Most phone numbers look something like (123)456-7890, there
fore we'll assign a width of 13 characters to this new field.

You can insert fields using the "N keyc but in this case, field 7
seems as good a place as any for a phone number. Using the +
arrow key to move the cursor to the first empty field slot on the
screen, type the field name PHONE, use the Character data type,

Remember: to
leave the dot

prompt and return to
the Assistant menu, type
ASSIST and press

Editing and Modifying Databases 91

-
• Figure 5.4: MODIFY STRUCTURE Screen for MAIL.DBF

and enter the length, 13. Your screen display should look some

thing like this:

MAIL.DBF
Field Name Type Width Dec

1 LNAME Character 15

2 FNAME Character 10

3 ADDRESS Character 25

4 CI TY Character 15

5 S TATE Character 5

6 ZIP Character 10

7 PHONE Character 13

8 Character

After adding the new field to the database, save the new struc
ture by typing a A W or A End. dBASE displays this message:

Press EN TER to confirm-any other key to resume
Database records will be APPENDED from backup fields of the same

name onlyll

.. t ,
"'Y

'"

",.M.

92 UNDERSTANDING dBASE III PLUS

This somewhat cryptic message is a litde easier to understand if
you know how the MODIFY STRUCTURE command works.

When you ask dBASE to MODIFY STRUCTURE, it first copies

all of the records from the database to a separate database. Then,

it deletes all records in the current database and allows the user to
make changes. When you are done changing the structure, it reads
all the records from the backup database back into the current
database. However, if you changed the name of any field, it does

not read in data for the new field name. For example, if you had

changed the LNAME file to LAST_NAME, you would have lost
all of the last names in the database. This is a useful reminder,
because if you have changed a field name, you can press any key
and then change the field name back to its original name.

For this example, you didn't change any field names; you just
added a new field, so it's safe to proceed. Press the Return key

CURSOR (- -) UP DOW" , DELETE Insert Hode: Ins

Char: Record: Ch ... : hI Exit: "End
+

Field: HOMe End Page: P,Up PgDn "'eld: Abort: Esc

Pan: Help: F1 Recol'd: "u Set Options: "'HOMe
"+ A ..

LHArlE----- 'HArlE-- CITY----- STATEZI P--- PHOHE----
Appleby Andy Los Angeles CA 92123
Doe Ruth Los Ange Ie. Cft 91234
SMitll Betsy Hew York flY 81234
SIIith John Q. San Diego eA 92123
SIIithsoftiu Lucy San Diego CA 92122-1234

View and edit fields.

-

Figure 5.5: Modified BROWSE Screen

Editing and Modifying Databases 93

now to complete the modification of the database. You'll be
returned to the assistant menus.

Unfortunately, there is no command to fill in the phone num
bers automatically in the MAIL database. To add new phone
numbers, you'll need to do so one record at a time.

T he easiest way to do this would be to highlight the Update
option and select Browse. T hen press AHome to bring up the
menu, and select the Lock option. Type 2 and press Return to lock
the two leftmost fields. Next, type AHome again to bring up the
menu, and select Freeze. T ype the field name PHONE to keep
the highlighting in the PHONE field.

Next, press A--. a few times to bring the new phone number
field onto the screen. Now you can easily move from record to
record and add new phone numbers. Figure 5.5 shows the
MAIL.DBF BROWSE screen with the new PHONE field.

T ype AEnd or AW when done filling in phone numbers to save
your work and return to the menu.

REVIEWING EDITING

In this chapter we've discussed many techniques for changing
an existing database:

-

When editing (making changes to) a database, make sure to first
open your database and the index files you use regularly.

-

To bring a single record to the screen for editing, select the Update
and Edit options from the menu.

-

To bring the entire database to the screen for editing, select the
Update and Browse options from the menu.

-

To mark records for deletion, use the Update and Delete options
from the menu.

94 UNDERSTANDING dBASE III PLUS

-

To pennanently delete records from the database, select Pack from
the Update menu.

-

To globally edit a database, use the Updo,te and Replace options

from the menu.

-

To change the structure of an existing database, select the Modify

and Database file options from the menu.

98 UNDERSTANDING dBASE III PLUS

s o far you've been displaying data on the screen without any

particular format. I've even cheated a litde in displaying

LISTs in this book so that they would fit the page. If you

don't provide dBASE with an exact format for displaying data,

dBASE will list records and fields in its own fashion. To print for
matted reports with dBASE III PLUS, you use its built-in report

generator.

CREATING A REPORT

You can create as many report formats for a database as you

wish. Like datab=se and index files, you assign a name (maximum

of eight characters long, no spaces or punctuation) to the report,
and dBASE stores it on disk with the file name extension .FRM.
Let's give it a try by creating a simple directory for the
MAIL.DBF database.

The first step is to make sure that the MAIL.DBF database is in
use. If the MAIL file name does not appear in the Status ,Bar at

the bottom of the screen, use the &t Up and Database file options to

open the MAIL.DBF database and the NAMES.NDX and
ZIP.NDX index files. For this example, be sure to open NAMES
.NDX before ZIP.NDX to create an alphabetized report.

Next, highlight the Create option on the main menu bar. Select
Report from the submenu. dBASE will ask for the drive and a file

name for the report format. As usual, select a drive and then type

the file name

BYNAME �

dBASE first displays a menu of the format options for printing
reports, as shown in Figure 6.1. The meaning of each of these

options is summarized in Table 6.1.
For your first sample report, follow these steps to set up the

page format:

t' Select Page Title.

t' Type Mailing List by Name.

• Ixlt IF •••

I'LI_.......

• •

IQae W.

..

"'l'
..... .. hf;

-'1!1!! .. SC'L. n as S E i!1...

Creating and Printing Formatted Reports 99

" Press

" Press ,.. End to finish the tide.

.... IIIItIt ,,..ltl...) •
Wt 1. f
lipt....... I

58
...... J'ttIIiIII't ..
.... eJect WON ,.lati .. v..
'ap eJed dtar 'Pi1IHII ...
• Ial..... ...

CURSOR (--) Derete cit ... : Del IllUI't col.. : AM 1 .. 1II't: ha
Char: hl.te NOI'd: Report lo ... t:· '1 za- in: "'Pst1l
Wo.d: "'lete C01Ull1l: AMNon: Z- oat: A,aU,

I- . . - __
Enter .p to foul' linea of text to •• diapl.gad at the top ot .ac. report pa,e.

-

Figure 6.1: Format Options Menu

Next, adjust the left margin to zero spaces. Here are the steps:

" Press + twice.
Select Lift Margin.

" Type O.
" Press

The rest of the settings on the menu are sufficient for this
report. Now let's define the contents of the report itself. You can
skip the Group option on the main menu, because that is used pri
marily for subtotals-a topic we'll discuss in a later chapter. Here

100 UNDERSTANDING dBASE III PLUS

On-Screen
Prompt Effect of Your Response

Page title: Defines a title to be printed at the top of the report.

Page width: Defines the maximum page width for the report (usually 80

columns, although can be extended to 500 columns for very

wide printer paper).

Left margin: Defines a left margin measured in number of spaces.

Right margin: Defines a right margin in number of spaces.

Lines per page: Defines the number of lines to be printed on each page (usu

ally 58 for 8 1/2 by 11 inch paper).

Double space

report: Prints the report without blank lines between rows unless you

change this option to Yes.

Page eject

before printing: Yes ensures that the printed report starts on a new page. No

prints the report starting at the current printer position of the

paper.

Page eject after

printing: Yes makes the printer move to the top of the next page after

printing the last page of the report.

Plain page: No prints the report title, page numbers, and current date.

-

Table 6.1: Summary of Format Options

are the steps to put the last name in the first column of the report:

¥ Highlight Columns on the Report menu.

¥ Select Contents.
¥ Press FlO to display a menu of field names.
¥ Select LNAME.
¥ Press....... to finish the entry.

¥ Select Heading.
¥ Ty pe Last Name.
¥ Press

¥ Press "End to finish the entry.

Opll ...

en.i%iiiiiii'''iiii''!iiiiii&ii'iiiiiiikiiit.i''+i''iiiii4i
.....1.. Lnt

1)1) I J f ! N ,"If ! I r:: ''lZEi
!

Paeltl eel .. -....,.....

Creating and Printing Formatted Reports 1 01

Now let's narrow the column just a bit to try to conserve space.
Here are the steps:

¥ Select the Width option.
¥ Press '" until the width is 12.
¥ Press

That defines the contents of the first column of the report.
Notice that a template of the report appears in the bottom half of
the screen with the Last Name heading displayed, and 12 X's to
show the width of this column on the report, as in Figure 6.2.

IIIU. 12
DeciMal places
Totd thia col.n

1 11

.. .ladl. - fl -
Intel' a tielel 01' exp.esaion to elisplay h the inclicaW nPOl't col_n.

-

Figure 6.2: Template of BYNAME Report

Next, put the First Name in the next column of the report. The
steps are oudined below.

102 UNDERSTANDING dBASE III PL US

t' Press PgDn to move to the next column.

t' Select Contents.
t' Type FN AME.

t' Press to enter the field name.
t' Select Heading.
t' Type First Name.
t' Press

t' Press "End to finish the entry.

The column should be defined like this:

Contents FNAME
Heading First Name
Width 10

Decimal places
Total this column

Now press PgDn to define the next column. Place the

ADDRESS field in this column by filling in these options:

Contents ADDRESS
Heading Address
Width 20

Decimal places
Total this column

Press PgDn to define the next column, and place the CITY
field in this column by filling in these options:

Contents CITY
Heading City
Width 15

Decimal places
Total this column

Press PgDn to move to the next column, and fill in the STATE
column:

Contents S TATE
Heading St
Width 2

Decimal places
Total this column

-"POl't t-----------------------.

Creating and Printing Formatted Reports 103

Finally, press PgDn to describe a column for the zip code. Your
screen should look like Figure 6.3 when you have selected the last

format option for BYNAME. Now you must save your report

format.

.....1.. Zi, CoU
MI... II
Jeel.a I places
Total this colan

fo
i%s* A44ress at Zip Code ----

-

Figure 6.3: Report Format Selections

Saving a Report Format

When you've defined the basic format for your report, save
your work by highlighting the Exit option on the menu at the top

of your screen and selecting Save. dBASE will return to the main
menu where you can now print your report.

Printing the Report

To print your report, highlight the Retrieve option, and select

Report. Specify a drive and select BYNAME.FRM. For this first

104 UNDERSTANDING dBASE III PLUS

run, simply select the Execute the command option, and answer Yes to
the question about printing the report. Your finished report will
look like Figure 6.4.

Mailing List by Name

Last Name First Name Address City St Zip Code
Appleby Andy 345 Oak St. Los Angeles CA 92123
Doe Ruth 1142 J . St. Los Angeles CA 91234
Smith Betsy 222 Lemon Dr. New York NY 01234
Smith John a. 123 A St. San Diego CA 92123
Smithsonian Lucy 461 Adams St. San Diego CA 92122-1234

-

Figure 6.4: Sample Directory Report from MAIL.DBF

Like the List and Locate options, you can specify that only cer
tain records be printed on the report. For example, to list only
California residents, follow these steps:

¥ Highlight the Retrieve option.
¥ Select Report.
¥ Select the BYNAME.FRM report format.
¥ Select Build a search condition.
¥ Select STATE.
¥ Select the = option.
¥ Type CA as the state to search for.

¥ Select No more conditions.

¥ Select Execute the command.

Your report will display only California residents. Betsy Smith's
data will not be printed in this report.

Of course, index files will determine the order of information
printed in the report. If you select the NAMES.NDX file first

..

Creating and Printing Formatted Reports 1 05

Whe�ever you wi�h
to pnnt a report III

the future, you must
remember to first open
the database that was
used to create that
report format. You'll
also need to open an
index if you want a
specific sort order.

when you open the database, the names will be displayed in alpha
betical order. However, if you select ZIP.NDX first, the data will
be displayed in order by zip code. Of course, if you do not open
your index files, then the records in the report will be printed in
the same order in which they were entered into the database.

MODIFYING REPORT FORMATS

Defining a report format is often a trial-and-error process. What
you see on the screen or page may not be exactly what you had in
mind. You can easily change the format of any report by high

lighting the Modify option from the main menu bar and selecting
the Report option. As usual, specify the drive, and select the

BYNAME.FRM report for this example. Then you can use the
an:ow keys to scroll through the report format and make changes.
The Locate option on the top menu allows you to select a specific
report column to alter.

To insert a column in a report format, press "N while the
column to the right of the new column is displayed on the contents
box. A blank form for filling in the new column definition will
appear.

To remove a column, use PgUp or PgDn to bring the appropri
ate column definition to the screen. Then type " U to delete the
column. For help while modifying field definitions in a report for
mat, just press the Fl key.

When you finish changing your report format, highlight the Exit
option from the top menu, and select Save. You'll be returned to
the menu where you can print a copy of the modified report using
the usual Retrieve and Report options from the menu.

CREATING MAILING LABELS

If you've ever had to type a number of mailing labels, you're
sure to love dBASE's mailing label printer. You create formats for
mailing labels in much the same way that you create formats for
reports. Let's give it a try.

• + "T
AU

. '.

...
Pi

M

Ina

106 UNDERSTANDING dBASE III PLUS

First, highlight the Create option from the main menu bar, and

select the Label option. dBASE will ask for a name for the label
format (to which it will add the extension .LBL). For this

example, select a drive, and type the file name TWOCOL (for
two-column labels).

dBASE will display the most commonly used setting for a label
format: 3-1/2 by 15/16 inches, one column across. Suppose that

you want this size, but you want two columns of labels. Simply
select the last option, Labels across page. Then press t once to change

the 1 to a 2. Your selections are shown in Figure 6.5.

Exit

CUlSOI: <--} Delete cJt&P: Del hUl't I'ON: h.ept:
Char: hlete NOH: Togsle _all: ZoOll ia: APsDa
Uol'd: Ia. lelete !,ON: A..... oa: Isc ZOOII oat: ""sU•

-

Figure 6.5: Menu Selections for Two-Column Labels

Next, highlight the Contents option from the menu, which lets
you define the contents of each line of the label. Type the field

names and punctuation exactly as shown in Figure 6.6.

..

Creating and Printing Formatted Reports 107

To put two spaces
between the State

and Zip fields, you
would use the expression
TRIM(CITY) + " ,
" " + TRIM(STATE) +
" + ZIP where there is
one blank space after
the comma, and two
blank spaces between
the second pair of quo
tation marks.

-

Figure 6.6: Contents for MAIL.DBF Labels

Notice that the first line contains

FNAME, LNAME

This command tells dBASE to print the FNAME and LNAME

fields from each database record on the first line of the label, with
a single space between fields. The next line contains only the

ADDRESS field. The third line of the label contains

TRIM(CITY) +", ",STATE,ZIP

This line tells dBASE to place the CITY, STATE, and ZIP fields
on the third row of the label. You've had to go to some lengths to
get it just right, though. First, the TRIM function tells dBASE that

if a city's name is shorter than the 15 spaces you defined for your
database CITY field, leftover blank spaces should be trimmed, not
printed. (These extra blank spaces are called trailing blanks.) The plus

108 UNDERSTANDING dBASE III PL US

sign tells dBASE to concatenate (link) the following text or symbols
(in this case, a comma) directly to the CITY field without insert
ing a blank space. The comma in quotation marks (" , ") tells
dBASE to print a comma and a blank space. (Note: The quotation
marks distinguish this comma from the others. Usually commas tell
dBASE to leave a blank space between two fields.) The final por
tion of this line

,S TATE,ZIP

simply places the state and the zip code on the same line, with a
blank space in front of each.

After defining the label format, highlight the Exit option and
select Save.

Printing Labels

No doubt you'll want to print mailing labels in zip code order
rather than alphabetical order, so you'll want to make the
ZIP.NDX index file primary. To do so, select the Set Up and Data
base file options from the Assistant menu, and select MAIL.DBF.
When you select index files, be sure to select ZIP.NDX first.

Then, to print labels, highlight the Retrieve option, and select
Label. Specify a drive, and select the TWOCOL.LBL file. Select
the Execute the command option, and answer Yes to the printer ques
tion. Your labels will look like Figure 6.7.

Betsy Smith Ruth Doe
222 Lemon Dr. 1142 J. St.
New York, NY 01234 Los Angeles CA 91234

Lucy Smithsonian Andy Appleby
461 Adams St. 345 Oak St.
San Diego, CA 92122-1234 Los Angeles CA 92123

John a. Smith
123 A St.
San Diego, CA 92123

-
Figure 6.7: Two-Column MAIL.DBF Labels

Creating and Pn'nting Formatted Reports 109

Of course, as with most options, you can also specify search
=conditions for your mailing labels (such as ZIP > 90000) to

print only labels that meet some criterion.

Modifying Label Formats

To modify a label format file, highlight the Modify option from
the main menu, and select Label. Specify the drive and file name.
T hen you can change the label format. (Use the arrow keys to
move the cursor and the F 1 key to get help.)

USING LABEL AND REPORT
COMMANDS

Like everything else in dBASE III PLUS, reports and mailing
labels can be accessed directly from the dot prompt. To create a
report format for a database, set the default drive, open the appro
priate database, then enter the command MODIF Y REPORT
with the name of the report format file. For example, to modify
the BYNAME.FRM report format from the dot prompt, you
would enter the commands:(On a hard-disk system, omit the SET
DEFAULT TO B).

SET DEFAULT TO B
USE MAIL
MODIFY REPORT BYNAME

To print a report, make sure the appropriate database is open,
and any index files that you want to use are active. T hen, enter
the command REPORT FORM with the name of the report for
mat file. In this example, the commands open the MAIL.DBF
database with the NAMES.NDX index file primary (so the records
are listed in alphabetical order) and print the data in the BYNAME
.FRM report format:

SET DEFAULT TO B
USE MAIL INDEX NAMES, ZIP
REPORT FORM BYNAME TO PRINT

110 UNDERSTANDING dBASE III PLUS

Adding the command TO PRINT to the end of the REPORT
FORM command prints the report rather than displaying it on
screen.

You can use the FOR option to specify a search condition for

printing reports. For example, this command prints data for people
whose last names begin with the letters A through M:

REPORT FORM BYNAME FOR LNAME > = "A";

.AND. LNAME < = "M" TO P RINT

To create or change a mailing label format for a database, use
the command MODIFY LABEL along with the name of the for
mat file. T he appropriate database must be open:

SET DEFAULT TO B

USE MAIL

MODIF Y LABEL TWOCOL

To display labels, use the LABEL FORM command with the
name of the label format file. If you want them in zip code order,
use the appropriate index file, too:

USE MAIL INDEX ZIP, NAMES

LABEL FORM TWOCOL

To print labels, add the TO PRINT command to the end of
the LABEL FORM command:

LABEL FORM TWOCOL TO PRINT

W hen printing labels, you can use the SAM PLE option to dis

play a facsimile of the labels to be printed, which will help you to
line up the labels properly iri the printer. For example, this com
mand allows you to check the alignment of the labels in the

printer before printing labels from the TWOCO L.LBL format file:

L ABEL FORM TWOCOL SAMPLE TO PRINT

You can, of course, build a search condition with the FOR
option when printing labels. T his command prints mailing labels
for individuals in the 90000 to 95000 zip code areas, using the

in

Creating and Printing Formatted Reports 1 1 1

TWOCOL.LBL fonnat file:

LABEL FORM TWOCOL FOR ZIP > = '90000';

.AND. ZIP < = '95000' TO PRINT

REVIEWING REPORTS AND LABELS

In this chapter, y ou have learned how to use formats to create

reports and mailing labels.

-

To create a report fonnat for a database, select the Create and

Report options from the menus.

-

To print a report, select the Retrieve and Report options from the
menus.

-

To modify an existing report fonnat, select the Modify and Report

options from the menu.

-

To create a mailing label fonnat for a database, select the Create

and Label options from the menu.

-

To print mailing labels, select the Retrieve and Label options from
the menu.

-

To print a report or mailing labels rted order, use an existing
index file, or optionally, create a new one.

-

Commands for creating report and label fonnats, as well as for

printing reports and labels, can be entered at the dot prompt.

114 UNDERSTANDING dBASE III PL US

s you've seen in previous chapters, the Append and Edit

A options allow you to enter and edit data through a simple
screen which displays the fields in a vertical row.

Through the use of the dBASE III PLUS Screen Painter, you
can create your own custom screens for adding and editing data.
Figure 7.1 shows such a custom screen for MAIL.DBF, which
you'll develop in this chapter. However, you'll see that being crea
tive is easy, so you might prefer to try your own screen as you go
through the chapter.

CREATING A CUSTOM SCREEN

To get started creating a form, follow these steps:

vi Highlight the Create option.
vi Select Format.

vi Select a drive.
vi Type ADDNAMES, or create your own form name.

A screen for developing a form will appear, as well as a menu
of options. First, you need to tell dBASE which database this form
will be used for. So, follow these steps:

vi Select Select Database file.

vi Specify MAIL.DBF.

Now, as a shortcut to developing a form, we can have the
screen painter put together a general purpose form, which we in
tum will modify. (This is easier than trying to create the form
completely from scratch.) Follow these steps:

vi Select Load folds.

vi Highlight each field, and press �.

Designing Custom Screen Displays 11 5

-

Figure 7.1: Custom Data-Entry Screen

You'll notice that as you press ., the highlighting moves through
each field name on the menu. If you press Return while a field

name is highlighted, a triangle appears next to it, indicating that
the field has been selected for inclusion on the custom fonn. For

this exercise, use this method to select all the field names for your
screen:

LNAME

FNAME

ADDRESS

STAT E

ZIP

PHONE

Press -. after all field names have been selected. You'll see a
simplified fonn appear on the screen, as in Figure 7.2. This screen

is called the blackboard because, as you'll see, it is easy to move,

add, and change infonnation on the screen.

116 UNDERSTANDING dBASE III PL US

-

Figure 7.2: Loaded Fields on the Screen Painter Blackboard

Notice that there are field labels (such as LNAME, FNAME,

etc). There are also field highlights which show where the reverse

video portion of the screen will appear when the form is used for
entering and editing data. The Xs show the number of characters

in each field.

MOVING INFORMATION

ON THE BLACKBOARD

It's pretty easy to move information around on the blackboard
after you've practiced a bit. Take a moment to review the basic
editing keys listed in Table 7.1.

Now let's start shifting some things around. First, press � N

four times to put some blank lines at the top of the screen for a

tide (which you'll add later). Make sure that the cursor is in the

"C

Designing Custom Screen Displays 117

Alternate

Key Key Effect

F10 Switches between menu and blackboard.

- Moves cursor left one character.

- Moves cursor right one character.

t Moves cursor up one line.

, Moves cursor down one line.

Ins or "V Turns the INSert mode ON and OFF when cursor
is not in a field, or extends the length of the
highlighted field where the cursor rests.

"N Adds a blank line between two lines.

End or "F Moves cursor to beginning of next word.

Home or "A Moves cursor to beginning of current or previous
word.

...... or "M Inserts a new line if INSert is ON. Otherwise,
moves cursor down one line. Also moves field high-
lighting and boxes.

Del or "G Deletes character at the cursor or decreases the size
of a highlighted field where the cursor rests.

Backspace Deletes character to left of cursor.

"T Deletes word to right of cursor.

"Y Deletes an entire line from form.

"U Deletes a field or box.

PgDn or Scrolls down 18 lines on screen.

PgUp or "R Scrolls up 18 lines on screen.

-

Table 7.1: Blackboard Editing Keys

upper-left comer of the screen and that the blackboard is still dis

played on the screen. (Note: Press FlO if you want to switch from
Blackboard to menu.) Next, let's move the LNAME field

... hit ••••• ,

(I "J t; I I t) I ,_ii.... 1" •• 111 ••
lIiir '!f-J.

118 UNDERSTANDING dBASE III PL US

highlighting next to the FNAME field. Follow these steps to move

a single field:

v' Press + four times to move the cursor to LNAME.
v' Press the End key to put the cursor inside the field

highlighting.

v' Press to enter DRAG mode.

v' Press -+ 12 times to move the cursor 12 spaces to the right.
v' Press +.

v' Complete the move by pressing

The LNAME field highlighting will now be next to the
FNAME field highlighting, as shown in Figure 7.3.

LIW1E
'"Ani
ADDRESS
CIT't'
STATE
ZIP
PHOItE

....ily .,tio ..

f' < (N I <, D f' N fi�' P
Ia. text. fie•• or CU80P '1'11 'or

Fiela: nAIL-)L"AnE Type: ChaJ'actel' Width: 15

-
Figure 7.3: Customized LNAME Location

Notice the general steps that you used to move the field high

lighting. First, you put the cursor inside the field highlighting that

Designing Custom Screen Displays 119

you wanted to move. When the cursor was inside the highlighting,

you pressed the Return key to begin the Dragging option. T he bot

tom of the screen then read:

Move field with t
 -. Complete with +-I -

You used the � and + keys to move the cursor to the new loca
tion, and pressed Return to complete the move. (You'll have a

chance to practice this again in a moment.)

Now, let's add a few blank lines to this form. To move the
ADDRESS field down a line, follow these steps:

V 	 Press +.
v Press "�.

v Press

To move the CITY field down a line, follow these steps:

v 	 Press +.
v 	 Press

Now, to move the STATE field next to the CITY field, follow
these steps:

v Press + and End to move the cursor into the STATE field.
v Press to start the move.
v Using � and t, move the cursor to row 09, column 36.

(T he Status Bar lists the cursor's row and column position.)
v Complete the move by pressing

Now move the ZIP field over by the STATE field. Here are
the steps:

v 	 Press + twice, and then press Home to move cursor inside
the ZIP field.

120 UNDERSTANDING dBASE III PLUS

¥ Press to start the move.
¥ Move the cursor to row 09, column 53.

¥ Complete the move by pressing

Now you can delete the STAT E and ZIP field labels by follow
ing these steps:

¥ Press t.

"
¥ Press

¥ Press "Y.
¥ Press "T.

T he form is taking shape now , as shown in Figure 7.4. Next

let's create somE more appropriate field labels to be displayed on a
custom data-entry screen.

ADDING FIELD LABELS

Field labels like LNAME and FNAME may be easy for you to

remember, but they are not the best labels for other people who
will enter data through your custom screen. You can create field
labels simply by typing them on the screen. Here are some simple
steps to put a whole new set of field labels on the ADD NAMES
form. Note: If pressing the Space bar moves text to the right , press
the Ins key while the cursor is not inside a field.

¥ Press Ins if the "INS" message appears at the bottom of

your screen.
¥ Move the cursor to the L in LNAME, and press "T.
" Press +.
" Press the Space bar, and type First Name:.
" Move the cursor to row 05, column 28.
¥ Type Last Name:.
¥ Move the cursor to row 07, column 00.

Designing Custom Screen Displays 1 21

-

Figure 7.4: Customized Field Locations

¥, Press the Space bar, and type Address:.

¥ Move the cursor to row 09, column 00.

¥ Press the Space bar, and type City:.

¥ Move the cursor to row 09, column 30.

¥ Type State:.

¥ Move the cursor to row 09, column 44.

¥ Type Zip Code:.

¥ Move the cursor to row 11, column 00.

¥ Press the Space bar, and type Phone:.

Notice that you pressed Space bar for cosmetic reasons-to

move field names away from the left edge of the screen. When

you've finished , your custom form will look like Figure 7.5.
Let's customize this form a little more , by adding some boxes

and titles.

Exit 'E MM

I '" II I llfj r Ir q : I J

122 UNDERSTANDING dBASE III PLUS

\ 'i < \ '\ I �i

-

Figure 7. 5: Custom Form with Field Labels

DRAWING BOXES

Let's continue creating a custom data-entry screen by drawing a
box for the title. First, call up the menu by pressing FlO. Then,

highlight Options. This will display these choices:

Generate text file Image
Draw a Window or a Line

Single Bar
Double Bar

Select the Double Bar option. These instructions appear at the
bottom of the screen:

Position cursor to box corner with t + - -. Complete with

In this exercise, use the arrow keys to move the cursor to row
01, column 01, and press Return to mark the starting position.

Designing Custom Screen Displays 1 23

The screen instructions then display:

Position cursor to other corner with t .. - -. Complete with

Now follow these steps:

v' Press + twice.
v' Press -. until the cursor gets to row 03, column 68.
v' Press � to finish marking the corner.
v' Move the cursor inside the box that appears on the screen.

v' Type Add/Change Mailing List Data, or create your
own title.

Now your screen has a boxed title.

If you are feeling particularly ambitious or if the people who
will use your screen are novices, you may want to try adding your
own Help Menu to your custom data-entry screen. Figure 7.6
shows some help information added to the bottom of the ADD
NAMES form. Create the box with Double Bar and Single Bar
lines. Type the rest of the text just as you see it in Figure 7.6.

SAVING THE FORM

By this time you've put quite a bit of work into your form. So,
you might want to save the form now, just to play it safe. To do
so, move the highlighting to the Exit option. (If the menu is not
showing, press FlO first.) T hen, select the Save option. You'll be

returned to the main menu.

To resume working on a form, (or to make changes in the
future), highlight the Modify option from the main menu, and select

Format. Select a drive and the form name (ADDNAMES.SCR in
this example). Then press FlO to view the blackboard.

TEMPLATES

Templates are used to reduce the likelihood of errors being
typed into forms, as well as to simplify data entry. For example,

letUp - IIM*W

1

Code: l ••••

'8' Et •• Wm . •• � M'8" !

teXt.' 'tel4 r.ox 111F?

124 UNDERSTANDING dBASE III PL US

you can add a template like this to the PHONE field:

:(

Because the parentheses and hyphen are already in the field, the
template encourages a standardized format for entering telephone
numbers and simplifies their entry.

To add this template to the ADDNAMES form, first move the
cursor to the first character in the PHONE field highlighting.
T hen call up the menu (FlO) and highlight the Modify option. At
the bottom of the pull-down menu, you'll see these options:

Picture Function
Picture Template
Range

Select the Picture Template option. You'll see a menu of special

.... i" Exit

••d/Ct.aote Halliq Li1It Data

Fil'.t : •••

Aaarn.:

Cit,: State: _ Zip

PJao.e:

I
'age Hove:

lIext: ·'gh

PreviolAs: PgUp

le1ete:

Lette .. : Del
Field: "Y
Recol'd: "u

DOlle:

Save Work: "End
Ahaodon: Esc

.or rl8 'or __ .

Sueea field dellaition hlaelchoa .. d

-

Figure 7.6: ADDNAMES Form with Custom Help Menu

Designing Custom Screen Displays 1 25

characters that you can use in your picture template. These thar

acters are explained in Table 7.2.

Special
Character Effect

A Allows letters only to be entered.

L Allows logical data only (T, F, Y, or N).

X Allows entry of any character.

Allows numbers and + or - signs .

9 Allows numeric digits only.

Converts entry to uppercase.

other Adds any other character to the entry.

-

Table 7.2: Special Template Characters

dBASE will also ask you for the template. Type this template:

(999)999-9999

Notice that you've specified that only numbers can be entered

into the field (by placing the special character 9 into the template).
Therefore, the template also helps to prevent mistakes in entering

data.

Let's discuss a few other tricks that you could do with picture
templates. For example, if you put the template

- IAAAAAAAAAAAAA

in the LNAME field highlighting, and the template

IAAAAAAAA

in the FNAME field highlighting, both of these fields would auto
matically switch the first letter of the entry to uppercase. The

-- '.,. 4

I

"IM8:Q'M;;;DpiiiiMiiiil
i.'v 1.,. \.' i;> 'I ..j\ -'-{<: j

Code: !",!,,!"ij,!!

AEn.
"Y

181'.1,-•• ;-. • •• -•• -.1-.. "'
..... text . Iau? rtl I ...

126 UNDERSTANDING dBASE III PL US

special A characters will allow the other characters to remam as
they were entered.

Placing the template

!!

into the STATE field automatically converts any state abbreviation
to all uppercase. Placing the template

##########

into the ZIP field allows numbers , spaces, periods, plus (+) and
minus (-) signs to be entered for the zip code. (If your mailing
list includes foreign zip codes, however, you'll want to stay with
the XXXXXXXXXX template which allows any characters.) Fig

ure 7.7 shows how the ADDNAMES screen form looks with all
these new picture templates entered.

letUp Optioa Exit

M./ChallgeMail illg List Data

Fi ... t Last "1M8:@MiMDi'''WiiiMQi

A : ..; 'II \: 1\ X < ') < X\

City: Zip

Pholle:

Cupsop Move: Pale nove: Delete: DOlle:
Up

Left Right "ext: PgDn Letter: Del Save Work:
DIM1I Fiitld: 'Hndo1l: Esc

..... IM keys. P .. evious: PgUp Record: AU

..... Ileli CIIHOI' .. --.

Field: MAIL-}PHONE T'Jpe: Chal'4ctel' Wi4th: 13 Picture

-

Figure 7.7: ADDNAMES Form with Picture Templates

•
..

I
:1' ••• "_e:I'III ••••

II

Code:I •••••

I

1tet(t: 'gDn

'NYi"_: 'gUp

Designing Custom Screen Displays 1 27

To use a custom
form to add or edit

database records, you
must first remember to
open the appropriate
database (that is, the
one you used to design
the form in the first
place).

When you're done adding the picture templates to the ADD
NAMES form, highlight the Exit option and select Save. Now let's

look at ways to put the custom form to work.

USING A CUSTOM FORM

To use a custom form, you simply highlight the Set Up option
from the main menu, and select the Formo,t for screen option. dBASE

will ask for the drive and file name. In this example, select the
appropriate drive, and select ADDNAMES.FMT from the menu

of form names.

The custom form" will now be displayed whenever you add new
records, or edit through the EDIT mode. For example, if you high
light the Updote option and select Edit, you'll see the first record from
your database displayed on your custom screen, as in Figure 7.8.

..4ICh... e "ailing List Data

Fint "... Last

City: State: _ Zip

,hem.:

e..-..8Jt nove: Delete: Done:
u,

Left light LeU.,..: Del Saye Wo..k: AEM
.... Flel4: Ay AhaMon: Esc

... ..,k •. Recopcl: AU

-
Figure 7. 8: MAIL.DBF Record Displayed on Custom Screen

128 UNDERSTANDING dBASE III PLUS

All keys work with the new fonn as they did in the nonnal

APPEND and EDIT modes. That is, the arrow keys move the

cursor, Del and " Y delete characters and fields, PgUp and PgDn

scroll up and down through records, and "End saves your work

and returns to the Assistant menu.

USING OTHER SCREEN PAINTER
OPTIONS

There are several other options available in the screen painter
which we'll discuss briefly now. Some of these features are quite

advanced and are discussed in more detail in Chapter 1 7 .

The· Modify Menu Options

While working on the blackboard, you can place the cursor in

any field, and press FlO to call up the Screen Painter menu. If
you highlight the Modify option from the Screen Painter menu,

you'll see a pull-down menu that looks something like this:

Screen Field Definition

Action: Edit/GET

Source: MAIL

Content: FNAME

Type: Character

Width: 10

Decimal:

Picture Function:

Picture Template:

Range:

Let's briefly discuss what each of these options provides:

Action: 	 Toggles between Edit/GET and Display/SAY. In the
Edit/GET mode, the field can be modified in the

EDIT and APPEND modes. In the Display/SAY

mode, data are only displayed and cannot be changed

in either APPEND or EDIT mode. The latter is most

Designing Custom Screen Displays 1 29

commonly used in advanced applications where

value, such as an account number, is fixed and

not be changed.

a field

can

Source: Source is the name of the file that the field is from,
and this option cannot be changed.

Content: Content is the name of the field associated with the
field highlighting that contains the cursor.

Type: This is the data type, as defined in the database

structure (Character, Numeric, Date, Logical, or
Memo).

Width: The field width as defined in the database structure.
The number that you enter will change the width of

the field definition in the database structure, so use

this option with caution.

Decimals: The number of decimal places used with Numeric data.

Picture
Function: Like picture templates, but only requires that you

enter a single character. Options are: ! (convert all

letters to uppercase), A (allow only alphabetic charac
ters to be entered into field), D (display dates in

American mm/ dd/yy format-for Date data type

only), E (display dates in European dd/mm/yy

format-for Date data type only). The S option limits
the size of a field display on a form, but allows data
to scroll horizontally within it. Hence, if you use the

picture function S5 in the LNAME field, then the
highlighting on the screen will only be five characters

wide when entering or editing data. However, longer

names will scroll through the five-character "win
dow." The R option, rarely used, displays literals in
a date, even if a non-Date data type is used. For

example, picture function RE will request data in

DATE mode, even if a field is numeric.

Picture

Template: Allows standardized entry formats and data-en,try

130 UNDERSTANDING dBASE III PLUS

checking. See Table 7.2 for options.

Range: 	 Used with Numeric and Date data only, this option

allows you to define a highest and lowest acceptable
range of entries.

Adding, Changing, Deleting Fields

T he Width option from the Modify pull-down menu allows you
to change the width of a field. However, this option makes the same

change to the database structure. More often than not, you'll simply
want to change the size of a field on a form for aesthetic reasons.

To increase the size of a field highlighting on the data-entry

screen without affecting the database structure, follow these steps:

i Call up ADDNAMES.SCR.

i Move the cursor to the field that you want to lengthen.

i Press the Ins key until the field looks wide enough.
i Press A End to save the form.

Silhilarly, to decrease the field width on the data-entry screen and

not in the database structure, follow these steps but press the Del

key instead of the Ins key.

To add a new field from your database to this form, follow

these steps:

i Call up ADDNAMES.SCR.
i Move the 	cursor to the additional field location.

i Press FlO.

i Highlight Modify on the Screen Painter menu.
i Select the 	Content option.
i Select the field name from the submenu that appears.
i Highlight the Width option, and enter a width.
i Finally, press FlO to return to the blackboard.

Designing Custom Screen Displays 1 31

To delete a field from a form, move the cursor to the appropri
ate field highlighting and type ,., U. dBASE will ask if you want to

delete the field from the database structure as well. If you answer

Yes, all data in that field will be lost. Therefore, answer No unless
you are absolutely certain that you will never need this information
in your database.

CREATING SCREENS

FROM THE DOT PROMPT

If you begin working from the dot prompt, there are several
simple techniques you can use to handle forms. First, the com
mand MODIFY SCREEN <file name> will enter the Screen
Painter. For example, entering the command

MODIFY SCREEN ADDNAMES....., ,

will allow you to create a screen format named ADDNAMES.SCR

(screens always have the extension .SCR).
The Screen Painter automatically creates a separate file with the

same name but the extension .FMT (ADDNAMES.FMT). This is
the file dBASE actually uses to display forms on the computer's

screen. The .SCR file is used only while you are designing a

screen through the Screen Painter.
From the dot prompt, you can activate a .FMT file with the

SET FORMAT command. For example, the commands below
open the MAIL.DBF database with the NAMES.NDX and
ZIP.NDX index files. Then, the SET FORMAT command opens

the ADDNAMES.FMT format file:

SET DEFAULT TO B,

USE MAIL INDEX NAMES,ZIP,
SET FORMAT TO ADDNAMES.....,

To add new records to the MAIL.DBF database using the cus
tom screen, you merely need to enter the command

APPEND,

trom

132 UNDERSTANDING dBASE III PL US

at the dot prompt.
To edit data on the MAIL.DBF database, simply enter this

command at the dot prompt:

EDIT

Optionally, you can specify a record number:

EDIT 4

You can use a FOR condition with EDIT as well. For example,

EDIT FOR LNAME "Doe" .AND. FNAME "Ruth"= =

will edit all records with Ruth Doe as the name.
To stop using the custom form and return to the normal

APPEND and EDIT screens, simply enter this command at the
dot prompt:

CLOSE FORMAT

REVIEWING CUSTOM

DATA-ENTRY SCREENS

In this chapter, you have learned many techniques for creating
custom data-entry screens:

-

To create a custom form for a database, select the Create and
Fomzat options the Assistant menu screen.

-

To move fields on the Screen Painter blackboard, place the cursor
inside the field highlighting that you want to move, and press
Return. Use the arrow keys to move the cursor to the new loca
tion, and press Return to complete the move.

-

To change field labels on a form, simply position the cursor and

Designing Custom Screen Displays 1 33

type over existing labels. Use the arrow, Ins, and Del keys to

move the cursor and add/delete text.

-
To draw boxes on the form, select Draw a window or line from the

Screen Painter options menu.

-
To save a custom form, highlight the Exit option from the Screen

Painter menu and select Save.

-
To add templates to a field highlight, move the cursor to the first

character in the field and call up the menu (FlO). Select the Picture
Function or Picture Template option.

-
To use a custom form, highlight the Set Up option from the main

menu bar and select the Fomzat for screen option. T he custom form
will be used in the APPEND and EDI T modes when selected

from the menu.

-
To change the size of a field highlight on the screen, move the

cursor to within the field and press Ins to increase its length, or

Del to decrease it. Press "U to delete the field altogether.

-
F rom the dot prompt, the commands MODIFY SCREEN, SE T
FORMAT TO, APPEND, EDIT, and CLOSE FORMAT access

a custom screen.

IIISIIT f
Ina |

""I
Help}, F1

. ,. ' . .. " .

136 UNDERSTANDING dBASE III PLUS

p to this point, our database has contained only Charac

U ter data. Eventually, you'll probably want to include
dates and numbers in a database. There are several tech

niques for managing dates and numbers, and for performing basic

arithmetic on them. These are the topics of this chapter.

CREATING A SALES DATABASE

For the exercises in this chapter we'll create a database named

SALES.DBF. From the Assistant menu, highlight the Create option

and select Database file. Select the appropriate drive for your com
puter, and type the file name SALES. Define the database fields
structure as shown in Figure 8.1.

You have defined five fields for your SALES.DBF database.
Notice that CODE and TITLE are Character data fields. Only

Jvt.. I'.alai",: 3955

CURSOR (--) DELITI .up a tielj:
.cu .. : .. Cit•• : Cit ... : D.l U.14.:

WoN: 1_ ,ielj: -'It VON: ktvawet AIM
.r,,,! A A.

'ieI4: "U fl_t-= Isc

'hIt Type

-

Figure 8.1: SALES.DBF Database Structure

Managing Numbers and Dates 137

Numeric data with a maximum of five digits (99999) and no deci
mal places can be entered in your Q1Y (quantity) field. AMOUNT
is also a Numeric data field, but its maximum width is twelve with
two decimal places (for pennies). dBASE automatically assigns a
width of eight characters (mm/dd/yy) to the DATE field.

Once you've entered the database structure, press Return rather
than defining a sixth field, or press ,.. End to save the structure.
When dBASE asks you to confirm the new structure, press
Return. When dBASE asks if you want to add new data now,
answer Yes and fill in the following sample records. (Note: You
need not enter the record numbers because dBASE keeps track of
those automatically.).

Record# CODE TITLE QTY AMOUNT DATE

1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01/86

3 eee Shovels 3 21.50 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 eee Shovels 4 26.50 03/01/86

6 AAA Rakes 2 11.00 03/02/86

7 eee Shovels 1 7.50 03/01/86

8 BBB Hoes 2 12.50 03/02/86

9 AAA Rakes 5 23.50 03/02/86

SUMMING NUMBERS

To sum a numeric field, highlight the Retrieve option from the

Assistant menu, and select Sum. If you immediately select Execute

the command after selecting Sum> dBASE will display the sum of all
numeric fields for every record in the database:

9 records summed

QTY AMOUNT

24 140.00

You can use the Construct a field list option from the submenu to
specify that only certain fields be summed. For example, suppose
that you want to know the sum of sales to date. T he steps that tell
dBASE to add only the numbers in the AMOUN T field are out
lined below.

138 UNDERSTANDING dBASE III PLUS

V Highlight Retrieve from the main menu bar.

v Select Sum.

v Select Construct a.field list.

v From the menu of field names, select AMOUNT.

v Press -+ to finish selecting fields .

v Select Execute the command.

Then dBASE will add all of the numbers you've entered in the

AMOUNT field and display the results:

9 recorda summed

AMOUNT

140.00

By using the Build a search condition option from the Assistant menu
you can also tell dBASE that only certain records be included in the
sum . For example, suppose that you want to know how many rakes

you have sold . To find out, ask dBASE to sum the QTY field for
records with Part Number AAA. Here are the steps:

v Highlight the Retrieve option from the main menu bar.

v Select Sum.

v Select Construct a field list.

v Select QTY.

v Press -+ to finish selecting fields to sum .

v Select Build a search condition.

v Select CODE.

v Select =.

v Type AAA.
v Press
v Select No more conditions.
v Select Execute the command.

With these menu selections, you have built

Command: SUM OTY FOR CODE "AAA"

Managing Numbers and Dates 139

dBASE will display the result
4 records summed
aTY
12

indicating that the sum of the QTY field for records with CODE

AAA is twelve. In other words, you've sold twelve rakes.

If you are interested in sales on a certain date, follow these steps:

t' Highlight the Retrieve option from the main menu bar.

t' Select Sum.

t' Select Build a search condition.

t' Select DATE.

t' Select =.

t' Type 03/02/86.

t' Select No more conditions.

t' Select Execute the command.

dBASE will show the sum of the QTY and AMOUN T fields for

all records with dates of 03/02/86:

3 records summed

aTY 'AMOUNT

9 47.00

Of course, you can be even more specific in your sums by
using .AND. and .OR. in your search condition. For example, if
you want to know how many AAA rakes you sold on March 1,

1986, and how much these sales came to, follow these steps:

t' Highlight Retrieve from the main menu bar.

t' Select Sum.

t' Select Build a search condition.

t' Select CODE.

t' Select
 =.

t' Type AAA.

t' Press9.

t' Select Combine with .AND.

140 UNDERSTANDING dBASE III PLUS

t' Select DATE.

t' Select =.

t' Type 03/01/86.

t' Select No more conditions.

t' Select Execute the command.

dBASE displays the sum of the QTY and AMOUNT fields for
sales of part number AAA on March 1, 1986:

2 records summed

QTY AMOUNT

5 25.00

AVERAGING NUMERIC AMOUNTS

The Average option from the Retrieve menu works in exactly the
same way as the Sum option, but it calculates an average rather
than a sum. For example, if you select Average and Execute the com
mand, dBASE will display

9 records averaged

QTY AMOUNT

3 15.58

the average QTY and AMOUNT of all nine records.
You can use the ConstnJct a fold list option from the menu to specify

numeric fields to average. Of course, you can use the Buikl a search
condition option to average only records, such as Part Number AAA

or Date = 03/01186, just as you did with the Sum option.

COUNTING RECORDS

The Count option works on any data type because it simply
counts the number of occurrences in records. For example, if you
highlight the Retrieve option and select Count, and then select Execute

Managing Numbers and Dates 141.

the command, dBASE will display

9 records

indicating that there are nine records on the database.
Suppose that you want to know how many sales records about

BBB hoes have been entered into your database. If you select
Count and Build a search condition from the menus, and specify
CODE BBB, dBASE will display =

2 records

because only two records in the database have the code BBB.

PRINTING TOTALS AND SUBTOTALS

IN REPORTS

You can also total and subtotal columns of information in
dBASE III PLUS reports. The most important point to keep in

mind with subtotals, however, is that the database must either be
sorted or indexed by the field which determines how the records
are subtotaled. For example, if you want your sales report to

present quantity and price totals and· subtotals for each product
(the CODE field), you need to first index the SALES.DBF data
base by the CODE field. Here are the steps to create a
CODE.NDX index file from your SALES.DBF database:

t' Highlight the Organize option.
t' Select Index.
t' Type CODE.

t' Press

t' Select a drive.
t' Type CODE as the name for the index file.
t' Press

When the indexing is complete, press any key to return to the
Assistant menu screen.

142 UNDERSTANDING dBASE III PLUS

Now you can develop a report using the report generator. Let's

build one now, just for the practice. First, highlight the Create

option, and select Report. Select a drive for storing the report for
mat, and type the report file name SUBTOTS.

Fill in these options on the first report menu:

Page title Sales by Product Code

Page width (positions) 80

Left margin o

Right margin o

Lines per page 58

Double space report No

Page eject before printing Yes

Page eject after printing No

Plain page No

Next, highlight the Group option, and specify CODE as the field

to group. Also, you can assign the group title Product Code.

Grouponexp on CODE

Group heading Product Code

Summary report only No

Page eject after group No

Sub-group on expression

Sub-group heading

Next you'll want to fill in individual columns. Begin by high

lighting the Columns option and defining the first report column:

Contents CODE

Heading Part No.

Width 8

Decimal places

Total this column

Press PgDn, and define the second report column:

Contents TITLE
Heading Part Name

Width 15

Decimal places
Total this column

Press PgDn again, and fill in the specifications for the third

Managing Numbers and Dates 143

report column:

Contents OTY
Heading Qty
Width 5
Decimal places 0
Total this column Y ..

Notice that the Total this column option is marked Yes, which means
that this numeric field will be automatically totaled and subtotaled

in the printed report.

Press PgDn. The Total this column option is marked Yes in the
fourth column definition so that the AMOUNT field will be
totaled and subtotaled.

Contents AMOUNT
Heading Amount
Width 12
Decimal places 2
Total this column Yea

Finally, press PgDn and place DATE in the last column of the

report by filling in these options:

Contents DATE
Heading Date
Width 8
Decimal places
Total this column

After the report format is defined, your screen should look like
Figure 8.2. Highlight the Exit option and select Save to store the

report format and return to the Assistant menu.

Now, to print the report, highlight the Retrieve option on the

main menu bar and select Report. Select the appropriate drive and
the SUBTOTS.FRM report. Select Execute the command. Your report
will look like Figure 8.3 with subtotals and totals of sales for each
product.

Sub-subtotals In a Report

You can subtotal on two separate fields in a report, so that you

get subtotals of subtotals. For example, suppose that you want

Ik 8

+h,ptF-a£.----------------
/
------0----------__ �

� ..,rtd/w

i_a
� .,. •

144 UNDERSTANDING dBASE III PLUS

"'t.. .l

teet •• 1 ,laces
To*al this co I .. n

'apt "0. 'apt "'-e qty AMount Date

xxxxx .HII

.. Itl_ .. Iedl_ ... - U. Select - col .. -

Inte .. afield op e)Cpp.ulon to display in tile [ndicated Npopt col ...

-

Figure 8.2: Specifications for SUBTOTS.FRM

your report to subtotal each day's sales, but you also want subto
tals for each product within each date. As with other subtotals, the

database needs to be presorted or indexed on the two subtotaling

fields. For this example, you need to create an index file of dates

and product codes, and here is where data types tend to get a

little tricky.

If you attempt to index on DATE + CODE, you'll see the

error message

Data Type Mismatch

because the DATE field is the Date data type and CODE is the
Character data type. dBASE won't let you combine mismatched

data types. However, if you go through the usual process of creat

ing an index file, but enter the expression

DTOC(DATE) + CODE ..,;...

Maooging Numbers and Dates 145

when dBASE asks for the index expression, everything will be fine.

The DTOC function changes the Date data type to the Character
data type, but only in the index file. In other words, there is no

longer a data type mismatch error, but your database still accepts

Sales by Product Code

Part No. Part Name aty Amount Date

* * Product Code AAA

AAA Rakes 3 15.00 03/01/86

AAA Rakes 2 10.00 03/01/86

AAA Rakes 2 11.00 03/02/86

AAA Rakes 5 23.50 03/02/86

* * Subtotal * *

12 59.50

* * Product Code BBB

BBB Hoes 2 12.50 03/01/86

BBB Hoes 2 12.50 03/02/86

* * Subtotal * *

4 25.00

* * Product Code CCC

CCC Shovels 3 21.50 03/01/86

CCC Shovels 4 26.50 03/01/86

7.50 03/01/86CCC Shovels

* * Subtotal * *

8 55.50

* * * Total * * *

24 140.00

-

Figure 8.3: Subtotaled Report Organized by Code

146 UNDERSTANDING dBASE III PLUS

only dates entered in this field. (We'll discuss DTOC and other
functions in more detail later in the chapter.)

Next, just create the report format in the usual fashion using

Create and Report from the A ssistant menu screen. Name the report
DATECODE. You can fill out the first menu of report options as
shown here, or use your own formatting:

Page title Sales by Date and Product Code
Page width (positions) 80

Left margin o

Right margin o

Lines per page 58

Double space report No
Page eject before printing Yes
Page eject after printing No
Plain page No

Next, highlight the Group option, and specify DATE as the field
to group, and CODE as the Sub-group:

Group on expression DATE
Group heading Date
Summary report only No
Page eject after group No
Sub-group on expression CODE
Sub-group heading Product. Code

(Note: If you change the Page eject after group option to Yes, each
day's sales will be printed on a separate page.)

Finally, use this summary to define the columns for your
DATECODE report:

Contents He,dlng Width Decimal Places Total?

DATE Date 12 0 No
CODE Part No. 5 0 No
TITLE Part Name 15 0 No
QTY Qty 5 0 Yes
AMOUNT A mount 12 2 Yes

These column specifications appear at the bottom of your screen:

Report Format
Date Part No. Part Name Qty Amount
mm/dd/yy XXXXX XXXXXXXXXXXXXXX ##### #########.##

Managing Numbers and Dates 147

After you save your DATECODE report fonn, select the Retrieve
and Report options, and specify DATECODE.FRM to display the '
report shown in Figure 8.4. The report presents each day's sales
subtotals for each product.

Sales by Date and Product Code

Date Part No. Part Name Qty Amount

* * Date 03/01/86

* Product Code AAA

03/01/86 AAA Rakes 3 15.00

03/01186 AAA Rakes 2 10.00

* Subsubtotal *

5 25.00

* Product Code BBB

03/01/86 BBB Hoes 2 12.50

* Subsubtotal *

2 12.50

* Product Code CCC

03/01/86 CCC Shovels 3 21.50

03/01/86 CCC Shovels 4 26.50

03/01/86 CCC Shovels 7.50

* Subsubtotal *

8 55.50

* * Subtotal * *

15 93.00

-

Figure 8.4: Report Subtotaled by,Date and Product Code

148 UNDERSTANDING dBASE III PLUS

Sales by Date and Product Code (continued)

Date Part No. Part Name Qty Amount

* * Date 03/02/86

* Product Code AAA

03/02/86 AAA Rakes 2 11.00

03/02/86. AAA Rakes 5 23.50

* *Subsubtotal

7 34.50

* Product Code BBB

03/02/86 BBB Hoes 2 12.50

* *Subsubtotal

2 12.50

* * * *Subtotal

9 47.00

* * * * * *Total

24 140.00

-

Figure 8.4: Report Subtotaled by Date and Product Code (continued)

CREATING SUMMARY REPORTS

Under the Group option, you may have noticed the SumTTUlry
report on(y suboption on the report generator menu. Changing this
option to Yes displays only the subtotals without the data used in
the calculations. To test this option, slighdy change the SUB
TOTS.FRM report format.

Remember that the SUBTOTS.FRM report format required

presorting the database by product CODE, and that you created

Managing Numbers and Dates 149

an index file named CODE.NDX to perfonn the sort. Before you
reprint the report, you'll need to reactivate that index file. Here
are the steps:

t' Highlight Set Up from the main menu bar.

t' Select Database file.

t' Select a drive.

t' Select SALES.DBF.

t' Answer Yes to the "Is the File Indexed?" prompt.

t' Select CODE.NDX.

t' Press'" to finish selecting database and index files.

Now the SALES.DBF database is sorted' by the CODE field.

Here are the steps to change the SUBTOTS.FRM report to a
summary report:

t' Highlight the Modify option from the main menu bar.

t' Select Report.
t' Select a drive.

t' Specify SUBTOTS.FRM.

t' Highlight the Groups option from the report menu.

t' Highlight the Summary report onlY option.

t' Press to switch the option to Yes.

At this point, your menu selections look like this:

Group on .xp ,on CODE

Group heading Product Cod.

Summary report only V ..

Page .Ject aft.r group No

Sub-group on .xpresslon

Sub-group heading

Now, save the report fonnat with the Exit and Save options.
From the Assistant menu screen, select the Retrieve and Report
options, and specify SUBTOTS.FRM. Select Execute the com1Tlllnd.

Your summary report of product sales will look like Figure 8.5.

150 UNDERSTANDING dBASE III PLUS

Sales by Product Code

Part No. Part Name Qty Amount Date

* * Product Code AAA

* * * *Subtotal

12 59.50

* * Product Code BBB

* * * *Subtotal

4 25.00

* * Product Code CCC

* * * *Subtotal

8 55.50

* * * * * *Total

24 140.00

-

Figure 8.5: Summary Product Sales Report

USING DOT-PROMPT COMMANDS

As we've discussed before, working from the dot prompt does

require some fluency with the dBASE language and may go

beyond your requirements. However, to fully explore techniques
for managing numbers and dates, you'll need to use some com

mands from the dot prompt for options that the Assistant menu

cannot provide.

To practice these dot-prompt commands, press Esc to get rid of

the Assistant menu. T hen, to make sure that the SALES.DBF
database is in use, enter the command:

USE SALES

if you're using a hard-disk system, or

USE B:SALES

...
If you do not see

.the results of a
SUM, COUNT, or
AVERAGE command at
the dot prompt, type the
command SET TALK
ON and press Then
press t twice to re-access
your command, and
to execute it.

Managing Numbers and Dates 151

if you're using a computer with two floppy-disk drives.

To sum a numeric field from the dot prompt, you use the SUM
command with the names of the fields to sum. For example, if you

ask dBASE to add the data in the QTY field of your database
records with the command

SUM aTY

this answer displays just as though data were summed from the
menu options:

9 records summed
QTY
24

To specify certain records in the sum, use the FOR option in
the command:

SUM aTY FOR CODE = "AAA"

This command sums the QTY field for records that have AAA

as the product CODE. dBASE displays this answer:

4 records summed
aTY
12

The COUNT command is used in a similar fashion, and per
forms the same task as the Count option from the Assistant menu.
For example, the command

COUNT FOR CODE <> "AAA"

displays the number of records in the database that do not have
part number AAA:

5 records

Now let's look at a more advanced technique from the dot
prompt, using the AVERAGE command.

If you want the average selling price of part AAA' you need to
take into account the quantity sold for each transaction. That is,
the average selling price is the average of the amounts divided by

•
..

152 UNDERSTANDING dBASE III PLUS

the quantities. So, tell dBASE to average the amount divided by the
quantity for part number AAA with the following command:

AVERAGE (AMOUNT /QTY) FOR CODE 'AAA'
=

(The / symbol stands for divided by, as in the fraction 3/4.)
dBASE displays

4 records averaged

(AMOUNT /QTY)

5.05

The average selling price for part number AAA is $5.05.
In some cases you might prefer to know how many records con

tain certain information, rather than knowing about sums ·of fields.
For example, you· might wish to know how many transactions
involved part AAA . You use the COUNT command for this. To
find out how many records on the database have AAA as the part
number, ask dBASE to

COUNT FOR CODE 'AAA'
=

dBASE will tell us

4 records

There are four records with part AAA .

USING COMMANDS

TO MANAGE DATES

In our SALES database, we've included a field named DATE,
and assigned it the Date data type. dBASE III PLUS contains many

Junctions for managing dates. The DATE() function displays today's
date, as it was typed when you first booted up your system. For
example, if you ask dBASE what the date is (using the ? command)

? DATE()

you'll see today's date on the screen. To change that date, type

The basic dBASE
math operators are

+ (add), - (subtract),
/ (divide), and * (multi
ply). Chapter 11 pro
vides additional
information.

Managing Numbers and Dates 153

this command:

RUN DATE

The screen will display the current date and allow you to change it:

Current date Is Tue 11-06·1986

Enter new date:_

To try out some new exercises, fill in the new date as 03/01/86,
and press Return:

Current date Is UJe 11-06-1986

Enter new date: 03/01/86

Now, let's try out some new exercises. First, with the SALES
database still in use, ask dBASE to display all records that match

today's date, using the command

LIST FOR DATE DATEO =

dBASE displays

Record# CODE TITLE aTY AMOUNT DATE

1 AAA Rakes 3 15.00 03/01/86
2 BBB Hoes 2 12.50 03/01/86
3 CCC Shovels 3 21.50 03/01/86
4 AAA Rakes 2 10.00 03/01/86
5 CCC Shovels 4 26.50 03/01/86
7 CCC Shovels 1 7.50 03/01/86

Next, ask dBASE to display all records that have dates that are

later than today's date:

LIST FOR DATE > DATEO

These records appear on your screen:

Record# CODE TITLE aTY AMOUNT DATE
6 AAA Rakes 2 11.00 03/02/86
8 BBB Hoes 2 12.50 03/02/86
9 AAA Rakes 5 23.50 03/02/86

The dBASE functions for managing dates are explained in Table 8.1.

154 UNDERSTANDING dBASE III PLUS

Function Purpose

CDOW Day of week as a Character type (Monday).

CMONTH Month as a Character type Oanuary).

C TOD Character-to-date conversion.

DAY Day of month (31).

DOW Day of week as number (Sunday 1, Monday = 2, etc.).

DTOC Date-to-character conversion.

MONTH Month as number (1-12).

TIME Time expressed as HH:MM:SS.

YEAR Year of date (1985).

-

Table 8.1: Date Functions

Test these out with the SALES database. T his command ask s
dBASE to list the date, day of week (DOW), month (CMONTH),
day (DAY) and year (Y EAR) of each date in the SALES database:

LIST DATE,CDOW(DATE),CMONTH(DATE),DAY(DATE), YEAR(DATE)
......

dBASE displays

Record' DATE CDOW(DATE) CMONTH(DATE) DAY(DATE)
1 03/01/88 Saturday March 1
2 03/01/88 Saturday March 1
3 03/01/88 Saturday March 1

4 03/01/88 Saturday March 1

5 03/01/88 Saturday March 1
6 03/02188 Sunday March 2
7 03/01/88 Saturday March 1

8 03/02/86 Sunday March 2
9 03/02188 Sunday March 2

To view records that fall upon a certain day (as is often useful
when scheduling), you can use the CDOW (Character Day of
Week) function:

LIST FOR CDOW(DATE) "Saturday"=

YEAR(DATE)
1986
1986
1986
1986
1988
1988
1986
1986
1988

Managing Numbers and Dates 155

dBASE displays records with dates that fall on a Saturday (March

1, 1986, is a Saturday):

Record# CODE TITLE QTY AMOUNT DATE

1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01/86

3 CCC Shovels 3 21.50 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

7 CCC Shovels 1 7.50 03/01/86

To see which records have dates in March, use the CMONTH
function:

LIST FOR CMONTH(DATE) "March"=

dBASE displays

Record# CODE TITLE QTY AMOUNT DATE

1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01186

3 CCC Shovels 3 21.50 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

6 AAA Rakes 2 21.00 03/02/86

7 CCC Shovels 1 7.50 03/01/86

8 BBB Hoes 2 12.50 . 03/02/86

9 AAA Rakes 5 23.50 03/02186

To display a specific date, you need to convert the date in the

database to a Character type with the DT OC function. This com

mand lists all records with the date March 2:

LIST FOR DTOC(DATE) = "03/02"

dBASE displays

Record# CODE TITLE QTY AMOUNT DATE
6 AAA Rakes 2 11.00 03/02/86
8 BBB Hoes 2 12.50 03/02/86
9 AAA Rakes 5 23.50 03/02/86

Incidentally, in case you should need to know the time at any

156 UNDERSTANDING dBASE III PLUS

given moment, you can use this TIME function:

? TIMEO"'"

dBASE will display the time in HH:MM:SS format:

14:26:18

(That's 2:26 pm, plus 18 seconds.) The time that dBASE displays
is based upon the time you keyed in when you first booted up the
system. To change the time, enter this command:

RUN TIME....,

Date Arithmetic

You can perform date arithmetic, too. For example, if you want to
know at what date the amounts in the SALES file became ninety
days overdue, just add 90 to each of the dates:

LIST DATE + 90,

dBASE displays

Record# DATE +90

1 05/30/86
2 05/30/86
3 05/30/86
4 05/30/86
5 05/30/86
6 05/31/86
7 05/30/86
8 05/31/86

05/31/86

Let's reverse the order of the operation a bit. Suppose that
today is May 30, and you want to know which records on the
SALES database are 90 or more days past due. You want to list
for those dates in which the difference between the current date
minus the database DATE was greater than or equal to (> =) 90:

LIST FOR CTOD("05/30/86") - DATE > 90, =

9

Managing Numbers and Dates 157

dBASE displays the appropriate records:

Record# CODE TITLE QTY AMOUNT DATE

1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01/86

3 CCC Shovels 3 21.50 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

7 CCC Shovels 1 7.50 03/01/86

When you want to determine how many days have passed
between two dates, just subtract the smaller, earlier date from the
larger, later date. Make sure the dates are Date data types. If not,
use the CTOD function to convert them. For example, suppose
you were born on March 31, 1956, and today is November 6,

1986. To find out how many days you've been alive, subtract your
birth date from today's date. If you forget to convert the data first
and type the equation

? "11/06/86" - "03/31/56"

you get a strange result: �

1110618603/31/56

However, if you remember to use the CTOD conversion
function

? CTOD("11/06/86") - CTOD("03/31/56")

dBASE will tell you exactly how many days have passed between
the two dates:

111n

Similarly, if you forget to do the date conversion when working
with a database

LIST DATE - "01/01/86"

dBASE will produce an error message because you are trying to
subtract the character string "01/01/86" from a date (the DATE
field). On the screen, you'll see

Data type mismatch
?

•
�

158 UNDERSTANDING dBASE III PLUS

LIST DATE - "01/01/86"
Do you want some help? (YIN)

Just remember to use the CTOD function to convert the character
string surrounded by quotation marks ("01/01/86") to a date:

LIST DATE - CTOD("01/01/86")

and everything will be fine .

Sorting by Date

If you want your records to be displayed in chronological order, Chapter 17 pro
vides examples of you can index on the DATE field:

other complex index
(sorting) expressions. INDEX ON DATE TO DATES

When you list the database or print a report, the records will be

in order by date:

Recordl CODE TITLE QTY AMOUNT DATE

1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01/86

3 CCC Shovels 3 21.50 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

7 CCC Shovels 1 7.50 03/01/86

6 AAA Rakes 2 11.00 03/02/86

8 BBB Hoes 2 12.50 03/02/86

9 AAA Rakes 5 23.50 03/02/86

In some cases, you might want to combine the date with
another field for sorting. For example, you might want the SALES
database to be sorted by date, and within common dates be fur

ther sorted by product code (CODE) . In this case, you need to

convert the date to a Character type, using the DTOC function,

like you did with the DATECODE report. From the dot prompt,
the indexing command looks like this:

INDEX ON DTOC(DATE) + CODE TO DATECODE

If you want the records in descending order by date, that is,

Managing Numbers and Daus 159

from the most-recent to least-recent date, index on the inverse of the
date. S pecify the DATE field subtracted from a large date, such as
12/31/99:

INDEX ON CTOD("12/31/99") - DATE TO INVDATE

When you list the database, the records will be in descending
chronological order:

Record# CODE TITLE QTY AMOUNT DATE
8 AAA Rakes 2 11.00 03/02/88
8 aaa Hoes 2 12.50 03/02/88
9 AAA Rakes 5 23.50 03/02/88
1 AAA Rakes 3 15.00 03/01/88
2 BBa Hoes 2 12.50 03/01/88
3 CCC Shovels 3 21.50 03/01/88
4 AAA Rakes 2 10.00 03/01/88
5 CCC Shove" 4 28.50 03/01/88
7 CCC Shovels 1 7.50 03/01/88

Note: T he FIND or SEEK command will not work with this index

file unless you first subtract the date you are trying to find from
CTOD(" 12/31/99").

REVIEWING DATES AND NUMBERS

In this chapter you have learned a number of techniques for
managing dates and numbers:

-
To sum values in a numeric field, select Sum from the Retrieve
menu. T he Const17J£t a field list option allows you to sum only cer
tain fields, and the Build a search condition option allows you to sum
only certain records.

-
To average values in a numeric field, select the Average option from
the Retrieve menu. As with Sum) you can use Const17J£t a field list and
Build a search condition.

160 UNDERSTANDING dBASE III PLUS

-

To count how many records contain an item of information, select
the Count option from the Retrieve menu .

-

To subtotal information in a report, highlight the Groups menu in
the report generator. T he database needs to be pre-sorted or
indexed on the grouping field(s).

-

To print a summary report, select the Summary report onlY option
under the report generator Groups menu.

-

T he dot prompt allows many functions for managing dates, includ-
ing CDOW (Character Day of Week), CMONTH (Character
Month), CTOD (Character to Date Conversion), DAY (Numeric
Day of Month), DOW (Numeric Day of Week), DT OC (Date to
Character Conversion), MONTH (Numeric Month), and YEAR
(Year of Date).

164 UNDERSTANDING dBASE III PLUS

he techniques we've discussed so far are useful for manag

T ing a simple database. However, many larger business
applications require that information be divided into sepa

rate databases. In this chapter, we'll look at reasons for dividing
information into separate databases, as well as techniques for man

. aging information in separate files.

AN ACCOUNT S RECEIVABLE

DATABASE DESIGN

Some business applications require multiple databases because
any given record in one database might have sever- items of
information related to it. Furthermore, the number of related items
might be totally unpredictable (for example, the number of items

charged by a given customer during the course of a year). Let's
take a look at an example of a database that should be broken into
two separate databases.

Figure 9.1 shows a single, poorly designed database for storing
accounts receivable. Each record stores a customer's name,
address, charge amount, and billing date.

LNAME FNAME ADDRESS AMOUN T DATE

Adams Andy 123 A St. 50.00 111/86

Adams Andy 123 A St. 100.00 119/86

Adams Andy 123 A St. 75.00 3/3/86

Miller Michele P. O. Box 2345 221.66 2/12/86

Watson Wilbur 670 Baldy View 21.22 3/3/86

Adams Andy 123 A St . 66.22 4/7/86

Miller Michele P.O . Box 2345 888.90 4/1/86

Zeepers Zeppo 261 Ocean View Dr. 99.99 4/1/86

Miller Arnold 455 Madison Ave 61.55 4/1/86

-

Figure 9.1: Poor Design for Storing Accounts Receivable Data

Managing Multiple Data Files 165

The database shown in Figure 9. 1 is a very poor design for the
application because of the following problems:

1. 	 The database wastes disk space by repeating name and
address for each transaction. These repetitions are particularly
space-consuming in a database with 10,000 or more records!

2. 	 The database creates extra work for input operators who
must type the repeated information each time a new record is
added. (For example, each time Andy Adams orders another
item, his name and address have to be re-entered into the
database.)

3. 	 Because names and addresses would be entered each time a
new record is added, the likelihood of typographical errors is
high, and therefore the likelihood of billing errors is also high.

A better way to store these data would be to break the informa
tion into two databases, as shown in Figure 9.2. Notice that names
and addresses are stored only once in the CUSTLIST. DBF data

base (like the MAIL.DBF database you created earlier), and
individual financial transactions are stored in a separate database
named CHARGES.DBF.

Notice that both the CUSTLIST. DBF and the CHARGES. DBF
databases have a field called CUSTNO (customer number). This

field (often called a common.field) is used to relate the two databases.
Even though you don't see Andy Adams's name and address on
any transaction in the CHARGES database, you can tell which
transactions belong to him by simply looking for records that have
1001 as the customer number.

The common field that relates the two databases is an important
one. For example, had you tried to relate the two databases by last
name, then any charge to an individual named Miller would cause
problems because there are two different Millers in the CUST
LIST. DBF database. Granted, you could relate the two databases
by last and first names, but then what if there are two John Does?
You could use the address as a tiebreaker, but by this point,
you're back to the repetition problem in the CHARGES database.

166 UNDERSTANDING dBASE III PLUS

First Database: CUSTLlST.DBF

CUSTNO L NAME FNAME ADDRESS CITY

1001 Adams Andy 123 A St. Los Angeles
1002 Miller Michele P.O. Box 2345 Burbank
1003 Wa tson Wilbur 670 Baldy View Pomona
1004 Zeepers Zeppo 261 Ocean View Dr. Ramona
1005 Miller Arnold 455 Madison Ave Newark

Second Database: CHARGES.DBF

CUST NO AMOUN T DATE

1001 50.00 111/86

1001 100.00 1/9/86
1001 75.00 3/3/86
1002 221.66 2/12/86

1003 21.22 3/3/86

1001 66.22 4/7/86

1002 888.90 4/1186

1004 99.99 4/1/86

1005 61.55 4/1/86

-

Figure 9.2: Accounts Receivable Data Split into Two Databases

T he customer number is the ideal common field because it does
not take up much disk space. It is also very easy to assign each
customer a unique number. It is important that each record has a
unique customer number to relate it to the transactions in the
CHARGES.DBF database.

When a database has a field such as CUSTNO (customer num
ber) where each record has a unique value, the field is referred to
as a key field. It is the key field that relates the CHARGES.DBF
database to the CUSTOMER.DBF database. Let's try some exer
cises with a couple of databases that could be used to help manage
an accounts receivable system. First, highlight Create on the Assist
ant menu screen, and select the Database file option. N ame the
database CUSTLIST. Define the structure shown below.

Managing Multiple Data Files 167

Structure for database: CUSTLIST.DBF

Field
1
2
3
4

5
6

7

8

Field Name
CUSTNO
LNAME
FNAME
A DDRESS
CITY
STATE
ZIP
PHONE

Type
Numeric
Character
Character
Character
Character
Character
Character
Character

Width
4

12
10
20
15
2
5

13

Dec
0
0
0
0
0
0
0
0

Next, add a few hypothetical customers to the database. Assign

each customer a unique customer number, as in this sample
database:

CUST NO
1000
1001
1002
1003
1004

LNAME
Adams
Schumack
Norris
Davies
Teasdale

FNAME
Andy
Susita
Nancy
David
Rhonda

ADDRESS
123 A St.
1096 Crest Dr.
P.O. Box 1234
432 Oaktree Ln .
P. O. Box 2802

CITY
San Diego
Encinitas
La Jolla
Los Angeles
Leucadia

ST ZIP
CA 92122
CA 92024
CA 91191
CA 92210
CA 92211

PHONE

(1 23)555-1 000
(123)555-8903
(123)555-9910
(123)555-2323
(123)555-1212

Next, you'll want to create an index file of customer numbers

to help manage the related files. Highlight the Organize option and

select Index. Enter the field name CUSTNO as the key expression
when requested, and name the index file CUSTLIST.

Next, create a database file for storing individual billing trans
actions, using Create and Database file menu options. Name the file

CHARGES, and structure it like this·:

Structure for database: CHA RGES.OBF
Field Field Name Type Width

1 CUSTNO Numeric 4

2 PRODUCT Character 15
3 QTY Numeric 4

4 UNIT_PRICE Numeric 12
5 DATE Date 8

6 BILLED Logical 1

Dec
0
0
0
2
0
0

Notice that the CUSTNO field in both databases has exactly

the same name, data type, and width. Note: It is essential for the

common field between two databases to have the identical name,

.F.

.F.

168 UNDERSTANDING dBASE III PLUS

type, and width; otherwise, there is no guarantee that the records
from the two files will link correctly.

You might also notice that the CHARGES.DBF database has a
field with the Logical data type. T his data type is always one char
acter wide, and can contain one of two possible conditions: True
(.T.) or False (.F.). In this sample database, the Logical field is
used to mark records as either having been billed (True) or not
billed (False). (When entering data into these fields, you just type
F or T without the dots.)

After you've created the CHARGES.DBF database, add a few
sample records to it:

Record# CUSTNO PRODUCT QTY UNIT_PRICE DAT E BILLED
1 1001 Floppy Disks 10 2.11 03/12/86 .F.
2 1002 8 Mhz Clack 2 16.39 03/15/86 .F.
3 1001 Color Card 101.00 03/31/86 .F.
4 1000 Turbo Board 1 550.00 04/01/86 .F.

5 1004 Video Cable 10 16.00 04/15/86 .F.
6 1002 RAM Disk 1 1100.00 04/11186 .F.
7 1003 8 Mhz Clock 16.39 04/15/86 .F.
8 1000 RAM Disk 1100.00 04/18/86 .F.
9 1003 Tape Backup 1250.00 04/20/86

10 1003 40 Meg. Disk 450.00 04/20/86

To help set up the relationship between the two databases, and to
keep the CHARGES.DBF records in customer number order, create
an index file named CHARGES.NDX by highlighting the Organize
option and selecting Index. Enter CUSTNO as the key expression for
the index file and CHARGES as the index file name.

Now, keep in mind that for general file maintenance such as
adding new records or editing existing data, you'll want to treat
these as two separate databases. T hat is, you'll open either data
base and the appropriate index files by highlighting Set Up and
selecting the Database file option from the Assistant menu screen.
T hen use the Append, Edit, Browse, Delete, and Pack menu options
or dot-prompt commands to handle each database.

However, there will be times when you'll want to retrieve infor
mation simultaneously from both databases. In that case, you may
want to set up a dBASE III PLUS View.

Managing Multiple Data Files 169

SETTING UP A VIEW OF TWO FILES

A View allows you to relate two separate databases to one
another through a common field. T hen you can select particular
fields to display on the screen or in a report. You can create many
different Views for databases, and thereby view your data from
different "angles."

Opening Multiple Databases

For this example, let's suppose that you want to view billings,
but you want to see the name and address of the customer for
each transaction. In this case, you'll be working primarily with the
CHARGES.DBF database (because you're interested in billings),
but will need to get related information (names and addresses)
from the CUSTLIST.DBF database. Here is how to open the
database and index files you'll need before setting up a View:

¥ Highlight the Create option.

¥ Select Vzew.

¥ Select a drive.
¥ T ype ACCTREC as the name for the view, press NCR.

¥ From the menu of database files, select CHARGES.DBF.

¥ From the menu of index files, select CHARGES.NDX.

¥ Press -+ to leave the index files submenu.

¥ Select CUSTLIST.DBF as the second file for this View.

¥ Select CUSTLIST.NDX from the index file submenu.

Triangles will appear on-screen as you select the files.

Specifying the Relationship

When you have selected the databases, you must tell dBASE
which field relates the databases. To do so, first use -+ to highlight
the Relate option that appears after your selections from the menu.

170 UNDERSTANDING dBASE III PLUS

dBASE shows the names of files that you've opened.
T he order in which you open these databases is important. In this

case, you are primarily interested in billings, but you also want to
"pull" the name and address from the CUSTLIST.DBF database.
So, you select CHARGES.DBF, the most important database, first.

dBASE will then show a list of files that can be related to
CHARGES.DBF (only CUSTLIST.DBF in this example). Press
Return to select CUSTLIST.DBF. Next, at the bottom of the
screen, dBASE will ask that you define the common field. Press
F10 to display the fields submenu, and select CUSTNO. Press
Return again. Your screen displays the names of your two data
bases, your selected file, and this relationship statement:

Relation Chain: CHARGES .DBF-> CUSTLIST.DBF

Selecting Fields to View

Now· you can select which fields from the two databases you
want to see in this View. Use -+ to highlight the Set folds option.
Select CHARGES.DBF to see a submenu of these field names:

• CUSTNO
• PRODUCT

.QTY

• UNIT_PRICE

• DATE

• BILLED

Notice that each field has a � symbol next to it, indicating that it
has already been selected. To use all of these fields, just press -+ to
leave the submenu.

Next, select CUSTLIST.DBF from the menu, and you'll see a
submenu of fields from CUSTLIST. You only need LNAME and
FNAME for this example, so use + and Return to "unselect" the
other fields. T he � symbol is removed from the unselected fields.
F igure 9.3 shows how the screen looks when only two fields
remain selected from the CUSTLIST.DBF database.

Now you can use -+ to select the Exit option and select Save.
T he View which we've just created will be stored on disk under

Adt II." •••

Managing Multiple Data Files 171

the file name ACCTREC. VUE. (dBASE automatically assigns the

.VUE extension.)

-

Figure 9.3: Two Fields Selected for Viewing

Opening a View

To use the View , follow these steps from the Assistant menu
screen:

¥ Highlight the Set Up option.
@ Select View from the submenu.
¥ Select the drive, then ACCTREC.VUE.

Nothing much seems to happen; only the Assistant menu appears.

However, if you highlight Retrieve arid select the List and Execute the

.F.

.F.

172 UNDERSTANDING dBASE III PL US

commond options, the contents of the two databases will appear on the
screen just as though they were from a single database:

CUSTNO PRODUCT aTY UNIT_PRICE DATE BILLED LNAME FNAME

1000 Turbo Board 1 550.00 04/01/86 .F. Adams Andy

1000 RAM Disk 1 1100.00 04/18/86 .F. Adams Andy

1001 Floppy Disks 10 2.11 03/12/86 .F. Schumack Susita

1001 Color Card 1 101.00 03/31/86 .F. Schumack Suslta

1002 8 Mhz Clock 2 16.39 03/15/86 Norris Nancy

1002 RAM Disk 1 1100.00 04/11/86 .F. Norris Nancy

1003 8 Mhz Clock 1 16.39 04/15/86 Davies David

1003
1003
1004

Tape Backup
40 Meg. Disk
Video Cable

1
1

10

1250.00
450.00

16.00

04/20/86
04/20/86
04/15/86

.F.

.F.

.F.

Davies

Davies
Teasdale

David
David
Rhonda

Note: Your data will wrap around on the screen.
You can treat the View file as you would any single database.

(However, for appending and editing records, it's best to work
with the files independently.) For example, if you highlight the
Retrieve option, and select the List and Construct a field list options,
dBASE will display all the fields from the View on the fields sub

menu. For this example, select these fields in this order:

CUSTNO
LNAME
FNAME
QTY
UNIT_PRICE

When you
screen:

execute the command, these results appear on your

Record#
4
8
1
3
2
6
7

9
10

5

CUSTNO
1000
1000
1001
1001
1002
1002
1003
1C03
1003
1004

LNAME

Adams
Adams
Schumack
Schumack
Norris
Norris
Davies
Davies

Davies
Teasdale

FNAME
Andy
Andy
Susita
Susita
Nancy
Nancy
David
David

David
Rhonda

aT Y
1
1

10
1
2
1
1
1
1

10

UNIT_PRICE
550.00

1100.00
2.11

101.00
16.39

1100.00
16.39

1250.00
450.00

16.00

Managing Multiple Data Files 173

A much more interesting report can be developed using the

report generator with two databases open in a View, as we'll dis
cuss next.

PRINTING A REPORT

FROM TWO DATABASES

With the View open, you can design an interesting report using
data from both database files. As usual, highlight the Create option

and select Report. Select a disk drive, and assign ARREPT as the
file name.

For the page formatting, you can simply assign this report name:

Page title Accounts Receivable Summary Report
Page width (positions) 80

Left margin 8

Right margin o

Lines per page 58

Double space report No
Page eject before printing Yes
Page eject after printing No
Plain page No

From the Groups menu, enter this Group on expression statement:

STR(CUSTNO,4)+": "+ TRIM(LNAME)+", "+ FNAME

The expression used to group is wider than the screen allows,

but the screen will scroll as you type the expression. You can use

9PgDn and 9PgUp to zoom in and out of the highlighting to get

more room. Type Customer as the Group heading. Your screen
will look something like this:

Group on expression STR(CUSTNO,4) +": "+ TRIM(LNAME)+", "+ FNAME
Group heading Customer
Summary report only No
Page eject after group No
Sub-group on expression
Sub-group heading

174 UNDERSTANDING dBASE III PLUS

You could have just used CUSTNO as the group expression,
which would group (subtotal) records by customer number. How
ever, the group heading would show only the customer number as
well. Therefore, simultaneously add the customer number, last
name, and first name to the group expression, which will make all
three fields appear at the top of each subtotaled group.

Notice the use of the STR function in the grouping expression.
CUSTNO is Numeric data type, and LNAME and FNAME are
both Character data types. As we've discussed before, data types
must be identical in a grouping expression which uses the plus
(+) sign. Therefore, I've used the STR (STRing) function to
change CUSTNO into Character data for the grouping expression.
(Character data are also called character stn'ngs, or just strings for
short. The STR function gets its name from the word STRing,
because it converts a number to a character string.) The number 4

tells dBASE that the converted number should be four characters
long. To separate the customer number from the customer name,
add a literal colon and a couple of spaces enclosed in quotation
marks (" : "). The TRIM function makes sure that the customer
name does not come out looking like this in the report:

Adams Andy

Use a literal comma and space enclosed in quotation marks
(" , ") to separate the last and first names, so they look like this in
the report:

Adams, Andy

Most of the individual columns for the report were defined
using usual techniques from the Columns option. The arrow (- >)
portion of each column definition is supplied automatically by
dBASE when you use the FlO menu to select fields for the Contents

of the column. The CHARGES- > symbol tells dBASE to take
the DAT E field from the CHARGES database.

To define the first column, highlight the Columns option, select
Contents, press FlO, and select DAT E from the field submenu.
Then enter the heading Date:

Contents CHARGES-> DATE

Managing Multiple Data Files 175

Heading Date
Width 8

Decimal places
Total this column

Press PgDn and define the second column of the report:

Contents CHARGES-> PRODUCT
Heading Product
Width 15

Decimal places
Total this column

Press PgDn to define the third column:

Contents CHARGES->QTY
Heading Qty
Width 4

Decimal places o

Total this column Yes

Define the fourth column:

Contents CHARGES->UNIT _PRICE
Heading Unit Price
Width 12

Decimal places 2

Total this column Yes

Finally, the fifth column tells us something new: the total price
of the transaction. This expression includes the quantity times the
unit price. Because this column contains an expression rather than
a field name, it has to be typed rather than selected from the fields
submenu (FlO). Notice that the CHARGES-> database is
defined for each field, and the asterisk (*) is used for multiplica
tion. Type the field content exactly as shown below. (Note: The
arrow consists of a hyphen followed by a greater-than sign.)

Contents CHARGES->QTY * CHARGES->UNIT _PRICE
Heading Total Sale
Width 14

Decimal places 2

Total this column Yes

•
...

•
...

176 UNDERSTANDING dBASE III PLUS

When you have defined the report format, these column speci

fications will appear at the bottom of your screen:

Report Format
> >Date Product my Unit Price Total Sale
mm/dd/yy XXXXXXXXXXXXXXX #### ##########.## ############.##

Finally, highlight the Exit option and select Save to save the

ARREPT.FRM· report format.

To view the report, highlight Retrieve from the Assistant menu

screen, and select Report. Select a drive and the ARREPT.FRM

report format. Select Execute the commo:nd. T he report will look like

Figure 9.4 when it's printed.

MODIFYING A VIEW

To change a View, highlight the Modify option from the main
menu bar, and select View. Specify a drive and a View file name,

and you'll be back to the View menu. From there, just use arrow

keys to highlight menu options and make changes. Use the Exit

and Save options to save the changes, or Ex£t and Abandon to delete

the current changes and keep the original View.

CLOSING A VIEW

When you quit dBASE, the View will be closed automatically.

You can also close a View from the dot prompt. While the Assist

ant menu is on-screen, press Esc to call up the dot prompt. T hen
type this command:

CLOSE DATABASES

Enter this command

ASSiS T

to bring back the Assistant menu. You'll need to use Set Up to

open a new database or View, because no database, index, or
View files will be open.

If you create a
report format with

a view open, you must
always remember to
open that view before
printing that report in
the future.

If you forget to
close a view, and

attempt to reopen a
single file that's already
in the view, you'll see
the error message "File
is already open." Use the
CLOSE DATABASES

command to close the
view; then you can open
any single database file
that you wish.

Qty

Managing Multiple Data Files 177

Summary Report for Accounts Receivable

Date Product Unit Price Total Sale

* *Customer 1000: Adams, Andy

04/01/86 Turbo Board 550.00 550.00

04/18/86 RAM Disk 1100.00 1100.00

* * Subtotal * *

'2 1650.00 1650.00

* * Customer 1001: Schumack, Susita

03/12/86 Floppy Disks 10 2.11 21.10

03/31/86 Color Card 101.00 101.00

* * Subtotal * *

11 103.11 122.10

* * Customer 1002: Norris, Nancy

03/15/86 8 Mhz Clock 2 16.39 32.78

04/11/86 RAM Disk 1100.00 1100.00

* * Subtotal * *

3 1116.39 1132.78

* * Customer 1003: Davies, David

04/15/86 8 Mhz Clock 16.39 16.39

04/20/86 Tape Backup 1250.00 1250.00

04/20/86 40 Meg. Disk 450.00 450.00

* * Subtotal * *

3 1716.39 1716.39

* * Customer 1004: Teasdale, Rhonda

04/15/86 Video Cable 10 16.00 160.00
* * Subtotal * *

10 16.00 160.00
* * * Total * * *

29 4601.89 4781.27

-

Figure 9.4: Accounts Receivable Report (ARREPT) Printed from Two Databases

.F.

178 UNDERSTANDING dBASE III PLUS

ENTERING COMMANDS

You can manage multiple databases directly from the dot prompt
as well. Here are a few examples using the CUSTLIST.DBF and
CHARGES.DBF databases . First, to start with a clean slate, close all

open databases and index files by entering this command:

CLOSE DATABASES

Next, to open two databases simultaneously, use the SELECT
commands with the letters A through J, or the numbers 1 through
10. For example, to open both the CUSTLIST.DBF and
CHARGES.DBF databases, with their respective index files, enter the
commands:

SELECT A

USE CHARGES INDEX CHARGES

SELECT B

USE CUSTLIST INDEX CUSTLIST

With both files open, you can now set up a relationship betweKn
the A and B files based upon the common field CUSTNO. Use
these commands:

SELECT A

SE T RELATION TO CUSTNO IN TO CUSTLIST

There are some differences between a View and simply opening
two files simultaneously. For example, if you enter the list command

LIST

you'll only see data from the currently selected database
(CHARGES.DBF). (Entering the command SELECT B will make
CUSTLIST.DBF the currently selected database, and LIST would
show its data.)

Record# CUSTNO PRODUCT QTY UNIT_PRICE DATE

4 1000 Turbo Board 1 550.00 04/01/86

8 1000 RAM Disk 1 1100.00 04/18/86

1 1001 Floppy Disks 10 2.11 03/12/86

3 1001 Color Card 1 101.00 03/31/86

2 1002 8 Mhz Clock 2 16.39 03/15/86

BILLED
.F.

.F.

.F.

.F.

9 1003

Manag£ng Muit£ple Data Hies 179

6 1002 RAM Disk 1 1100.00 04/11/86 .F.

7 1003 8 Mhz Clock 1 16.39 04115186 .F.

Tape Backup 1 1250.00 04/20/86 .F.

10 '1003 40 Meg. Disk 1 450.00 04/20/86 .F.

5 1004 Video Cable 10 16.00 04/15/86 .F.

To display records from the un selected database, you need to

use a letter and arrow before the field name. For example, when
the A file is selected, use B- > in front of the field names from
the B file:

SELECT A
LIST CUSTNO, B->LNAME, B->FNAME, QTY, UNIT_PRICE, (QTY"'UNIT_PRICE)

Notice that this LIST command contains a calculated field,
(QTY * UNIT_PRICE), which displays the total of the sales trans
action. T he results look like this:

Record# CUSTNO B->LNAME B->FNAME aTY UNIT_PRICE (aTY '" UNIT_PRICE)

4 1000 Adams Andy 1 550.00 550.00

8. 1000 Adams Andy 1 1100.00 1100.00

1 1001 Schumack Susita 10 2.11 21.10

3 1001 Schumack Susita 1 101.00 101.00

2 1002 Norris Nancy 2 16.39 32.78

6 1002 Norris Nancy 1 1100.00 1100.00

7 1003 Davies David 1 16.39 16.39

9 1003 Davies David 1 1250.00 1250.00

10 1003 Davies David 1 450.00 450.00

5 1004 Teasdale Rhonda 10 16.00 160.00

To get a quick calculation of the last column in the display, sim

ply enter this command:

dBASE displays

10 records summed

aTY * UNIT_PRICE

4781.27

You can also print the report from the dot prompt, but you'll
have to make a change using the MODIFY REPORT command.

180 UNDERSTANDING dBASE III PLUS

Earlier in this chapter, you entered this Group on expression:

STR (CUSTNO,4) +": "+ TRIM(LNAME)+", "+ FNAME

This expression must be changed to

STR (CUSTNO,4) +": "+ TR IM(B- >LNAME) +", "+ B- >FNAME

because without the View in effect, LNAME and FNAME need to

be defined as fields from the SELECT B database file. (Other
reports created from a View might need similar modifications.)

Once a report format exists with fields from the two (or more)

databases, you can use the REPORT FORM command from the

dot prompt:

R EPOR T F ORM ARREPT TO PRINT

This command prints a copy of the ARREPT.FRM report.

If at any time when working from the dot prompt you become

confused about what files are open, selected, and so forth, you can
just enter this command:

DISPL AY STATUS

dBASE displays a status report that looks something like this:

Currently Selected Database:
Select area: 1, Database In Use: C:CHARGES.DBF Alias: CHARGES

Index file: C:CHARGES.NDX Key: CUSTNO
Related into: CUSTLIST
Relation: CUSTNO

Select area: 2, Database in Use: C:CUSTLlST.DBF Alias: CUSTLIST
Index file: C:CUSTLlST.NDX Key: CUSTNO

This status report tells you that the CHARGES.DBF and

CHARGES.NDX files are open in Select area 1 (same as

SELECT A). Furthermore, CHARGES.DBF is the currently
selected database, and is related to CUSTLIST, based on the

CUSTNO field.

In Select area 2 (B), the CUSTLIST.DBF database is open, with
the CUSTLIST.NDX database.

To close all open databases and index files, enter this command
at the dot prompt:

C L OSE DATA BASES

Managing Multiple Data Files 181

AN INVENTORY DATABASE DESIGN

In this section, we'll discuss another design requiring multiple
databases and new techniques for managing. data. Some of thO
more advanced techniques in this section are not accessible from
the Assistant menu, so we'll do this entire section directly from the
dot prompt.

If you are using a computer with two floppy disks, you should
make sure that you have a work disk in Drive B. Then enter this
command at the dot prompt before you begin the following exercises:

SET DEFAULT TO B

This will ensure that all files are stored and accessed on the disk in
Drive B.

Master File and Transaction Files

Inventory systems usually involve multiple databases as well. The
relationship among these databases is often called a Master File

Transaction File relationship. To simplify managing the data, inventory
information is most easily divided into three separate databases: one
for sales, one for purchases (or new stock), add a master inventory
database. Envision the relationship among these databases, as shown
in Figure 9.5.

The Sales and New Stock files are called transaction files,
because they record information about individual sales and pur
chase transactions. The inventory file is called the master file,
because it contains the current status of each item in stock. In this
section, we'll see how to update the current status of the master file
from the contents of the transaction files.

An Inventory System

First, let's create the master inventory file and give it the file
name MASTER. Enter this command at the dot prompt:

CREATE MASTER

4:50

182 UNDERSTANDING dBASE III PLUS

-

Figure 9.5: Inventory Databases

Give the MASTER file this structure:

Structure for database: MASTER.OBF
Field Field Name Type Width Dec

1 CODE Character 5

2 TITLE Character 15

3 aTY Numeric 5

4
 PRICE Numeric 5 2

5 REORDER Numeric 5

When dBASE asks if you want to input data records now, answer
Yes and type the following data:

CODE TITLE QTY PRICE REORDER

AAA Rakes 30 3.50 25

BBB Hoes 30
 25
CCC Shovels 30 5.00 25

')

Managing Multiple Data Files 183

Then enter these commands:

USE MASTE R +-'
LIST +-'

Three records appear:

Record# CODE TITLE QTY PRICE REORDER
1 AAA Rakes 30 3.50 25

2 BBB Hoes 30 4.50 25

3 CCC Shovels 30 5.00 25

The first record tells you that product code AAA is rakes, that
you have 30 in stock, that the purchase price is $3.50, and that
you reorder when the stock on hand gets below 25. You have 30
hoes in stock (product code BBB), each costing $4.50, and you
reorder when stock gets below 25. Product code CCC is shovels.
You have 30 in stock, each costing $5.00. Reorder when stock is
below 25.

Now let's create a database to keep track of new stock received.
Call it NEWSTOCK with this command:

CREATE NEWSTOCK +-'

Structure it like this:

Structure for database: NEWSTOCK.DBF
Field Field Name Type Width Dec

1 CODE Character 5

2 QTY Numeric 5

3 PRICE Numeric 12 2

4 DATE Date 8

Say Yes when dBASE asks "Input data now? (YIN)". Assume
that you've just received two orders from wholesalers, one order of
ten rakes, each costing $4.00, and another order lor six shovels,
each costing $4.50. Furthermore, let's assume that you received
them on March 1, 1986. To add these new items to NEW
STOCK, type the following data:

COD E aTY PRICE DATE
AAA 10 4.00 03/01/86

BBB 6 4.50 03/01/86

184 UNDERSTANDING dBASE III PLUS

When dBASE asks for data from Record #3, press Return and

the dot prompt will appear. So if you now

USE NEWSTOCK

LIST

you'll see your new stock listed in database format:

Record# CODE QTY PRICE DATE

1 AAA 10 4.00 03/01/86

2 aaa 6 4.50 03/01/86

Now you need to come up with a method to update the master
inventory so that it reflects the new goods received.

Updating Databases with UPDATE

The dBASE UPDATE command allows you to update the con

tents of one database based upon information from another. You
can specify that the update either add, subtract or replace entire
fields. This is best explained with an example. Suppose that you

want to add the new stock items to the MASTER file. Further
more, if there is a change in the price for an item, you want the
MASTER file to record the new price. In that case, replace the

existing price in the MASTER file with the price in the NEW
STOCK file.

Let's review the contents of both files first. If you

USE MASTER

LIST

the original inventory appears:

Record# CODE TITLE QTY PRICE REORDER

1 AAA Rakes 30 3.50 25

2 aaa Hoes 30 4.50 25

3 CCC Shovels 30 5.00 25

That is, you have 30 rakes in stock, at a wholesale price of $3.50.

You have 30 hoes, wholesale priced at $4.50. You have 30 shovels,

Managing Multiple Data Files 185

wholesale priced at $5.00. Now let's

USE NEWSTOCK
LIST

to see new items in stock:

Record# CODE QTY PRICE DATE
1 AAA 10 4.00 03/01/86
2 BBB 6 4.50 03/01/86

' You've received ten product AAA (rakes) at $4.00 each. You've
also received six product BBB (hoes) at $4.50 each. So add these
items to your inventory, and note that the wholesale price of rakes
has increased from $3.50 to $4.00. Here is the procedure.

First, identify a key fold, one that relates the contents of the
MASTER file with the NEWSTOCK file. Both files must have
this field in common. In this example, CODE is the key field,
because you want dBASE to add ten items of product code AAA
to thF MASTER file, and six of product code BBB.

Second, you must open both the MASTER and NEWSTOCK
files simultaneously. Use the SELECT command to do so. For this
example, open the MASTER file in a work area labeled A , and
the NEWSTOCK file in a work area labeled B. Here are the cor
rect commands:

SELECT A

USE MA STER

SELECT 8

USE NEWSTOCK

Now, specify the MASTER file by selecting work area A . Then
use the UPDATE command to perform the update. Here are the
·commands:

SELECT A

UPDATE ON CODE FROM NEWSTOCK RE PLACE QTY WITH;

QTY + 8->QTY, PRICE WITH 8->PRICE

These commands mean, "Update the MASTER file from the data
in NEWSTOCK using CODE as the comparison (key) field; replace
the QTY field with its current value plus the value of the QTY field

186 UNDERSTANDING dBASE III PLUS

in NEWSTOCK (QIT + B->QTY), and replace the PRICE with
the PRICE from the NEWSTOCK file (B->PRICE)." The B->
symbol is used to specify data from the NEWSTOCK file opened in
work area B. (The arrow symbol is formed by typing a hyphen fol
lowed by a greater-than sign.)

As soon as the update procedure is complete, list the contents of
the MASTER file:

LIST

You'll see these records:

1 AAA Rakes 40 4.00 25

2 BBB Hoes 36 4.50 25

3 CCC Shovels 30 5.00 25

There are now 40 rakes (AAA) in stock, because you've
received 10. The price of rakes is now'$4.00, as opposed to $3.50,
because you REPLACED PRICE. There are now 36 hoes (BBB)
in stock because you received 6. The price of hoes is still $4.50.
Shovels (CCC) were not affected, because the NEWSTOCK file
did not have any information about shovels.

Now, let's discuss updating the MASTER file from the SALES
database. As stated in the dBASE manual, the FROM (transac

'tion) file in an UPDATE command must be sorted and indexed
by the key field. You can see that these are certainly not sorted by
the key field, CODE. If you

USE SALES

LIST

you'll see these records:

1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01/86

3 CCC Shovels 3 21.00 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

6 AAA Rakes 2 11.00 03/02/86

7 CCC Shovels 1 7.50 03/02/86

8 BBB Hoes 2 12.50 03/01/86

9 AAA Rakes 5 23.50 03/02/86

Managing Multiple Data Files 187

You can use INDEX in this case, so let's try it.

INDEX ON CODE TO SALES
LIST

Now the inventory is sorted by product code:

1 AAA Rakes 3 15.00 03/01/86
2 AAA Rakes 2 10.00 03/01/86
3 AAA Rakes 2 11.00 03/02/86
4 AAA Rakes 5 23.50 03/02/86
5 BBB Hoes 2 12.50 03/01/86
6 BBB Hoes 2 12.50 03/01/86
7 CCC Shovels 3 21.00 03/01/86
8 CCC Shovels 4 26.50 03/01/86
9 CCC Shovels 1 7.50 03/02/86

Now open the MASTER and SALES files, along with the

SALES index file to perform the update. First, let's cancel all pre

vious SELECT assignments by typing this command:

CLEAR ALL

Now select the MASTER file as A, and the SALES file and

index as B:

SELECT A

USE MASTER

SELECT B
USE SALES INDEX SALES

To perform the update, reselect the MASTER file, and perform

the update, subtracting the quantities in the SALES file from the

quantities in the MASTER file.

SELECT A
UPDATE ON CODE FROM SALES REPLACE QTY WITH;

QTY-B->QTY

To see the effect, LIST the MASTER file:

LIST

188 UNDERSTANDING dBASE III PLUS

dBASE displays:

Record# CODE TITLE aTY PRICE REORDER
1 AAA Rakes 28 4.00 25

2 BBB Hoes 32 4.50 25

3 CCC Shovels 22 5.00 25

There are now 28 rakes in stock because you've sold 12. There
are 32 hoes because you've sold 4, and 22 shovels because you've

sold 8. dBASE subtracted the appropriate quantities from the

MASTER file based upon the quantities and product codes in the

SALES file.
Now, to see which items need to be reordered, type this

command:

LIST FOR QTY < REORDER

The result is

Record# CODE . TITLE aTY PRICE REORDER
3 CCC Shovels 22 5.00 25

The amount of shovels in stock (22) has fallen below the reorder
point (25).

Now, to keep future exercises in order, let's "unassign" the

SELECT commands by typing this command:

CLOSE DATABASE

You now have a managerial problem on your hands. The MAS

TER file is accurate, but SALES and NEWSTOCK still have
data in them. If you were to add new records to these transaction
databases and do another update, the MASTER file would then

be incorrect. The UPDATE command would add or subtract these

items a second time from the MASTER file. Therefore, you must

come up with a managerial scheme for getting rid of data you've
already updated. If you wished to update the MASTER file daily,
a good approach might be to do the following:

1. 	 Use the NEWSTOCK and SALES files during the course of
the day to record goods received and sold.

Managing Multiple Data Files 189

2. 	 A t the end of the day, print a RE PORT of all sales and
goods received from the SALES and NEWSTOCK files for a
permanent record.

3. 	 UPDATE the MASTER file from the SALES and

NEWSTOCK files.

4. 	DELE TE and PACK (or ZAP) all records from the SALES

and NEWSTOCK files, so future updates are not confused
with previous updates.

T he disadvantage to this approach is that you lose all the data
from the SALES and NEWSTOCK files. Here's a better approach

which leaves the SALES and NEWSTOCK files intact. L et's use
NEWSTOCK as the example. Suppose that on March 2 you
receive 10 rakes at $4.00 each. L et's

USE NEWSTOCK

APPEND

and add the following information:

CODE :AAA:

aTY :10

PRICE :4.00

DATE :03/02/86:

W hen you LIST, you'll see the new record added to the list

Record# . CODE aTY PRICE DATE

1 AAA 10 4.00 03/01/86

2 BBB 6 4.50 03/01/86

3 AAA 10 4.00 03/02/86

W hen you do another UPDATE , you won't want Records #1
and 2 to be used again. So move only the newest entry to a file
named TEMP :

COPY TO TEMP FOR DTOC(DATE) = "03/02/86"

I f you now

USE TEMP

LIST

190 UNDERSTANDING dBASE III PLUS

you'll see

Record# CODE aTY PRICE DATE

3 AAA 6 4.00 03/02/86

Now you can update the MASTER file from TEMP without wor

rying about updating Records #1 and 2 again. That is, you can

SELECT A

USE MASTER

SELECT 8

USE TEMP

SELECT A

UPDATE ON CODE FROM TEMP REPLACE QTY WITH;

QTY + 8- >Q TY, PRICE WITH 8- >PRICE

Note: Remember to sort or index the TEMP file first. Since there

was only one record in your TEMP file, you had no need to sort

or index it first.

When you LIST the MASTER file now, you'll see

1 AAA Rakes 38 4.00 25

2 BBB Hoes 32 4.50 25

3 CCC Shovels 22 5.00 25

Ten rakes have been added to the inventory. Your NEW

STOCK file still contains records of all goods received .

REVIEWING MULTIPLE DATABASES

In this chapter you have learned many techniques for managing

multiple databases:

-

Data are often divided into separate databases to avoid unneces

sary repetitions, as in the example of customer names and
addresses in one database and individual sales transactions in

another.

Managing Multiple Data Files 191

-

A common field is required to link two databases. T he common
field should have the same name, data type, and width in both
databases.

-

In one database, each record usually contains some unique identify
ing code. T his code is called the key field and is used to link mul
tiple databases. Examples of key fields include customer numbers,
part numbers, and account numbers.

-

To set up a View between two files, select View from the Create

menu and assign a name to the View. Identify the database and
index file names, the common fields, and fields to view using
menu options.

-

To open an existing View, highlight the Set Up option from the
main menu bar and select View.

-

To print a report from 'two databases, open the View and create
the report using the Create and Report options.

-

To modify an existing View, highlight the Modify option from the
A ssistant menu, and select View.

-

T he SELECT and SET RELATION commands allow you to
open up to ten databases simultaneously and set up relationships
between them.

-

Inventory systems often use multiple databases in a Master File-
Transaction File relationship.

-

T he dBASE III PLUS UPDATE command, available only from
the dot prompt, allows you to update the values in a Master file
with values in a Transaction File.

I

194 UNDERSTANDING dBASE III PLUS

n this chapter, we'll discuss options from the Assistant menu

which are generally used for applications involving many or

large database files. This will be a "catch all" chapter for

options and techniques used with the Assistant menu. After this

chapter, you'll learn more about the dot prompt and the dBASE
programming language.

THE MENU TOOL KIT

If you highlight the Tools option from the Assistant menu, you'll

see these options:

Set drive

Copy file

Directory

Rename

Erase

List structure

Import

Export

These options help you manage files and make backups of impor

tant data. Let's take a closer look at each of these options.

Set Drive

When selected, the Set drive option displays a menu of disk
drives (A:, B:, C:). The drive you select becomes the default drive
where dBASE looks for all database, index, report format, and
other files. This option works the same as the SET DEFAULT
command from the dot prompt.

Copy File

The Copy file option allows you to make a copy of any file and
is particularly good for making backups. Once selected, this option
will display a menu of existing files on the directory: You select a

File Maintenance and Performance 195

file to copy. Then you'll see a menu of disk drives (A:, B:, C:).
After you select a disk drive, a prompt will ask that you enter a
name for the copy. Type any valid file name and include a three
letter extension if you wish.

Let's look at a couple of examples for making backups. Suppose
that you want to make a backup copy of your MAIL.DBF data

base. You could select Copy file and MAIL.DBF as the file to copy.
Then, enter the name MAIL.BAK as the file to copy to. When
completed, the MAIL.BAK file will be identical to the MAIL.DBF

file. If something happens to MAIL.DBF, you have a backup copy
stored under the file name MAIL.BAK. You should repeat the

backup process occasionally so that the copy is a reasonable fac

simile of the original database.
If you have a hard disk, you can use this method to make

backup copies onto floppy disks. Select the Copy file option and the
file that you want to copy. Make sure that there is a disk in Drive

A, and then select A: as the drive to copy to. Create a file name
for the copy. Because the copied file is going to a different disk
drive, you can use the same name as the original file or add an
extension that indicates the date of your backup (MAIL.FEB).

The Copy file option is useful, but it is not a substitute for the
DOS COpy and BACKUP commands. If you plan on using a
computer often, it will be worth your time to learn about the DOS
COPY command. The DOS BACKUP command is particularly

useful if you use a hard disk.

Directory

The Directory option lets you see the names of existing files on a
disk. When selected, it displays these options:

.dbf Database Files

.ndx Index Files

.fmt Format Flies

.Ibl Label Files

.frm Report Flies

.txt Text Files

.vue View Files

.qry Query Flies

196 UNDERSTANDING dBASE III PLUS

.scr Screen Files
* All Files

You can move the highlighting to the type of file you wish to
view, and press Return to select the option. dBASE will display all
the files with the file-name extension requested. (Note: You can also
view All files using the last option.)

Rename

The Rename option allows you to change the name of an existing
file. However, you should avoid changing the file-name extensions
(.DBF, .NDX, and so forth) because they are used to identify the
types of files. Like the Copy file option, this option displays a list of
existing files and asks that you select one to rename. Then you
simply type the new name for the file.

Erase

The Erase option allows you to remove a file from the disk drive
permanently. You should use this option with caution because once
a file is deleted, it cannot be recalled.

List Structure

:This option displays the structure of the currently open
database-a useful, quick reminder of field names in a database,
particularly when working from the dot prompt. (The equivalent
dot-prompt command is also LIST STRUCTURE.) F or example,
selecting List structure while the MAIL.DBF database is in use
would display this structure:

Structure for database: MAIL.OBF
Number of data records: 5

Date of last update : 03/05/86
Field Field Name Type Width Dec

1 LNAME Character 15

2 FNAME Character 10

File Maintenance and Performance 197

3 ADDRESS Character 25

4 CITY Character 15

5 STATE Character 5

6 ZIP Character 10

7 PHONE Character 13

* * Total * * 94

Import and Export

T he Import and Export options allow you to exchange data from
a PFS:FILE database. See Appendix A for a complete discussion

of interfacing dBASE III PLUS with other software systems.

DATA CATALOGS

Data catalogs are valuable for hard-disk users who have to man
age many files on a single directory. T hey also help you to keep

files organized and make it easier to work with general applica
tions. For example, you could set up a catalog for your mailing list
that only provides access to the index files, reports, and screens

that are relevant to the MAIL.DBF database.

Even though you can access a catalog from the Assistant menu,
.i you must create it from the dot prompt. So, press Esc until the

dot prompt appears.

To start a catalog, enter the SET CATALOG command along
with a name for the catalog. For this example, we'll create a cata
log named MAILLIST. If you are using a floppy-disk system, type

these commands:

SET DEFAULT TO B

SET CATALOG TO MAILLlST

If you are using a hard-disk system, enter this command:

SET CATALOG TO MAILLIST

dBASE will see that no such cDtalog exists and will display the

prompt:

Create new catalog? (YIN)

198 UNDERSTANDING dBASE III PLUS

Answer Yes. T hen dRASE will ask that you

Enter title for file MAILLlST.CAT:

Type the title Mailing List Manager, and press Return. dBASE

will then inform you that the

File catalog is empty.

Let's put some files into the catalog now. To put a database file

into the catalog, type this command:

USE MAIL

dBASE asks that you

Enttn title for file MAIL.OBF:

Type this t;tle:

Names and A d dresses Database -

To put the MAIL index files into the catalog, enter this command:

SET INDEX TO NAMES,ZI P

To put the ADDNAMES.FMT screen format into the catalog,

enter this command:

SET FORMAT TO ADDNAMES

dBASE will ask that you

Enter title for file AOONAMES.FMT:

Type this title:

Scree n to Enter and Edit Data

To add a report to the catalog, use the MODIFY REPORT

command. For example, to put BYNAME.FRM into the catalog,
enter this command:

MODIFY REPOR T BYNAME

dBASE will, of course, give you an opportunity to modify the

File Maintenance and Performance 199

report. Because the purpose of this exercise is only to place the
BYNAME.FRM report format in the catalog, you need not make

any changes to the report. Just highlight the Exit option and select

Save. dBASE will ask that you

Enter title for file BYNAME.FRM:

Type this title:

Directory Listing

In general, when you use the SET CATALOG TO command

to open a catalog, you can use these commands to add files, and

the titles you provide, to the catalog:

COpy
CREAT E
INDEX
MODIFY
SET FORMAT
USE

To stop recording files to be included in the catalog, enter this
command:

SET CATALOG OFF

This will keep new files from being added to the catalog, but the
catalog will still be active in the sense that menu selections will

display only cataloged files.

To completely close a catalog so that all files once again become
accessible, enter the SET CATALOG TO command without a file
name:

SET CATALOG T O

Now, let's get back to the Assistant menu and see what effect
this catalog has. Type

A SSIST

to bring back the Assistant menu. Then, highlight the Set Up
option and select Catalog. Select a drive and M AILLIS T.CAT from

the submenu.

200 UNDERSTANDING dBASE III PLUS

Nothing much appears to happen until you begin selecting items
to work with. If you highlight Set Up and select Database file to
open a database, only MAIL.DBF appears on the screen as an
option, along with the title you previously entered:

Database file
MAIL.DBF
Names and Addresses Database

Select MAIL.DBF and answer Yes to the "Is the file indexed?"
prompt. The screen will display only the index files associated with
this data catalog:

NAMES.NDX
ZIP.NDX

If you select the Format for Screen option from the Set Up menu,
only ADDNAMES.FMT will appear as an option. So, as you can
see, a catalog allows you to define groups of related files . That
means you can have all of your mailing list files in one catalog,
your inventory in another, and accounts receivable in another.

An active catalog can also be useful when you are working from
the dot prompt. The catalog query option (?), will display only files
in the current catalog. For example, the command

SET CATALOG TO ?

calls up a menu of all existing catalogs and allows you to pick one.
Once you select a catalog, you can use the ? option in place of a file
name in any command including MODIFY, REPORT, LABEL,
SET INDEX, and USE. For example, entering the command

USE?

displays a menu of database files in the catalog. The command

SET INDEX TO ?

displays a list of index files in the catalog. The commands

REPORT FORM ?

File Maintenance and Performance 201

and

SET FORMAT TO ?

display catalog options for report and screen format files.
Data catalogs are just one method of organizing files . You can

also develop menu-driven systems through the dBASE programming
language and with the dBASE III PLUS applications generator.

REUSING QUERIES

As you continue working with dBASE III PLUS, you may find

it tedious to repeatedly use the Build a search condition option when
you want to access specific records . For example, suppose that you
have a database named SAMPLE .DBF which contains these
records:

Record# CUSTNO PRODU CT aTY UNIT_PRICE DAT E
1 1001 F loppy Disks 10 2.11 03/12/86
2 1002 8 Mhz Clock 2 16.39 03/15/86
3 1001 Color Card 1 101.00 03/31/86
4 1000 Turbo Board 1 550.00 04/01/86
5 1004 Video Cable 10 16.00 04/15/86
6 1002 RAM Disk 1 1100.00 04/11/86
7 1003 8 Mhz Clock 1 16.39 04/15/86
8 1000 RAM Disk 1 1100.00 04/18/86
9 1003 Tape Backup 1 1250.00 04/20/86

10 1003 40 Meg. Disk 1 450.00 04/20/86
11 1003 F loppy Disks 5 2.11 05/12/86
12 1004 8 Mhz Clock 1 16.39 05/15/86
13 1003 Color Card 1 101.00 05/31/86
14 1001 Video Cable 2 16.00 06/15/86
15 1001 8 Mhz Clock 2 16.39 05/15/86
16 1001 RAM Disk 1 1100.00 05/18/86
17 1004 Tape Backup 2 1250.00 06/20/86

Furthermore, you only want to work with unbilled accounts

(records that contain BILLED .F.). You can repeatedly specify =

BILLED
.T.
.T.
.T.
.T.
.T.
.T.
.T.
.T.
.T.
.T.
.F.
.F.
.F.
.F.
.F.
.F.
.F.

BILLED .F. in all your commands, or you can set up and save=

a Query. Use the CHARGES .DBF database to try an on-line
Query.

202 UNDERSTANDING dBASE III PLUS

Creating a Query Form

To create a Query, first be sure that CHARGES.DBF and. its
index files are open. Then, highlight the Create option and select
(biery. A prompt will ask that you enter a name for the query
form. Follow the usual rules for creating file names (eight letters
maximum, no spaces or punctuation). For this example, enter the
file name NOTBILLD. The screen displays a blank query form.

To fill in the query form so that only records with the BILLED
field equal to False are accessed, follow these steps:

¥ Select Field Name.
¥ Select BILLED from the submenu.

¥ Select Operator.
¥ Select Is False.

As you can see, filling in the query form is much like creating
a search condition with Assistant menu options. The query form is
now completed so that it looks like Figure 10; 1.

Saving a Query Form

Once you've filled in the query form, highlight the Exit option
and select Save. You'll be returned to the Assistant menu.

Activating a Query

You can activate a Query by following these steps from the
Assistant menu screen:

¥ Highlight the Set Up option.
¥ Select (biery.
¥ Select NOTBILLD.

Once activated like this, dBASE will operate as though only the
records specified in the Query exist. For example, if you highlight

Figure 10.1: Query Form to Access Unbilled Accounts

13

-

File Maintenance and Performance 203

Retrieve, select List and Execute the commarul, only these records will

be displayed:

Record# CUSTNO PRODU CT aTY UNIT_PRICE DAT E BILLED
11 1003 Floppy Disks 5 2.11 05/12/86 .F.
12 1004 8 Mhz Clock 1 16.39 05/15/86 .F.

1003 Color Card 1 101.00 05/31/86 .F.

14 1001 Video Cable 2 16.00 06/15/86 .F.
15 1001 8 Mhz Clock 2 16.39 05/15/86 .F.
16 1001 RAM Disk 1 1100.00 05/18/86 .F.

17 1004 Tape Backup 2 1250.00 06/20/86 .F.

If you select Report from the Retrieve menu, only these records
will be displayed in your report. You can only BROWSE and
EDIT records where BILLED = .F. while this Query is activated.

In other words, you can work on these records without having to

recreate search conditions for every command . .

204 UNDERSTANDING dBASE III PLUS

Closing a Query

Unfortunately, there is no simple way from the Assistant menu

to deactivate a Query. To close a Query, leave the Assistant menu

by pressing Esc, and enter this command at the dot prompt:

SET FILTER TO

to close the query file. You can then enter the command

A SSI ST

to return to the Assistant menu and access your database without

the filtering effects of the query form.

Modifying a Query Form

To change an existing query form, highlight the Modify option

from the Assistant menu and select Query. Select the appropriate

Query from the menu. You can modify the Query with the same

options menu that you used to create the original query form.

Advanced Querying Techniques

Query forms can include the dollar ($) operator for embedded
character searches) as we discussed earlier. Query forms may also con

tain parentheses which help refine the logic of a search. For
example, take a look at the Query in Figure 10.2 .

.
Notice that this Query specifies

CUSTNO > 1001 .A ND. BILLED = .F. .OR. DATE> = 05/01186

or, in English, "Display records where the customer number is
greater than 1001, and where the BILLED field is . F. or the date

is greater than 05/01/86." If you LIST with this Query, these
records will be displayed:

Record# CUSTNO PRODUCT QTY UNIT_PRICE DATE BILLED

11 1003 Floppy Disks 5 2.11 05/12/86 .F.

12 1004 8 Mhz Clock 1 16.39 05/15/86 .F.

File Maintenance and Perfonnance 205

-

Figure 10.2: Complex Query without Parentheses

13 1003 Color Card 1 101.00 05/31/86 .F.

14 1001 Video Cable 2 16.00 06/15/86 .F.

15 1001 8 Mhz Clock 2 16.39 05/15/86 .F.

16 1001 RAM Disk 1 1100.00 05/18/86 .F.

17 1004 Tape Backup 2 1250.00 06/20/86 .F.

Although you specified in the query form that the customer num
ber must be greater than 1001, you see records with custom+r

numbers equal to 1001. That's because the .OR. condition lists

records with dates greater than or equal to 05/01/86, regardless of

the customer number.
Now, take a look at this filter condition:

CUSTNO > 1001 .AND. (BILLED .F. .OR. DATE> = 05/01/86)=

Notice the use of parentheses which block off the .OR. portion of
the Query. The parentheses cause the .OR. condition to be evalu
ated first . Therefore, in order to be displayed by this condition, a

206 UNDERSTANDING dBASE III PLUS

given record must either have .F. in the BILLED field, or a date
greater than or equal to May 1, 1986. If a record meets either of
those criteria, it then must further meet the criterion of customer
number> 1001 to be included. Therefore customers with num
bers less than or equal to 1001 are rejected by this Query.

You insert parentheses into query forms using the Nest option
from the menu. When you select Nest, the screen displays a menu:

A dd:
Start: 0

End: 0

Remove:

Start: 0

End: 0

To place parentheses in a query form, select the Start option under
Add:, and specify the line number where the parentheses should
begin. (The line number appears in the left column of the query
form.) Then, select the End option, and indicate the line where
the parentheses should end. Figure 10.3 shows the sample Query
with parentheses added to lines 2 and 3. Notice that the parentheses
appear on the lines that separate portions of the query form.

After adding the parentheses, you can save and activate the
query form in the usual manner. A list of records accessed by the
modified query form appears on your screen:

Record# CUSTNO PRODU CT aTY UNIT_PRICE DATE

11 1003 Floppy Disks 5 2.11 05/12/86
12 1004 8 Mhz Clock 1 16.39 05/15/86
13 1003 Color Card 1 101.00 05/31/86
17 1004 Tape Backup 2 1250.00 06/20/86

The Rerrwve option under the Nest menu allows you to remove
existing parentheses from a query form. The Display option from
the Query menu will immediately display the first record in the
database that meets the Query condition. Pressing PgDn will dis
play other records that meet the search condition. This option
allows you to check the validity of your Query before saving it via
the Exit option.

BILLED
.F.

.F.

.F.

.F.

File Maintenance and Performance 207

-

Figure 10.3: Complex Query with Parentheses

MAXIMIZING SEARCH

PERFORMANCE

F or any given search or query in a database, there will prob

ably be several ways to accomplish the same goal. However, your

search method significantly affects the time dBASE requires to find

your records. One of the most important factors affecting the speed

of a search is the use of the FOR (Build a search condition) and

WHILE (Build a scope condition) options. Let's look at an example.
Suppose that you are using a database with the same structure

as MAIL.DBF, but there are about a thousand records in the

database. Of these, suppose that ten people have the last name

Miller. How long does it take to pull out and view all the Millers

in this database? Well, that depends on how you perform the

search.

208 UNDERSTANDING dBASE III PLUS

You can use the Build a search condition option to build the condi
tion LNAME 'Miller'. Then it will take about forty seconds to=

view all the records with a List or Report option. However, most

of that time will be spent reading all of the records in the database
that do not have the last name Miller, only to reject them from
the display.

Seeking Indexed Records

An index file of last names for the database can speed this pro
cess up considerably. First, if the NAMES.NDX index is active for

the MAIL.DBF database, and if it is the Master index, y ou can
highlight the Position option from the Assistant menu and select
Seek. Then enter

"Miller"

(Be sure to include the quotation marks.) The Seek option will
immediately access the first Miller in the database. Because the
database is already in alphabetical order, dBASE can quickly find
the other Millers listed beneath the first one:

Mason Marcia 1 23 Baker St. San Clemente CA
• Miller Muriel P Box 1 23 La Jolla .O. CA

Miller Peter 1 086 De Mayo Del Mar CA
Miller Wendy 5441 Elm St. Eugene OR
Miller Albert High Point Lane Scarsdale NY

Miller Fred 1 Hamptom Ct. Greenwich CT
Miller David P Box 2802.O. Boston MA
Miller Aaron 544 Oak St. Encinitas CA

Miller Suslta 1 86 Crest Dr. Portland ME

Miller Cynthia Tara Atlanta GA

Miller Bill Via Granada Rancho WA

Moses Robert 321 Adams San Diego CA

Building a Scope Condition

Now, to keep dBASE from scanning through a thousand records
to pull out all the Millers, y ou can tell dBASE to just keep

File Maintenance and Performance 209

displaying records as long as (WHILE) the last name is Miller.
Follow these steps:

9 Highlight Retrieve.
9 Select List.
9 Select Build a scope condition.
9 Select LNAME.
9 Select =.

9 Type Miller.

You have built a command just as you would using the Build a
search condition option. Notice, however, that the command you've
built is

Command: LIST WHILE LNAME = "Miller"

rather than

Command: LIST FOR LNAME = "Miller"

When you select Execute the command, you'll notice another
difference. It only takes dBASE around three seconds to display
the Millers, rather than forty seconds. Of course, if this database
contained 10,000 names, the time difference would be even more
dramatic.

Although the Build a scope condition option is much faster than the
Build a search condition option, it can only be used under the very
specific circumstances described in this example. The WHILE
command means, "Starting at the current record, keep accessing
until the condition is no longer true." If the records are not sorted
or indexed, and if you do not use the Seek option first, then the
Scope condition will not work properly. Later in this book, we'll use
the WHILE option in dBASE programs to gain maximum speed
from a fully automated mailing list system.

Other Accessing Options

The Assistant menu offers other techniques for accessing records in
a database, but these are generally used only with small databases

210 UNDERSTANDING dBASE III PLUS

where record numbers are easily memorized. We'll discuss these
options briefly because they are of limited value in managing data.

The Position menu includes the CoTo and Skip options. When
you select CoTo, dBASE asks you to enter a record number. You
simply type a record number and press Return. dBASE will
"point" to that record. If you then select Display from the Retrieve

menu, or select Edit or Browse from the Update menu, the record
whose number you entered will appear on the screen.

When you select the Skip option, dBASE will ask that you enter
some number. dBASE will then move the record pointer by the
number of records that you enter. For example, if you enter 10,

the record pointer will skip down ten records. If you enter -1,

then the record pointer will skip back one record.
On the Retrieve menu, along with the Build a search condition and

Build a scope condition, there is an option to Specify Scope. When you
select this option, a submenu displays the options summarized in
Table 10.1.

Option Effect

Default Scope: Has basically no effect. Change the default scope by selecting

Specify Scope from the menu.

ALL Specifies all records in the database.

NEXT Asks for a number (n) and displays the next n records. For

example, selecting Next and typing 20 displays the next twenty

records (about a screenful).

RECORD Allows you to define a particular record by its number ..

REST Displays records from the current pointer position to the end of

the file.

-

Table 10.1: SPecify Scope Menu Options

Let me reiterate that these menu options are of limited value in
managing large databases. However, you may want to become
familiari with them for your smaller searching and querying jobs.

Starting with the next chapter, we're going to start learning

File Maintenance and Performance 211

to program using the dBASE language and leave the Assistant
menu once and for all. We'll begin with a discussion of a new 'way
of storing information: memory variables in random access
memory (RAM).

REVIEWING FILE MAINTENANCE

AND PERFORMANCE

In this chapter you have learned how to maintain files and find
records quickly:

-

To perform basic file maintenance, highlight Tools from the main
menu bar, and select one of these options: Set drive) Copy file) Direc
tory) Rename) Erase) List structure) Import) or Export.

-

To group files by a particular type of application, use the SET
CATALOG command at the dot prompt, or use the Set Up and
Catalog options from the Assistant menu.

-

To create Queries that you can save and reuse, complete the query
forms using the Query option under the Create or Modify menus.

-

To activate a Query, select the Query option under the Set Up
menu.

-

For maximum speed in searching a database, open an index file of
the field that you want to search. Use the Seek option from the
Position menu. T hen use the Build a scope condition option under the
Retrieve menu to build a WHILE condition.

214 UNDERSTANDING dBASE III PLUS

computer's main memory is called Random Access Merrwry,

A or RAM. All of this memory is available when the com

puter is turned on; whatever was stored in RAM is lost
when you shut off the power. With dBASE III PLUS, you can
store data in temporary RAM similar to the way that you store
data in database fields on disk. Data in RAM are stored in rnmwry

variables. Memory variables are temporary storage places for pieces of
infonnation that you are using to solve a problem. With dBASE III
PLUS, you can store 256 of these variables. The name that you

create for a memory variable can be up to ten characters long.
Let's start to understand memory variables by examining the

arithmetic capabilities of RAM . Beginning with this chapter, we'll
work with the dBASE dot prompt, so press the Esc key to leave
the Assistant menu and bring up the dot prompt.

MANAGING DATA IN RAM

U sing RAM memory in your computer is much like using any
pocket calculator. You ask dBASE to calculate some numbers, and
it displays the answers. Let's put the computer's main memory
(RAM) to work now. Next to the dot prompt, type this command:

? 1 + 1

dBASE responds with

2

the sum of 1 plus 1. Let's give it a tougher problem. Let's ask
dBASE to

? 25/5

It responds with

5.00

the quotient of 25 divided by 5. Not bad. dBASE is perfonning as
well as a $5.00 calculator.

Now you can give it an even tougher problem. Suppose that

Understanding Memory Variables 21 5

you need to know what the cost of an item selling for $181.93 is if
-

you must pay 6 % sales tax. That is, you need to know how much
181.93 + 6% of 181.93 is. Type

? 181.93 + {.06*181.93)

dBASE tells you that the total cost is

192.8458

The four decimal places give you more accuracy than necessary for
most applications, but it beats paper and pencil.

You can also work with non-numeric data (called cliaracter strings
or just strings) in RAM, too. For instance, if you type

? 'Hi' + 'there'

you get the result

Hithere

Notice that when you "added" two strings, they were linked
together rather than summed. At first you might think that dBASE
was naturally clever enough to figure this out on its own, but it was
not dBASE's idea. Rather, it was the fact that you enclosed Hi and
there in apostrophes that told dBASE to link rather than sum. So
does this mean that if you enclose the ones in 1 + 1 in apostrophes,

it will also link rather than sum? Try it. Type

? '1' + '1'

and, yes, dBASE responds with

11

two ones linked together, not summed. The apostrophes told dBASE
to treat the ones as character strings, not as numbers. This leaves
you another possibility: Hi + there (no apostrophes). Type

? Hi + there

dBASE informs you that it can't perform this operation:

Variable not found

http:06*181.93

216 UNDERSTANDING dBASE III PLUS

?
? HI + there
Do you want some help? (y IN)_

It looks like these apostrophes carry quite a bit of meaning in
RAM. There is a very good reason for this, as you'll see in a
moment. For now, keep in mind that if you want to do math with
numbers, do not use apostrophes (1 + 1). If you want to link
strings together, you must use apostrophes (? 'Hi' + 'there'). Now
let's explore the reason for the error that occurred when you
attempted to ? Hi + there (no apostrophes).

STORING DATA TO MEMORY

VARIABLES WITH STORE

How do you store data in memory variables? First, pick a name
for the memory variable, and ask dBASE to store some information
in it. A variable in the computer sense is exactly the same as a vari
able in the mathematical sense. That is, if you know that the variable
X equals 10 and that the variable Y equals 5, then you know that
X + Y 15. The same is true with computers. To store a value =

(such as 10) to a variable (such as X), you use the STORE com
mand. Name your first variable X, and store 10 under that name:

STORE 10 TO X,

dBASE displays the brief message

10

Now create another variable name, Y, and store 5 under that name:

STORE 5 TO Y,

dBASE displays

When you ask dBASE for the sum of X + Y, like this:

? X + y....,

5

15

50

Understanding Memory Variables 217

It should respond with 15, which it does:

While the variables are invisible to you right now, you can take

a look at them by typing this command:

DISPLAY MEMORY

dBASE displays your variable names and what you've stored in
them:

10.00000000)X pub N 10
5.00000000)Y pub N 5

2 variables defined, 18 bytes used
254 variables available, 5982 bytes available

It informs you that two memory variables exist: X and Y.

Furthermore, you know that each is Numeric, and that the value
of X is 10 and the value of Y is 5. Since they are Numeric, you

can do basic math with them. For example, you can subtract

them:

?X Y4-

You get the result

5

which is the difference of 10 5. To multiply them, type -

You get the product

which is 10 times 5. If you want to divide the numbers stored in

the memory variables, type

? X I Y4

You get the quotient

2.00

218 UNDERSTANDING dBASE III PLUS

the answer to 10 divided by 5.

You are not limited to simple equations. For example, if you

want to get the answer to X plus Y times X, type

?X+Y*X

The result is

60

dBASE automatically follows the standard order of precedence in

math computation. That is, when an equation involves both multi

plication and addition, the multiplication is performed first. You

can alter the order of computations by using parentheses:

? (X + Y) * X

You get the result

150

In this case, addition was performed first. At this point, you have

stored data in two memory variables, X and Y. So if you ask

dBASE to

You get an error message

Variable not found

?

? A + B
Do you want some help? (YIN)

because you've asked dBASE to sum A and B, variables that you

have not yet used for storing data.

If you again examine the memory variables by typing

DISPLAY MEMORy

you see that you have numbers stored in X and Y:

pub N 10 10.00000000)
y pub N 5 5.00000000)
x

Understanding Memory Variables 219

Earlier you got a syntax error when you asked dBASE to ? Hi +
There because memory variables HI and THERE do not exist. Of

course, you could create a couple of memory variables called HI

and THERE. That is, you can

STORE 'Hello' TO HI C

and then

STORE' yourself' TO THERE C

Now you can type the command

? HI + THERE C

and dBASE will respond with

Hello yourself

That is, the contents of memory variables HI and THERE linked

together. Why are they linked? Let's see what you have stored in

your memory variables.

DISPLAY MEMORY C

Now you have four memory variables:

X pub N 10 (10.00000000)
Y pub N 5 (5.00000000)
HI pub C "Hello"
THERE pub C " yourself"

Memory variables HI and THERE are of the Character type. You
told dBASE that they were Character types by putting apostrophes
around them when you stored them (STORE 'Hello' TO HI).

Notice an important difference between fields and memory vari

ables here. When you define types of data in fields, you specify C

or N when you CREATE the database. In memory variables,
dBASE automatically assumes that data stored without apostrophes
(STORE 10 TO X) are numbers, and data stored with apostro
phes (STORE 'Hello' TO HI) are characters.

If you wish to link the words Hi and there rather than asking for
the contents of the memory variables HI and THERE, use

220 UNDERSTANDING dBASE III PL US

apostrophes:

? ' Hi ' + 'there'

This gives the on-screen result

Hi there

The apostrophes told dBASE that you literally wanted to link the
words Hi and there. To use the same principle with X and Y, ask
dBASE to

?X + v

you get

15

as the answer, the sum of Numeric variable X (10) plus Numeric
variable Y (5). On the other hand, if you use apostrophes,

? 'x' + 'Vi

you get

xv

This is literally an X and a Y linked together.
The important aspect of memory variables you should remem

ber is that they are not permanent like database data are. RAM
memory is temporary. Disk storage is permanent. When you

QUIT dBASE and turn off the computer, your databases are still

safe and sound on disk. However, memory variables are erased
completely. Memory variables are available as a sort of computer
scratch pad, as you will see in the coming chapters.

MATH FUNCTIONS

Besides simple addition, subtraction, multiplication, and division,
dBASE III PLUS can work with exponents and logarithms. The
symbols /'0. or * * can be used as an exponent symbol. For example,

Understanding Memory Variables 221

to see the result of three squared, ask dBASE to display 3" 2

? 3"2

dBASE responds with

9.00

To see the value of three cubed, using the * * option, type

dBASE responds with

27.00

To see the cube root of 27, raise 27 to the 1/3 power:

? 27 "(1/3)

dBASE responds with

3.00

T he SQR T function will display the square root of any positive
number. For example, to see the square root of 81, type this

command:

? SQRT(81)

dBASE responds with

9.00

You can use memory variables in place of numbers, of course. For
example, you can store 81 to a memory variable called Z:

STORE 81 TO Z

T hen ask for the square root of Z:

? SQRT(Z)

dBASE displays the square root of 81:

9.00

222 UNDERSTANDING dBASE III PLUS

T he ROUND and INT (integer) functions are used to control
the number of decimals displayed . For example, store the number
1.234567 to a memory variable called T EST:

STORE 1.234567 TO TEST +-01

To see the number rounded to two decimal places, use the

ROUND function:

? ROUND(TEST,2)

dBASE displays

1.230000

T he comma two (,2) in the ROUND function specifies two deci
mal places . To see the same number rounded to four decimal
places, use the command

? ROUND(TESTA)

dBASE displays

1.234600

To see the integer (whole number) portion only, you can round to
zero decimal places

? ROUND(TEST,O)

which displays

1.000000

Similarly, the INT (integer) function will display the number with-
I.

out· decimal places

? INT(TEST)

which displays

1

T here is a difference between rounding and using the INT
function, however. For example, if you store 1.9999 to a variable

1

Understanding Memory Variables 223

called' TEST

STORE 1.9999 TO TEST

and print TEST rounded to zero decimal places

? ROUND(TEST,O)

you get the number rounded up to 2

2.0000

However, the INT function truncates the de<;imal portion without

rounding. So if you print the integer portion of TEST

? INT(TEST)

you get

For those of you who use logarithms in your work , dBASE III
PLUS provides the EXP and LOG functions. For example, to
view the natural exponent (e) of 1, type this command:

? EXP(1)

dBASE responds with

2.72

To see the natural logarithm of 2.72, type the command

? LOG(2.72)

and dBASE displays

1.00

If you need more decimals, just use them in the number you're
working with. For example , the command

? EXP(1.00000000)

displays

2.7182818

http:LOG(2.72

224 UNDERSTANDING dBASE III PLUS

You can store values to memory variables without the use of the
STORE command if you like. If you use only a variable name,

followed by the equal sign, and then some data to store, this will
have the same effect as the STORE command. For example, the
command

x = -123

stores the number -123 to variable X. To prove this, type the
command

?X

and dBASE displays

-123

T he ABS function changes a negative number to a positive
number. For example, the command

? ABS(X)

displays

123

In later chapters, you'll have a chance to work with additional
dBASE III PLUS functions. Starting with the next chapter, you'll
explore one of dBASE's most powerful features: command files.

REV IEWING MEMORY VARIABLES

In this chapter you have learned about creating and storing
memory variables in RAM:

-

Memory variables are stored in Random Access Memory (RAM).

-

To store a memory variable, use the STORE command with a
variable name up to ten characters long.

Understanding Memory Variables 225

-

Optionally, y ou can store a memory variable with the equal (=)

sign: M YNAME = "Joe".

-

You can perform basic math on numbers using the addition (+),
subtraction (-), multiplication (*), and division (I) operators.

-

Character strings are usually surrounded by quotation marks, while
numbers and variable names are not.

-

To display all active memory variables, enter the command DIS-
PLAY MEMORY at the dot prompt.

-

dBASE III PLUS includes a number of basic math functions includ-
ing (but not limited to) exponent (A), square root (SQR T), exponent
(EXP), natural logarithm (LOO) , and absolute value (ABS).

228 UNDERSTANDING dBASE III PLUS

commandfile is a disk file that contains a series of com

A mands. You record commands in files because it is more
convenient having dBASE execute a batch of commands

than typing each command at the dot prompt. The potential of
command files goes far beyond saving time, however, as you will
see in this chapter. A command file is actually a computer program,
and from now on we'll use these words interchangeably.

A computer program is similar to the program you receive
when you go to the theater. The theater's program displays the
series of events and the order in which these events will occur.
Likewise, the computer program presents a series of commands to
the computer in a specified order. Of course, the computer pro
gram is more difficult to read than the theater program because it
is not in plain English. It is written in a computer language. In
this book, our programs will be written in dBASE, the computer
language that is already familiar to you.

The basic procedure for working with command files goes some
thing like this. First, you create the command file using the MOD
IFY command. Then you run the command file by asking dBASE to
00 the command file. If you find mistakes in the command file,
you have to edit it. Correcting these errors in a command file is
called debugg£ng. Let's deal with creating command files first.

CREATING COMMAND FILES

WITH MODIFY

For your first command file, you'll create a program to print mail
ing labels. This process might seem a bit redundant (dBASE III
PLUS has a LABEL FORM command to print labels), but a mail
ing labels program is an ideal example for explaining the basics of
programming: loops and decision making. Later, you'll use the same
skills to create more practical programs such as menus.

Let's write a mailing labels command file now. We'll call this
command file LABELS, and store it on the same disk as the
MAIL.DBF database. The command to create a new command
file, or edit an existing one, is MODIFY COMMAND plus the

Creating Command Files 229

name of the command file. So from the dot prompt, enter this
command:

MODIFY COMMAND LABELS

dBASE displays the prompt

Edit: LABELS.PRG

and gives you a blank screen on which to write the command file.
Let's go ahead and type it. Make sure that you type it exactly as
it appears here:

? TRIM(FNAME),LNAME
? ADDRESS
? TRIM(CITY)+', '+STATE+ZIP

If you make errors while you're typing the program, you can
move the cursor around to make changes. The cursor control keys
are the same as those in the EDIT and APPEND modes and are
displayed at the top of the screen. When you have typed it exactly
as shown, save it by pressing A W or A End.

You have just written your first command file and stored it on
the data disk as LABELS.PRG. (As you've probably guessed,
dBASE added the .PRG, which stands for program.) Now let's run
the program.

RUNNING COMMAND FILES

WITH DO

First, let's tell dBASE to use MAIL.DBF as the database:

USE MAIL

Now to run the command file, tell dBASE to

DO LABELS

and you'll see one of the records from MAIL.DBF in label format:
Betsy Smith

222 Lemon Dr.

New York, NY 01234

230 UNDERSTANDING dBASE III PLUS

dBASE did all three lines in the command file in the order they

were placed. That is, dBASE printed the first name with the blanks
trimmed off followed by the last name (? TRIM(FNAME),

LNAME). Then it printed the address (? ADDRESS). Finally,
dBASE printed the city followed by a comma, the state, and the zip

" ' (? TRIM(CITY) + + S TATE + ZIP). This is the first mailing
label.

Let's review the steps:

v' Create the command file using MODIFY COMMAND.

v' Name it LABELS.PRG.

v' Save the command file by pressing "W or "End.

v' Ask dBASE to DO LABELS.

dBASE executes each of the commands in order. That is,
dBASE reads the command file left to right, top to bottom, just as
you read English. The results print, in the order that you specify.

This is not bad for a first command file, but you can see one
major weakness: it only prints one label. To get dBASE to print

all the labels in the database, you must set up a loop to tell dBASE
to go back to the first command and repeat the steps in the com
mand file until each record in the database has been printed in
label format.

SETTING UP LOOPS IN PROGRAMS

WITH DO WHILE AND ENDDO

dBASE has a pair of commands called DO WHILE and
ENDDO which can be used in a program to repeat a series of

commands indefinitely. All you have to do is enclose the com
mands to be repeated between a DO WHILE and an ENDDO
command. Every DO WHILE begins a loop, which will be ended
by an ENDDO command. You also need to tell dBASE what the
condition is for performing the commands inside the loop. Let's

Creating Command Files 231

give it a try in your LABELS program. First, ask dBASE to

MODIFY COMMAND LABELS

dBASE will redisplay LABELS.PRG and let you make some

changes:

? TRIM(FNAME),LNAME

? ADDRE SS

? TRIM(CI TY) +', ' + STATE +ZIP

To make dBASE print labels for every person in the mailing

list, you need to put these commands inside a loop. Press A N to
make room for a new line, and add the DO WHILE command at

the top of the program. You will also need to add a SKIP com

mand to have dBASE skip down to the next name in the database

- as it performs the commands in the loop. Then add ENDDO to

end the loop. Finally, a RETURN command will tell_ dBASE to

return to the dot prompt after the program has been executed.

The command file should be like this:

DO WHILE .NOT. EOF()

? TRIM(FNAME),LNAME

? ADDRE SS

? TRIM(CI TY) +', ' + STATE +ZIP

SKIP

ENDDO
RETURN

Now save the edited version of the command file with A W or

A End. When the dot prompt reappears, type

USE MAIL

DO LABELS

to get

Betsy Smith

222 L emon D r.

New York, NY 01234

R ecord no. 1

Ruth Doe
1142 J. St.

Los A ngeles, C A 91234

232 UNDERSTANDING dBASE III PLUS

Record no. 2

Lucy Smithsonian

461 Adams St.

San Diego, CA 92122-1234

Record no. 3

John Q. Smith
123 A St.
San Diego, CA 92123

Record no. 4

Andy Appleby
345 Oak St.
Los Angeles, CA 92123

Record no. 5

Note: Your labels may come out in a different order. Don't
worry; you can easily specify any order using the index files.

If something goes wrong when you try this, check to see if you
typed the program exactly as it appears in the book. If your pro

gram seems to be running on and on endlessly, press Esc to cancel
the run and get back to the dot prompt. Then, you'll need to
MODIFY COMMAND LABELS again and correct your program
so that it exactly matches the LABELS.PRG program in the book.

Now all the names on the database are on the screen in a mail
ing label format. Let's summarize what you did here. In the com
mand file, you told dBASE to DO WHILE . NOT. EOF(). In

English, this translates to, "Do everything between here and the
ENDDO command as long as you haven't reached the EOF(),
end of the database file." The next three lines in the command file
then print one label. Then the SKIP command causes dBASE to
SKIP down to the next record in the database. The ENDDO
command marks the end of the loop, but the loop is repeated
because the EOF() (end of the file) has not been reached yet.
Hence, when another label is printed, dBASE skips down to the
next name and address, prints another label, and so forth until all
the labels have been printed. At that point dBASE has reached the
end of the database. This causes the loop to end and the first com
mand under the ENDDO command to be processed. The
RETURN command tells dBASE to return to the dot prompt.

One problem with your mailing labels is that they have record
numbers on them. You can get rid of the record numbers by

Creating Command Files 233

asking dBASE to SET TALK OFF. Let's run the program again.

This time, let's first

USE MAIL

Then, tell dBASE to get rid of the record numbers with

SET TALK OFF

If you have a printer hooked up, you can also

SET PRINT ON

Now let's run the LABELS program. Tell dBASE to

DO LABELS

and you'll see that the record numbers have been removed:
I

Betsy Smith

222 Lemon Dr.

New York, NY 01234

Ruth Doe

1142 J. St.
Los Angeles, CA 91234

Lucy Smithsonian

461 Adams St.

San Diego, CA 92122-1234

John Q. Smith

123 A St.
San Diego, CA 92123

Andy Appleby

345 Oak St.

Los Angeles, CA 92123

If you did SET PRINT ON, type the command to

SET PRINT OFF

Otherwise, everything that you type on the screen will also go to
your printer.

Printing Blank Lines

There's a problem here. Most mailing labels are one inch tall,

234 UNDERSTANDING dBASE III PLUS

and the names are spaced evenly on each one. It just so happens
that most printers print six lines to the inch, so if you modify your
command file to print six lines for each label, each name and

address should fit perfectly on one label. So let's

MODIFY COMMAND LABELS

Now press the + key four times to get the cursor on the SKIP
command. Then press AN three times to make room for three
new lines. When you finish, your command file will look like this:

DO WHILE . NOT. EOF()

? TRIM(FNAME),LNAME

? A DDRESS

·? TRIM(CI TY) +', + STATE + ZIP

SKIP

ENDDO

RETURN

Now put in commands to print three blank lines on each mailing
label. That is, begin each blank line with a ? command. Your pro
gram looks like this now:

DO WHILE .NOT. EO F()

? TRIM(FNAME),LNAME

? A DDRESS

? TRIM(CI TY) +', + STATE + ZIP ·

?

?

?

SKIP

ENDDO

RETURN

Save it with AW. Now let's

USE MAIL

DO LABELS

Creating Command Files 235

You'll see the names and addresses properly formatted for one-inch
mailing labels:

Betsy Smith

222 Lemon Dr.

New York, NY 01234

Ruth Doe

1142 J. St.

Los Angeles, CA 91234

Lucy Smithsonian

461 Adams St.

San Diego, CA 92122·1234

John Q. Smith

123 A St.

San Diego, CA 92123

Andy Appleby

345 Oak St.

Los Angeles, CA 92123

Much better. The labels have the extra three blank lines between
them. You may wonder why you must repeatedly type USE
MAIL. The USE command returns the database to its first record.

If you don't USE the database at this point, you'll get nothing on
the screen when you type DO LABELS. Try it:

DO LABELS

All you· get is the dot prompt. Yet you know that there are several
records in the database. No labels were printed because dBASE is
already at the end of the file. Prove this by typing this question:

? EOF()

236 UNDERSTANDING dBASE III PLUS

dBASE responds with

.T.

which is dBASE's way of saying, "True, I'm at the end of the
database." Recall that in your command file, you told dBASE to
print labels while it's not at the end of the database (DO WHILE
. NOT. EOF()). So that's why you got nothing when you ran the
program this time. dBASE returns to the top of the datI.base when
you type

GO TOP

Then type ,this command to see your labels:

DO LABELS

It's to your benefit to put the GO TOP command right into
the command file. Then you don't have to remember to type it
every time you DO LABELS. Add GO TOP to your program by
editing the command file with MODIFY COMMAND LABELS.
Your command file will look like this.

GO TOP
DO WHILE .NOT. EO F()

? TRIM(FNAME),LNAME

? ADDRESS

? TRIM(CITY) +', ' + S TATE + ZIP

?

?

?

SKIP

ENDDO

RE TURN

Then the program will always start with dBASE at the top (first
record) of the database. Notice that the GO TOP command is
outside and above the loop. This is so that dBASE will start at the
first record and continue with the loop. Had you put the GO
TOP command inside the loop, the command file would print a
label for the first record, skip to the next record, go back to the
first record, print that label again; skip to the next record, back to

Creating Command Files 237

the first record ... on and on. The command file would print
countless mailing labels for the first record in the database.

Making a Loop Easier to Read

Now you have a good mailing label program to use with the
MAIL database file. dBASE will understand and execute the com

mands in this file each time that you tell it to DO LABELS.
However, you could spruce it up a bit so that it's easier for the
human programmer to read. Take a look at this version of
LABELS.PRG:

* * * * * * * * * Mailing Labels Program.
GO TOP

DO WHILE .NOT. EOF()
? TRIM{FNAME),LNAME
? ADDRESS
? TRIM(CITY) +', ' + STATE +ZIP
?
?
?

SKIP

ENDDO

RETURN

Notice the added title and line spacing. Programmers often put
titles and comments in their programs as notes to themselves. The
comments don't have any effect on the actual program; they're
just reminders to the person who wrote the program. To put com
ments in dBASE programs like this, start the line with an asterisk
(*). A lot of asterisks make the line stand out, but only one is
necessary.

Also note that there is a blank line between the GO TOP com
mand and! the start of the DO WHILE loop. This line emphasizes
the loop. Also, all of the commands inside of the DO WHILE
loop are indented, which emphasizes the loop. If you want to
make your command file look like this one, just MODIFY COM

MAN D LABELS. Then press A N to make room for the title.
Don't forget to put at least one asterisk in front of the title that

238 UNDERSTANDING dBASE III PLUS

you type. Then position the cursor under the GO T OP command,
and press " N. T hen position the cursor next to the ?TRIM
(FNAME) line, press "V (INSert ON), and hit the Space bar a
few times to indent the line. Do the same for the other lines
within the loop. Then save it with "w. (Incidentally, if you need

to delete a line from a command file, you can use " Y.)
In the next chapter, we'll discuss how to add decision-making

capabilities to command files.

REVIEWING COMMAND FILES

Using the LABELS.PRG example, this chapter showed you the
basics of dBASE programming:

-

A comrrumd file is a computer program written in the dBASE lan-
guage. It contains step-by-step instructions for dBASE to perform a
specific job.

-

Like other files, store command files on your data disk.

-

To create or edit a command file (program), enter MODIFY
COMMAND, followed by the name of your program, at the dot
prompt.

-

To run a program, enter the DO command followed by the name
of the program. dBASE will execute each command in the file
without your retyping it.

-

To tell dBASE to repeat portions of a program, use the DO
WHILE and ENDDO commands to create a loop.

Creating Command Files 239

-

Note: As an alternative to writing your own command files, see

Appendix B for an introduction to the dBASE III PLUS Applica
tions Generator.

print

242 UNDERSTANDING dBASE III PLUS

he LABELS program you created in the last chapter has

T one limitation: It always prints out labels for everyone in
the database, even though you might want labels for just

San Diego residents or the 92122 zip code area. A better label
program would allow you to specify only the labels you want
printed. In this chapter, you'll learn to build this capability into
the LABELS program.

ASKING QUESTIONS

If the command file is going to certain labels, it needs to
know which labels you want. T hat is, It needs to ask you which
labels you want to print. You can make your command files ask

questions with the ACCEPT and INPUT commands. When you
use either of these commands, you enclose the question to be
asked in apostrophes. You also need to provide a memory variable

in which to store the answer to the question. To make the memory
variable accessible outside of the command file, you need to define
it as PUBLIC . We'll discuss PUBLIC variables in more detail
later. For now, let's try out the ACCEPT command with a com
mand file called TEST:

MODIFY COMMAND TEST

W hen the blank screen appears, type these lines:

PUBLIC NAME
ACCEPT 'What is your name?' TO NAME

and save it with "W. T hen DO TEST. You'll see the prompt
on-screen:

What is your name? _
dBASE will leave the prompt on the screen until you type an
answer. You can type any answer:

FRED ASTAIRE

Making Decisions 243

After you press Return, the dot prompt appears because the pro
gram is over. If you now ask dBASE to

? NAME

you'll see

FRED ASTAIRE

If you were to DISPLAY MEMOR Y now, you'd see that you

have a memory variable called NAME, of the Character type,

with the contents FRED ASTAIRE. So you've been able to have
the command file ask a question, wait for an answer, and remem

ber the answer by storing it to a memory variable.
The INPUT command is very similar to the ACCEPT com

mand, except that it is used when the answer to the question is a
number. For example, try making a command file called TEST2

that looks like this:

PUBLIC ANSWER
INPUT 'Enter a number' TO ANSWER

Save it. Then DO TEST2, and the request appears:

Enter a number

Type any old number, say 999, and press Return. The dot

prompt reappears. Next type

? ANSWER

You'll see

999

When you DISPLAY MEMOR Y, you see that you have a mem
ory variable called ANSWER, and it is Numeric.

You can also use a combination of the dBASE III PLUS @,
SAY, GET, and READ commands to accept input from the user

at the terminal. The @ SAY commands allow you to place text
anywhere on the screen. However, any variable in which you
attempt to store data using an @ SAY combination must already
exist. For example, at the dot prompt enter this command:

244 UNDERSTANDING dBASE III PLUS

YOURNAME = SPACE(10)

T his creates a memory variable called YOURNAME that contains
ten blank spaces. (T he SPACE function creates the blank spaces,
and the = sign stores them to the variable YOURNAME.) Now
that the YOURNAME variable exists, you can use it in an @,
SAY, GET combination. Clear the screen of any miscellaneous text
by entering this command at the dot prompt:

CLEAR

Now enter this command:

@ 10,10 SAY "Enter your Name" GET YOURNAME

In English, this command means, "O n the screen, at row 10,
column 10, place the sentence 'Enter your Name,' and then dis
play a prompt for defining the YOURNAME variable." You'll see
the "Enter your Name" prompt near the middle of the screen.

Next, enter the command

READ

to tell dBASE to put the cursor into the prompt for the YOUR
NAME variable, and wait for the user to type some data. For this
example, type Alberto, and press Return.

To verify that the YOURNAME memory variable now contains
the data you typed, enter the command

? YOURNAME

or

DISPLAY MEMORy

You'll see that YOURNAME is a Character memory variable con
taining Alberto.

Unlike ACCEP T and INPUT, the @, SAY, GET combination
does not assume a data type. Instead, the data type of the existing
memory variable (or field) is used. We'll experiment with this in
just a moment.

Making Decisions 245

The WAIT command presents a message and waits for the user
to press any key. The variations of the WAIT command are

explained in Table 13.1.

Variation Effect

WAIT When used as a single command, WAIT presents

the message, "Press any key to continue," and

waits for a keystroke. It does not store the result

ing keystroke.

WAIT TO < MemVar > When used with TO and a memory variable,

WAIT will store the resulting keystroke to a mem

ory variable.

WAIT "message" You can use your own message with the WAIT

command, enclosed in quotation marks, to replace

the default "Press any key to continue" message.

-

Table 13.1: WAIT Command Variations

Let's try a small command file to test the @ and WAIT com
mands. First, enter the command

MODIFY COMMAND TEST@

at the dot prompt. Next, type the program as it is shown in Pro

gram 13.1.

* * * * * * * * * * * * P rogram to test @ and WAIT commands.
* * * * * * * * * * * * First, set up variables.
ANYNUMBER = 0

ANYWORD = SPACE(254)
ANY DATE. = DATE()
* * * * * * * * * * * * Next, use @ SAY, GET to read in new data.

CLEA R
@ 2,5 SAY "Enter a Number " GET ANYNUMBER

-

Program 13.1: Program to Test @ and WAIT Commands

' I, f l\!� ' tt -t},� �>II .'1
I

246 UNDERSTANDING dBASE III PLUS

@ 5,5 SAY "Enter a sentence or two" GET ANYWORD
@ 10,5 SAY "Enter a date" GET ANYDATE
REA D

* * * * * * * * * * * * Next, use WAIT to pause before memory display.
@ 15,1

WAIT "Press any key to see memory " TO KEYPRESS
DISPLAY MEMORY

-
Program 13.1: Program to Test @ and WAIT Commands (continued)

Save the command file with the usual A W command, and then
e�ter this command to run it:

DO TEST@

Your screen will display prompts for filling in the variables. When

you've completed them, the screen will display the "Press any key

to see memory" prompt. Figure 13.1 shows this screen with some

sample data entered.

-

11 t > r� I'mh
<\ I' 1

Figure 13.1: Screen Results of TEST@.PRG

Mak£ng DeC£s£ons 247

After you press any key to display memory variables, you'll see
that the data types are commensurate with the original data types
used in the TES T@.PRG command file:

ANYNUMBER priy N 123 (123.00000000)
ANYWORD priy C "T his is a long sentence to test the @

SAY GET combination. Testing ... testing
... 1-2-3.

ANYDATE prly D 03/31/86
KEYPRESS priy C

(Of course, you'll also see any other variables you've created.)
Later in this book, you'll see more examples of the AC CEPT,

INPUT, @, and WAIT commands.

MAKING DECISIONS

WITH IF AND ENDIF

You can embed some decision making into your command files
by using the IF and ENDIF commands. IF, in dB ASE, means the

same thing that it does in English: "If (a condition is met), then
(do something)." Each IF must be accompanied by an ENDIF.
Let's look at a practical example.

S tart by modifying the LABELS program. C hange it so that
before it prints labels, it asks which zip code area you want labels
for, and only prints labels for individuals who live in the specified
zip code area. Here is the first step:

MODIFY COM M AND L ABELS

This command brings the LABELS program to the screen for you
to edit. It should look something like Program 13.2 .

."."."."."."."."."."."." Mailing Labels Program.
GO TOP

DO WHILE .NOT. EOF()

? TRIM(FNAME),LNAME
? AD DRESS
? TRIM(CI T Y)+', '+S TATE+ZIP

-

Program 13.2: Unedited Mailing Labels Program

248 UNDERSTANDING dBASE III PLUS

?
?
?
SKIP

ENDDO
RETURN

-

Program 13.2: Unedited Mailing Labels Program (continued)

Now, just under the tide, you need to add three lines. The
first, SET TALK OFF, will be used to keep the record numbers
off the labels. The second, CLEAR, will clear the screen. Then
you'll put in an ACCEPT statement so the command file will ask
you a question.

Move the cursor down one line from the tide, press A N three
times, and type these three lines:

SET TALK OFF
CLEAR
ACCEPT 'What zip code area?' TO AREA

The ACCEPT Command will present its question on the screen
and wait for an answer. It will store the answer to a memory vari
able named AREA. Now you need to type two other lines, which
will qualify the labels to be printed (IF ZIP = AREA) and end the
condition (ENDIF). The first line goes under the DO WHILE
command line. The ENDIF goes above the SKIP command. You
may want to add blank lines and indent the ? a litde further, but
it is not necessary to do so. These are just for looks. In Program
13.3, you can see how the command file should look after you
make these changes.

* * * * * * * * * * * * Mailing Labels Program.
SET TALK OFF
CLEAR
ACCEPT ' What zip code area?' TO AREA
GO TOP
DO WHILE .NOT. EOF()

IF ZIP=AREA
? T RIM(FNAME),LNAME

-

Program 13.3: Edited Mailing Labels Program

Making Decisions 249

? A DDRESS
? TRIM(CITY)+', '+STATE+ZIP
?
?
?

ENDIF
SKIP

ENDDO

RETURN

-

Program 13.3: Edited Mailing Labels Program (continued)

Double check that you've typed everything correctly, and then

save the command file with "W. Now, let's try it out. First, USE
MAIL if you haven't already done so. Then

DO LABELS

The first thing that should happen is that the screen clears and the

following question appears:

What zip code area? _

Your command file is asking you a question, and it is waiting for

an answer. Type 92123 and press Return. Then two labels appear

on the screen:

Andy Appleby

345 Oak St.

Los Angeles, CA 92123

John Q. Smith

123 A St.

San Diego, CA 92123

How about that? The command file asked which zip code area
you wanted, and then it printed labels for people who live in that

area. Now, let's review why it did this. Take another look at the
command file in Program 13.3.

250 UNDERSTANDING dBASE III PLUS

When you asked dBASE to 00 LABELS, it followed the
instructions in your program. It ignored the title because of the
leading asterisks, and it cleared the screen (CLEAR). Then it pre
sented the question, "What zip code area?" and waited for an
answer. Remember that the ACCEPT command told dBASE to

preLnt the question in the apostrophes, and wait for an answer.
dBASE waited until you typed your reply, 92123. It stored 92123 to
a memory variable called AREA. Then the program began the loop
through the database. Prior to printing each label, it checked to see

IF ZIP = AREA. That is, it checked to see if the zip code on the
record matched AREA, the 92123 zip code you typed in response
to the "What zip code area?" question. If they matched, it printed

the label. If they didn't match, all the lines between the IF and
ENDIF were ignored. Either way, the SKIP command told dBASE
to go to the next record. Then ENDOO sent dBASE through
another loop, checking to see if the zip code on the next record
matched the requested area. It continued this process until it got to
the end of the database.

You can DO LABELS again, but this time when it asks

What zip code area? _

type 91234 and press Return. Sure enough, you get

Ruth Doe
1142 J. St.
Los Angeles, CA 91234

This is the only record in your database in the 91234 zip code area.

You can print labels for a broader zip code area by typing a
partial zip code. If you DO LABELS and type 92 as the zip code

..area to print labels for, you'll get all the people in the 92XXX zip
code areas:

Andy Appleby
345 Oak St.
Los Angeles, CA 92123

John Q. Smith

123 A St.

San Diego, CA 92123

Making Decisions 251

Lucy Smithsonian

461 Adams St.

San Diego, CA 92122-1234

This feature is useful now, but it wasn't so handy in Chapter 3
when you asked for a list of Smiths and got Smithsonians in there

too. dBASE lists these records because 9 and 2 are the first digits

of their zip codes.

Let's add the option to send mailing labels to the printer. Ask

dBASE to MODIFY COMMAND LABELS, so you can edit it.

Now, as shown in Program 13.4, add the new lines set in darker
print.

* * * * * * * * * * * * Mailing Labels Program.

SET TALK OFF

CLEAR

ACCEPT ' What zip code area? ' TO AREA

ACCEPT • Shall I send labels to the printer? (YIN) • TO VN
IF UPPER(YN) = "V"

SET PRINT ON
ENOIF
GO TOP

DO WHILE .NOT. EOF()

IF ZIP=AREA

? TRIM(FNAME),LNAME

? ADDRESS

? T RIM(CI TY)+', '+S TATE+ZIP

?

?
?

ENDIF

SKIP

ENDDO

SET PRINT OFF
RETURN

-

Program 13.4: LABELS.PRG with Printer Question

When you've made the changes, save the command file with

"W and then DO LABELS. This time you'll see

252 UNDERSTANDING dBASE III PLUS

What zip code area? _

Type 91234 and press Return. You'll see

Shall I send labels to the printer? rt IN)

The Y IN is a clue that the program is expecting a yes or no

answer. If you have a printer hooked up to your computer, type

Y. Otherwise , type N. Then the labels for the 91234 zip code area
appear, either on the screen or printer, depending on how you've

answered the question about the printer. Why is this?
In the command file you've added the command

ACCEPT ' Shall I send labels to the printer? (YIN) , TO YN

which causes dBASE to present the question on-screen and wait

for an answer. The answer is stored in a memory variable called

Y N. You've also added these lines to the command file:

IF UPPER (YN) = "Y"

SET PRINT ON

ENDIF

These lines say, "If the answer is Y, set the printer ON." Notice
that the command actually checks to see if the uppercase equiva

lent is a Y. This is so that if you answered the question with a

lowercase y, the printer would still be set ON . Near the bottom of

the command file , you've added the line

SET PRINT OFF

so that when the program finishes printing labels , the printer will

set back OFF automatically before returning to the dot prompt.
dBASE allows another method of decision making in command

files: DO CASE.

MAKING DECISIONS WITH DO CASE

The IF ... ENDIF clause is useful for allowing a program to

make a simple either/or decision. Some programs may have to

decide from several possibilities what to do next. The DO CASE

Making Decisions 253

. ENDCASE clause ensures that the program can do this. For
example, notice in Program 13.5 that the first few lines present ·four
menu options, and then an INPUT statement asks the user for a
choice from the menu. Then the program stores that answer in a

memory variable called CHOICE.

CLEAR

? " 1. Ad d new n ames"

? " 2. Pri nt Labels"

? " 3. Edit a reco "r d

? " 4. Exit"

INPUT "Enter choi ce" TO CHOICE

DO CASE

CASE CHOICE = 1

APPEND

CASE CHOICE = 2

LABEL FORM TWOCOL

CASE CHOICE = 3

BROWSE

. OTHERWISE

QUIT

ENDCASE

-

Program 13.5: Sample Program Using DO CASE

Beneath the menu is a DO CASE clause, starting with the com
mand DO CASE and ending with the command ENDCASE.
Inside the DO CASE clause, the program decides what to do
based upon the value of CHOICE. If CHOICE = 1, the pro
gram appends. If CHOICE 2, the program prints labels from a=

label file called TWOCOL. If CHOICE = 3, the program goes
into BROWSE mode. If none of these situations occurs (OTHER
WISE), the program quits.

You'll get a chance to use the DO CASE clause with a menu
program in the next chapter. For now, let's talk about another
form of decision making in programs: macro substitution.

254 UNDERSTANDING dBASE III PLUS

MACRO SUBSTITUTION

Macro substitution is a powerful programming technique used in
cpmmand files. A 11UJ£T'O is simply a memory variable name with an
ampersand (&) in front of it. When dBASE encounters a macro in
a command file, it replaces that macro with the contents of the
memory variable. For example, if you have a memory variable
called FLD, and you have the word ZIP stored to that name, every
time the &FLD macro is encountered in the program, dBASE will
automatically substitute the word ZIP.

Let's discuss a practical example. You've set up your labels pro
gram so that it asks for a zip code area before it prints labels .
However, you may actually want to print labels for a certain city
or state . You need to modify the command file so that it asks
which field you wish to search on, and also what value to look for.
That is, when you run the new version of the command file, you
want it to ask

Search on what field?

and then you can type any field name (such as CITY, STATE, or
ZIP). Then it will ask

Look for what ?

and you can type a characteristic to search for. For example, if
you answer the first question with the word CITY, the second
question will appear as

Look for what CITY?

and you can type a city. If you were to answer this question with
Los Angeles, then only labels for Los A ngeles residents would be
printed. If you answered the first question with ZIP, the second
question would ask, "Look for what ZIP?" and you could type a
zip code to search for. This gives the command file more flexibility.

To allow this flexibility, you must modify the L A BELS com
mand file in Program 13.6 to include macros. The three new lines
are shown in darker print.

Making Decisions 255

* * * * * * * * * * * * Mailing Labels Program.

SET TALK OFF

CLEAR

ACCEPT ' Search on what field? TO FLO '

ACCEPT ' Look for what &FLO? ' TO CONO
ACCEPT ' Shall I send labels to the printer? (V IN) , T O VN
IF UPPER(VN) = "V"

SET PRINT ON

ENDIF

GO T OP
DO WHILE .NOT. EOF()

IF &FLO = '&CONO'
? T RIM(FNAME),LNAME

? ADDRESS

? T RIM(CIT V)+', '+STAT E+ZIP

?

?

?

ENDIF

SKIP

ENDDO

SET PRINT OFF

RETURN

-

Program 13.6: Final Version of LABELS.PRG

Once you've changed the program, you can save the command
file and then DO LABELS. When you do so, the screen clears
and you see

Search on what field?

Let's answer by entering CITY. The next question to appear is

Look for what CITY?

and you can answer by typing San Diego. Then it asks

Shall I send labels to the printer? (YIN)

Answer N for now. You'll see the mailing labels for the San Diego
residents.

256 UNDERSTANDING dBASE III PLUS

John Q. Smith
123 A St.
San Diego, CA 92123

Lucy Smithsonian
461 Adams St.
San Diego, CA 92122-1234

Let's try again . DO LABELS . The LABELS program asks

Search on which field?

Type STATE. Then the command file asks

Look for what STAT E?

Type CA. It asks about the printer, to which you can reply Y or
N, and then prints mailing labels for all California residents . Let's

discuss why.

Near the top of the LABELS program, you see these two lines:

ACCEPT ' Search on which field? ' T O FLD
ACCEPT ' Look for what &FLD? ' TO COND

When you run the program, the first line causes dBASE to display

the question, "Search on which field?" and it waits for an answer.
If you type CITY in response to this question, dBASE stores the
word CITY to a memory variable called FLD . Then the next line

is executed, but it has a macro in it, &FLD. This causes the con

tents of the FLD variable to be substituted into this line, so what

you see on the screen next to it is the question, "Look for what

CITY?" Whatever you answer to this question gets stored to a

memory variable called CONDo Hence, if you answer this ques

tion with San Diego, you have two memory variables in RAM.
One is called FLD, and it contains the word CITY. The other
memory variable is called COND, and it contains the words San
Diego. Although you can name the memory variables· anything you
like, choosing FLD and COND will remind you of FieLD (to

search on) and CONDition (to search for).

Making Decisions 257

Then the command file asks about the printer and begins the

DO WHILE loop. Within the DO WHILE loop is the command

IF &FLD = '&COND'. Before this line makes a decision to print
a label or not, it is going to have to substitute the macros. Hence,

the line becomes

IF CITY 'San Diego' =

and only labels for San Diego residents are printed.

Had you answered the question, "Search on which field?" with

ZIP, and the question, "Look for what ZIP?" with 92111, mem

ory variable FLD would contain ZIP, and COND would contain

92111. In this case, when the program needed to make a decision
as to whether or not to print a label, the IF statement would
become

IF ZIP = '92111'

Macro substitution is a bit abstract and takes a little getting

used to. The only strict rule on macros is that they must be
Character-type memory variables.

Usually, when creating command files, you come up with an

idea for a program you want, and then you need to figure out just
how to write the program. This process is not easy if you are a

beginner. In the next chapter, we'll talk about methods that can
help you make the transition from an idea to a working program.

REVIEWING DECISION MAKING

In this chapter you've learned about using commands to make
decisions in programs:

-

The ACCEPT command displays a prompt and waits for the user
to enter any character data followed by a press on the Return key.

-

The INPUT command displays a prompt and waits for the user to
enter a number, followed by a press on the Return key.

258 UNDERSTANDING dBASE III PLUS

-

The @, SAY, GET, and READ commands will place a prompt

anywhere on the screen and wait for the user to fill in or modify
an existing memory variable or field.

-

The WAIT command displays a prompt and waits for a single

keystroke from the user.

-

The IF ... ELSE ... ENDIF commands set up decision clauses

in programs.

-

The DO CASE ... ENDCASE clause sets up decisions where

only one alternative of several is possible.

-

Macro substitution allows you to build portions of command lines

as a program is running, and substitute those portions into the
actual command, using the & symbol and a variable name.

262 UNDERSTANDING dBASE III PLUS

hen you create a command file (program), you are
. actually writing software. There are five parts to writing

dBASE software. First, you design the program by

determining its purpose. Second, unless your program will use an

existing database, you must design a database structure. Third, to
outline the program, you write pseudocode. Fourth, you must

W

write the program. In dBASE you do this by typing MODIFY
COMMAND and then typing the program on the screen. Fifth,

you run the program to test it. Because you will often make mis

takes when you write programs, you need to make corrections to
debug the program. Let's examine each of these steps in detail.

STEP 1: OUTLINE THE GENERAL IDEA

It's a good idea to write the general idea of a program on

paper first. For example, let's say that you want to develop a

fancy mailing list system that's quick and easy to use. The general

idea might be something like this:
,

This system will be designed to manage a mailing list, and will
operate from a menu of choices. When first run, the system will

display these Mail Menu options:

1. Add new names and addresses.

2. Sort the mailing list.
3. Print names and addresses.

4. Edit data.
5. Exit the system.

The option to print names and addresses will allow you to specify
types of individuals to print data for. The system will be completely
"menu-driven." That is, once you DO the main command file, jobs

like adding new names, sorting, printing mailing labels, and editing

will be performed by simply selecting menu options or answering

questions on the screen. The system will be completely automated,
so that an individual with no knowledge of dBASE III PLUS could
still manage the mailing list.

Now that you have the general idea defined, you need to design a
database that will support it.

Designing and Developing Programs 263

STEP 2: DESIGN THE DATABA SE

STRUCTURE

Structure the database like this:

Record # Field Name Type Width Dec
1 LNAME C 20 o

2 FNAME C 15 o

3 ADDRESS C 25 o

4 CITY C 20 o

5 STATE C 5 o

6 ZIP C 10 o

7 PHONE C 13 o

You've already created a database with this structure, MAIL, so
this step is done already.

STEP 3: DEVELOP PSEUDOCODE

It's a litde easier to write a program if you first write a reason
able facsimile of it in plain English. Doing so is called writing

pseudocode. When you write pseudocode, you should try to specify the

logic and series of events that will occur in the program, so that
when you have to translate the program to actual dBASE language,

much of the task is already defined. This isn't particularly easy, of
course, because you're not accustomed to thinking like machines.

But it's still easier to write a program from pseudocode jotted on a
piece of paper than from pure thought. Here's a pseudocoded
example of the Mail Menu program for your mailing system:

COMMAND FILE NAME: MENU.PRG

PURPOSE: Present a menu of options for managing the

mailing list.
PSEUDOCODE:

264 UNDERSTANDING dBASE III PLUS

v' Set dBASE talk OFF.

v' Use the mailing list database.
v' Set menu choice to o.

v' Repeat the Mail Menu until option to exit is selected.
v' Clear the screen.
v' Display the Mail Menu like this:

Mall Menu
1. ADD new names
2. SORT data
3. PRINT labels
4. EDIT data
5. EXIT the mailing system

v' Ask which option is desired

v' If option 1 selected, APPEND new data.

v' If option 2 selected, SORT by last and first name.

v' If option 3 selected, PRINT mailing labels.

v' If option 4 selected, EDIT data.

v' Redisplay the Mail Menu (as long as option 5 was not

selected).

v' EXIT the mailing system.

Notice that you've defined the logic of the MENU program
here. You've also given it a title and mentioned its purpose. If it
takes a long time to write the actual program, you can refer back
to the pseudocode for reference. Notice that the pseudocode
describes the task in English, but it looks like a program, too. This
intermediate step makes the next step a little easier. From this
point, you can write the actual program using proper dBASE III
PLUS commands and syntax.

STEP 4: WRITING THE PROGRAM

Once you have a pseudocoded outline of the program, you
need to write the actual program. In dBASE, you use MODIFY

Designing and Developing Programs 265

COMMAND for this. Let's now write the actual program. You

cannot be as liberal with your sentences as you were in the

pseudocode, because dBASE cannot understand English.
Type

MODIFY COMMAND MENU

which brings you a blank screen to work with. Now you can type

the actual MENU program so that it looks like Program 14.1.

* * * * * * * * * * * * Mailing List System Mail Menu

SET TALK OFF

USE MAIL

STORE 0 TO CHOICE

* * * * * * * * * * * * Present Mail Menu

DO WHILE CHOICE < 5

CLEAR
? I Mail Menu'

?

? I 1. Add new names'

? ' 2. Sort data'

? I 3. Print labels'

? ' 4. Edit data'

? ' 5. Exit the mailing system'

?

INPUT I Enter your choice (1-5) from above: I TO CHOICE
* * * * * * * * * Perform appropriate task based on CHOICE
DO CASE

CASE CHOICE = 1

APPEND

CASE CHOICE = 2
INDEX ON LNAME + FNAME TO NAMES
USE MAIL INDEX NAMES

CASE CHOICE = 3
DO LABELS

CASE CHOICE = 4
EDIT

ENDCASE
ENDDO

-

Program 14.1: MENU.PRG for Mailing List System

266 UNDERSTANDING dBASE III PLUS

Now let's discuss how the actual program resembles the pseudo
code that you outlined. First, the command file sets the dBASE
talk OFF, and uses MAIL as the database. Then, it stores a zero
to a memory variable called CHOICE. This is so that the DO
WHILE CHOICE < 5 condition will be true when dBASE first
enters the loop. Then it clears the screen and displays the Mail
Menu using? commands. Then it displays the question, "Enter
your choice (1-5) from above" and waits for an answer. When an
answer has been entered, the program performs the desired option.
If the choice was 1, dBASE goes into APPEND mode. If the
choice was 2, dBASE will sort by last name; if the choice was 3,
dBASE will DO our other command file, LABELS, and so forth.

After the selected option has been performed, dBASE will even
tually reach the ENDDO command at the bottom of the command

file. The loop will repeat, redisplaying the Mail Menu and ques
tion. If the choice is 5, Exit the Mailing System, the DO WHILE
CHOICE < 5 condition for the loop will cause the ENDDO not
to repeat the loop, and the program will end.

STEP 5: RUN AND TEST

THE PROGRAM

Step 5 is not simply using the program, because as you prob
ably know by now, you usually make a few mistakes in your pro
gram that need correcting. To test your program, of course, you
still need to run it, so type this command:

DO MENU

After the screen is cleared, the Mail Menu is displayed:

Mall Menu
1. Add new names
2. Sort data
3. Print labels
4. Edit data
5. Exit the mailing system

Enter your choice (1-5) from above:

Designing and Developing Programs 267

If you now type 1, dBASE will enter the APPEND mode:

LNAME
FNAME
ADDRE SS :
CITY
STATE
ZIP
PHONE

So, anyone who types the command 00 MENU can add new
data to the database without typing the APPEND command. This
is because the program has a line which states CASE
CHOICE 1, and beneath that is the APPEND command. =

Because CHOICE did 1, dBASE goes into APPEND mode. =

You can then add as many names to the mailing list as you wish.
When you exit the APPEND mode (by pressing Return instead of

. typing another name) the Mail Menu reappears:

Mall Menu

1. Add new name s
2. Sort data
3. Print data
4. Edit data

5. Exit the mailing system
Enter your ch oice (1-5) fr om above:

Why? Because none of the CASE clauses below the APPEND
command in the program will be true. dBASE won't do the com
mands in CASE CHOICE 2 or CASE CHOICE 3, and so= =

forth, because CHOICE 1. When dBASE reaches the ENDDO =

command, CHOICE is less than 5, so the program loops around
up to DO WHILE CHOICE < 5 command, and the menu is
redisplayed, and the INPUT question reappears. You could type
another option now, and whatever option you select (1-5) will be
stored in CHOICE. Then, the appropriate function will take place
(APPEND, INDEX, and so forth).

Notice in the command file that if you select option 3, Print labels,
dBASE is told to 00 a different command file, your LABELS
.PRG program. As you may recall, the last line in LABELS is the
RETURN command. When one command file calls another, as in

268 UNDERSTANDING dBASE III PLUS

this case were MENU calls LABELS, the RETURN command tells
dBASE to go back to where it left off in the first program. There

fore, MENU will DO LABELS, and LABELS will print the mail

ing labels and then RETURN to the next command in MENU.

We're assuming here that your program ran correctly the first

time. More likely, it didn't, and you got one of dBASE's many

error messages. You usually don't see the errors in a program

until you try to run the program. The computer catches them

right away. The most common errors that occur in command files
are syntax errors, which result from misspelling a command, a

field name, or a variable name. Syntax errors also occur if you

forget to put spaces between commands, or if you attempt to use a

field or memory variable that does not exist.

W hen dBASE encounters an error in a command file, it will

display an error message and usually give you a chance to correct

it. Let's look at an example. Suppose that when you asked dBASE
to DO MENU, you got the message

Variable not found
1

CASE CHOCE = 1
Terminate command flle1 (YIN)

At first glance, you may not see the problem. But on close inspec
tion, you see that the word CHOICE is misspelled. dBASE

attempted to find a memory variable called CHOCE, and couldn't.

If you answer Y to the question "Terminate command file?" dBASE

will return to the dot prompt. Then you can MODIFY COM

MAND MENU to correct the error.
In the next chapter we'll discuss dBASE III PLUS debugging

techniques which can help you find and correct errors in your own

custom software systems. Then you'll develop a sophisticated mail

ing system using many of the techniques you've learned so far,

and a few new ones, too.

Designing and Developing Programs 269

REVIEWING PROGRAM DESIGN

AND DEVELOPMENT

These are the steps to designing and developing a dBASE com
mand file (program):

-

The first step to writing a program is to jot down a general idea
of what the program will do.

-

The second step is to design and create the database structure.

-

The third step is to write a plain English version of the program
(called pseudocode).

-

The fourth step is to actually write the program, using the pseudo
code as an outline.

-

Finally, y ou need to test and debug the program.

272 UNDERSTANDING dBASE III PLUS

W
hen your programs fail to perform as expected, you
often stare at the screen helplessly and think, "Now
what do I do?" Some errors are fairly obvious and easy

to fix, such as in the misspelling of CHOICE in the last chapter.
Sometimes, however, dBASE will display a line as having an error
in it, and you don't see the error. At that point, you may need to
go deeper into your search for the error. Here are some good tech
niques that can help.

SUSPENDING A PROGRAM

As soon as dBASE encounters an error in a program, it will
stop running the program and display a brief description of the
error. You'll be given three choices at that point:

Cancel, Ignore, Suspend (C,I,S)

Selecting Cancel terminates the program and returns to the dot
prompt. Selecting Ignore continues running the program beyond the
faulty line. The Suspend option temporarily halts the program and
returns to the dot prompt. From there, you can investigate pos
sible errors and probably solve the problem.

When you suspend a program, the word "Suspended" appears
in the Status Bar in the lower left comer of the screen. You can
perform any number of tasks from the dot prompt before you
enter the command

RESUME

to get your program running again.

The Escape Key

Pressing Esc at any time while a program is running will stop
the program and display the menu of Cancel, Suspend, and Ignore
options. Therefore, you need not wait for an error message to ana
lyze a portion of a program. Just press Esc, and select Suspend to
get the dot prompt.

Debugging Techniques 273

USING DISPLAY COMMANDS

When dBASE displays an error message, you might not be able
to tell exactly where the problem is. You've already learned how to
suspend the program. Now let's discuss some options you might
try at the dot prompt to debug your program before you run it.

DISPLAY MEMORY

If you get an error message such as "Variable Not Found" or
"Data Type Mismatch", there may be a missing memory vari

able, or an attempt to mix two data types (such as Character and
Numeric) in a single expression. You can quickly check all mem
ory variables by suspending the program and entering this com

mand at the dot prompt:

DISPLAY MEMORY +-I

You'll notice that some variables are Private (priv) and others are
Public (pub):

CHOICE priv
TODAYSDATE pub

2 variables defined,
254 variables available,

N
D

2 (2.00000000)
03/31/86
11 bytes used

5989 bytes available

C:MENU.PRG

Check to make sure that all of the program's variables exist and

are of the correct data type. Public variables are those that are
available to all programs at all times. Private variables are only

used in the program that is currently suspended. In the example
above, the variable CHOICE is a private variable, used only in
the program MENU.PRG. The variable TODAY SDATE is the
Date data type, and is Public.

In general, you do not need to concern yourself with Public and

Private variables until you get into more advanced programming.
For more information on these memory variables, see the PUBLIC
and PRIVATE commands in your dBASE III PLUS manuals.

To make a printed copy of existing memory variables, enter the
command shown below.

274 UNDERSTANDING dBASE III PLUS

DISPLAY MEMORY TO PRINT

DISPLAY STRUCTURE

From the dot prompt you can also enter the command

DISPLAY STRUCTU RE

or

DISPLAY STRUCTURE TO PRINT

to view the structure of the currently open database. Again, check

to make sure that all the fields used by your program are available

and are the correct data type. The DISPLAY STRUCTUR E out

put for the MAIL.DBF database would look like this:

Structure for database: C:MAIL.DBF .
Number of data records: 7
Date of last update : 01/09/85

Field Field Name Type Width Dec

1 LNAME Character 15

2 FNAME Character 10

3 ADDRESS Character 25

4 CITY Character 15

5 S TAT E Character 5

6 ZIP Character 10

7 PHONE Character 13

* * Total * * 94

DISPLAY STATUS

The DISPLAY STATUS command provides lots of useful infor
mation for the programmer. From the dot prompt, simply enter

this command:

DISPLAY STATUS

dBASE will tell you the names of all open database files and index

files, as well as the contents of each index file. The list will look
something like the following.

Debugging Techniques 275

Currently Selected Database:
Select area: 1, Database in Use: C:MAIL.DBF Alias: MAIL

Index file: C:NAMES.NDX Key: LNAME + FNAME

Index file: C:ZIP.NDX Key: ZIP

You'll also see additional information about the current status of
dBASE III PLUS; however, these are less likely to help you to
debug a program. (We discussed DISPLAY STATUS in more
detail in Chapter 10.) Of course, you can enter the command

DISPLAY STRUCTURE TO PRINT

to print a copy of the structure.
You can also use the SET ECH O, SET ST Ep, SET TALK,

and SET D EBUG options, which we'll discuss in a moment, at
the SUSPEND dot prompt. Just remember to type the command
RESU ME to get your program running again. (Note: You cannot
use MODIFY COMMA ND to change a program in SUSPEND
mode. You'll have to press the Esc key, and/or select Cancel to get
back to the normal dot prompt to use the MODIFY COMMA ND
editor.)

USING HISTORY COMMANDS

A t any time in your work with dBASE III PLUS, you can
enter the command:

DISPLAY HiSTORy

to view the last twenty commands you've entered at the dot
prompt. T hese twenty commands will not include lines from a
command file, unless you perform certain steps first.

First, at the dot prompt you can use the SET HIST ORY com
mand to determine how many lines will be recorded. When
recording from a program, you may want to increase the default
value of twenty to perhaps fifty or more, as in this command:

SET HISTORY TO 50

Next, before you run your program, enter the command

276 UNDERSTANDING dBASE III PLUS

SET DOHISTORY ON

to ensure that command file lines are recorded in the history file.
When a program error occurs, you can suspend operation, and

from the dot prompt enter the command

DISPLAY HiSTORy

or

LIST HiSTORy

to view the last fifty commands. (DISPLAY pauses the screen
lines, but LIST does not. You can use the TO PRINT option
with either command.)

The SET DOHISTORY ON command will slow down a pro
gram's performance dramatically. Therefore, when not debugging,
be sure to enter the command

SET DOHISTORY OFF

at the dot prompt.

DEBUGGING WITH SET OPTIONS

There are several SET options that you can use to help pin
point an error in a program. The SET commands let you see a

program's progress in a line-by-line fashion, so you can watch the
logical flow of events. Four SET commands are useful in debug
ging: TALK, ECHO, STEp, and DEBUG.

SET TALK ON

In the mailing list system command file, you SET TALK OFF
at the top of the Mail Menu program. If you eliminate this line
from the command file, and SET TALK ON before you DO the
command file, dBASE's extraneous messages will be displayed on
the screen. These extraneous messages can be useful to you for
watching events as they occur in the command file. They may

Debugging Techniques 2n

give you clues about errors in your program.

SET ECHO ON

An exaggerated version of SET TALK ON is the SET ECHO
ON command. This displays every command line in the dBASE

program as it is being processed. Thus, you can see everything
that the command file is doing as it is running. It goes by pretty

fast, but you can slow it down considerably with SET STEP ON.

SET STEP ON

If you want to follow the logic of your command file as it is
running, step by step, leave ECHO ON, and SET STEP ON.
Your command file will be processed one line at a time. As each

line is processed, you can tell the program to pause, continue, or
stop processing. This is great for those hard-to-find bugs that hide
in tiny logical crevices.

SET DEBUG ON

The option to SET DEBUG ON can also be very helpful for
getting at the hard-to-find errors. When the DEBUG parameter is
ON, all the outputs from SET ECHO ON and/or SET STEP
ON are sent directly to the printer and are not displayed on the
screen. Hence, you can watch your command file perform on the
screen without distraction from the ECHO command. On the
printer, the actual lines within the command file, as well as their
results, will appear as dBASE executes them. You can then study
the hard copy of the events that occurred in the program. If other
attempts to find the bug failed, this process will usually lead you to
the source of the problem. You can place any of the SET com
mands (TALK, ECHO, STEp, DEBUG) into the program, and
thereby isolate areas for debugging.

-- ENDDO

278 UNDERSTANDING dBASE III PLUS

ANALYZING A HARD COpy

OF THE PROGRAM

A printed copy of your program is very useful. To make a

printed copy, be sure that the printer is ready. T hen use the

TYPE command with the name of the command file, including

the .PRG extension, to print the program. For example, to print

the MENU command file, type this command:

TYPE MENU.PRG TO PRINT 6

When you get a hard copy, draw arrows from your DO

WHILEs to their respective ENDDOs . Do likewise for IF .

ENDIF clauses. You may find dangling DO WHILEs that don't

have ENDDOs associated with them, or IFs and ENDIFs which

are reversed and throwing everything out of whack. Program 15.1
is a printed command file with the DO . . . ENDDOs attached.

Notice that each DO matches an ENDDO. Also notice that the

arrows do not cross over one another. If the connecting line inter

sects, you have discovered a bug.

************ Count to 5,10 times
STORE 1 TO OUTLOOP
STORE 1 TO INLOOP
* * * * * * * * * * * * Do outer-most loop 10 times
DO WHILE OUTLOOP <·11

? 'OUTER LOOP NUMBER: ' + STR(OUTLOOP,2)
* * * * * * * * * For each outer loop, do 5 inner loops [DO WHILE INLOOP < 6

? INLOOP
STORE INLOOP + 1 TO INLOOP

ENDDO (WHILE INLOOP < 6)
STORE 1 TO INLOOP
STORE OUTLOOP + 1 TO OUTLOOP

(WHILE OULOOP < 11)

-

Program 15.1: Printed Program with Arrows Connecting DO Loops

Debugging Techniques 279

It's easiest to draw the arrows connecting the smaller, innermost

DO loops and IF clauses first. Then work your way outward to
the larger loops and IF clauses. After you mark your routines in

this way, study the program again. You may find errors in your

logic.

Let's try out some debugging aids with a sample program

which includes some errors. Using the command

MO DIFY COMM AND TEST

you can create and save the command file in Program 15.2. Now
when you

DO TEST

the program runs, but simply displays a dot prompt rather than

the expected mailing labels for residents of the 92122 zip code

area. Let's use the ECHO option to watch the program run.

* * * * * * * * * * * * TEST. PRG
SET TALK OFF
USE M AIL
GO BOTTOM

DO WHILE .NOT. EOF()

IF ZIP = "92122"

? TRIM(FNAME), LNAME
? ADDRESS
? TRIM(CITY)+", "+STATE+ ZIP
?
?

?

ENDIF

SKIP

ENDDO

-

Program 15.2: Sample Program with Errors

Type this command:

SET ECHO ON

280 UNDERSTANDING dBASE III PLUS

Then run the program again:

DO TEST

This time, you can watch dBASE perform each step in the com
mand file:

SET TALK OFF

USE MAIL

GO BOTTOM

DO WHILE .NOT. EOFO

IF ZIP = "92122"

SKIP

ENDDO

If the echoed lines go by too fast to read, you can slow them
down with the STEP option. Type this command:

SET STEP ON

Then run the program again:

DO TEST

This time, dBASE will process only one line and wait for you
to press a key before processing the next line. Press any key to see

each line until the dot prompt shows again. You'll see a scenario.

like this one:

SET TALK OFF
Press SPACE to stop, S to suspend, or Esc to cancel

USE MAIL

Press SPACE to stop, S to suspend, or Esc to cancel

GO BOTTOM

Press SPACE to stop, S to suspend, or Esc to cancel

DO WHILE .NOT. EOFO

Press SPACE to stop, S to suspend, or Esc to cancel

IF ZIP = "92122"

Press SPACE to stop, S to suspend, or Esc to cancel

SKIP

Press SPACE to stop, S to suspend, or Esc to cancel

ENDDO

Press SPACE to stop, S to suspend, or Esc to cancel

Here you can see that the command file only went through the

Debugging Techniques 281

loop once, rather than enough times to check all the records in the

database. Check to see that dBASE is really at the end of the

command file. Type this command:

? EOFO

dBASE responds with

.T.

H mmmm. Looking back at the command file, you see that one

of the earlier lines reads GO BOTTOM. T hat's causing dBASE

to start at the bottom of the file rather than at the top. To fix the

error, type this command:

MODIFY COMMA ND TEST

and change the GO BOTTOM to GO TOp, as in Program 15.3.

************ TEST.PRG
SET TALK OFF
USE MA IL
GO TOP
DO WHILE .NO T. EOFO

IF ZIP = "92122"
? TRIM(F NAME),LNAME
? A DDRESS
? TRIM(CI TY)+", "+STATE+ZIP
?

?

?

ENDIF

SKIP

ENDDO

-

Program 15.3: Corrected TEST Program

Save the command file. B efore you test it again, disable the

ECHO and STEP to see the program run in its natural state:

SET STEP OFF

SET ECHO OFF

282 UNDERSTANDING dBASE III PLUS

Then

DO TEST

The program prints out one mailing label:

Lucy Smithsonian
461 Adams St.
San Diego, CA 92122-1234

Now you might want to make sure that the program was only
supposed to print one label . You can check to make sure that the
loop is repeating by setting ECHO ON again and running the
command file . You'll see the command inside the DO WHILE
loop repeat several times.

Another way to make sure that the program printed the correct
labels is to use the LIST command from the dot prompt to see
how many 92122s are in the database . From the dot prompt, type
this command:

LIST FOR ZIP = '921 22'

dBASE responds with:

Record# LNAME FNAME ADDRESS CITY STATE ZIP
5 Smithsonian Lucy 461 Adams St. San Diego CA 92122

There is only one record in the database with the 92122 zip code.
Therefore, the program performed correctly.

Unfortunately, debugging isn't always this easy. Learning to
become a good troubleshooter takes as much experience_as learning
to be a good programmer.

Now let's have a little pep talk on debugging. All programs
have bugs. They are big ones at first, but they eventually get
refined to very small ones. Even software systems that have been
in use for a while have bugs in them. The professional does not
take bugs to heart, pout over them, or shake a fist at the CRT's
blank stare (at least, not while anyone is looking). The computer
can't do what the programmer means, and so everything is going to
have to be spelled out clearly. The beginner, on the other hand,
often feels intimidated, frustrated, or angered by software bugs,

Debugging Techniques 283

which is not good. One should not get one's ego involved with the
software (at least, not until it's debugged and running).

The most important skill to develop in writing software is to break
dSwn big, complex problems into smaller, workable pieces. The sec

ond most important skill is to say exactly what you mean, using the

computer's extremely limited vocabulary. Experience will help you to
develop these skills. It's actually the debugging experience which will

best help you to express yourself in computer language.
When you debug programs, just remember to check for these

common programming errors:

t' Confusing character strings and numbers.

t' 	 Dangling DO WHILEs and ENDIFs. Also, crossed loops

and IF clauses, which cause an ENDIF to respond to the

wrong IF, or an ENDDO to respond to the wrong DO

J

WHILE.

t' 	 Putting a command line in an IF ... ENDIF clause when
the command actually belongs outside the clause. This is a
very common error which can' ruin the program's results.

Likewise, putting a command line inside a loop when it
belongs outside the loop can cause infinite loops to occur.
Similarly, forgetting to SKIP inside a 'DO WHILE .NOT.
EOFO' loop will cause an infinite loop to occur. The loop
will just keep rereading the first record.

t' 	 Misspelling a command, memory variable name, or field
name. If you create a field called ADDRESS, and later
attempt to ? ADRESS or INDEX ON ADRESS, an error

is sure to occur. You called the field ADDRESS, and you're
telling dBASE to look for ADRESS, which does not exist.

V 	 Not bothering with design or pseudocode. When you come
up with a good idea for a new program, you're tempted to
just start typing it into the computer and make it up as you

go along. This can lead to a tangled mess of commands in
a program that is very difficult to untangle later. A litde
preplanning can save a lot of confusion.

284 UNDERSTANDING dBASE III PL US

REVIEWING DEBUGGING
TECHNIQUES

In this chapter, you have learned a number of techniques to

correct common programming errors:

-

When an error occurs in a program, you'll be given options to

Cancel the program , Ignore the error, or Suspend the program .

....

Suspending a program allows you to analyze the current status of

relevant databases and memory variables.

-

The RESUME command resumes program execution after a

SUSPEND operation.

-

The SET DOHISTORY ON command stores commands from a

program in a history file. The LIST HISTORY and DISPL AY

HISTORY commands display the contents of the history file.

-

The Esc key causes a program to stop running , and presents the
Cancel) Ignore) and Suspend options.

-

The SET TA LK, SET ECHO, SET STEp, and SET DEBUG

commands are all useful debugging aids.

-

The TYPE command allows you to print a hard copy of a com-

mand file. Then analyze the logic of your program by drawing

arrows to connect DO loops and IF clauses.

I

288 UNDERSTANDING dBASE III PL US

n this chapter you'll use the dBASE language to create a
menu-driven mailing system. The term menu-driven means that
the person using the programs that you develop need only

run one program. To perform various tasks, the end user will sim
ply select options from a menu. Programmers create menu-driven
systems so that individuals who don't know the commands of a
language can still use the computer. The MENU command file
that you developed in the last chapter is such a program. In this
chapter you will develop a menu command file and four other
programs in a complete software system.

Most of the commands that you'll use will be pretty familiar to
you. The new commands are explained briefly as they are used.
The Using dBASE III PLUS manual contains elaborate descriptions
of every command. Refer to the Commands and Functions portions of
that manual for more technical information when you need it.

Appendix B of this book discusses an altogether different
appfoach to creating custom systems: You can design your basic
system, and then have the dBASE III PLUS Applications Genera
tor write the programs for you!

In this chapter, however, you're going to integrate all of the
programming skills that you've learned up to this point, learn a
few new tricks, and put together a complete, easy-to-use mailing
system. Although the process is more complicated with a system
than with a single program, we'll still follow the procedure of
designing, describing, pseudocoding, then writing the programs.
(If you would rather not type all the programs discussed in this
chapter, see the Introduction for instructions for buying a disk with
all the programs on it.)

OVERVIEW OF THE

MAIN MENU STRUCTURE

The mailing list system of programs will be specifically designed
for ease of use. Even a complete novice will be able to manage the
mailing system through simple menu selections and answers to on
screen questions.

A Complete Mailing System 289

T he system consists of four programs linked by the options of a
fifth program, the menu program. Let's take a closer look at the
plan for each of the system's major components.

T he main menu will be the heart of the mailing list system. It

will be the first and last thing that the user sees. When you first
run the menu program with the command

DO MAIL

the system will display

Mailing System Main Menu
1. 	 Add new Names and Addresses
2. 	 Print Directory or Labels
3. 	 Make Changes

4. 	 Delete Names and Addresses
5. 	 Check for Duplicate Entries
6. 	 exit the Mailing System

Enter Choice : :

Let's describe what each of these menu selections will accom

plish when you've written all the programs.

Adding New Names

To add new names and addresses to the database, the user
selects option 1 from the Main Menu. Figure 16.1 shows the

screen used for entering new data into the mailing system.

After entering new names, the user will automatically be returned

to the Main Menu.

Printing Labels or a Directory

To print mailing labels or a directory, the user selects option 2
from the Main Menu. First, the screen will display the options:

Select a Report Option
1. 	 Directory
2. 	 Mailing Labels
3. 	 Return to Main Menu

Enter your choice : :

290 UNDERSTANDING dBASE III PLUS

-

Figure 16.1: Screen for Entering New Names and Addresses

If option 3 is not selected, the screen will then display a menu
of options for a sort order:

Select a Sort Order
1. "Alphabetical order by Name
2. Zip Code Order
3. Original Order

Enter your Choice : :

Next the screen displays these options:

Do you want (A)II records, or (Q)uery?

Selecting All (by typing in the letter A) displays all records in
the database. Selecting Qpery (by typing in Q) brings up a query
form, as in Figure 16.2.

A Complete Mailing System 291

-

Figure 16.2: Query Form for the Mailing System

Because we've discussed these queries earlier, we won't repeat
the details of completing the form now. When the form is filled in
to search for particular records (such as S TATE CA) and the =

user selects the Exit and Save options from the menu, the program
asks

Send report to the printer? (YIN)

and waits for an answer. Answering Y sends the report to the
printer; answer N displays it on the screen.

A sample of the directory report printed by this system is shown
in Figure 16.3.

The mailing labels printed by the system are typical two-column
labels, like those you created in Chapter 6.

After the report or mailing labels are printed, the system returns
to the Mailing System Main Menu.

292 UNDERSTANDING dBASE III PLUS

Page No.

01/09/86

Mailing Sy stem Dir ector y

Adams, Ms. Annabelle A. SYBEX Inter national (415)848-8233

2344 Sixth St. Berkeley, CA 94710

Appleby, Mr. Andy K. 	 American Icebergs (555)453-1212
345 Oak St. Los Angeles, CA 92123

Doe, Dr. Ruth A. 	 Zeerox, Inc. (221)555-9911
1142 J. St. Los Angeles, CA 91234

Smith, Mr. John L. 	 Petaluma Porsche (555)111-2222
123 A St. San Diego, CA 92123

Smithsonian, Mrs. Lucy Z. 	 BonaFide Dog Bones (555)123-4567
461 Adams St. San Diego, CA 92122-1234

-

Figure 16.3: Sample Directory from Mailing List System

Editing the Database

When the user selects option 3 from the Main Menu, the

screen asks the user to

Enter last name of person to Edit

or Just press Return to Quit :

Pressing the Return key returns the user to the Main Menu. If

the user types a name, but nobody in the database has that name,

the computer beeps and the screen displays this error message:

There Is no < last name>

Press any key to try again

(Note: The incorrect last name that was entered will appear in
place of < last name>.)

If the user types a last name, and there is only one record in

the database with that last name, the system allows the user to

make changes on the editing screen shown in Figure 16.4.

A Complete Mailing System 293

-

Figure 16.4: Mailing System Editing Screen

If more than one record contains the requested last name, the
system checks for more information by displaying the identical
names and asking for a record number, as in this example:

Record# LNAME FNAME ADDRESS CITY
1 Smith Betsy 222 Lemon Dr. New York

228 Smith David 456 Alberston Dr. Palm Springs
910 Smith Kay P.O. Box 1234 New York

75 Smith Peter 123 A St . San Diego
Edit which Record # ? : :

Typing one of the record numbers listed in the left-hand column
will display that customer's record on the editing screen shown in
Figure 16.4.

After editing names and addresses, the user is returned to the
Mailing System Main Menu.

294 UNDERSTANDING dBASE III PLUS

Deleting Records

To delete records, the user selects option 4 from the Main
Menu. As with the editing option, the program first asks for the

last name of the individual to delete. If no such record exists, a
warning is issued and the user can try again. If several people

with the requested last name are in the database, the system lists
these names and asks for a record number. Once a record is iden
tified, the system double checks:

Record# LNAME FNAME ADDRESS CITY
1 Smith Betsy 222 Lemon Dr. New York

Delete this record? (YIN) : :

T he user can answer Y or N, and continue deleting more

records. To stop deleting, the user simply presses Return rather
than entering a last name.

Before returning to the Main Menu, the system double-checks
before permanently deleting records:

Records to be deleted . . .
Record# LNAME FNAME ADDRESS

6 * Doe Ruth 1142 J. St.
S * Smith John 123 A St.

Delete all these? (YIN) : :

If the answer is No, the system allows the user to recall one of
the records displayed by entering its record number. T his process

is repeated until the user answers Yes to the "Delete all these?"
prompt, or until there are no records marked for deletion. When

the deletion is verified, the system packs the database, thereby per
manently removing the records.

Checking for Duplicates

Mailing lists tend to get duplicate names and addresses in them
after a period of time, so this system has a built-in option to help

find repeated data. To check for duplicates, the user selects option
5 from the Mailing System Main Menu. T he program asks
whether or not the duplicates should be printed, and then displays
a report like the one shown below.

A Complete Mailing System 295

Possible Duplications
Record# LNAME FNAME ADDRESS CITY

1 Smith Betsy 222 Lemon Dr. New York

7 Smith Betsy 222 Lemon Dr. New York

9 Smith Arnold 222 Lemon Dr. New York

Record# LNAME FNAME ADDRESS CITY

2 Doe Ruth 1142 J. St. Los Angeles

S Doe Ruth 1142 J. St. Los Angeles

Note that the Check for Duplicate Entries option only displays
records that are similar enough to be duplicates. It does not actu
ally delete any records. The final decision to delete a record is left
to the user. The report acts as an aid to locating potential dupli
cates. Then the user must decide whether or not to delete them
using the Delete option from the Main Menu.

Exiting the Mailing System

Option 6 from the Main Menu allows the user to exit the mail

ing system and return to the dBASE III PLUS dot prompt.

DATABASE DESIGN

For the custom mailing system, we'll use a slightly more sophisti
cated version of the MAIL.DBF database, named MAILDATA.DBF.

You can create this database using the CREATE command from the
dot prompt.

Note: If you are using a floppy-disk system, be sure to enter the
command

SET DEFAULT TO B

before creating the database, index, report format, label format,
screens, or command files discussed in this chapter.

Structure the new MAILDATA.DBF database as shown.

2

20

25

296 UNDERSTANDING dBASE III PLUS

Structure for database: MAILDATA.DBF

Field Field Name Type Width Dec
1 MR_MRS Character 4 o

2 LNAME Character 15 o

3 FNAME Character 10 o

4 MI Character o

5 COM PANY Character o

6 ADDRESS Character o

7 CIT Y Character 15 o

8 S TAT E Character 2 o

9 ZIP Character 10 o

10 PHONE Character 13 o

The index files for the new MAILDATA.DBF database can be

created immediately after creating the database. First, to maintain

an alphabetical sort by last and first name, enter the command

INDEX ON UPPER(LNAME + FNAME) TO MAILNAMS

This command creates an index file named MAILNAMS.NDX

that contains the last and first names, all in uppercase. Using the

UPPER function in this index file achieves consistency in the way

that names are stored in the index file. This makes it easier to

manage searches later, as you'll see. To organize the records by a

zip code order for bulk mailing, with names alphabetized within

common zip codes, enter this command:

INDEX ON ZIP + LNAME TO MAILZIPS

The MAILZIPS.NDX file will then maintain the sorted order by

zip code.

The mailing system will automatically open and close the index

files once you've created them. Should you decide to add or edit
records on the MAILDATA database without using the programs

in this chapter, be sure to open both index files:

USEMAILDATA INDEX-MAILNAMS.MAILZIPS

A Complete Mailing System 297

OVERVIEW OF SCREENS,
REP'ORTS, AND LABELS

The custom mailing system uses new report, label, and screen

formats. You will need to set up these formats before you write
your programs.

Mailing System Screen

The custom screen for adding and editing data is named
MAILSCRN. I used the dBASE III PLUS Screen Painter to

create the screen as in Figure 16.5. Of course, you can design
your screen however you wish.

-

Figure 16.5: MAILSCRN Custom Editing Screen

298 UNDERSTANDING dBASE III PLUS

Mailing System Directory

The report format for the directory is a little tricky, because you
need two lines of information for each record in the database. Use
the usual MODIFY or CREATE REPORT to build the report
format, and name the file NEW DIREC.FRM.

On the first menu in the report generator, set the left margin to
zero, and the double-space option to Yes. Enter any title, such as
Mailing System Directory used in this example.

Define the first column of the report as below, with a length of
25. (Leave the Heading option blank).

" TRIM(LNAME)+ , "+ TRIM(MR_MRS) +" " +TRIM;

(FNAME)+" " +TRIM(MI)

This makes the first column of the report contain the last name
followed by a comma and a space, the title (Mr.lMrs.), the first
name, and the middle initial:

Livingston, Dr. Ann B.

Define the second column of the report format like this:

COMPANY + ADDRESS

A ssign a width of 20 characters to the report column, and again no
heading. Since the COMPANY field is already 20 characters long,
the ADDRESS will wrap around to the line beneath the COM

PANY. Hence, the two fields will be stacked vertically like this:

ABC Incorporated

1234 Pacific Hwy.

The third column is trickier still. We want the PHONE on. the
top line, and the CITY, STATE, and ZIP on the bottom line. We
can assign a width of 30 characters to this column, but we need to
ensure that the PHONE field is exactly 30 characters wide so that
the CITY, STATE, and ZIP wrap around to the next line. Since
the PHONE field is 13 characters wide, we'll add 17 blank spaces

Adams, Ms. Anna A. Sybex International

A Complete Mailing System 299

to pad it out to 30 spaces. The contents of the third column in the
report are

PHONE+ SPACE(17) + TRIM(CITY) +", "+ STATE+" "ZIP

Again, don't assign a heading to the column, and assign a
width of 30 characters. When you print the report, each record
will be stacked in two lines like this:

(415)848-8233
2344 Sixth St. Berkeley, CA 94710

Mailing System Labels

For mailing labels, use the usual CREATE or MODIFY LABEL
commands, and name the label format file MAILLAB.LBL. Assign
whatever size you wish, and fill in the Contents menu like this:

Label contents 1: MR_MRS,FNAME,MI,LN AME
2: COMPANY
3: ADD RE SS
4: TRIM(CI TY) +", ", STATE, ZIP
5:

And that wraps up all the screens, reports, and label format
files in the system . Before we start writing command files to man
age all these files, let's get an overview of what our plan is here.

SOFTWARE STRUCTURE FOR

THE MAILING SYSTEM

When designing a custom system with many command files, it's
a good idea to take an extra step of drawing a hierarchical struc
ture of how the programs interrelate. The structure for the mailing
system is a fairly straightforward one, as shown in Figure 16.6.

The structural hierarchy shows that the system is broken down
into major tasks, each representing a single command file. The
MAIL.PRG command file is the Main Menu and is the highest in
the hierarchy. The remaining command files are lower in the hierar
chy, and are accessed directly from the MAIL.PRG command file
using the 00 command. Any time a lower-level program finishes its.

300 UNDERSTANDING dBASE III PLUS

-

Figure 16.6: Software Structure for the Mailing System

task, it returns control to the calling prograIil, MAIL.PRG.

Dividing a larger system into individual tasks and command files

like this simplifies the bigger programming job. It is much easier to

reach the goal of developing a large system when the task is com

posed of much smaller, more easily attained goals. Breaking the big

job into smaller sections means that you can design, develop, and
test each program in the system independently. Also, developing lots
of smaller programs helps to avoid getting entangled in large masses

of program code. .
Now you can begin writing the five command files that make

up the mailing list system.

A Complete Mailing System 301

MAIL.PRG: THE MAIN MENU

You've already developed a menu program (MENU. PRG), so

this one will be easy. However, you should not skip the planning

stage. Here is the pseudocode for the MAIL.PRG program :

COMMAND FILE N AME: MAIL.PRG

PURPOSE: Present a menu of options for the mailing list system.

PSEUDOCODE:

v' Set up initial dBASE parameters.

v' Open the database and index files.

v' Begin loop for main menu.

v' Clear the screen

v' Display the main menu

Mailing System Main Menu
1. Add new Names and Addresses
2. Print Directory or Labels
3. Make Changes
4. Delete Names and Addresses
5. Check for Duplicate Entries
6. Exit the Mailing System

v' Get user's choice.
v' Branch to the selected task or program.

v' Repeat menu (if exit not requested).

v' Otherwise, return to the dot prompt.

When you have written the pseudocode, you are ready to write
the program. Program 16.1 is the complete MAIL.PRG command

file. Let's talk about each routine in more detail.

The program begins with some opening comments that display

the name of the program and its function. Then several dBASE

parameters are set. First, SET TALK OFF keeps extraneous mes
sages from appearing on the screen. Then, SET S TATUS OFF

turns off the reverse-video Status Bar at the bottom of the screen

because it serves no purpose in the mailing system. The SET

302 UNDERSTANDING dBASE III PLUS

DEFAULT TO C command makes a hard disk the default drive.
On a floppy-disk system, this line should be changed to SET
DEFAULT TO B.

************ MA IL .PRG

* * * * * * * * * * * * Mailing L ist Management System: dBASE III PLUS.

*---------- Set up initial parameters.

SET TA LK OF F

SET STATUS OF F

SET DEFAU LT TO C

*---------- Open the database and index files.

USE MAILDATA INDEX MAIL NA MS,MAILZIPS

*---------- Begin loop for Main Menu.

CHOICE = 0

DO WH IL E CHOICE < > 6

CL EA R

T EXT

Mailing System Main Menu

1. A dd new Names and A ddresses

2. Print Directory or L abels

3. Make Changes

4. Delete Names and A ddresses

5. Check for Duplicate Entires

6. Exit the Mailing System

ENDT EXT

*---------- Get user's choice

@ 16,20 SAY "Enter choice" GET CHOICE;

PICTU RE "9" RA NGE 1,6

REA D

*---------- Branch to appropriate task or program.

DO CASE

CASE CHOICE = 1
SET FORMAT TO MAILSCRN

A PPEND

CLOSE FORMAT

-

Program 16.1: MAIL.PRG Command File

A Complete Mailing System 303

CASE CHOICE = 2

DO MAILREPS

CASE CHOICE = 3

DO MAILEDIT

CASE CHOICE = 4

DO MAILD EL

CASE CHOICE = 5

DO MAILDU P E

ENDCASE

ENDDO (while choice < > 6)

*---------- Done with program. Return to dot prompt.

SET TA LK ON

SET STATUS ON

RETURN

-

Program 16.1: MAIL.PRG Command File (continued)

The next routine in MAIL.PRG looks like this:

*-- Open the da tabase and Index flies.

USE MAIL
 D ATAINDEXMAILNAMS.MAILZIPS

It opens the MAILDATA.DBF database and the MAIL N AMS.NDX

and MAILZIPS.NDX index files.
Next a DO WHILE loop, which repeats until the user selects 6

to exit, displays a menu of options. The TEXT and ENDTEXT

commands display all lines in between as simple text on the screen

or printer. This is a shortcut to using many ? or @ commands.

The top of the loop and the menu definition look like this:

*-- 8e gln fo r Main Menu. loop
CHOICE = 0
DO WHILE CHOICE < > 6

CLEAR
TEXT

Mailing System Main Menu
1. Add new Names and Addresses

304 UNDERSTANDING dBASE III PLUS

2. Print Directory or Labels
3. Make Changes
4. Delete Names and Add resses
5. Check for Duplicate Entries
6. Exit the Mailing System

ENDTEXT

Next, a small routine waits for the user's menu choice. The @,
SAY, GET, and READ commands are used in this example. The
PICTURE "9" portion forces the user to enter a number (not a
character), and the RA NGE 1,6 portion forces a number between
1 and 6. A number outside this range is rejected, and the user is
asked to try again. This routine gets the user's input:

*-- Get user's choice·
@ 16,20 SAY "Enter choice " GET CHOICE;

PICTURE "9" RA NGE 1,6

REA D

Next, a DO CASE clause decides what to do, based upon the
user's menu selection. If the user selects option 1 to add new records,
the program sets the screen format to the MAILSCRN .F MT format
file and allows the user to add new records with the APPEND com
mand. When the user finishes, the screen is set back to normal
(CLOSE FO RMAT), and the menu loop repeats.

Other menu 9ptions require branching to external programs, as
shown in the DO CASE clause:

*- Branch to appropriate task or program.

DO CASE

CASE CHOICE = 1

SET FO RMAT TO MAILSCRN

A PPEND

CLOSE FO RMAT

CASE CHOICE = 2

DO MAILREPS

CASE CHOICE = 3

DO MAILEDIT

CASE CHOICE = 4

DO MAILDEL

CASE CHOICE = 5

DO MAILDUPE

END CASE

A Complete Mailing System 305

The bottom of the MAIL.PRG command file marks the end of

the DO WHILE loop and the end of the program (when the user

selects option 6 to exit). Because dBASE ignores all words to the

right of an ENDDO or ENDIF command, you can add program
mer comments there, which make good reminders about which
ENDDO goes with which DO WHILE, and which ENDIF goes

with which IF. Before returning to the dot prompt, the program

sets some dBASE III PLUS parameters back to normal, as shown

in the closing lines of the MAIL.PRG command file:

ENDDO (while choice < > 6)
*- Done with program. Return to dot prompt.
SET TALK ON
SET STATUS ON
RETURN

MAILREPS.PRG: PRINTING

MAIL REPORTS

The MAILREPS.PRG command file displays a menu of report
choices, a menu of sort orders, an option to display all records or

create a query, and an option to display the report on the screen

or printer. Here is the pseudocode for the MAILREPS.PRG com
mand file:

COMMAND FILE NAME: MAILREPS.PRG
PURPOSE: Display sort and report options, and print reports.

PSEUDOCODE:

v' Clear screen and ask which report to print.

1. Directory
2. Mailing Labels
3. None: Return to menu

v' If no report requested, return to Main Menu.

v' Display sort order options, and get selection.

* * * * * * * * * * * * MAILREPS.PRG

306 UNDERSTANDING dBASE III PLUS

1. Alphabetical Order by Name
2. Zip Code Order
3. Original Order

¥ Use appropriate index file based on sort selection.

¥ If alphabetical sort, use MAILNAMES.NDX.

, If zip code sort, use MAILZIPS.NDX.

, If no sort, don't use an index.
, Ask about query options.
¥ If query requested, display query form, allow changes,

then filter database.

¥ Ask about the printer.

¥ Print the report.

¥ If directory requested, use NEWDIREC format.

¥ If labels requested, use MAILLAB label format.

¥ Pause screen if printer not selected.

¥ Set filter and index files back to normal.

, Return to Main Menu.

When you've written the pseudocode, you are ready to write
the program. Program 16.2 is the complete MAILREPS.PRG
command file. Let's take a closer look at its routines.

* ---------- Reports Program for Mailing System.

* ---------- Clear screen and ask which report.
CLEAR
TEXT

Select a Report Option

1. Directory

2. Mailing Labels

3. Return to Main Menu

ENDTEXT

*---------- Initialize variable and ask for report choice.
REPCHOICE = 0
@ 14,20 SAY "Enter your choice (1-3) " ;

GET REPCHOICE PICTURE "9" RANGE 1,3

-

Program 16.2: MAILREPS.PRG Command File

A Complete Mailing System 307

READ

*---------- If return requested, return to Main Menu .
IF REPCHOICE = 3

RETURN
ENDIF

*---------- Ask about sort order.
CLEAR
TEXT

Select a Sort Order

1. Alphabetical order by Name

2. Zip Code Order

3. Original Order
ENDTEXT
*---------- Initialize variable and ask for sort choice.
SORTCHOICE = 0
@ 14,20 SAY "Enter your choice (1-3) " ;

GET SORTCHOICE PICTURE "9" RANGE 1,3
READ

*---------- Use appropriate index file.
DO CASE

CASE SORTCHOICE = 1

SET INDEX TO MAILNAMS

CASE SORTCHOICE = 2

SET INDEX TO MAILZIPS

CASE SORTCHOICE = 3

CLOSE INDEX

ENDCASE

Ask about query.

CLEAR
*----------

QCHOICE = "A"
@ 10,5 SAY;
"00 you want (A)II records, or a (Q)uery? ";
GET QCHOICE PICTURE "!"

-

Program 16.2: MAILREPS.PRG Command File (continued)

308 UNDERSTANDING dBASE III PLUS

READ

*---------- Display query form if requested.

IF QCHOICE = "Q"

MODIFY QUERY MAILGEN

SET FILTER TO FILE MAILGEN

ENDIF

*------�--- Ask about the printer.

PMACRO =
" "

TOPRINT = "N"
CLEAR

@ 10,5 SAY "Send report to printer? (YIN) ";

GET TOPRINT PICTURE "!"

READ

*����---��� Make a macro if printer requested.

IF TOPRINT = "Y"

PMACRO = "TO PRINT"

ENDIF

*---------- Now print the report.

DO CASE

. CASE REPCHOICE = 1
REPORT FORM NEWDIREC &PMACRO

CASE REPCHOICE = 2

LABEL FORM MAILLAB &PMACRO

ENDCASE

*---��----- If printer was not selected, pause

*---------- before returning to menu.

IF TOPRINT < > "Y"
@ 24,1 CLEAR
WAIT "Press any key to return to menu . . . "

ENDIF

*---------- When report is done, set filter and

*---------- index files back to normal, and then

*---------- return to Main Menu.

SET FILTER TO
SET INDEX TO MAILNAMS,MAILZIPS

RETURN

-

Program 16.2: MAILREPS.PRG Command File (continued)

* * * * * * * * * * * * MAILREPS.PRG

If the user simply requests to return to the menu, the IF clause
below sends him back immediately:

A 	Complete Mailing System 309

The MAILREPS.PRG command file opens with some comments,
a command to clear the screen, and a menu of report choices dis
played with the TEXT ... ENDTEXT commands. Then an @,
SAY, GET, READ combination is used to wait for and store the
user's menu choice. These first lines of the command file also store
the user's menu selection in a variable named RE PCHOICE:

*_ Reports Program for Mailing System.
* __ - Clear screen and ask which report.
CLEAR
TEXT

Select a Report Option
1. Directory
2. Mailing Labels
3. Return to Main Menu

ENDTEXT
* ___ Initialize variable and ask for report choice.
REPCHOICE = 0
@ 	14,20 SAY "Enter your choice (1-3) " ;

GET REPCHOICE PICTURE "9" RANGE 1,3
READ

*_____ If return requested, return to main menu.
IF REPCHOICE = 3

RETURN

ENDIF

Next, a routine displays a menu of sort options, and then a DO
CASE clause sets up the appropriate index file (or no index file)
for the sort. The routine looks like this:

*---- Ask about sort order.

CLEAR

TEXT

Select a Sort Order
1. Alphabetical order by Name
2. 	 Zip Code Order
3. Original Order

ENDTEXT

*________ Initialize variable and ask for sort choice.

310 UNDERSTANDING dBASE III PLUS

SORTCHOICE = 0

@ 14,20 SAY "Enter your choice (1-3) " ;
GET SORTCHOICE PICTURE "9" RANGE 1,3

READ
*------ Use appropriate index file.
DO CASE

CASE SORTCHOICE = 1
SET INDEX TO MAILNAMS

CASE SORTCHOICE = 2
SET INDEX TO MAILZIPS

CASE SORTCHOICE = 3
CLOSE INDEX

ENDCASE

Next, the program asks if the user wants to print all the records

in the database or to set up a Query. The user's response is stored
in a variable named QCHOICE. The PICTURE " ! " portion

converts the user's answer to uppercase as soon as it is entered.

The routine looks like this:

*----- Ask about query.
CLEAR
aCHOICE = "A"
@ 10,5 SAY;

"Do you want (A)II records, or a (a)uery? ";
GET aCHOICE PICTURE "I"

READ

If the user opts to query the database, a Query form named
MAILGEN.QRY is brought to the screen for the user to fill in or
edit. When completed, the SET FILTER TO FILE command, as

shown in this routine, activates the query form and sets up the filter:

*-------- Display query form if requested.

IF aCHOICE = "a"
MODIF Y aUER Y MAILGEN
SET FILTER TO FILE MAILGEN

ENDIF

Next a small routine asks the user if the report should be
printed. The user's answer is stored in the variable TOPRINT, as
shown in the following.

A Complete Mailing System 31 1

*-- Ask about the printer.
PMACRO =

" "

TOPRINT = "N"
CLEAR
@ 10,5 SAV "Send report to printer? (YIN) ";

GET TOPRINT PICTURE "I"
READ

If the user opts for the printer, a variable named PMACRO is
assigned the words "TO PRINT" which will be used for macro

substitution later in the program:

*-- Make a macro If printer requested.
IF TOPRINT = "V"

PMACRO = "TO PRINT"
ENDIF

Finally, the program prints the requested report, based on the
user's original report selection (the REPCHOICE variable) . The
DO CASE clause decides which report to print. Note the use of
the &PMACRO 6acro. If the user requested that the report be

printed, the words TO PRINT will be added to the REPORT or

LABEL command lines, thereby printing the output. If the printer
was not selected, a blank space will be substituted into the end of
the LABEL and REPORT commands, and the output will be
directed to the screen. The routine looks like this:

*-- Now print the report.
DO CASE

CASE REPCHOICE = 1
REPORT FORM NEWDIREC &PMACRO

CASE REPCHOICE = 2
LABEL FORM MAILLAB &PMACRO

ENDCASE

To keep the report from disappearing from the screen too
quickly (if the report was not printed), the program pauses before

returning control to the Main Menu, as shown in this routine:

*--
' If printer was not selected, pause

*-- before returning to menu.

IF TOPRINT < > "V"
@ 24,1 CLEAR

312 UNDERSTANDING dBASE III PLUS

WAIT "Press any key to return to menu
ENDIF

Before returning control to the Main Menu, the FILTER is
deactivated (so all records become accessible), and the normal
index files are reactivated, as shown in this routine:

*-- When report Is done, set filter and
*-- Index flies back to normal, and then
*-- return to Main Menu.

SET FILTER TO

SET INDEX TO MAILNAMS,MAILZIPS

RETURN

MAILEDIT.PRG: EDITING RECORDS

The MAILEDIT.PRG command file allows the user quick and
emiY access to records for editing. Program 16.3 shows the MAIL
EDIT.PRG command file, and its pseudocode appears below.

COMMAND FILE NAME: MAILEDIT.PRG

PURPOSE: Locate and modify a record.

PSEUDOCODE:

� Set up loop for editing records.
� Ask for last name of person to look up.
� If no name entered, return to Main Menu.
� Convert LOOKUP to uppercase to match index file.
� Try to find requested name.

 Count how many records have requested name.

 If no records have that name', ask the user to try again.
� If several records have that name, get more information.
� If record identified, display it on custom screen.

 Allow edits until exit requested.

 Return to Main Menu.

* * * * * * * * * * * * MA l LEDIT. PRG

A Complete Mailing System 31 3

* Lookup and Edit Names on the MA ILDATA Database.
* ---------- Set up loop for editing records.
STI LLATIT = . T.
DO WHILE STILLATIT

* ---------- A sk for last name of person to look up.

C LEA R

LOOKUP = SPA C E(15)
@ 10,12 SAY "Enter last name of person to edit"
@ 12,12 SAY "or just press Return to exit ";

GET LOOKUP

REA D

* ---------- If no name entered, skip all commands

*
�---------- between here and Enddo.
IF LOOKUP =

" "

STILLATIT = . F.

LOOP

ENDIF (LOOKUP =
" ")

* ---------- C onvert LookUp to uppercase to match

*
---------- index file.
LOOKUP = UPPER(LOOKUP)

* ---------- Try to find requested name, and

*---------- remember record number.

SEEK LOOKUP

RECNUMB = RECNOO

* ---------- C ount how many there are.
C OUNT WHILE UPPER(LNA ME) = LOOKUP TO HOWMANY

* ---------- If no record has that name,

*---------- ask the user to try again.

IF HOWMANY = 0

@ 20,10 SAY "There is no &LOOKUP"

@ 22,10 SAY "Press a key to try again"

? C HR(7)

WAIT " "
RECNUMB = 0

ENDIF (HOWMANY = 0)

-

Program 16.3: MAILEDIT.PRG Command File

* * * * * * * * * * * * MAILEDIT.PRG

314 UNDERSTANDING dBASE III PLUS

*---------- If more than one record has that last
*---------- name, get more information.
IF HOWMA NY > 1

CLEAR
RECNUMB = 0
SEEK LOOKUP
LIST LNAME, FNAME, A DDRESS, CITY;

WHILE UPPER(LNAME) = LOOKUP
@ ROWO + 3, 10 SAY "Edit which Record # ? " ;

GET RECNUMB PICTURE "9999"
REA D

ENDIF

*---------- If there is a record number greater than
*---------- zero at this point, edit the record.
IF RECNUMB > 0

GOTO RECNUMB

SET FORMAT TO MA ILSCRN

REA D

CLOSE FORMAT

ENDIF

ENDDO (while STILLATIT)

RETURN

-

Program 16.3: MAILEDIT.PRG Command File (continued)

This program demonstrates many basic programming techniques

for quickly accessing data through index files. The program starts

with the usual opening comments and description. A DO WHILE

loop controls a logical variable named STILLATI T, as shown in

the first routine:

* * * * * * * * * * * * Lookup and Edit Names on the MAILD ATA database.
*-- Set up loop for editing records.
STILLATIT = .T.
DO WHILE STILLATIT

Within the loop , the program creates a character variable

named LOOKUp, which is exacdy fifteen spaces long (the same

length as the LNAME field in the MAILDATA.DBF database).

An @, SAY, GE T, READ combination then asks the user to type

A Complete Mailing System 315

the last name of the customer's record to be editedI The user's
entry is stored in the LOOKUP variable, as shown in this routine:

*-- A sk for last name of person to look up.

CLEA R

LOOKUP = SPACE(15)

@ 10,12 SAY "Enter last name of person to edit"

@ 12,12 SAY "or Just press Return to exit ";

GET LOOKUP

READ

If the user does not enter a name but presses Return, the program
is signaled that the user is finished editing, and therefore returns con
trol to the Main Menu. It accomplishes this task by setting the
STILLATIT variable (which controls the 00 WHILE loop) to False
(.F.), and by forcing the program to pass control directly to the
ENDOO command (LOOP), as shown in this routine:

*-- If no name entered, skip all commands

*-- between here and ENDD O

IF LOOKUP =
" "

STILLATIT = .F.

LOOP

II)ENDIF (LOOKUP =
"

If the user does not request· to exit, then the program looks up
the name that the user entered. First, remember that when you
created the NAMES.NDX index, you used the UPPER function
to convert all names to uppercase for consistency. So here, the
program can convert the user's entry to uppercase. Therefore, we
need not be concerned about how the user enters the name to look
up (e.g. SMITH, Smith, smith, or SmItH), because the program
automatically converts everything to uppercase. The LOOKUP
variable is converted to uppercase by the following line:

*--- Convert LOOKUP to uppercase to match

*-- Index file.

LOOKUP = UP P ER(LOOKUP)

Next, the program attempts to quickly find the requested last
name in the NAMES.NDX index file (which is always active in
this system). The program records the number of the record where

316 UNDERSTANDING dBASE III PLUS

the SEEK positions the pointer in a variable named RECNUMB,
as· shown in the following routine. RECNUMB will come in
handy later in the program for quickly getting the pointer back to
the record to edit.

*--- Try to find requested name, and
*-- remember record number.
SE E K LOOKUP
RECNUMB = RECNO()

Next, the program counts how many records contain the requested
last name using a COUNT command. Because the database is in
alphabetical order by last name, due to the NAMES.NDX index file,
the faster WHILE option can be used rather than the slower FOR
option. Note that the results of the following COUNT command are
stored in a memory variable named HOWMANY:

*------ Count how many there are.
C OUNT WHILE UPP E R(LNAME) = LOOKUP TO HOWMANY

Now the program has to decide what to do next. If the name
thaf the user entered is not in the database, then the program dis
play s an error message, beeps (the? CHR(7) line), and waits for
the user to press any key. The &LOOKUP enclosed in quotation
marks is a macro that will display the invalid last name when the
program runs. The following IF clause handles the situation when
the user enters a name which is not in the database:

*---- If no record has that name,
*--- ask the user to try again.
IF HOWMANY = 0
@ 20,10 SAY " There Is no &LOOKUP"
@ 22,10 SAY "Press a key to try again"
? CHR(7)
W A IT ""
RECNUMB = 0

ENDIF (HOWMANY = 0)

If several records contain the last name entered by the user, the
program needs more. information. So, first it clears the screen, and
then it SEEKs the first record in the database with the requested
last name. (The COUNT command above moved the pointer, so

A Complete Mailing System 317

now ,it has to be repositioned.) A LIST command lists all indivi
duals with the requested last name (including record number), and
an @, SAY, GET, READ combination asks the user to select a
record by typing its number. T he following IF clause handles this
situation:

*-- If more than one record has that last

*-- name, get more information.

IF HOWMA NY > 1

CLEAR

RECNUMB = 0

SEEK LOOKUP

LIST LNAME, FNAME, A DDRESS, CITY;

WHILE UPPER(LNAME) = LOOKUP

@ ROW () + 3, 10 SAY "Edit which Record # ? ";

GET RECNUMB PICTURE "9999"

REA D

ENDIF

By this time" one of two possible conditions exists. Either a record

has been identified to edit, and its number stored in the RECNUMB
variable, or no record has been defined, and the RECNUMB vari

able equals zero. If a record has been identified, the program sets up
the MAILSCRN .FMT format file and allows the user to edit the
record, as shown in the following IF clause:

*-------- If there is a record number greater than

*------ zero at this point, edit the record.

IF RECNUMB > 0

GOTO RECNUMB

SET FORMAT TO MA ILSCRN

REA D

CLOSE FORMAT

ENDIF

When the user stops requesting records to edit, the program
falls out of the DO WHILE loop and returns control to the Main
Menu, as shown in the closing lines of the program:

ENDDO (while STILLATIT)

RETURN

* * * * * * * * * * * * MAILDEL.PRG

318 UNDERSTANDING dBASE III PL US

MAILDEL.PRG: DELETING RECORDS

The MAILDEL.PRG command file is similar to the MAIL

EDIT.PRG command file, in that it calls up a record for a specific

task to be performed by the user. Program 16.4 shows the MAIL

DEL.PRG command file, and its pseudocode appears below.

COMMAND FILE NAME: MAILDEL.PRG

PURPOSE: Locate and delete a record

PSEUDOCODE:

v' Set up loop for deleting records.

v' Ask for last name of person to delete.

v' If no name entered, return to Main Menu.

v' Convert LOOKUP to uppercase to match index file.

v' Try to find requested name.

v' Count how many people have requested name.

v' If no records contain that name, ask user to try again.

v' If several records have that name, get more information.
v' If record identified, ask for permission to delete it.

v' If permission granted, mark the record for deletion.

v' Allow more deletions until exit requested.

v' Count how many records are marked for deletion.

v' While there are still records marked for deletion

v' Display records marked for deletion.

v' Ask for permission to permanently delete.

v' If permission not granted

v' Allow user to recall one record.

v' Decrement counter of deleted records.

v' If permission to delete is granted

v' Pack the database.

v' Continue displaying and asking for permission until granted.

v' Return to Main Menu.

* Lookup and Delete Names on the MAILDATA database.

A Complete Maz"lz"ng System 319

*---------- Set up loop for deleting records.
STILLATIT = .T.
D O WHILE STILLATIT

*---------- Ask for last name of person to look up.

C LE AR

LOOKUP = SPAC E (15)

@ 10,12 SAY "Enter last name of person to delete"

@ 12,12 SAY "or just press Return to exit ";

GE T LOOKUP

.RE A D

*---------- If no name entered, skip all commands

*---------- between here and Enddo.

IF 	 LOOKUP =
" "

STI LLATIT = . F.

LOOP

ENDIF (lookup =

" ")

* ---------- Convert LOOKU P to uppercase to match
*---------- index file.
LOOKUP = UP P ER(LOOKUP)

*---------- Try to find requested name, and

*---------- remember record number.

SE E K LOOKUP

RECNUMB = RECNO()

*---------- Count how many there are.
C OUNT WHILE UP P ER(LNA ME) = LOOKUP T O HOWMANY

*---------- If no record has that name, warn

*---------- the user to try again.

IF 	 H OWMANY = 0

@ 20,10 SAY "T here is no &LOOKUP"

@ 22,10 SAY "Press a key to try again"

? C H R(7)

WAIT " "

RECNUMB = 0

ENDIF (HOWMANY = 0)

* ---------- If more than one record has that

*---------- last name, get more information.

-

Program 16.4: MAILDEL.PRG Command File

*---------- If answer is yes,

320 UNDERSTANDING dBASE III PLUS

IF HOWMAN Y > 1
CLEAR
RECNUMB = 0
SEEK LOOKUP
LIST LNAME, FNAME, ADDRESS, CIT Y;

WHILE UPPER(LNAME) = LOOKUP
@ ROWO + 3, 10 SAY "Delete which one? ";

GET RECNUMB PICTURE "9999"
READ
ENDIF

*---------- If there is a record number greater than
*---------- zero at this point, double check then delete.

IF RECNUMB > 0
GOTO RECNUMB

CLEAR

DISPLAY LNAME, FNAME, ADDRESS, CIT Y

?

WAIT "Delete this record? (YIN) " TO ANSWER

*---------- mark record for deletion.
IF UPPER(ANSWER) = "Y"

DELETE RECORD RECNUMB
ENDIF (ANSWER)

ENDIF (RECNUMB > 0)

ENDDO (while STILLATIT)

*---------- Before exiting, verify deletions and pack.

COUNT FOR DELETEDO TO NODELS

OKTOPACK = "N"

DO WHILE OKTOPACK = "N" .AND. NODELS > 0

CLEAR

? "Records to be deleted . . . "

?

DISPLAY LNAME, FNAME, ADDRESS FOR DELETEDO

@ 23,1 SAY "Delete all these? (YIN) ";
GET OKTOPACK PICTURE "1"

READ

IF OKTOPACK < > "Y"

*---------- If not ok to pack, recall a record.

DELREC = 0

@ 23,1 SAY "Recall which one (by record #)";

-

Program 16.4: MAILDEL.PRG Command File (continued)

A Complete Mailing System 321

GET DELREC PICTURE "9999"

READ

*--------- If record number entered, and record
*---------- is indeed deleted, recall it.
IF DELREC > 0

GOT O DELREC

IF DELETE DO

RECALL RECORD DELREC
NODELS = NODELS - 1

ENDIF (deleted)
ENDIF (DELREC > 1)

ELSE
*---------- If ok to pack, do so and show progress.
SET TALK ON

PACK
SET TALK OFF

ENDIF (OKT OPACK)

ENDDO (OKTOPACK)

RETURN

-

Program 16.4: MAILDEL.PRG Command File (continued)

T he basic technique for pinpointing a record to delete is identi
cal to the technique used by MAILEDIT.PRG to locate records.
However, when a record is pinpointed, this program does not
allow editing. Instead, it simply shows a portion of the record and

asks for permission to delete it. If the user enters Y to delete the
record, the DE LE TE RECORD command marks the record for
deletion, as shown in the following IF clauses:

*--- If there is a record number greater than

*---- zero at this point, double check then delete.

IF RECNUMB > 0

GOTO RECNUMB

CLEAR

DISPLAY LNAME, FNAME, ADDRESS, CITY

?

WAIT "Delete this record? (YIN) " TO ANSWER

*--- If answer is yes,

*-- mark record for deletion.
IF UPPER(ANSWER) = "V"

DELETE RECORD RECNUMB

ENDIF (ANSWER)

ENDIF (RECNUMB > 0)

322 UNDERSTANDING dBASE III PLUS

The user can delete any number of records in this fashion.
Before returning to the Main Menu, the program verifies all dele
tions by giving the user a chance to reconsider. First the program
counts the number of records that are marked for deletion using

the COUNT command. The result is stored in a variable named
NODELS.

Then, a DO WHILE loop display s the records that are marked
for deletion and asks the user, "Delete all these?" If the user
answers No, the program allows the user to recall a record (by
record number), and then display s the remaining records that are
marked for deletion and again allows the user to verify. This pro
cess continues until either the user answers Yes to the "Delete all
these?" prompt, or until there are no more records marked for
deletion (NODELS 0) . Once records are verified for deletion, =

the PACK command removes them from the database perma
nently. Because it takes. some time to pack the database and
rebuild the index files, the SET TALK ON command is used to
display messages about dBASE's progress during this phase. When

packing is complete, the TALK parameter is turned back OFF
and control is passed back to the Main Menu, as shown in the
closing routine:

*-- Before exiting, verify deletions and pack.

COUNT FOR DELETED() TO NODELS

OKTOPACK = "N"

DO WHILE OKTOPACK = "N" .AND. NODELS > 0

CLEAR

? "Records to be deleted . • . "

?

DISP LAV LNAME, FNAME, ADDRESS FOR DELETED()
@ 23,1 SAY "Delete all these? (YIN) ";

GET OKTOPACK PICTURE "I"

READ

IF OKTOPACK < > " V"

*-- If not ok to pack, recall a record.

DELREC = 0

@ 23,1 SAY "Recall which one (by record #)";

GET DELREC PICTURE "9999"

READ

*-- If record number entered, and record
*-- Is Indeed deleted, recall it.

A Complete Mailing System 323

IF DELREC > 0

GOTO DELREC

IF DELETED()

RECALL RECORD DELREC

NODELS = NODELS 1
-

ENDIF (deleted)

ENDIF (DELREC > 1)

ELSE

*-- If ok to pack, do so and show progress.
SET TALK ON
PACK
SET TALK OFF

ENDIF (OKTOPACK)

ENDDO (OKTOPACK)

RETURN

MAILDUPE.PRG: CHECKING

FOR DUPLICATES

The MAILDUPE.PRG command file displays records that have

identical zip codes, street addresses, and last names. Pseudocode

for the MAILDUPE.PRG command file is shown below:

COMMAND FILE NAME: MAILDUPE.PRG

PURPOSE: Checks for duplicate names and addresses

PSEUDOCODE:

v' Ask about printer.

v' Display opening messages and pre-sort the database.

v' If printer requested, turn it on.

v' Print report title.

v' Loop through the database.
v' Look to ZIP + ADDRESS + LNAME.
v' Skip to next record, and compare ZIP +
v' ADDRESS + LNAME to ·previous record.
v' If records match
v' Go back to first matching record.
v' Display all records that match.
v' Continue loop through database.

324 UNDERSTANDING dBASE III PLUS

v' 	 When done with report, handle printer or screen.
v' 	 Erase temporary index file and
v' reactivate normal sort orders.
v' 	 Return to Main Menu.

* * * * * * * * * * * * MAILDUPE.PRG
* - - - - - Mail System Check for Duplicates Program.

* - - - - - Ask about printer.

CLEAR

TOPRINT = "N"
@ 	10,10 SAY "Send duplicates to printer? (YIN) ";

G ET TOPRINT PICT URE "I"

READ

* - - - - - Display opening messages and show progress.

@ 15,10 SAY "Pre-sorting for duplicates check ... "
SET TALK ON
USE MAILDATA

INDEX ON UPPER(ZIP + ADDRESS + LNAME) TO T EMP
SET TALK OFF
CLEAR

* - - - - - If printer requested, turn it on.

IF TOPRINT = " Y"

SET PRINT ON

ENDIF

* - - - - - Print report title.

CLEAR

? DTOC(DAT EO) + SPACE(20) + "Possible Duplications"
?? SPACE(20) + T IMEO
?

?

* - - - - - Loop through the database.
GO TOP
DO WHILE . NOT. EOFO

Compare = UPPER(ZIP + ADDRESS + LNAME)
SKIP
IF UPPER(ZIP + ADDRESS + LNAME) = Compare

SKIP -1

-

Program 16.5: MAILDUPE.PRG Command File

* * * * * * * * * * * * M A ILDUP E.PRG

A Complete Maii£ng System 325

LIST LNAME, FNAME, ADDRESS, CIT V WHILE;
UPPER(ZIP + ADDRESS + LNAME) -= Compare

?

?

ENDIF (upper zip + . . .)

ENDDO (not eot)

*---------- Done with report, handle printer or screen.
IF T OPRINT = "V"

EJECT
SET PRINT OFF

ELSE

@ 23,1
WAIT "Press a key to return to the menu . . . "

ENDIF (T OPRINT)

*---------- Erase temporary index file and

*---------- reactivate normal indexes.

CLOSE DATABASES

ERASE T EMP.NDX

USE MAILDATA INDEX MAILNAMS,MAILZIPS

-

Program 16.5: MAILDUPE.PRG Command File (continued)

To facilitate checking for duplicate records, the program pre
sorts the database by zip code, address, and last name. That way,

any records with that are identical within these three fields will be

right next to each other. The sorting is handled with an INDEX
command, using an index file named TEMP.NDX. The opening

lines of the program ask the user if the resulting report should be
printed, and create the TEMP.NDX index file:

*_ •••• - Mall system Check for Duplicates program .
* -_.- Ask about printer.
CLEAR

TOPRINT = "N"

@ 10,10 SAY "Send duplicates to printer? (YIN) ";

GET TOPRINT P IC TURE "I"
REA D

*-- Display opening messages and show progress.
@ 15,10 SAY "Pre-sorting for duplicates check . . . "
SET TALK ON
USE MAILD ATA

326 UNDERSTANDING dBASE III PLUS

INDEX ON UPPER(ZIP + AD DRES S + LNAME) TO TEMP

SET TALK OFF

C LEAR

If the user requests that the report be printed, the following

routine turns the printer on . (Note: SET PRINT ON sends all
output commands, except @, to the printer. To send @ com
mands to the printer, use SET DEVICE TO PRINT.)

*---- Of printer requested, turn It on .

IF TOPRINT = "V"

SET PRINT ON
ENDIF

Next, the program prints the current date and time (the
D ATE(), TIME() line), and a report title followed by a couple of
blank lines:

*-- Print report title .

CLEAR

1 D TO C (DATE(» + SPACE(20) + "Possible Duplications"

11 SPACE(20) + TI ME()

1

1

Next a loop is set up that reads every record in the database,
starting at the first record (TOP):

-*----- Loop through the database.

GO TOP

DO WHILE .NO T. EOF()

Within this loop, the uppercase (used for consistency) equivalent of
the address, zip code, and last name are stored in a memory vari

able named COM PARE:

CO MPARE = UPPER(ZIP + ADD RES S + LNAME)

Next, a SKIP command moves the pointer to the next record,
and an IF clause determines whether or not the zip, address, and
last name of the new record are identical to the zip, address,
and last name of the previous record . (A gain, since the database is
pre-sorted, identical records must be next to each other.)

A Complete Mailing System 327

SKIP

IF UPPER(ZIP + ADDRESS + LNAME) = COMPARE

If the two records match, the program skips back to the previ
ous record, and lists all records with identical zip codes, addresses,
and last names:

SKIP -1

LIST LNAME, FNAME, ADDRESS, CITV WHILE;

UPPER(ZIP + ADDRESS + LNAME) = COMPARE

?

?

ENDIF (UPPER ZIP + . . .)

This process continues until the end of the file is encountered. If
the report was printed, the EJECT command moves the paper in
the printer to the next page and turns the printer off. If the report
was display ed on the screen, the program pauses to allow the user
to view the screen before returning to the Main Menu. These
tasks are handled in this routine:

ENDDO (NOT EOF)

*----- Dona with report, handle printer or screen.

IF TOPRINT = "V"

EJECT
SET PRINT OFF

ELSE

@ 23,1
WAIT "Press a key to return to the menu . . . "

ENDIF (TOPRINT)

Finally, before returning to the Main Menu, the following rou
tine closes all open database and index files, erases the temporary
index file (TEMP. NDX) from the disk, and sets up the normal
NAMES and ZIPS.NDX index files:

*------- Erase temporary index file and

* ------ reactivate normal Indexes.

CLOSE DATABASES

ERASE TEMP.NDX

USE MAILDATA INDEXMAILNAMS,MAILZIPS

RETURN

328 UNDERSTANDING dBASE III PLUS

REVIEWING THE CUSTOM SYSTEM

In this chapter we've demonstrated a custom system written in
the dBASE language. In Appendix B, we'll look at an alternative

to writing your own programs, the dBASE III PLUS Applications

Generator. T he system we developed consisted of the following

programs:

-

MAIL.PRG-Main menu for the mailing list system.

-

MAILREPS.PRG-Display sort and search options, then print

data.

-

MAILEDIT.PRG-Locate a specific record on the database, and

change it.

-

MAILDEL.PRG-Locate a specific record, and delete it.

-

MAILDUPE.PRG-List probable duplicates in the database.

- e ;;;

....

CyaJt

1._:

332 UNDERSTANDING dBASE III PL US

B
efore ending this book, I'd like to give you some additional

.
useful tips. I suspect that you'll find them handy at some
point in your work with dBASE III PLUS.

CHOOSING COLORS

If you use a color monitor, you'll probably want to try out
some color combinations for your screen. To do so, enter the com
mand SET next to the dot prompt, and then press Return. Use -+

to move the highlighting to the Screen option. Then you can use t
and + to move the highlighting to various options on the screen,
and press Return while an option is highlighted to experiment with
colors. (The instructions at the bottom of the screen will help.)

Figure 17.1 shows some fancy color settings you might want to
try if you have a color monitor. Notice that the colors selected for

Optlna Ieya II- rll1. "IMI.

, • .,1.., rue Colo.
StandU'd lisp lAY

r :

........ : I ...

• ldnaity: ..IPt

IU .. : 10

11_: 10

 n"nc" lisp lay
..:

,...... II_.........:I,: ..11MIU .. : 10
10

10

-
Figure 17.1,' Settings for a Color Monitor

Some Useful Tips 333

the Standard Display are Green and Blue, with Bright Intensity,

and the enhanced display is Cyan on Black, also in Bright Inten
sity. The border is Magenta. This color combination may be a bit

garish, so try a few combinations of your own.
When you're done with the SET parameters, press Esc to

return to the dot prompt. Of course, to return to the menu, enter
the ASSIST command at the dot prompt.

USING ABBREVIATIONS

To speed up typing, dBASE allows you to abbreviate commands

to four letters. Therefore, you can type MODI COMM rather than

Command Abbreviation

REPORT FORM BYNAMES

DELETE RECORD 6

REPLACE All lNAME WITH 'Smith'

APPEND

SET DEFAULT TO B

MODIFY COMMAND LABELS

MODIFY STRUCTURE

DISPLAY STRUCTURE

DISPLAY MEMOR Y

REPO F ORM B YNAMES

DELE RECO 6

REPl All lNAME WITH 'Smith'

APPE

SET DEFA TO B

MODI COMM LABELS

MODI STRU

DISP STRU

DISP MEMO

-

Table 17.1: Command Abbreviations

MODIFY COMMAND to get the same result. Any command can
be abbreviated. Table 17.1 shows some common commands and their
abbreviations.

334 UNDERSTANDING dBASE III PLUS

MULTIPLE-PAGE CUSTOM SCREENS

If a database contains many fields and you want to use a cus-
tom form, you will probably have to separate the form into pages.
Figure 17.2 shows a portion of a large sample database named
TAXES.DBF.

Structure for database: C:taxes.dbf

Field
1
2
3

4
5
6
7

8
9

10
11
12
1.3
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

-

Field Name
CLIENT_NO
LNAME
FNAME
MI
A DDRESS
CITY
STATE
ZIP
PHONE
SSN
SPOUSESSN
OCCUPATION
SPOUSEOCC
ELECTION

SPOUSEELEC
SINGLE
MA RJOINT
MA RSEPA RAT
SPOUSENAME
HEA D
CHILDNAME
WIDOW
SPDEATHYR
SELF
OVER65
BLIND

SPOUSE
SPOVER65
SPBLIND
BOX6AB
BOX6C

Type
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Character
Numeric
Character
Character
Character
Character
Character
Character
Numeric
Numeric

Width Dec
4

15
15

1

20
20

2

10

8

12

12

20

20

1

1

1
20

1
20

1
2

1
1
2
2

Figure 17.2: Portion of Sample TAXES.DBF Database

Some Useful T£ps 335

Obviously, even the fields shown will probably not fit on one
screen. To handle this situation, you can use the Create and Screen
options from the menu or the CREATE SCREEN command from
the dot prompt to create a custom screen. For this example, name

it TAXES. Using the arrow keys, you can design the first page of
the form as shown in Figure 17.3.

-

Figure 17.3: First Page of Custom TAXES Screen

When the first screen is defined, you can press PgDn to move

to the next page. Now it becomes tricky, because you can't use
your eye to find where the next page begins. You need to use a
combination of the "N key (to insert blank lines) and "Y key (to
delete blank lines) to place the cursor to the top of the screen on
page 2. When the cursor is at the top of page 2, the Status Bar
displays

Pg 02 Row 01 Col 01

hit III" ••••

, •• HIN _ 11!1111
......

If' � } .l f > v.J ,' � III r1l I

336 UNDERSTANDING dBASE III PLUS

At the top of page 2, design the next page of the form. Figure
17.4 shows a second page for the TAXES form. The cursor has

been repositioned to the upper-left comer of the screen. The Status

Bar shows the starting position of the text on the screen.

"tiGU

POI'll 1848 Page Z

Client:)OOO(Last M_.:>OOOOOOOOOOOOOO Fi .. st M_: >OOOOOOOOOOOOOO

Fili .. StatliS (Check on. hox only):

I Shgl.

I "... pied Fili .. Joint letliPn

I Ha i .. rUbag Sepuat. Spouse "_: •••••••

I H.ad 0' Hou••hold Child Nae: •••••••

I ""ali"hl' 'U_(...) SpOilS. Jeath Y.a .. :11

We text.
f1 !' J I

.. .. 'I CU'8OI" IIru FII ,. _H.

Sc.een '1.141 definition hlackhoa.d

-

Figure 17.4: Second Page of TAXES Screen

Notice that the client number, last name, and first name are

repeated on the second page of the form. These fields are for ref

erence and need not be re-entered by the operator. To place these

fields on the second page and make them uneditable, first type the

field label, and then place the cursor to where you want the field
highlighting to start, like this:

Client:

Press FlO to call up the Assistant menu, and select Content
under the Modify menu. dBASE will show you a list of existing

fields. Select the field that you want to place.

Some Useful Tips 337

To make sure that the field is for display only, move the high
light to the Action option and press Return to change it from Edit/
GET to Display/SAY. Press FlO to return to the blackboard and
continue designing the form. Field highlightings for Display/SAY

fields are not displayed in reverse video.
You can create up to 32 pages for a single custom form using

this process. As usual, save your work by highlighting the Exit
option and selecting Save.

U sing a Multiple-Page Screen

Once you've saved your custom screen, you can treat it as you

would any custom screen. The only difference in control-key com
mands is that PgUp and PgDn will now scroll from page to page
rather than from record to record when entering or editing data.

Fixing a Problem with Boxes

You may encounter a slight problem with boxes on multiple

page forms-all of the boxes appear together on the last page of
the form. If this problem occurs when you create multiple-page
screens, here is a remedy.

From the dot prompt, enter MODI F Y COMMAND with the
name of the format file (the file name you assigned to the screen,
followed by the extension .FMT, as in TAXES.FMT). When you

see the format file on the screen (which consists of @, SAY, and
GET commands), press PgDn until you get to the bottom of the

form, which will show @ and SAY commands with the DOUBLE
option:

@ 5,12 GET TAXES->SPOVERG5

@ 6,10 SAY "SPBLlND"

@6,12 GET TAXES->SPBLIND

@1,0 TO 4, 70 DOUBLE

@ 2,0 TO 6, 70 DOUBLE

T hese @ SAY ... DOUBLE commands draw the double-line
boxes on the forms. You need to put these on each page rather

338 UNDERSTANDING dBASE III PLUS

than clumped together at the end of the format file. The READ
command embedded throughout the format file marks the end of
one page and the beginning of the next.

Simply jot down the @ SAY command for each page (they
appear in proper order in the format file) on a piece of paper.
Then, type them into their appropriate page positions. For
example, these lines show the @ 1,0 T O 4,70 DOUBLE box
retyped at the top of page 1 in. the form:

@ 1,0 TO 4, 70 DOUBLE
@ 2,2 SAY "Form 1040 Page 1"
@ 3,18 SAY "Individual Income Tax: Short Form"
@ 6,0 SAY "Client:"

The second @ SAY ...DOUBLE command should appear at
the top of page 2, below the READ command which marks the
bottom of page 1:

READ
@ 2,0 TO 6, 70 DOUBLE

@ 3,1 SAY "Form 1 040 Page 2"

@ 5,1 SAY "Client:"

@ 3,9 SAY TAXES- >CLlENT _NO

@ 5,15 SAY "Last N ame:"

@ 5,25 SAY TAXES- >LNAME

If you use an external word processor, such as WordStar in the
non-document mode, you can make these' changes to the format

'
file using block commands . However, if you use MODIFY COM

MAND, you'll have to type the @ SAY ...DOUBLE command
at the new position and erase it from its original position. You
may have to experiment for a little while to get all the pages
exactly how you want them.

MEMO FIELDS

In some cases you might want to store long passages of text as
data. For example, suppose that you want to store references to
journal articles on a database, including author, title, publication,
date, pages, key words, and an abstract. To make room for an

�
If you copy a
database that con

tains a Memo field to
another disk or direc
tory, you must remem
ber to copy both the
.DBF and .DBT files
(for example, both
LIBRARY.DBF and
LIBRAR Y.DBT in this
case.)

Some Useful Tips 339

abstract of any length, you could make the ABSTRACT field the

Memo data type, as shown in this structure:

Structure for database: L1BRARY.DBF
Number of data records: 2
Date of last update: 10/19/84
Field Field Name Type Width Dec
1 AUTHOR Character 20
2 TITLE Character 20
3 PUB Character 20
4 DATE Date 8
5 PAGES Character 10
6 A BSTRACT Memo 10
7 KEYWORDS Character 80

Even though dBASE automatically assigns a width of ten charac
ters to this field, the field can be up to 5,000 characters long .

When you use the APPEND command to add data to the refer
ence database, or EDIT to modify data, the screen displays this

data-entry form:

AUTHOR
TITLE
PUB
DATE
PAGES
A BSTRACT
KEYWORDS

1 1

:memo:

To put data into the ABSTRACT field, place the cursor in the
field and press APgDn. The screen will clear and you'll automati
cally be in the dBASE word processor. From there you can type
your abstract, and use the A and the MODIF Y COMMAND
arrow keys to compose and edit. When you are done typing or
editing the abstract, type AW or AEnd to return to the APPEND
or EDIT screen .

Data typed into MEMO fields are stored in an auxiliary data
base with the extension .DBT. For example, if you name the refer
ence file LIBRARY, then the abstracts will be stored on a
database called LIBRARY.DBT.

When you use the LIST command to view the records, the

340 UNDERSTANDING dBASE III PLUS

word "Memo" will be displayed on the listing:

AU THOR TITLE PUB
D ATE PAGES ABSTR ACT KEYWORDS

1 Adams, A.A. M68000 Programming Microsystems.
04/01/85 111-129 Memo 68000, Programming

2 Stark, Robin D. Software Design Jour. of Software Design
03/01/85 19-27 Memo Programming, Design,

Development

However, if you specify the field names

LIST OFF AU THOR,TITLE,PUB,DATE,PAGES,ABSTRACT

then the contents of the ABSTRACT field will be included in the
listing:

Adams, A.A. 68000 Programming Mlcrosystems.
04/01/85 111-129 An in-depth description of programming the 32-bit
M68000 processor at the assembly language level. Includes routines for
custom I/O as well as general purpose applications.

Stark, Robin D. Software Design Jour. of Software Design
03/01/85 19-27 Program design and development considerations
when working In a high-level database management language. Discusses
database and software design as well as modular and structured
programming.

The SET MEMOWIDTH option allows you to control the width
of a MEMO field during output. For example , the command

SET MEMOWIDTH TO 40

sets a width of forty characters for MEMO field displays. (The
default value is fifty.) After setting the memo width to forty, the
command

LIST OFF TITLE, ABSTRACT

displays the data in the following format. (Note: The OFF option
hides record numbers in LIST displays.)

04/01/85 Pages: 111-129

Some Useful Tips 341

Title Abstract
68000 Programming An in-depth description of programming the 32-bit

M68000 processor at the assembly language level.
Includes routines for custom I/O as well as general pur
pose applications.

Through command files you can gain even more control over
MEMO field displays. For example, suppose that you want each
record in LIBRARY to look like this sample record when it is
printed:

Record no.
Author
Title
Publication:

Date

1

Adams, A.A.
M68000 Programming
Microsystems.

Keywords : M68000, Programming
An In-depth description of programming the 32-blt M68000 processor at
the assembly language level. Includes routines for custom I/O as well as
general purpose applications.

The command file in Program 17.1 performs this printing task for
all of the records in LIBRARY. Note the program's use of a DO
WHILE . NOT. EOFO loop to display each record in the data
base. This program also includes page breaks for the printer.

One slight disadvantage to MEMO fields is that you cannot
perform searching functions on them. For example, the command

LIST FOR "DeSign" $ABSTRACT

will generate an error message, because you are attempting to list
records with the word Design embedded in the Memo field. How
ever, this is usually not a problem . In the sample LIBRARY refer
ence database, you included a KEYWORD field which can be
used to store key words. Hence, to view all the references on the
subject of design, just type this command

LIST FOR "Design" $KEYWORDS

Another limitation to the MEMO field is that it cannot be used

342 UNDERSTANDING dBASE III PLUS

* * * * * * * * * * * * Print library data.
USE L IBRARY
GO TOP
SET TALK OFF

SET PRINT ON

* * * * * * * * * * * * Start line feed counter (LF) at zero .

LF = 0

DO WHILE .NOT. EOF()

? "Author : ", AUTHOR
? "Title : " ,TITLE
? "Publication : ",PUB

? "Date : ",DATE," Pages: ",PAGES

? "Keywords : ",KE YWORDS
?
? ABSTRACT

?

?

LF = LF + 9

* * * * * * * * * * * * If 50 or more lines printed, start on

* * * * * * * * * * * * new page and reset the line counter.

IF LF > = 50

EJECT
LF = 0

ENDIF (LF > = 50)

SK IP

ENDDO (while not eot)

SET PRINT OFF

-

Program 17.1,' Program to Specify Display of LIBRARY Records

for sorting or indexing . For example, you cannot ask dBASE to

INDEX ON ABSTRACT TO ABS

However, it's pretty unlikely that you'd want to index on a
MEMO field . In the LIBRARY example, you'd be more likely to

index on the AUTHOR field for alphabetical listings by author or
the DATE field for listings in chronological order.

COMPLEX SORTS

Combining dates, characters, and numbers in index files for
sorts-within-sorts can be tricky. Generally, whenever you create an

Some Useful Tips 343

index file with multiple fields, all non-character fields should be

converted to Characters data types. Let's look at an example of
how the dBASE STR (string) function can help.

In Chapter 8, you created a database called SALES. It contains
the following records:

Record 	# CODE TITLE QTY AMOUNT DATE
1 AAA Rakes 3 15.00 03/01/86

2 BBB Hoes 2 12.50 03/01/86

3 CCC Shovels 3 21.00 03/01/86

4 AAA Rakes 2 10.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

6 AAA Rakes 2 11.00 03/02/86

7 CCC Shovels 1 7.50 03/02/86

8 BBB Hoes 2 12.50 03/02/86

9 AAA Rakes 5 23.50 03/02/86

Suppose that you want to sort this database in order by product

code, and in order by quantity within each product grouping. You
can index on both CODE and QTY, as long as you convert the
QTY field to a string:

INDEX ON CODE + STR(QTY,3) TO TEST

Note that the comma three (,3) in the STR function means,
"Convert field to 3-wide." \Vhen you list the records, you'll see
them in order by product codes, and within each code, they are in

ascending order by the quantity sold:

Record # CODE TITLE QTY AMOUNT DATE
4 AAA Rakes 2 10.00 03/01/86

6 AAA Rakes 2 11.00 03/02/86

1 AAA Rakes 3 15.00 03/01/86

9 AAA Rakes 5 23.50 03/02/86

2 BBB Hoes 2 12.50 03/01/86

8 BBB Hoes 2 12.50 03/02/86

7 CCC Shovels 1 7.50 03/02/86

3 CCC Shovels 3 21.00 03/01/86

5 CCC Shovels 4 26.50 03/01/86

Now, suppose that you want the records in ascending code order

(A-Z) , but the quantity in descending order (largest to smallest).

344 UNDERSTANDING dBASE III PLUS

You could accomplish this by indexing on the CODE field plus the
inverse of the QTY field . That is , you would subtract the QTY
field from some large constant (such as 1000). However,
the QTY field still must be converted to a string:

INDEX ON CODE + STR(1000-QTY,4) TO TEST

A LIST command will now display the records with the product
codes in alphabetical order, and descending the quantities sold
order within codes:

Record # CODE TITLE aTY AMOUNT DATE

9 AAA Rakes 5 23.50 03/02/86

1 AAA Rakes 3 15.00 03/01/86

4 AAA Rakes 2 10.00 03/01/86

6 AAA Rakes 2 11.00 03/02/86

2 BBB Hoes 2 12.50 03/01/86
8 BBB Hoes 2 12.50 03/02/86
5 CCC Shovels 4 26.50 03/01/86
3 CCC Shovels 3 21.00 03/01/86
7 CCC Shovels 1 7.50 03/02/86

You might want to sort these records by date and quantity. For
example , suppose that you want the records to be displayed in
date order, and descending quantity order. You would need to con
vert both the date and the inverse quantity to strings:

INDEX ON DTOC(DATE) + STR(1000-QTY,4) TO TEST

If you list the database

LIST DATE,QTY,CODE,TITLE,AMOUNT

you will see the records sorted by date and quantity:

Record # DATE aTY CODE TITLE AMOUNT
5 03/01/86 4 CCC Shovels 26.50
1 03/01/86 3 AAA Rakes 15.00
3 03/01/86 3 CCC Shovels 21.00
2 03/01/86 2 BBB Hoes 12.50
4 03/01/86 2 AAA Rakes 10.00
9 03/02/86 5 AAA' Rakes 23.50
6 03/02/86 2 AAA Rakes 11.00
8 03/02/86 2 BBB Hoes 12.50
7 03/02/86 1 CCC Shovels 7.50

57

Some Useful Tips 345

Now, you may want something a little different. Suppose that
you want the records in month order, disregarding the days, and
the quantities in descending order. To do so, you'd want to index
on the month and the inverse quantity. Again, both must be con-
verted to character strings:

INDEX ON STR(MONTH(DATE),2) + STR(1 000 - QTY,4) TO TEST

T hen you would see this list:

Record # DATE QTY CODE TITLE AMOUNT
9 03/02/86 5 AAA Rakes 23.50

5 03/01/86 4 CCC Shovels 26.50

1 03/01/86 3 AAA Rakes 15.00

3 03/01/86 3 CCC Shovels 21.00

2 03/01/86 2 BBB Hoes 12.50

4 03/01/86 2 AAA Rakes 10.00

6 03/02/86 2 AAA Rakes 11.00

8 03/02/86 2 BBB Hoes 12.50

7 03/02/86 1 CCC Shovels 7.50

If you add a few records for April with the APPEND command
and then LIS T, you will see

Record # DATE QTY CODE TITLE AMOUNT
9 03/02/86 5 AAA Rakes 23.50

5 03/01/86 4 CCC Shovels 26.50

1 03/01/86 3 AAA Rakes 15.00

3 03/01/86 3 CCC Shovels 21.00

2 03/01/86 2 BBB Hoes 12.50

4 03/01/86 2 AAA Rakes 10.00

6 03/02/86 2 AAA Rakes 11.00

8 03/02/86 2 BBB Hoes 12.50

7 03/02/86 1 CCC Shovels 7.50

12 04/15/86 1000 AAA Rakes 5000.00

10 04/01/86 99 AAA Rakes 1234.56

11 04/15/86 CCC Shovels 17n.44

Notice that the quantities go from highest to lowest within each
month, but without regard to the particular day of the month.
This sort order produces a nice report summarized by month. You
could use MODIFY REPOR T to create any report format you
like, and specify MON TH(DATE) as the Group/Subtotal field.

346 UNDERSTANDING dBASE III PLUS

When you print the report, you'll see the data displayed like this:

Page No.1

11/07/86

DATE aTY TITLE AMOUNT
* * Month number: 3

03/02/86 5 Rakes 23.50

03/01/86 4 Shovels 26.50

03/01/86 3 Rakes 15.00

03/01/86 3 Shovels 21.00

03/01/86 2 Hoes 12.50

03/01/86 2 Rakes 10.00

03/02/86 2 Rakes 11.00

03/02/86 2 Hoes 12.50

03/02/86 1 Shovels 7.50
* * Subtotal * *

24 139.50

* * Month number: 4

04/15/86 1000 Rakes 5000.00

04/01/86 99 Rakes 1234.56

04/15/86 57 Shovels 1777.44

* * Subtotal * *

1156 8012.00

* * * Total * * *

1180 8151.50

The data are grouped and subtotaled by month and displayed

in descending quantity order within each month.
You can do the same operations with the AMOUNT field, but

be sure to specify two decimal places in the STR function for the

amount. For example, for ascending amount order, use

INDEX ON STR(AMOUNT,12,2) TO TEST

For descending order, use

INDEX ON STR(999999.99 - AMOUNT,8,2) TO TEST

You should be aware that the index file contains the data in the
converted format, so using the FIND and SEEK command will be
tricky. You can get around this problem by using one index file of
converted fields for displaying records in sorted order, and another
index file with unconverted data for SEEK and FIND.

http:STR(999999.99

Some Useful Tips 347

RECORD NUMBERS IN REPORTS

If you'd like to include record numbers in a report, just make
one bf the columns contain the RECNO() function:

Contents RECNO()
Heading Rec.;No.
Width 5

Decimal places o

Total this column Yes

That's all there is to it!

CUSTOM CONFIGURATIONS

The dBASE III PLUS System Disk # 1 contains a file named
CONFIG .DB , which you can modify to change the initial default
settings in dBASE III PLUS. (When installed on a hard-disk sys
tem, the CONFIG.DB. file is on the same directory as dBASE

itself.) Initially, the CONFIG .DB file contains the commands

STATUS=ON
COMMAND = A SSIST

which ensure that dBASE begins with the Status Bar ON and the
Assistant menu displayed. (If you were to remove these two com
mands , dBASE III PLUS would start with a dot prompt only, like

earlier versions of dBASE.)

You can use any word processor (with a non-document mode) or
the dBASE MODIFY COMMAND editor to change the CON
FIG.DB file to new settings. Key words that you can add to the
CONFIG.DB file to alter default settings are listed in Table 17%2.

You can also predefine SET parameters in a CONFIG .DB file.
including COLOR. (See the SET descriptions in the Commands
section of the Learning and Using dBASE III PLUS manual that
comes with dBASE for a complete technical listing of SET para
meters.)

http:CONFIG.DB
http:CONFIG.DB

348 UNDERSTANDING dBASE III PLUS

Key Word 	 Effect

COMMAND Any command listed with this option is executed the moment
dBASE III PLUS begins. Hence, the COMMAND =

ASSIST line in CONFIG.DB causes the Assistant menu to

appear the moment dBASE III PLUS is started.

BUCKET The amount of memory allocated for PICTURE and

RANGE commands. The default is 2, which stands for 2

1024 bytes.

*

GETS Specifies the number of @, SAY, GETS that may be active

at any one time. The default setting is 128.

MAXMEM Specifies the amount of memory preserved when dBASE III

PLUS executes an external program. The default is 256K
bytes.

MVA RSIZ The amount of space allocated for storing memory variables.

The default is 6,000 bytes (6K).

PROMPT The dBASE III PLUS prompt, which appears as a dot (.) by

default.

TEDIT Specifies an external word processor used in place of MOD

IF Y COMMAND.

WP Specifies an external word processor to use with Memo fields.

-

Table 17.2: Key Words Used to Change Settings in CONFIG.DB

Here is a sample CONFIG.DB file:

COLOR = GR + IB,W + IRB,BG +

DEFA ULT = C

PATH = C:\DB\FW

TEDIT = WORD

WP = WS

F9 = "DISPL AY STRUCTURE;"

F10 = "DISPLAY STATUS;"

PROMPT = Command: >

This sample CONFIG .DB file has the following effects:

1. 	 The color combination on the screen at start up will be

Yellow letters (GR +) on a Blue background (B) for the

http:CONFIG.DB

Some Useful Tips 349

standard screen, and White letters (W +) on a Magenta
background where reverse video is used. The screen border
will be Cyan (BG). The plus sign (+) indicates high
intensity. An asterisk (*) used instead indicates blinking.
Other colors and codes are: Black (N), Green (G), Blank
(X), and Red (R).

2. The default drive for storing and accessing files is Drive C.

3. 	 dBASE will follow a route when looking for files, due to the
PATH rommand. If a file cannot be found on the DB
directory, dBASE will automatically look at the FW directory.

4. 	 W hen the MODIFY COMMAND command is entered,
dBASE will access Microsoft Word rather than the usual
dBASE III PLUS editor. (This command requires more
than 256K RAM).

5. 	 U sing "'P gDn to enter or edit memo fields will access
WordStar rather than the dBASE word processor. (This
command also requires more than 256K RA M).

6. 	 Function keys F9 and FlO will automatically issue the
commands DISPLAY STRUCTU RE and DISPLAY
STATUS when pressed. The ; presses the Return key after
the command is typed.

7. Rather than the dot prompt, dBASE will display
Command:>.

8. 	 Neither the Status Bar nor A ssistant menu will appear when
dBASE is first started because the original STATUS. ON=

and COMMAND ASSIST lines have been removed =

from the CONFIG.DB file.

� If you cannot get Your CONFIG .DB file will not have any effect until dBASE is
access to the origi

started from the DOS prompt. Therefore, if you create a CONnal dBASE III PLUS
manuals in your school FIG.DB file using the MODIFY COMMAND editor, you'll have
or company, you might to QU IT dBASE, and start it again from scratch to see the effects
try SYBEX's dBASE III of the file. For more information on the CONFIG.DB file, seePLUS Programmer 's Refer

ence Guide, available at Chapter 1 of the Using dBASE III PL US manual that comes with

most bookstores. dBASE.

http:CONFIG.DB
http:CONFIG.DB

350 UNDERSTANDING dBASE III PLUS

. NETWORK CONSIDERATIONS

Networks are generally created and managed by programmers

or very sophisticated users, and therefore a complete discussion of

networking is beyond the scope of this book. As a matter of fact,
one could easily write an entire book on the subject of networking

with dBASE III PLUS. However, we will discuss some general
networking capabilities and commands for those who are consi
dering networking with dBASE III PLUS.

The Local Area Network

A Local Area Network (LAN) is a group of computers and
peripheral devices-such as hard disks, printers, and plotters

linked together by cables. Generally speaking, the machines are in
close proximity to one another, most likely in the same building.

Companies usually network computers to allow many users to

have access to the same resources. Another reason to network

computers is to save money. For example, a network might consist

of one IBM XT with 640K RAM and a 40-megabyte hard disk.
Attached to this computer are a letter-quality printer, a plotter, and

five IBM PCs with floppy disks. Since the system is networked,
each of the less expensive PCs can access the large hard disk, the

printer, and the plotter.

Network Administration

In a network, one computer (usually one with at least 640K

RAM and a hard disk) is assigned the task of being the file server.
The computers that are linked to the file server are called work
staJions. The dBASE III PLUS Administrator, which comes with
the dBASE III PLUS package, needs to be installed on the file
server computer. Each work station must have its own copy of the
dBASE ACCESS programs. Installation instructions are included
in the Getting Started manual that comes with the dBASE III PLUS
package.

Some Useful Tl�S 351

The commands below are available in a networked system:

LIST STATUS: Shows the current activity in the net
work, including open files and lock
settings (described later).

DISPL AY USERS: Displays the work station names of

users currently using dBASE in the
network.

SET PRINT ER : Selects a printer in the network to

receive output.

Network Protection

To provide security on a network system, the dBASE III PLUS

Network A dministrator offers the PROTECT program. There are
three levels of protection available with this program, as summa
rized in Table 17.3.

Security L evel Effect

Log-In In a log-in security system, each user must enter a user

name and a password to gain access to dBASE III

PLUS. Keeps unauthorized users completely out of

dBASE III PLUS.

Access Control Different users can be assigned different degrees of access

by the network administrator. Users can have any combi

nation of these access privikges to records: Extend (add new

data only), Delete (delete records), Read (read records),

Change (edit records) . Users may also have any one of

these access privileges to a specified field: Full (read and

write data), RIO (read only), None (no data access).

Data Encryption Encrypted data are unintelligible until decrypted by a
successful log-in through the dBASE Administrator.

Encryption keeps out even those users who know how to

display file contents with text editors, debuggers, and

other external programs .

-

Tabk 17.3: Security Levels Available with PROTECT

352 UNDERSTANDING dBASE III PLUS

Network Programming

Local Area Networks present new challenges to dBASE pro
grammers. For example, suppose that two users access and change
the same item of data at precisely the same time? W hich change
should be saved on the disk? It all depends on how records and
files are locked and unlocked.

Several dBASE commands automatically lock an entire file while
the command is being carried out. These commands include:

APPEND COUN T RECALL ALL T OTAL

AVE RAGE DELE T E ALL REPLACE ALL UPDATE

BROWSE INDEX SOR T

COpy JOIN S UM

As soon as the task is completed, dBASE automatically unlocks
the file.

Several dBASE commands and functions allow a programmer to
lock and unlock files and records manually. The SET EXCLU
SIVE command determines whether a file can be shared by several
users simultaneously. The RLOCK() (record lock) and FLOCK()
(file lock) functions can check the lock status of a file or record
and change the status of the lock. The FLOCK() and RLOCK()
functions give the programmer control in warding off collisions

when two or more users attempt to access the same data at the
same moment.

The ON ERROR and ERROR() commands detect collisions
and other errors, and trap them. Routines can be set up in the
program to RETRY accessing a file to circumvent the error.

Network Requirements

The technical requirements for a network are a computer with
at least 640K RAM as the file server, and at least 384K RAM for
work station computers. For each three dBASE III PLUS users,
y ou need to purchase the dBASE III PLUS LAN Pack. The LAN
Pack requires PC-DOS version 3.l/PC Network Program or a
compatible sy stem such as Novell's Advanced NetWare version
1.01 (or higher).

Some Useful Tips 353

RUNTIME +

For the more advanced dBASE programmers who feel that their
custom applications are ready for the world at large, Ashton-Tate
offers RunTime + . RunTime+ encrypts command files so that
unauthorized users cannot tamper with them. Furthermore, Run
Time + allows programmers to sell copies of their programs to
customers who do not own dBASE III PLUS. Instead, the cus
tomer need only buy from Ashton-Tate a special program named
dBRUN, which sells for a lower price than dBASE III PLUS.
Customers who already own dBASE III PLUS need only buy
your encrypted program.

The RunTime+ package is fairly easy to use and is described
in the Programming with dBASE III PL US manual that comes with
dBASE III PLUS. You should be aware, however, that there are
less cosdy and perhaps more effective ways to encrypt programs
and make them available to non-dBASE users. A dBASE III
PLUS compiler will encrypt your program and make it executable
direcdy from the DOS prompt-which means complete indepen
dence from dBASE III PLUS. This, in turn, means that your
potential customers need not buy either dBASE III PLUS or
dBRUN.

At the time this book was written, the major dBASE III compil
ers had not announced dBASE III PLUS versions, but they prob
ably will soon. The two best known compilers are Nantucket's
Clipper and WordTech by WordTech Systems, Inc.

WHERE TO GO FROM HERE

Here are some suggestions for your continued learning with
dBASE III PLUS:

-

Practice. The only way to become fluent in a new language such
as dBASE III PLUS is to use it. Create a database and work with
it. If you're worried about experimenting with iMportant data, just

354 UNDERSTANDING dBASE III PLUS

make a backup of the database first (COpy TO TEMP). Then, if

you make a mess of the original data file, just ZAP the records
from it and APPEND FROM TEMP.

-

Refer to the manuals that came with your original dBASE III
PLUS package for additional technical information about individ

ual commands and functions. This book was designed to teach you
the fundamental concepts of database management and dBASE
programming, and is not intended to replace those manuals. You

may wish to refer to a more advanced book such as. my dBASE III

PLUS Programmer's Reference Guide, also published by SY BEX and

available at most bookstores.

-

Pace yourself. Don't try to work out problems that are over your
head. You'll just end up frustrated. Learning to master the marvel

ous machine can be very enjoyable if you pace yourself. Work at a
comfortable level and experiment to learn more. If you make it

fun, you'll learn more in the long run.

358 UNDERSTANDING dBASE III PLUS

he dBASE III PLUS COpy and APPEND FROM com

T mands allow you to interact with data from word pro
cessors, VisiCalc, Multiplan, and Lotus 1-2-3. The

IMPORT and EXPORT commands let you interact with PFS

: FILE data. Many programs, such as Framework, Symphony, Par
adox, and R: base 5000 have their own options for interfacing with

dBASE data.

INTERFACING WITH PFS:FILE

To import a PFS file into dBASE III PLUS, first make sure the

PFS file is readily available on the disk in Drive B, or on your

hard disk. Then, enter the command

IMPORT FROM <filename> TYPE PFS �

substituting the name of the PFS file where < filename> is shown.

Also, be··sure to use the correct drive. For example, to import a

PFS file named ACCOUNTS, stored on Drive B, you would

enter the command:

IMPORT FROM B:ACCOUNTS TYPE PFS �

dBASE III PLUS will separate the PFS file into several man

ageable files. Each will have the same first name as the PFS file,

but a dBASE III PLUS extension. The three files will be a data- �
base file (.DBF), a format file for custom screens (.FMT) and a

view file for combining the screen and data files (.VUE).
To export data to a PFS file, use the command

EXPORT TO <filename> TYPE PFS �

where < filename> is the name of the dBASE III PLUS file that

you want to export. If the file is on Drive B, use the B: drive
specification:

EXPORT TO B:EXPFILE TYPE PFS �

You must open the database (.DBF) file with the USE com
mand before entering the EXPORT command. Also, if the

Interfacing with Other Software Systems 359

database to be exported has a custom screen associated with it

(.FM T file), you should activate that screen before exporting using

the SE T FORMAT TO command from the dot prompt.
Note that options to Import and Export PFS files are also avail

able from the Tools option under the Assistant menu.

INTERFACING WITH SPREADSHEETS

You can interface dBASE III PLUS data with a variety of
spreadsheet packages. To copy a database file to VisiCalc format,

USE the database and enter the command

COPY TO <filename> TYPE DIF

where <filename> is the name of the new file. dBASE will add

the extension .DIF to the exported file.

To export data to Multiplan spreadsheets, use the SY LK option
with the copy command:

COpy TO <filename> TYPE SYLK

Again, the file being exported must be in USE before issuing the
COPY command. T he copied file will not have an extension.

To copy data to Lotus 1-2-3 format, use the .WKS option with

the COpy command:

COpy TO <filename> TYPE WKS

T he new file will have the extension . WKS.
For stubborn transfers that are difficult to accomplish, you can

experiment with the SDF and delimited options. For example, the

command

COPY TO <filename> TYPE SDF

makes a file in System Data Fomuzt. T his is often called an ASCII text

file because it contains no special codes. Most spreadsheets can
import a file stored in system data format if an importing option is
available. T he file-name extension . TXT will be added to the

< filename> automatically, unless you supply another.

360 UNDERSTANDING dBASE III PLUS

T he DELIMITED option for copying files might also work for
exporting to spreadsheets. We'll discuss the DELIMITED option
under interfacing with word processors in this appendix.

To import spreadsheet data, you need to first CREATE a data
base that has the structure you want for your .DBF file. (Of
course, you can use an existing database if you wish.) You then
need to USE the database, and use the APPEND FROM, rather
than COpy TO option, to import the foreign data.

To import from a text (SDF) file, you would use this syntax:

APPEND FROM <filename> TYPE SDF

You must fully identify the file being imported. For example, to

import MAILDATA. TXT from Drive B, you would enter this

command:

APPEND FROM B:MA ILDATA.TXT SDF

To import data from a VisiCalc DIF file, you would use the

command

APPEND FROM <filename>.DIF TYPE DIF

(assuming that the file was stored with DIF as the extension).
To import a Multiplan spreadsheet, you would use this command:

APPEND FROM <filename>. TYPE SYLK

If the Multiplan file has no extension, use a period only in the
APPEND FROM file name. For example, to import a Multiplan
spreadsheet on Drive B named ACCOUNTS, enter this command:

APPEND FROM B:ACCOUNTS. TYPE SYLK

To import Lotus 1-2-3 worksheets, use the .WKS option with

the APPEND FROM command:

APPEND FROM ACCOUNTS.WKS TYPE WKS

Again, be sure to use the B: drive designator in a file name if you
are using a floppy-disk system. Also, be sure to pay attention to
the extension of the file you are importing, and to use that exten
sion in the filename of the APPEND FROM command.

Interfacing with Other Software Systems 361

INTERFACING WITH WORD

PROCESSORS

You can send dBASE reports to word processing systems for
further editing or inclusion in other documents. To do so, design

your report using the MODIFY REPORT command in dBASE.
Then print the report with the TO <filename> option. You can
then load up your word processor, and read the report into the

word processing system. Here is a typical scenario using the Word
Star program as the word processor:

A> dBASE
USE MAIL
MODIFY REPORT BYNAME
(Define report format)
REPORT FORM BYNAME TO TRANSFER
QUiT

The TO TRANSFER option with the REPORT FORM commands
sends a copy of the report to a disk file named TRANSFER. TXT.
W hen you QUIT dBASE, the A> reappeared on the screen. Now

you can load up WordStar. Let's say you want to pull the dBASE
report into a document called MANUAL.TXT. Type

WS MANUAL.TXT

W hen the document appears on the screen position the cursor to
the place that you want the dBASE report to appear. Then press

"KR. The WordStar program asks, "NAME OF FILE TO
READ?" Reply with

TRANSFER.TXT

That's all there is to it. The report which appeared on the screen
when you asked dBASE to REPORT FORM BY NAME is now
in a WordStar document, and is also in a disk file called TRANS
FER.TXT.

Now, you may want to send your dBASE file to WordStar's
MailMerge option for printing form letters. In this case, you need
to create a database in MailMerge format. Let's say that you want

•
..

362 UNDERSTANDING dBASE III PLUS

to send your MAIL database to a MailMerge file from which to
print form letters. After loading up dBASE, type

USE M AIL

Then you need to COpy it to another data file in MailMerge
readable form. The command is

COPY TO MM DELIMITED

This creates a data file called MM. TXT which the MailMerge file
can access to create form letters. Then you would have to create
the form letter in WordStar. Recall that your MAIL database con
tains the fields LNAME, FNAME, ADDRESS, CITY, STATE,
ZIP, and PHONE. You would have to QUIT dBASE and load up
the WordStar program. Then you could create a document called
FORM. LET. Figure A.l contains a sample form letter which can
read the data file you've just created.

Notice that PHONE was included in the .RV command, even
though it is not used in the form letter anywheFe. This is essential

.OP
.D F MM.TXT
.RV LNAME,FNAME,ADDRESS,CITY,STATE,ZIp,PHONE
&FNAME& &LNAME&
&ADDRESS&
&CITY&, &STATE& &ZIP &

D ear &FNAME&,

H ow do you like getting these form letters? You probably wouldn't
know the difference if it were not for my dot matrix printer.

Ta ta for now.

Z eppo
.PA

-

Figure A.l: Sample MailMerge Form Letter

The CONVERT
program that

comes with Release 5 of
WordPerfect can convert
a mail merge file like
MM. TXT in this
example to a secondary .
merge file for printing
WordPerfect form
letters.

Interfacing with Other Software Systems 363

if the PHONE variable exists. The .RV command is expecting a
certain number of fields, so it must have the same number of
fields· as the data file, regardless of whether or not you plan on
using that field in your form letter. Even if you only wanted the

first name for your form letter, you would still need to read in all
of the fields. If you forget this important tidbit, your form letter
might come out in a most unpleasant format.

After you create and save the form letter, you merely need to
merge print it using the appropriate Mai1Merge command. That is,
select WordStar option M from the WordStar Main Menu, and when
it asks, "NAME OF FILE TO MERGE PRINT?", tell it
FORM.LET A letter for each individual in the MAIL database

will then be printed. Here is how the first one should come out:

Andy Appleby

123 A St.

San Diego, CA 92123

Dear Andy,

How do you like getting these form letters? You probably

wouldn't know the difference If It were not for my dot matrix

printer.

Ta ta for now,
Zeppo

You could use your LABELS program to print mailing labels
for all these individuals, or you could create a WordStar
MailMerge document to print names and addresses direcdy on
envelopes, one envelope at a time. Figure A.2 is a MailMerge file
(named ENVEL.TXT) to print envelopes from your MM.TXT
data file:

.MT 0

.OP

.O F MM.TXT

.RV LNAME,FNAME,AOORESS,CITY,STATE,ZIp,PHONE
&FNAME& &LNAME&
&AOORESS&
&CITY&, &STAT E& &ZIP &

.PA

-

Figure A.2: MailMerge File to Print Envelopes

364 UNDERSTANDING dBASE III PLUS

After you create and save ENVEL. TXT, you can merge print it
in the usual WordStar fashion. However, when the merge print
option asks "PAUSE FOR PAPER CHANGE BE TWEEN
PAGES (YIN)," be sure to answer Y. Then, you can insert each
individual envelope, lining it up so that the printer head is right
where you want the printing to start. The MailMerge option will
print one envelope, eject it from the printer, and wait for you to
put in the next envelope.

If you want your form letter to go to certain individuals only,
you can specify this in your dBASE COpy command. Let's
assume you want your form letters to go to San Diego residents
only. With the dBASE dot prompt showing, and the MAIL data
base in use, type this command:

COPY TO MM FOR CITY 'San Diego' DELIMITED & =

Only San Diego residents would appear on the MailMerge file,
hence only individuals in San Diego would have form letters
printed.

If you already have a MailMerge file and want to use some
dBASE commands to manage it, you can send a copy of it to
dBASE. To do so, you need to load up dBASE and CREATE an
empty file with the CREATE command. Structure it so that it has
the same fields as your MailMerge file. When dBASE asks,
"INP U T DATA NOW?", say N. Then USE the newly created
database, and

APPEND FRO M MM.DAT DELIMITED &

You can now sort your MailMerge file or do whatever you please
with it in dBASE III. (This example assumed that the name of
your existing MailMerge file was MM.DAT.) To get the dBASE
database back into MailMerge readable form, just USE the
dBASE file and

COPY TO MM.DAT DELIMITED

368 UNDERSTANDING dBASE III PLUS

he dBASE III PLUS Applications Generator is a program

T that writes programs for you. For the beginning dBASE
user, the Applications Generator can facilitate learning by

providing a structured environment in which to create customized
application systems. For the more experienced dBASE user, the
Applications Generator can save some programming time. In this
appendix, we'll use the Applications Generator by building a sys
tem to manage a check register.

COPYING THE APPLIC ATIONS

GENERATOR DISK

The Applications Generator disk that comes with the dBASE III
PLUS package contains thirteen program files:

GETDBFNA.PRG APPSGEN.PRG GETSCNNA.PRG SETCOLOR.PRG
QUESTION.PRG GETAUTHR.PRG COLOPTS.PRG GETHE ADG.PRG

AUTO APPS.PRG GETAPNAM.PRG GETINDNA.PRG ADVAPPS.PRG
GENCODE.PRG

:f you are using a computer with two floppy disks, you should
make a backup copy of these files. To do so, put a blank, format
ted disk in Drive B and the Applications Generator disk in Drive
A. Then, at the,DOS A> prompt, type this command:

COpy * .* B:

If you are using a hard-disk system, log onto your dBASE
directory, and put the Applications Generator in Drive A. From
the DOS C> prompt, enter this command:

COpy A:*.*

STARTING THE APPLICATIONS

GENERATOR

If you are using a computer with two floppy-disk drives, you
need to put your copy of the Applications Generator in Drive B,

The Applicat£ons Generator 369

and run dBASE as usual using System Disk #1 and #2 in Drive
A. Press Esc to leave the Assistant menu. Then from the dot
prompt enter this command:

SET DEFAULT TO B

Then enter the command

DO APPSGEN

On a hard-disk system, just log onto the dBASE directory and
and enter this command:

DO APPSGEN

You'll see these Applications Generator menu options:

1. CREATE DATABASE

2. CREATE SCREEN FORM

3. CREATE REPOR T FORM

4. CREATE LABEL FORM

5. SE T APPLICATION COLOR

6. AU TOMATIC APPLICATIONS GENERATOR

7. RUN APPLICATION

8. ADVANCED APPLICATIONS GENERATOR

9. MODIFY APPLICATION CODE

o. EXI T

You select an option from the menu by typing its number and
pressing the Return key. Options 1 through 5 simply access
dBASE capabilities that you're already familiar with. When you
select option 1, the screen will ask that you:

Enter the name of the new file:

For this example, type the name CHECKS and structure the data
base as in Figure B .1. (Note: If you already have a database that
you want to use with the Applications Generator, you can skip this
option. The same holds true for options 2, 3, and 4.)

Save the database structure, and answer No to the "Input data
records now?" prompt. You'll be returned to the Applications
Generator main menu.

If you want to 'use a custom screen in your application, select

370 UNDERSTANDING dBASE III PLUS

-

Figure B.l,' Database Structure for a Check Register

option 2. The screen will display this prompt:

En er screen file name:

Enter a valid file name for the screen, such as CHECKS, and

press Return. You'll be at the Screen Painter menu, where you
can select the Select a doJabase option to define CHECKS as the
database. Then select Loadfields. Figure B.2 shows a custom screen

developed for the check register application.

Highlight the Exit option and select &we after creating the custom

screen. You'll be returned to the Applications Generator menu.
Option 3 allows you to design a report for the system, using the

dBASE III PLUS report generator. When you select 3, you'll be
asked to provide a name for the report format. Again, use a valid
file name, such as CHECKS. You can fill out the report specifica

tion to your liking. This sample report specification shows the

»»»»

The Applications Generator 371

-

Figure B.2: Custom Screen for the Check· Register

REASON and TO_WHOM fields stacked in a single column:

Contents
H eading
Width
Decimal places
Total this column
Report Format

REASON + TO_WHOM
Reason and;To Whom Written
30

Reason and Amount
To Whom Written

Date

xx)()QoooocnXX)()QOODOCXXXXX ####""." mm/dd/yy

Save the report format, and then you'll be returned to the Appli
cations Generator menu.

Selecting option 4 allows you to create a mailing labels format
using the Modify Labels routine. You won't need labels in this appli
cation, so skip this option.

co. 1MIIIJi.

COLOR

372 UNDERSTANDING dBASE III PLUS

COLORING THE APPLICATION

Option 5 from the Applications Generator menu lets you select

colors for the application. Selecting option 5 displays the menu

shown in Figure B. 3.

Illte. LOB '01'

.

LITfIRS in S'rMIAIJ TEXT:

I
Elite" COLot , .. S'rMIAIJ BACICIOUItD:
ht ... -ceLOI _hi' 'D. LmBRS In IIIIWfCD TI)('t:
1RU COJ;OI '01' BIIIWICD B+CIO_:
In"" 1' '0. BOlIO: I I

-
Figure B.3: Color Options Menu

You can move the cursor on the screen and select options to

experiment with color combinations. Press A End when you have
defined the colors, and type S to save the colors.

AUTOMATIC APPLICATION

GENERATOR

Once you've created the database, optional screen, report, and
label files, you can select option 6 from the Applications Generator

The Applications Generator 373-

menu . First the screen will ask that you

Enter APPLICATION AUTHOR :

Type your first and last names, and press Return. Next, the
screen will ask that you

Enter APPLICATION filename :

Again, a valid file name is required, so enter a title such as REG
ISTER . Next, the screen will ask that you

Enter DATABASE filename :

Type the database name (CHECKS) and press Return. Next the
screen will ask that you

Enter INDEX filename:

Again, you can enter the file name CHECKS to create an index
file named CHECKS.NDX. The screen will ask that you

Enter Index key field :

In this example, you can enter CHECKNO if you want to orga
nize the register by check number, or DATE if you prefer to keep

it in chronological order. The Applications Generator will create
the index file and ask that you

Enter SCREEN format name :

You created a screen called CHECKS.FMT earlier, so once
again type the name CHECKS and press Return. The screen will
ask that you

Enter REPORT form name :

Once again, enter CHECKS to specify the CHECKS.FRM for
mat you created earlier. The screen will also ask that you

Enter L ABEL form name :

Since you did not specify a label format, just press Return.

374 UNDERSTANDING dBASE III PLUS

Finally, the screen will ask that you

Enter APPLICATION MENU HEADING :

For this example , type

CHECKBOOK REGISTER

After a brief delay, the Applications Generator will build and dis
play the command file generated from your input , as shown in
Program B 1. .

* Program : CHECK.PRG
* A uthor : ZEPPO MONSTER

* Date : 01/13/86

* Notice : Copyright (c) 1986, ZEPPO MONSTER, A ll Rights Reserved

* Notes :

* Reserved ... : selectnum
*

SET TA LK OFF
SET BELL OFF
SET STATUS ON
SET ESCA PE OFF
SET CONFIRM ON
USE CHECKS INDEX CHECKS

DO WHILE .T.

* ---Display menu options, centered on the screen.

* ---Draw menu border and print heading.

CLEA R

@ 2, 0 TO 15,79 DOUBLE

@ 3,22 SAY [C H E C K B O O K R E G 1S T E R]

@ 4,1 TO 4,78 DOUBLE

* ---Display detail lines.

@ 7,30 SAY [1. A DD INFORMATION]

@ 8,30 SAY [2. CHA NGE INFORMATION]

@ 9,30 SAY [3. REMOVE INFORMATION]

@ 10,30 SAY [4. REVIEW INFORMATION]

@ 11,30 SAY [5. PRINT REPORT]

@ 13,30 SAY '0. EXIT'

STORE 0 TO selectnum

-
Program B.l,' Program Produced with the Applications Generator

The Applications Generator 375

@ 15,33 SAY " select "

@ 15,42 GET selectnum P ICTURE "9" RA NGE 0,5

READ

DO CASE
CASE selectnum = 0

SET BELL ON
SET TALK ON

CLEA R ALL
RETURN

CASE selectnum = 1
* 	 DO ADD INFORMATION

SET FORMAT TO CHECKS

APP END

SET FORMAT TO
SET CONFIRM OFF

STORE I I TO wait_subst

@ 23,0 SAY 'Press any key to continue ... I GET wait_subst
READ

SET CONFIRM ON

CASE selectnum = 2
* 	 DO CHANGE INFORMATION

SET FORMAT TO CHECKS

EDIT

SET FORMAT TO
SET CONFIRM OFF

STORE ' I TO wait_subst

@ 23,0 SAY 'Press any key to continue ... ' GET wait_subst
READ
SET CONFIRM ON

CASE selectnum = 3
* 	 DO REMOVE INFORMATION

SET TALK ON

CLEA R

@ 2,0 SAY' ,

?'PACK ING DATABASE TO REMOVE RECORDS MARK ED FOR DELETION'

PA CK

SET TALK OFF

SET CONFIRM OFF

STORE' , TO wait_subst

@ 23,0 SAY 'Press any key to continue ... I GET wait_subst
READ
-
Program B.l,' Program Produced with the Applications Generator (continued)

376 UNDERSTANDING dBASE III PLUS

SET CONFIRM ON

CASE selectnum = 4

* 	 DO REVIEW INFORMATION

BROWSE

SET CONFIRM OFF

STORE ' , TO wait_subst

@ 23,0 SAY 'Press any key to continue .. . ' GET wait_subst
READ
SET CONFIRM ON

CASE selectnum = 5
* 	 DO PRINT REPORT

REPORT FORM CHECK S TO PRINT

SET CONFIRM OFF

STORE ' , TO wait_subst
@ 23,0 SAY 'Press any key to continue .. . ' GET walt_subst
READ
SET CONFIRM ON

ENDCASE

ENDDO T
RETURN
* 	 EOF: CHECK.PRG

-

Program B.l: Program Produced with the Applications Generator (continued)

RUNNING THE APPLICATION

To run the newly created application, select option 7, Run Appli
cation, from the Applications Generator menu. You'll see these

menu options for your custom system:

1. ADD INFORMATION
2. CHANGE INFORMATION
3. REMOVE INFORMATION
4. REVIEW INFORMATION
5. PRINT REPORT
o. EXIT

Selecting option 1 allows you to add new records to the data

base. Option 2 allows you to make changes to the database using

The Applications Generator 377

the dBASE EDIT mode. You need to use PgUp and PgDn to

locate the record that you want to edit. Option 4 puts you into the

BROWSE mode for making changes. Options 2 and 4 allow you
to delete records using "U. Option 3 PACKs the database,

thereby permanendy removing all records that have been marked

for deletion. Option 5 prints the check register report, and 0 exits
the check register back to the Applications Generator main menu.

You can also run the generated application direcdy from the dot
prompt. You'll need to have all the CHECKS files (CHECKS

.DBF, CHECKS.NDX, CHECKS.FMT, and CHECKS.FRM)
together on the same disk or directory. You'll also need the .MEM

and .PRG files that the generator created (REGISTER.MEM and

REGISTER.PRG). As long as these files are together on the disk,
you can run the application with this command:

DO REGISTER

(In place of REGISTER, substitute the name of any application

that you've created.)

ADVANCED APPLICATIONS

GENERATOR

To use the Advanced Applications Generator, select option 8
from the Applications Generator main menu. The screen will ask
the same questions as for the Automatic Applications Generator,
but it will produce a free-form menu that you must complete by
typing names for the menu options and their equivalent dBASE
commands and formats. You can enter up to nine menu options
and commands to go with them. The menu options can be in
plain English, but the EXECUTABLE dBASE COMMAND
column can only contain valid dBASE commands. If an option
uses the APPEND or EDIT command, you can use a custom
screen by changing the N in the SCREEN FORMAT column to a
y. Figure B.4 shows a sample on-screen application entered on the
Advanced Applications Generator menu.

378 UNDERSTANDING dBASE III PLUS

-

_ F"igure B.4: Sample Advanced Applications Generator Menu

When you'ye completed the menu, press A End to save it.
You'll be -give� these options:

(E)xlt, (R)edo, (S)ave

Select Save to save the application . Select Redo to make changes, or
Exit to completely abandon tlJ-e work without saving anything. You

-
can run the new appl;calion' using the same techniques that we've
discussed for the Automatic Applications Generator. Figure B.S
shows how the generated menu for the sample application looks on
the screen.

MODIFYING APPLICATION CODE

As you become more familiar with dBASE III PLUS, you may
find the Applications Generator too simple for your needs. You

The Applications Generator 379

-

Figure B.5: Menu Generated by the Sample Advanced Application

can, of course, write your own programs from scratch once you've
gained enough familiarity with the dBASE language.

As an in-between step, you might want to try modifying the
programs generated by the Applications Generator. To do so, select
option 9 from the Applications Generator main menu. T his will
bring up the MODIFY COMMAND editor, which allows'you to
make changes directly to the generated command file.

382 UNDERSTANDING dBASE III PLUS

COMMAND DEFINITION

Converts character to uppercase in @, SAY,
GET commands (@ 5,5 GET Answer
PICTURE "!").

# 	 Not equal to.

$ 	 Substring function, used for finding a character
string embedded within larger character string
(LIST FOR 'Lemon' $ADDRESS).

& U sed for macro substitution (IF &FLD =

'&COND').

() 	 U sed for logical and mathematical grouping
[?(10 + 10)*5].

* Multiplies two numbers (?10*10).
** Exponent symbol. ?99* *2 displays 99 squared. X

= 1234* *(1/3) stores the cube root of 1234 to
memory variable X.

Splits long command lines into two separate
lines.

Exponent symbol. ?34 "'5 displays 34 raised to
the fifth power (45435424.00). In text, the '"
symbol usually means, "Hold down the Ctrl
key."

+ 	 Adds two numbers or links two character strings.

Subtracts two numbers or links two character
strings with trailing blanks removed .

. AND. 	 Two things true simultaneously (LIST FOR
'Oak' $ADDRESS .AND. CITY .. 'San
Diego') .

. NOT. 	 A condition is not true (00 WHILE .NOT.
EOF) .

. OR. 	 One or another of two conditions is true (LIST
FOR CITY 'San Diego' .OR. CITY 'Los= 	 =

Angeles').

Divides two numbers (? 10/5).

< Less than (LIST FOR LNAME < 'Smith').

<= Less than or equal to (LIST FOR LNAME < =

'Smith').

Equal to (LIST FOR LNAME 'Smith').=

> 	 Greater than (LIST FOR LNAME >
,
Appleby').

I

http:45435424.00

dBASE III PL US Vocabulary 383

COMMAND DEFINITION

>=

?

??

@

ABS

ACCEP T

ALIAS

ALL

APPEND

APPEND BLANK

APPEND FROM

ASC

ASSIS T

AT

AVERAGE

B:

Greater than or equal to [LIST FOR DATE
> C TOD("03/01/86")]. =

Displays the contents of a field, memory variable,
or the results of a mathematical equation
(? 1 +1).

Displays the contents of a field, memory variable,
or expression without starting on a new line [??
SQR T(X)].

Formats screen and printer displays (@ 5,1 SAY
'Hi').

Returns the absolute value of a number
[? ABS(-234) displays 234].

Displays a prompt on the screen and waits for a
response. Stores answer to a memory variable as
Character data (ACCEPT 'Do you want more?'
TO YN).

Allows a database to be accessed through two
different names (USE MAIL ALIAS NAMES).

Refers to all records in the database (DISPLAY
ALL, DELETE ALL, REPLACE ALL).

Allows us to add new data to our database.

Adds a new record to the bottom of a database,
with all fields blank (APPEND BLANK).

Reads the records from another database into the
database in use. Adds new records to the bottom
of database in use (APPEND FROM TEMP).

Displays the ASCII value of a character
[? ASC(" A") displays 65].

Aids in the use of dBASE III PLUS by
presenting menus (ASSIST).

Shows the position at which one character string
starts in another [?AT("B","AABBCC") displays
3 because B appears as the third character in
"AABBCC"].

Computes the average of a numeric field in a
database [AVERAGE AMOUNT FOR
MONTH (DATE) 12].=

Signifies Drive B for storing data files (CREATE
B:MAIL).

384 UNDERSTANDING dBASE III PLUS

COMMAND

B- >

BOF()

BROWSE

IC

CALL

CANCEL

CDOW

CHANGE

CHR

CLEAR

CLEAR ALL

CLEAR FIELDS

CLEAR GETS

CLEAR MEMORY

CLEAR TYPEAHEAD

CLOSE

DEFINITION

Refers to a field from a database opened in work
area 2 (or B) with the SELECT command.
C- > refers to a field opened in work area 3 or
C, and so forth (LIST CODE,B- >TITLE,
QTY, AMOUNT).

Beginning of file. Opposite of EOFO [?BOFO].

Displays a "screenful" of the database and allows
us to scan and make changes to the database.

Used with the SORT command to ignore
upper-/lowercase in a sort (SORT ON
LNAME/C, FNAME/C TO TEMP).

Executes an assembly language program (binary
file) which has been placed into memory with the
LOA D command.

Aborts command file execution and returns to
the dot prompt (CANCEL).

Displays the day of the week as a character
(Sunday, Monday, Tuesday) for a Date field or
memory variable [? CDOW(DATE)].

Globally edits a specific field in a database
(CHANGE FIELD PHONE FOR CITY =

"San Diego").

Displays the ASCII character for a number
[? CHR(65) displays " A", ? CHR(7) rings
the bell].

Clears the screen.

Closes all the database, index, format, and
relational databases. Undoes all SELECT
commands (CLEAR ALL).

Releases all fields from all work areas originally
set with the SET FIELDS command.

Releases GET variables from READ access
(CLEAR GETS).

Erases all current memory variables.

Empties the typeahead buffer so that old
keypresses do not affect current prompts.

Closes open files, of either alternate, database,
format, index or procedure types (CLOSE
DATABA SES).

dBASE III PL US Vocabulary 385

COMMAND DEFINITION

CMONTH

COL()

COMMA ND

CONTINUE

COpy

COpy FILE

COPY STRUCTURE

COUNT

CREATE

CREATE LABEL

CREATE REPORT

CREATE QUERY

CREATE SCREEN

CREATE VIEW

CTOD

DATE()

Displays the month for a Date field or memory
variable as a character (e.g. January)
[? CMON TH(DATE)].

Displays the current column position of the
cursor on the screen [? COLO].

Creates or edits a command file (MODIFY
COMMAND MENU).

Used with the LOCATE command, to find the
next record with a particular characteristic.

Copies the contents of one database into another
database.

Copies a non-.DBF file to another file (COpy
FILE MYPROG.PRG TO MYPROG.BAK).

Copies the structure of a database to another
database without copying the contents (COpy
STRUCTURE TO MAIL2).

Counts how many records in a database meet
some criterion [COUN T FOR
MONTH(DATE) 12 TO DECEMBER]. =

Allows us to create a database, and define its
structure (CREATE MAIL).

Creates a format file for mailing labels (same as
MODIFY LABEL) (CREATE LABEL
B:TWOCOL).

Creates a custom report format (same as
MODIFY REPORT) (CREATE REPORT
BYNAME).

Creates a query form and allows the user to fill
in a Query.

Accesses the screen painter for creating custom
forms.

Creates a relationship among multiple databases
and maintains links.

Converts a date, stored as a Character
("01/01/86") to a Date data type [LIS T FOR
DATE CTOD("01/01/86")].=

Used with SORT to sort from largest to smallest,
rather than smallest to largest (SORT ON
ZIP /D TO TEMP).

Displays dBASE internal date [? DATE()].

10

386 UNDERSTANDING dBASE III PLUS

COMMAND DEFINITION

DAY

DBF

DEBUG

DEFAULT

DELETE

DELETED()

DELIMITED

DIR

DISKSPA CE

DISPLAY

DISPLAY HISTORY

DISPLAY MEMORY

DISPLAY STATUS

DO

DO CA SE

DO WHILE

DTOC

ECHO

Displays the day of the month for a Date data
type as a number [? DAY(DATE)].

Displays the name of the database file currently
in use [? DBF()].

A debugging aid which displays echoed command '
lines to the printer (SET DEBUG ON).

Changes the default drive for storing data files
(SET DEFA ULT TO B).

Marks a record for deletion (DELETE
RECORD 7).

Evaluates to "true" if record is marked for
deletion [LIST FOR DELETED()].

Copies dBASE databases to other data file
formats (COpy TO MM. TXT. DELIMITED).

Shows files on disk (DIR B: *. PRG displays
command file names on Drive B).

Returns the amount of space available on the

currently logged disk drive [IF DISKSPA CEO <

200].

Shows information about a database, or its

contents (DISPLAY ALL, DISPLAY

STRUCTURE).

Displays the last 20 commands typed at the dot
prompt.

Displays all current memory variables (DISPLAY
MEMORY).

Displays the current status of databases and
index files in use, SET parameters, and function
key (Fl-F10) assignments (DISPLAY STATUS).

Runs a command file (DO MAIL).

Sets up a clause of mutually exclusive options in
a command file. Terminated with the ENDCA SE
command.

Used with ENDDO to set up a loop in a
command file [DO WHILE .NOT. EOF()].

Converts a date field or memory variable to a
Character data type [LIST FOR DTOC(DATE)
= "01/01/86"].

A debugging aid, displays all statements in a
command file as processed (SET ECHO ON).

dBASE III PL US W1cahulary 387

COMMAND DEFINITION

EDIT

EJECT

ELSE

ENDDO

ENDIF

EOF()

ERASE

ERROR

EXACT

EXIT

EXP
EXPORT

FIELD

FILE

FIND

FKLABEL

FKMAX

Displays existing data in a record and allows you
to change its contents (EDIT 17).

Starts the paper in the printer on a new page
(EJECT).

Performs a set of commands if the criterion in an
IF statement is false.

Used with the DO WHILE command to mark
the bottom of a loop in a command file.

Marks the end of an IF clause in a command
file.

End of File. Used primarily in DO WHILE
loops in command files
[DO WHILE . NOT. EOF()].

Deletes a specific file from the directory (ERASE
T EMP.DBF).

Returns a number indicating the error caught by
an ON ERROR command.

Determines how searches will function (SET
EXACT ON).

Escapes from a DO WHILE loop without
terminating execution of the command file
(EXIT).

Natural exponent of a number [? EXP(l)].

Copies data from a dBASE III database into
another file in pfs format.

Returns name of a field in a database file
[? FIELD(3) displays the name of field number 3
in the currently open database].

Refers to a disk file. DISPLAY FILES shows
disk files.

Used to look up information in an index file
(FIND " Miller").

Displays the names of function keys on a
computer [? FKLABEL()] would display Fl, the
name of the key on an IBM keyboard. On
another computer, FKLABEL(l) might display
another label.

Determines the number of programmable
function keys on a given terminal [? FKMAX()
returns 9 on an IBM keyboard , for
programmable function keys FO through F9].

388 UNDERSTANDING dBASE III PLUS

COMMAND

FOUND

GET

GETENV

GO BOTTOM

GO TOP

HELP

IF

IIF

IMPORT

INDEX

INKEY

INPUT

INSERT

INT

DEFINITION

T he FOUND() function is True (. T.) when a
FIND, SEEK, LOCAT E, or CONTINUE
command finds the requested record. Otherwise,
? FOUND() results in False (.F.).

U sed with the READ command to accept field
and memory variable data from the screen (@
5,1 SAY 'Last name' GET LNAME).

Returns information about the operating system
environment [? GETENV("COMSPEC") might
display C:COMMAND.COM, indicating that
the COMMAND. COM file is on the root
directory of Drive C].

Goes to the last record in a database.

Starts at the first record in a database.

Provides help on the screen for a command or
function [HELP RECNOO].

Determines whether or not to perform commands
in a command file based upon some criteria (IF
ZIP = '92122').

Abbreviated version of the IF command using
the syntax: IIF«this is true>, <do this>,
<otherwise do this» [ROOT = SQRT(IIF
(X>O,X,ABS(X))) takes the square root of the
absolute value of X if X <0].

Reads data from a PFS:FILE database into
dBASE III PLUS format.

Creates an index file of sorted data, (INDEX
ON LNAME TO NAMES), or uses an existing
index to display data in sorted order (USE
MAIL INDEX NAMES).

Scans the keyboard to see if a key has been
pressed, and returns the keypress as an ASCII
code between 0 and 255. Does not interrupt
program execution to scan the keyboard.

Displays a prompt on the screen, and waits for a
response. Used with numeric data (INPUT 'How
many labels per page' TO PER:PAGE).

Puts a new record into a specified position in the
database (GOT O 4 INSERT BEFORE) .

Integer portion of a number, with decimal places
truncated (not rounded) [? INT (1.99999) displays 1].

COMMAND

ISA LPHA

ISCOLOR

ISLOWER

ISUPPER

JOIN

LABEL

LEFT

LEN

LIST

LIST FOR

LOA D

LOCATE

LOG

LOOP

LOWER

LTRIM

LUPDATE

dBASE III PL US Vocabulary 389

DEFINITION

Determines whether the first letter of a variable
is a letter or not . Example: ? ISALPHA(" 123 A
St.") returns .F.

Returns . T. if color monitor is use, otherwise
returns .F.

Determines if the first letter of a character string
is a lowercase letter [? ISLOWER("alan")
returns . T.].

Determines if the first letter of a character string
is uppercase [? ISUPPER("Snowball") returns
.T.].

Creates a third database based upon the contents
of two existing databases OOIN TO NEWDB
FOR CODE a: B-> CODE)

Prints mailing labels in the format specified in a
file created with the MODIFY LABEL command
(LABEL FORM TWOCOL TO PRINT).

Returns the left portion of a character string
[? LEFT("Snowball" ,4) returns Snow].

Displays the length of a string
[? LEN(TRIM(LNAME»].

Shows the contents of a database .

Lists data that have some characteristic in
common (LIST FOR LNAME = 'Smith').

Places an assembly language (binary) file into
memory where it can be executed with a CALL
command .

Finds a record with a particular characteristic
(LOCATE FOR LNAME 'Smith').

Calculates the natural logarithm of a number [?
LOG(2 .72)].

Skips all commands between itself and the
ENDOO command in a DO WHILE loop
(LOOP).

Converts upper- to lowercase
[? LOWER(NAME)].

Removes leading blanks [? LTRIM(" Hello")
displays Hello without leading blanks].

Returns the date of the last update for the
currently open database file [? LUPDATE()].

390 UNDERSTANDING dBASE III PLUS

COMMAND DEFINITION

M->

MAX

MEMORY

MIN

MOD

MODIFY

MONTH

NDX

OFF

ON

ON ERROR

OS

PACK

PAR AMETERS

PCOl

PICTURE

PRINT

Specifies a memory variable. Useful when a field
and memory variable share the same name
(? M->LNAME).

Returns the higher of two numbers [?
MAX(20,40) returns 40].

Displays memory variables in RAM (DISPLAY
MEMOR Y).

Returns the lower of two numbers
[? MIN(20,40) returns 20].

Returns the modulus (remainder) of two numbers
[? MOD(5,3) returns 2].

Used to create or change a COMMAND file,
database STRUCTURE, LABEL format,
REPORT format, SCREEN, or VIEW file.

Returns the month of a Date field or variable as
a number (1-12) [LIST FOR MONTH
(EXPDATE) 12].=

Displays the names of active index files (1-7). To
display the name of the Master index file, enter
the command [? NDX(l)].

Leaves record numbers out of displays (LIST
OFF). Also, turns off parameters (SET PRINT
OFF).

Sets dBASE parameters into ON mode (SET
PRINT ON).

Executes a dBASE command when an error
occurs.

Returns the name of the operating system in use
[? OSO]·

Permanently deletes records marked for deletion
from the database.

Command used to define variables passed by a
DO WITH command.

Displays the current column position of the
printer head [? PCOLO].

Used with the GET command to make templates
and define acceptable character types [@ 1 2, 1
SAY 'Phone number' GET PHONE
PICTURE' (999)999-9999'] .

Sends displays to the printer (SET PRINT ON,

dBASE III PLUS JiJcabulary 391

COMMAND DEFINITION

PRIVATE

PROCEDURE

PROW

PUBLIC

QUIT

RANGE

READ

READKEY

RECALL

RECCOUNT

RECNO()

RECORD

RECSIZE

REINDEX

RELEASE

REPORT FORM B Y NAME TO PRINT).

Specifies memory variables that are automatically
erased when a command file terminates
(PRNATE ALL LIKE M*).

An advanced programming technique whereby
tasks are broken down into flexible routines
accessed throughout a system. The
PROCEDURE command names a procedure,
SET PROCEDURE opens a procedure file.

Displays the current row position of the printer
head [? PROW()].

Specifies memory variables that are not to be
erased when command file terminates (PUBLIC
CHOICE, LP, X , Y, Z).

Exits dBASE· III PLUS back to the operating
system's A-> prompt.

Specifies a range of acceptable values with @,
SAY, GET, READ commands (@ 12,5 SAY
"Enter choice" GET CHOICE RANGE 1,5).

U sed with @, SAY, and GET to read in field
and memory variable data from the screen.

Returns the key pressed to exit a full screen
operation like APPEND, BROWSE, CHANGE,
CREATE, EDIT, INSERT, MODIFY, or
READ. Keypress is stored as an integer in the
range of 0 to 255.

Brings back a record marked for deletion
(RECALL RECORD 14).

Displays the number of records in the open
database file [? RECCOUNT()].

Record number [LIST FOR RECNOO > 10=

.AND. RECNOO < 20 lists all records in the =

range of records number 10 to 20].

Refers to a single record
(DELETE RECORD 4).

Returns the number of bytes in each record in a
database [? RECSIZ E()].

Recreates all active index files (REINDEX).

Erases current memory variables (RELEASE
ALL).

392 UNDERSTANDING dBASE III PLUS

COMMAND DEFINITION

RENAME

REPLACE

REPLICATE

REPORT

RESTORE

RESUME

RETRY

RETURN

RETURN TO MA STER

RIGHT

ROUND

ROW()

RTRIM

RUN

SAVE

SAY

Changes the name of a disk file (RENAME
OLD.DBF TO NEW.DBF).

Changes the current contents of a field with new
data. Used in global deletes (REPLACE A LL
LNAME WITH 'Smith' FOR LNAME =

'SMITH').

Replicates a character in a variable up to 255
times [ULINE REPLICATE("-" ,80) creates a=

memory variable named ULINE consisting of 80
hyphens].

Allows us to either create a report format
(MODIFY REPORT), or display data in report
format (REPORT FORM BYNAME).

Recalls memory variables that were saved to disk
with the SAVE command back into RAM
(RESTORE FROM THOUGHT).

Continues running a program that has been
temporarily suspended for debugging purposes.

U sed in networking to retry accessing a record or
file that is locked.

Returns control from a command file to the dot
prompt or another command file.

Returns control from a subprogram back to the
first-run program, usually the Main Menu
program (RETURN TO MASTER).

Takes characters from the right side of a
character string [? RIGHT("Snowball" ,4)
displays ball].

Rounds a number to a specified number of
decimal places [? ROUND(RATE*HOURS),2].

Displays the current row position of the cursor
on the screen [? ROW()].

Same as the TRIM function below.

Executes a program outside of dBASE III PLUS.
For example, RUN WS runs the WordStar
program (RUN DATE).

Stores a copy of memory variables to a disk file
(SAVE TO THOUGHT).

U sed with @ to position output on the screen or
printer (@ 5,2 SAY 'Hi').

dBASE III PL US Vocabulary 393

COMMAND DEFINITION

SDF

SEEK

SELECT

SET

SET A LTERNATE

SET BELL

SET CA RRY

SET CATA LOG

SET CENTURY

SET DATE

SET COLOR

SET CONFIRM

SET CONSOLE

SET DOHISTORY

. SET DEBUG

Standard Data Format. Copies dBASE files to
other database formats (COPY TO BASIC.DAT
SDF FOR RECNOO < 100).

Looks up the contents of a memory variable in
an index file [STORE CTOD("01/01/86") TO
LOOKUP , SEEK LOOKUP].

Assigns databases in use to any one of ten work
areas numbered 1 through 10, or lettered A
through J (SELECT 1, SELECT A).

Displays a menu of SET parameters and allows
changes to be made via a menu of options
(SET).

Transfers all screen activity (except @, SAYs) to
a data file, after the file name is specified and
the alternate is on (SET ALTE TO file, SET
ALTE ON).

Determines whether or not the bell sounds when
a field is filled on an APPEND, EDIT, or
custom screen (SET BELL OFF).

When the CARRY option is on, a newly
appended record automatically receives the
contents of the previous record, which may then
be edited.

Creates catalog files and sets recording of file
names either ON or OFF.

ON displays the century in date displays, OFF
hides the century.

Determines the format for displaying date data.
Options are AMERICAN, ANSI, BRITISH,
ITALIAN, FRENCH, GERMAN.

Changes color of screen to blue.

Determines whether pressing the Return key is
necessary after filling a screen prompt (SET
CONFIRM ON).

When console is off, nothing is displayed on the
screen (SET CONSOLE OFF).

When ON, lines from command files are
recorded in the HISTORY file. When OFF, only
lines typed in from the dot prompt are recorded .

Sends output of an ECHO to the printer when
on (SET DEBUG ON).

394 UNDERSTANDING dBASE III PLUS

COMMAND

SET DECIMALS

SET DEFAULT

SET DELETED

SET DELIMITER

SET DEVICE

SET ECHO

SET ESCAPE

SET EXACT

SET FIELDS

SET FILTER

SET FILTER TO FILE

SET FIXED

DEFINITION

Sets the minimum number of decimals displayed
in the results of mathematical calculations (SET
DECIMAL S TO 2).

Determines which disk drive dBASE uses when
looking for disk files with the USE , 00,
INDEX , SELECT, and other commands that
access files (SET DEFAULT TO B).

Determines whether or not records marked for
deletion are displayed with L IST, DISPL AY, ?,
REPORT, and L ABEL commands (SET
DELETED ON hides deleted records).

Determines how field entries are displayed on the
screen with APPEND , EDIT, and custom screens
(SET DEL IMITER TO " []" encloses fields in
brackets).

Determines whether @, SAY commands display
data on the screen or on the printer (SET
DEVICE TO PRINTER , SET DEVICE TO
SCREEN).

A debugging aid that displays each line of a
command file as it is being processed (SET
ECHO ON).

Determines whether or not a command file
terminates when Esc is pressed (SET ESCAPE
OFF aborts the power of the Esc key).

Determines how dBASE compares two values
either with an exact match or with first letters
only. With EXACT off, Smith will match
Smithsonian (SET EXACT ON).

Determines which fields will be displayed , and
which will not.

L imits display of data to those records which
match a criterion (SET FILTER TO LNAME
= "Smith" will limit output of L IST, REPORT,

L ABEL , etc. to Smiths).

Uses the contents of a query (. QR Y) file to set
up a filter condition (SET FILTER TO
NOTBIL LD gets filtering information from the
NOTBIL L D.QR Y file. SET FILTER TO with
no file name clears all filter conditions).

Sets the number of decimal places that will
appear with all numeric displays. Usually used in

dBASE III PL US Vocabulary 395

COMMAND DEFINITION

SET FORMAT

SET FUNCTION

SET HEA DING

SET HELP

SET HISTORY

SET INDEX

SET INTENSITY

SET MA RGIN

SET MEMOWIDTH

SET MENUS

SET MESSA GE

SET ORDER

SET PATH

conjunction with the SET DECIMALS command
(SET FIXED ON).

Specifies a custom screen display stored in a
format (.FMT) file to be used with EDIT and
A PPEND command (SET FORMAT TO
A DDNAMES, SET FORMAT TO).

Reprograms the function keys (Fl-Fl0) to
perform custom tasks. DISPLAY STATUS shows
current settings (SET FUNCTION 10 TO
'BROWSE').

Determines whether field names will be displayed
above data in DISPLAY, LIST, SUM, and
AVERAGE commands (SET HEA DING OFF
removes field names from displays).

Determines whether or not the message "Do you
want some help?" appears during an error (SET
HELP OFF removes the prompt).

Specifies the number of commands stored in the
HISTORY file, or the status of HISTORY [SET
HISTORY TO 50 stores 50 lines in the history
file. SET HISTORY OFF stops recording
command lines].

Specifies index file(s) to make active with a
database (SET INDEX TO NAMES, ZIPS).

Determines whether or not field entries are
displayed on the screen in reverse video (SET
INTENSITY OFF removes reverse video).

A djusts the left-hand margin for printer displays
(SET MA RGIN TO 5).

Determines the width of memo field displays.

Determines whether or not cursor control
commands appear in a menu above A PPEND,
EDIT, BROWSE, and other displays (SET
MENUS ON displays the menus).

Displays a message at the bottom of the screen
[SET MESSAGE TO "How are you today?"].

Selects an index file from a list to make primary.

Specifies directory paths to search for disk files
(SET PATH TO \C:DBIII will cause dBASE to
search path DBIII on Drive C if file not found
on current drive).

396 UNDERSTANDING dBASE III PLUS

COMMAND DEFINITION

SET PRINT

SET PROCEDURE

SET RELATION

SET S AFETY

SET STEP

SET TALK

SET UNIQUE

SET VIEW

SKIP

SORT

SPA CE

SQRT

STEP

Detennines whether displays will be echoed to
the printer (SET PRINT ON causes all screen
displays to be printed; SET PRINT OFF returns
to nonnal mode).

Advanced programming technique whereby
subprograms are combined into a single file and
assigned procedure names (SET PROCEDURE
TO ROUTINES).

Sets up a relationship between two data files in
use, based upon a field that they have in
common (SET RELATION TO CODE INTO
MASTER).

Detennines whether or not the message (file
name) already exists. overwrite it? appears when
a file is about to be overwritten (SET SAFETY
OFF disables).

Debugging aid used to limit command file
execution to a single line at a time (SET STEP
ON).

Detennines whether or not dBASE displays a
response to various commands. Usually, SET
TALK OFF is used in command files to
eliminate dBASE messages.

Used with the INDEX command to display an
ordered listing of unique field values. Can be
used as an aid in checking for duplicates (SET
UNIQUE ON).

Opens a view (.VUE) file.

Skips to next record in the database. Can also
skip more or less than 1 record (SKIP 10,
SKIP -3).

Rearranges records on a database into sorted
order. Requires that records be sorted to another
database (SORT ON LNAME TO TEMP).

Generates blanks [LNAME SPACE(20) =

creates a memory variable called LNAME that
consists of 20 blank spaces].

Displays the square root of a number
[? SQRT(64), STORE SQRT(64) TO X].

A debugging aid, pauses after each line in a
command file is processed (SET STEP ON).

dBASE III PL US Vocabulary 397

COMMAND DEFINITION

STORE

STR

STRUCTURE

STUFF

SUBSTR

SUM

SUSPEND

TALK

TEXT

TIME

TOTAL

TR ANSFORM

TRIM

TYPE

Stores a value to a memory variable (STORE 1
TO COUNTER).

C onverts a number to a string. Useful for
complex sorting with index files [INDEX ON
CODE + SCR(AMOUNT,12 ,2) TO TEST].

R efers to the structure, rather than the contents
of a database (DISP LAY STR UC T URE).

Allows you to put data into an existing character
string without dismantling the original string
[? ST UFF("HaHoHa" ,3,2 ,"Ha") returns
HaHaHa-because Ha was stuffed at the 3rd
character, replacing 2 characters].

Isolates a portion of a string
[? SUBSTR(" AB C DEFG" ,3,2) displays C D , a
substring starting at the third character, 2
characters long].

Adds a column of fields, and displays the total
(SUM AMOUNT).

Halts execution of a command file and returns
control to the dot prompt. T he RESUME
command restarts execution.

Sets dBASE's miscellaneous messages on or off
(SET TALK OFF).

Starts a block of text in a command file,
terminated with the command END TEXT.

D isplays the current system time [? TIME()].

Summarizes and totals a database to another
database. Files must be either presorted or
preindexed (TOTAL ON CODE TO
SALESUMM).

L ike a PIC T URE statement, lets you define
formats for data displayed with the LIST,
DISPLAY, REPOR T and LABEL commands
[LIST TRANSFOR M
(AMOUNT,"###,###,###.##") displays all
amounts in ###,###,###.## format].

R emoves trailing blanks from a field's contents
[LIST TRIM(FNAME),L NAME].

D isplays the contents of a DOS ASCII file
(T Y PE M YREPOR T. T XT).

398 UNDERSTANDING dBASE III PLUS

COMMAND DEFINITION

UPDATE

UPPER

USE

VAL

V ERSION

WAIT

YEAR

ZAP

Revises the file in use by adding or replacing
data from another database (UPDAT E ON
CODE FROM SALES REPLACE PRICE
WITH B->PRICE).

Converts lowercase letters to uppercase [INDEX
ON UPPER(LNAME) TO NAMES].

Tells dBASE which database to work with (USE
MAIL).

Changes character strings to numerics
[? VAL(ADDRESS)].

Displays the version number of dBASE III
PLUS in use [? V ERSION()].

Stops execution of a command file, and waits for
user to press a key. Key press is stored to a
memory variable (WAIT TO DATA).

Displays the year of a Date field or variable in
19XX format [LIS T FOR YEAR(DATE) =

1986].

Permanently removes all records from a database
and active index files.

•
..

I

402 UNDERSTANDING dBASE III PLUS

f you have some dBASE II databases and command files that
you want to convert to dBASE III PLUS, you can do so
very easily with the dCONVER T program.

THEdCONVERTPROGRAM

T he dBASE III PLUS Sample Programs Disk contains the pro

gram dCONVER T. This program can be used to convert dBASE
II databases and command files to dBASE III PLUS. To use it,
put the Sample Programs Disk in Drive A, or copy the DCON
VERT.EXE program to your hard disk. To run dCONVERT,
enter the command DCONVERT from the A> or C> prompt.
A menu of options appears on the screen, as shown in Figure D.l.

-

Figure D.l: dBASE File Conversion Menu

The dBASE III

PLUS Sample Pro

grams Disk is one of the
disks that comes with
the original dBASE III
PLUS package.

Converting dBASE II Files to dBASE III PL US Files 403

You can use the arrow keys on the numeric keypad to highlight

an option, and then press Return to select the option. Option 9
displays instructions for using dCONVER T.

If you have a computer with two floppy-disk drives, you may

want to put the converted files on a separate disk. To do so, first

create a blank, formatted disk using the DOS FORMAT com
mand. Then, load the Sample Programs Disk into Drive A, and

enter this command:

DCONVERT A: B:

When the dCONVERT menu appears on the screen, you can
remove the Sample Programs disk from Drive A, and put in the

disk with the files that you wish to convert. dCONVERT will stay

in memory and allow you to convert as many files as you wish.

The original files in Drive A will remain unchanged and the
modified files will be stored on the disk in Drive B.

CONVERTING DATABASES

Option 1 from the dCONVER T menu will change any dBASE
II database to dBASE III PLUS format. When you select this

option, dCONVER T will display the names of all .DBF files, and
ask you to type the name. of the file to convert. After you type the
file name, dCONVER T will display the message "Working . . . ",

and then it will inform you when it's done.

Since colons are not allowed in dBASE III PLUS field names,

they will be replaced with underscore characters. Other than that,
the structure and content of the dBASE III PLUS file will be
identical to that of the dBASE II file: The converted file will have
the same name as the original file. The original file will have the

same name, but the eXtension will be changed to .DBB.
Option 7 from the dCONVERT menu allows you to convert files

from dBASE III PLUS to dBASE II. However, the dBASE III
PLUS database must fit the rules of dBASE II: 32 fields or fewer,
maximum record length of 1,000, and no more than 6,535 records.

404 UNDERSTANDING dBASE III PLUS

CONVERTING INDEX FILES

The easiest way to convert an index file is to convert the .DBF
file, then create the index files again with the INDEX ON com
mand. Optionally, you can use dCONVERT to help make the
conversion. Select option 6 from the dCONVERT menu, and
then enter the name of the index file to convert (NAMES). When
the conversion is done, load dBASE III PLUS and use the appro
priate dBASE III PLUS database (MAIL). Then run the program
created by dCONVERT, which has the same name as the index
file, and the extension .RX. To convert the NAMES index file,
type the command DO NAMES.RX from the dot prompt. The
NAMES.RX command file will reindex the file for you.

CONVERTING REPORT FORMATS

Option 3 from the dCONVERT menu allows you to convert
dBASE II REPORT FORM (.FRM) files to dBASE III PLUS
format. Simply select the option and specify the name of the for
mat file to convert. From the dBASE III PLUS dot prompt, use
the REPORT FORM command to display the report. Then, you
can use MODIFY REPORT to make changes to the report.

CONVERTING MEMORY FILES

If you use . MEM files (disk files with memory variables stored
in them), use option 2 from the dCONVERT menu to convert
them to dBASE III PLUS. The dBASE III PLUS .MEM file will
be about 25 percent larger than the dBASE II .MEM file, primar

ily because dBASE III PLUS stores numbers with more digits of
accuracy. Note: Colons embedded in memory variable names will
be converted to underscore characters.

http:NAMES.RX
http:NAMES.RX

Converting dBASE II Files to dBASE III PL US Files 405

CONVERTING CUSTOM SCREEN

FILES

Option 5 from the dCONVER T menu allows you to convert
dBASE II custom screen files (.FM T) to dBASE III PLUS.
Colons embedded in field names will be replaced by underscore
characters to match field names in the dBASE III PLUS database.

CONVERTING COMMAND FILES

dCONVERT can even convert dBASE II command files (.PRG
or .CMD) to dBASE III PLUS, but with limited accuracy. The
converted programs will have the commands SET HEADING
OFF and SET S AFET Y OFF near the top of the program. These
options remove headings from LIS T and DISPL AY commands,
and disable the dBASE III PLUS prompts which ask for permis
sion before overwriting files. This is done to make the dBASE III

PLUS program perform as closely as possible to the original
dBASE II program. Of course, you can remove these new lines

to take advantage of the headings and safety features.

In some situations, dCONVER T will be unable to make an
appropriate change. In this case dCONVERT will display a warn
ing message on the screen and continue converting the rest of the
command file. The converted command file will have notes, begin
ning with the characters *!!, that inform you of those sections of
the program that may require further attention.

Some dBASE II commands, such as RESET, SET HEADING

TO, SET D ATE, SET RAW, and TES T, have no dBASE III
PLUS equivalent. dCONVERT will eliminate these and inform
you of the change with a screen message. If your command file
needs a capability that is not available in dBASE III PLUS, you'll
have to figure out how to perform a similar task. For example,

dBASE III PLUS does not support the SET LINKA GE com
mand. However, the SET REL ATION command performs a simi

lar task, so you can set up the relationship between the two files in
a different manner.

406 UNDERSTANDING dBASE III PLUS

Generally speaking, dCONVER T does an excellent job of con
verting dBASE II programs to dBASE III PLUS. The problems it
cannot solve are few and far between.

INDEX

A, 15, 220, 382

AU, 86

!, 382

#,382

$, 382

&,382
0,382
*, 382

**, 220, 382

+, 68, 382

-, 382

I, 152, 382

IC option, 384

ID option, 385

;, 382

<, 39, 382

<>,40

=,382

>, 39, 170, 382

> =, 39, 383

?, 383

??, 383

@ command, 245, 383

@GET command, 243-244

@READ command, 243

@SAY command, 243-244

@SAY ... DOUBLE command,

337

-

A

Abbreviating commands, 333

ABS function, 224, 383

ACCEPT command, 242, 248, 383

Accessing data, 25, 29, 31

Accessing options, 209

Accounts receivable applications,

164-168, 177

Action Line, 13

Adding data to files, 19-20, 24, 114

Addition, 218

ALIAS option, 383

ALL option, 383

.AND, 48-49, 382

AND option, 41-42

Apostrophes, 215

APPEND command,383

APPEND BLANK command, 383

APPEND FROM command, 383

Applications generator, 201, 368,

374, 376

advanced applications, 377

color selection, 372

modifying, 378-379

menu, 369

Arrow keys, 12

ASC function, 383

ASCII text file, 359

Ashton-Tate, 353

ASSIST command, 383

Assistant menu, 11, 194, 209

AT function, 383

AVERAGE command, 140,

151-152, 383

-

B

B-> option, 384

B:,383

Backups, 194-195

Blackboard, 115-117

BOFO,384

Boxes, drawing, 122-123, 337

BROW SE command, 79-80, 384

control keys, 81

menu options, 82

-

c

CALL command, 384

CANCEL command, 384

Cancel program, 272

Catalog query option, 200

cnaw (Character Day of Week)

function, 154, 384

CHANGE command, 384

Character data, 16, 90, 174

Character searches, 204

Index 409

Character strings, 18, 37, 174, 215

conversion, 158

linking, 216

Check register, 369-371

CRR function, 384

Chronological order, sorting by,

158-159

CLEAR commands, 384

CLOSE command, 384

CMONTR function, 155, 385

COLO function, 385

Colons in field names, 403-404

Color monitors, 52, 332

Colors, 52, 332, 347-349, 372

Columns, 105, 174

COMMAND, 385

Command files

abbreviating, 333

common errors in, 268

converting, 405

creating, 228

definition of, 228

flexibility, 254

running, 229-230

Commas, printing, 108

Common field, 165-166, 169

CONFIG.DB, 347-349

CONTINU E command, 47, 385

Control keys, 22

for browsing, 81

for editing, 79

Converting databases, 403

Converting programs, 402

COpy command, 385

COPY FILE command, 194, 385

COpy STRUCTU RE command,

385

Correcting mistakes, 15, 22, 24

COUNT command, 151-152, 316,

385

Count option, 140

CREATE commands, 385

Creating a database, 15-16

Creating an index, 62

Creating reports, 98

Creating screens, 131, 335

CTOD function, 157-159, 385

Cursor movement, 21, 23, 77, 119

Custom forms, 127

Custom screens, 114, 334-335, 337,

405

Customer number, 165-166

-

D

Data
accessing, 29, 31

entering, 19-20

losing, 31

retrieving, 25

storing, 216

types of, 16

Data arithmetic, 156

Data catalogs, 197, 201

Data ty pe mismatch, 144-145, 273

Databases

design, 263, 295

file options, 15

management, 2-5

menu options, 210

sorting options, 56

structure, 2-4

modifying, 76, 90

relating, 165, 168

terminology, 5

updating, 184

DATEO,385

Date conversion, 157

Dates, 16, 136, 152-154, 158-159

DAY, 386

dBASE II conversion to dBASE III

PLUS, 402

dBASE III PLUS

A dministrator, 350 '

custom configurations, 347

data interactions, 358

LAN Pack, 352

math computation, 218

memory, 214

programming language, 201

starting instructions, 10

http:CONFIG.DB

410 UNDERSTANDING dBASE III PLUS

DBF (DataBase File), 15, 386

dCONVERT program, 402-403,

405-406

DEBUG, 275-277, 386

Debugging, 273, 275-277, 279

DEFAULT, 386

Default drive, 194

Default settings, 347-348

DELETE command, 88-89, 386

DELETEDO,386

Deleting, 85-87

dangers, 89

from dot prompt, 88

global, 89

DELIMITED command, 386

Delimited options, 359-360

DIR command, 386

Directory option, 195

Disk drives, 194

Disk storage, 220

DISKSPACE, 386

DISPLAY commands, 45, 274-275,

386

00 command, 229, 386

00 CASE command, 386

00 WHILE command, 230, 278,

386

OOS BACKUp, 195

OOS COP Y command, 195

Dot prompts, 13, 29-30, 150

creating screens with, 131

deleting, 88

for editing, 82

multiple database management,

178, 180

searches from, 43

use in indexing, 70

with mailing labels, 109

DTOC function, 144-145, 155, 386

Duplicate names, 294

-

E

ECHO, 276-277, 386

EDIT, 76-77, 79, 387

Editing, 76-80, 86, 114

global, 83, 85

keys, 79, 117

with dot-prompt commands, 82

EJECT command, 387

ELSE command, 387

Embedded searches, 47, 204

Embedded decision making, 247

ENDCASE clause, 253

ENDDO, 230, 278, 387

ENDIF clause, 247-248, 387

Envelopes, 363

EOFO,387

ERASE command, 387

Erase option, 196

ERRORO, 352, 387

Error messages, 144, 218-219, 268,

272-273, 341

Escape (Esc), 13, 272

EXACT command, 50-52,387

EXIT command, 387

Exiting, 31

EXP, 387

Exponents, 220

Export option, 197, 358, 387

-

F

FIELD, 387

Field labels, 120, 122

Fields, 2, 17

adding, 130

changing, 130

cpmmon, 165-166, 169

concatenating, 68

deleting, 130-131

displaying, 27-29

key, 166

maximum number of, 18

movement of, 119

naming, 16

FILE command, 387

File server, 350

Files

deleting, 196

Index 411

Files (continued)

naming, 15

organizing, 201

renaming, 196

FIND command, 71, 159, 387

FKLABEL, 387

FKMAX, 387

FLOCK (file lock) function, 352

Floppy-disks, 10

FMT file, 131

FOR option, 45, 110

Form letters, 362-364

Format options, 99-101, 105

Formatted reports, 98

Forms, 114, 123-124, 127

FOUND command, 388

FRM report format, 109

-

G

GET command, 388

GETENV command, 388

Global deletes, 89

Global edits, 83, 85

GO BOTTOM command, 388

GO TOP command, 236, 388

GoTo option, 210

-

H

Hard disks, 11

Help, 13-14, 123, 388

Highlighting, field, 12, 118-119

History commands, 275

-

IF clause, 247, 388

Ignore program, 272

IIF command, 388

Import option, 197, 358, 388

INDEX command, 70, 208, 388

Index expressions, 62

Index files

accessing data, 314

converting, 404

corrupted, 67

disk contents, 64-65

maximum allowed, 65-67

naming, 62-63

rules, 62

speed in searching, 71

updating, 67

Indexing, 56, 61-62, 70

INKEY command, 388

INPUT command, 242-243, 388

INSERT command, 388

INT (integer) function, 222-223, 388

Interfacing with PFS:FILE, 358

Interfacing with spreadsheets, 359

Interfacing with word processors,

361

Inventory systems, 181-184

ISALPHA command, 389

ISCOLOR command, -389

ISLOWER command, 389

ISUPPER command, 389

-

J
JOIN command, 389

-

K

Key field, 166, 185

-

L

LABEL command, 109, 389

LABEL FORM command, 110

Labels, 228, 242

creating, 105

displaying, 110

formats, 105-107, 109-11 0

printing, 108, 110

I

352

196

412 UNDERSTANDING dBASE III PLUS

Labels (continued)

search conditions, 110

zip code order, 108

LANs (Local Area Networks), 350,

LEF T command, 389

LEN command, 389

LIST command, 36-37, 43, 45, 49,

71, 389

LIST FOR command, 389

LIST STATUS command, 351

LIST STRUC TURE command,

LOAD command, 389

LOCAT E command, 45, 49, 71, 389

LO G command, 389

Logarithms, 220, 223

Logical data, 16-17, 168

LOOP command, 389

Loops, 228, 230, 236-237

Losing data, 31

Lotus 1-2-3, 359-360

LOWER command, 389

Lowercase letters, 44

LTRIM command, 389

LUPDATE command, 389

-

M

M->, 390

Macros, 254, 257

Mail lists, 197-198

Mail reports, 305

MAIL.DBF, 17, 56, 132, 295

MAIL.PRG, 301

MAILDATA.DBF, 295

MAILDEL.PRG, 318

MAILDUP E .PRG, 323

MAILEDIT.PRG, 312

Mailing labels. See Labels

Mailing system, 288

adding names, 289

command files, 300

custom screen, 297

Mailing System (continued)

deleting records, 294

directory, 289, 298

duplicate names, 294

exiting, 295

labels, 299

printing labels, 289

software structure, 299

MailMerge, 361-362

MAILREPS.PRG, 305

MAILSCRN, 297

Marking records, 86

Master File/Transaction File

relationship, 181

Math functions, 220

MAX command, 390

Memo data, 16

Memo fields, 338, 341

MEMORY command, 390

Memory files, 404

Memory variables, 214, 216, 220,

224, 254, 273

Menu program, 289

Menu screen, 11. See also

Assistant menu

Menu tool kit, 194

Menu-driven, 288

Message Line, 13

MIN command, 390

MOD command, 390

MODIFY command, 228-229,

264-265, 275, 390

Modify options, 128

MODIFY REPOR T command,

109, 179

MODIFY SCREEN command,

131

MODIFY STRUC TURE command,

91-92

MONTH command, 390

Multiplan, 359-360

Multiple databases, 169-170, 178,

181

Multiple-page custom screens, 334,

337

Multiplication, 218

Index 413

-

N

Nantucket's Clipper, 353

Navigation Line, 13

NDX command, 390

Nest option, 206

Networks, 11, 350

commands, 351

programming, 352

security, 351

technical requirements, 352

N OT option, 382

NUM message, 12

Numbers, 136

adding, 137-138

averaging, 140

managing, 137

rounding, 222

Numeric data, 16, 90

Numeric key pad, 21, 23

-

o

OFF command, 390

ON command, 390

ON ERROR command, 352, 390

Opening a database, 18

Opening multiple databases, 169-170

Operators, 37

OR condition, 48-49, 205, 382

OR command, 41

O S command, 390

Overwrite, 58

-

p

PACK command, 390

Packing the database, 86-87

Pages, 334

PARAMETERS command, 390

Parentheses, 205-206

PC OL command, 390

PF S files, 358

Phone numbers, 90

PICTURE command, 390

PRG command, 278

PRINT command, 390

Printing, 26

envelopes, 363

labels, 108, 110

report from two databases, 173

reports, 110, 143

totals and subtotals, 141

Private variables, 273, 391

PROC EDURE command, 391

Programming, 262-265, 300

basics of, 228

custom applications, 353

errors, 268, 272, 276, 283

hard copy, 278

networks, 350

notes, 237

techniques, 254, 314

testing programs, 266-267

PROTECT program, 351

PROW command, 391

Psuedocode, 263

Public variables, 242, 273, 391

Pull-down menus, 11

-

Q
Query

closing, 204

form activation, 310

modifying, 204

reusing, 201-203

techniques, 204

Querying a database, 36

QUIT command, 31, 391

-

R

RAM (Random Access Memory),
214, 220

RANGE command, 391

RE AD command, 391

RE ADKEY command, 391

REC ALL command, 89, 391

414 UNDERSTANDING dBASE III PLUS

RECCOUNT command, 391

RECNOO command, 391

RECNUMB command, 316

RECORD command, 391

Records, 2-3

chronological ordering, 158-159

counting, 140

deleting, 85, 88

displaying, 153, 179

editing, 79

global editing, 83, 85

including number in reports, 347

retrieving, 25

sample, 20, 25

sort order, 343-346

updating, 76-77, 90

viewing, 36, 40

wrapped around, 26

RECSIZE command, 391

REINDEX command, 391

RELEASE command, 391

RENAME command, 392

Rename option, 196

REPLACE command, 84-85, 392

REPLICATE command, 392

REPORT command, 109, 142, 392

REPORT F ORM command, 109,

180

Report generator, 142

Reports, 141-142

columns in, 105

converting, 404

formatting, 98-101, 143

modifying, 105

record numbers, 347

saving, 103

subtotals in, 143-145

summaries of, 148

RESTORE command, 392

RESUME command, 275, 392

Retrieving records, 25

RETR Y command, 392

RETURN command, 392

RETURN TO MASTER command,

392

RIGHT command, 392

RLOCK (record lock) function,

352

ROUND command, 222, 392

ROWO command, 392

R TRIM command, 392

RUN command, 392

RunTime +, 353

-

s

Sales database, 136

Sales reports, 150

SALES.DBF, 136, 141

SAVE command, 392

Save format, 103

Saving data, 31

SAY command, 392

Scheduling, 154

SCR extension, 131

Scope condition, 208

Screen painter options, 128-130

Screens, 131

Scrolling, 79

SDF command, 359, 393

Search commands, 36

Searches, 45

conditions for, 38, 110

combining, 41, 48

embedded, 47, 204

exact, 50

from dot prompt, 43

maximizing performance of, 207

speed, 71

SEEK command, 159, 393

SELECT command, 393

SET commands, 51, 197, 275-276,

393-396

Set drive option, 194

SKIP command, 396

Skip option, 210

(

SORT command, 396

Sort option, 56, 58, 61

Sorting a database, 56-57, 61, 70,

342

by date, 158

Index 415

Sorting a database (continued)

methods of, 62

order, 343-346

Sorts-within-sorts, 68, 342

·

SPACE command, 396

Specify Scope option, 210

Speeding up typing, 333

Spreadsheets, 359-360

SQRT function, 221, 396

Standardizing records, 85

Status Bar, 13

STEP command, 276-277, 396

STORE command, 397

Storing data, 216

STR (STRing) function, 174, 397

Strings. See Character strings

STRUCT URE command, 397

ST U F F command, 397

SUBSTR command, 397

Subtotals, 141, 143

SUM command, 151, 397

Sum option, 137-138

Summary reports, 148, 150

Summing numbers, 137-138

SUSPEND command, 272, 397

-

T

TALK command, 276, 397

TEMP.DBF, 57

Templates, 123-126

TEXT command, 397

Text storing, 338

TIME command, 397

TIME function, 156

TO TRANSFER command, 361

Toggle, 86

TOTAL command, 397

Totals, printing, 141

Trailing blanks, 107

TR ANSFER. TXT, 361

TR ANSFORM command, 397

TRIM command, 107, 174, 397

TXT command, 359

TYPE command, 397

-

u

UPDATE command, 184, 398

Updating databases, 184

UPPER command, 398

UPPERO function, 44

Uppercase letters, 44-45

USE command, 30, 70, 398

-

v

VAL command, 398

Variable not found, 273

VERSION command, 398

Views, 168-170

closing, 176

file, 172

modifying, 176

opening, 171

printing reports, 173

VisiCalc, 359-360

-

w

WAIT command, 245, 398

W hoops factor, 85

Word processor interfacing, 361

WordStar, 338

WordTech, 353

Work stations, 350

Wrapped around, records, 26

Writing software, 262-265, 283, 299

-

y

YEAR ,398

-

z

ZAP command, 398

Zip codes, 18, 108

Selections from
The SYBEX Library

DATABASES

The ABC's of dBASE III PLUS
Robert Cowart
264pp. Ref. 379-1

The most efficient way to get beginners
up and running with dBASE. Every 'how'
and 'why' of database management is
demonstrated through tutorials and prac
tical dBASE III PLUS applications.

The ABC's of dBASE IV 1.1

Robert Cowart
350pp, Ref. 632-4

The latest version of dBASE IV is featured
in this hands-on introduction. It assumes
no previous experience with computers
or database management, and uses
easy-to-follow lessons to introduce the
concepts, build basic skills, and set up
some practical applications. Includes
report writing and Query by Example.

The ABC's of FoxPro 2
(Second Edition)
Scott D. Palmer
308pp; Ref. 877-7

This fast, friendly introduction to database
management is now in a new edition for
version 2. Concise tutorials show you how
to use essential FoxPro features and com
mands, while hot tips give you special
pointers for avoiding pitfalls. Covers every
thing from simple customer files to multi
file databases.

The ABC's of Paradox 3.5
(Second Edition)
Charles Siegel
334pp, Ref. 785-1
This easy-to-follow, hands-on tutorial is a
must for beginning users of Paradox 3.0
and 3.5. Even if you've never used a
computer before, you'll be doing useful

work in just a few short lessons. A clear
introduction to database management
and valuable business examples make
this a "right-to-work" guide for the
practical-minded.

The ABC's of Q & A 4

Trudi Reisner
232pp; Ref. 824-6

A popular introduction to Q & A 4, packed
with step-by-step tutorials for beginners.
Learn to create databases, use the word
processor, print out reports, and more.
Easy instructions incorporate practical
business applications. With special cover
age of the Intelligent Assistant.

Advanced Techniques
in dBASE III PLUS
Alan Simpson
454pp. Ref. 369-4

A full course in database design and
structured programming, with routines for
inventory control, accounts receivable,
system management, and integrated
databases.

dBASE Instant Reference
SYBEX Prompter Series
Alan Simpson
471 pp. Ref. 484-4

Comprehensive information at a glance: a
brief explanation of syntax and usage for
every dBASE command, with step-by
step instructions and exact keystroke
sequences. Commands are grouped by
function in twenty precise categories.

dBASE III PLUS Programmer's
Reference Guide
SYBEX Ready Reference Series
Alan Simpson
1056pp. Ref. 508-5

Programmers will save untold hours and

effort using this comprehensive, well
organized dBASE encyclopedia. Com
plete technical details on commands and
functions, plus scores of often-needed
algorithms.

dBASE IV 1.1 Programmer's
Desktop Reference
Alan Simpson
1050pp. Ref. 539-5
This comprehensive seven-part reference is
a must for dBASE programmers. It offers full
details on every command and function, as
well as practical techniques and algorithms
for achieving specific programming goals.
Fully cross-referenced and indexed by com
mand, function, and topic.

dBASE IV 1.1 Programmer's
Instant Reference
(Second Edition)
Alan Simpson
555pp, Ref. 764-9

Enjoy fast, easy access to information
often hidden in cumbersome documenta
tion. This handy pocket-sized reference
presents information on each command
and function in the dBASE IV program
ming language. Commands are grouped
according to their purpose, so readers
can locate the correct command for any
task-quickly and easily.

dBASE IV User's Instant
Reference (Second Edition)
Alan Simpson
356pp, Ref. 786-X

Completely revised to cover the new 1.1
version of dBASE IV, this handy reference
guide presents information on every
dBASE operation a user can perform.
Exact keystroke sequences are pre
sented, and complex tasks are explained
step-by-step. It's a great way for newer
users to look up the basics, while more
experienced users will find it a fast way to
locate information on specialized tasks.

Mastering DataEase
Susan Harmon
531 pp. Ref. 689-8

A thorough, hands-on introduction to
database management with DataEase,
stressing skills for on-the-job productivity.

Build a sample inventory management
system, while mastering quick reporting,
custom form design, multi-file applica
tions, using Data Query Language, and
system maintenance.

Mastering dBASE III PLUS:
A Structured Approach
Carl Townsend
342pp. Ref. 372-4

In-depth treatment of structured program
ming for custom dBASE solutions. An ideal
study and reference guide for applications
developers, new and experienced users
with an interest in efficient programming.

Mastering dBASE IV 1.1
Programming
Carl Townsend
546pp. Ref. 782-9

An in-depth introduction especially for
applications developers, and for experi
enced dBASE users seeking program
ming skills. This up-to-date new edition
covers 1.1 basics, structured program
ming and database design, and specific
techniques for business application
programming-with examples for general
ledger and invoicing.

Mastering FoxPro 2
(Second Edition)
Charles Siegel

650pp; Ref. 808-4

This highly readable hands-on guide now
covers FoxPro version 2.0, with its graphi
cal interface and other powerful new fea
tures. Part I is a practical introduction to
business database management. Part II
adds macros, custom menus, and other
special features. Part III is a concise intro
duction to structured programming with
FoxPro 2.0 development language.

Mastering Paradox 3.5

Alan Simpson
650pp, Ref. 677-4

This indispensable, in-depth guide has
again been updated for the latest Paradox
release, offering the same comprehensive,
hands-on treatment featured in highly
praised previous editions. It covers every
thing from database basics to PAL

programming-including complex queries
and reports, and multi-table applications.

Mastering Q&A 4

Alan R. Neibauer
500pp. Ref. 735-5
This hands-on guide is now covering the
latest O&A release. Tutorials and sample
applications illustrate every aspect of
using O&A: treating and manipulating
data bases, printing reports, multi-file
applications and look-up tables, and inte
grating O&A with Lotus 1-2-3; plus net
working, macros, and programming the
IA. Special sections for word processing
and generating form letters and labels.

Paradox 3.5 User's Instant
Reference

Loy Anderson
Cary Jensen
186pp. Ref. 766-5
Ouick access to concise information on
every feature of P aradox 3.0 and 3.5.
Entries are organized by function, and
provide exact keystrokes, command
options, instructions for common tasks,
and thorough cross-references. Topics
include creating and working with tables;
forms; reports; queries; crosstabs;
graphs; tools; scripts and PAL; network
ing; and SOL.

Understanding dBASE III

Alan Simpson
300pp. Ref. 267-1
dBASE commands and concepts are
illustrated throughout with practical, busi
ness oriented examples-for mailing list
handling, accounts receivable, and inven
tory design. Contains scores of tips and
techniques for maximizing efficiency
and meeting special needs.

Understanding dBASE IV 1.1

Alan Simpson
900pp, Ref. 633-2

Simpson's outstanding introduction to
dBASE-brought up to date for version
1.1-uses tutorials and practical examples
to build effective, and increasingly sophisti
cated, database management skills.
Advanced topics include custom reporting,
managing multiple databases, and design
ing custom applications.

Understanding Oracle

James T. Perry
Joseph G. Lateer
634pp. Ref. 534-4
A comprehensive guide to the Oracle
database management system for admin
istrators, users, and applications devel
opers. Covers everything in Version 5
from database basics to multi-user sys
tems, performance, and development
tools including SOL * Forms, SOL * Report,
and SOL *Calc. Includes Fast Track
speed notes.

Understanding Professional File

Gerry Litton
463pp. Re. 669-3
Build practical data management skills in
an orderly fashion with this complete step
by-step tutorial-from creating a simple
database to building customized business
applications.

Understanding R:BASE 3.1

Alan Simpson
Ron Dragushan
656pp. Ref. 727-4
The definitive introduction to database
management with R:BASE-now in an
up-to-date new edition for release 3.1.
Easy-to-follow tutorials for everything from
designing a first table to editing data,
searching, sorting, reporting, multi-table
applications, macros, and programming.
With a complete sample application for
accounts receivable.

SCOMPUTERBOOKS

are different.

Here is why ...

At SYBEX, each book is designed with you in mind. Every manuscript is
carefully selected and supervised by our editors, who are themselves
computer experts. We publish the best authors, whose technical expertise
is matched by an ability to write clearly and to communicate effectively.
Programs are thoroughly tested for accuracy by our technical staff. Our
computerized production department goes to great lengths to make
sure that each book is well-designed.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.
SYBEX was among the first to integrate personal computers used by
authors and staff into the publishing process. SYBEX was the first to
publish books on the CP/M operating system, microprocessor interfacing
techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product
have made SYBEX a world leader in computer book publishing. Transla:

ted into fourteen languages, SYBEX books have helped millions of peo
ple around the world to get the most from their computers. We hope we
have helped you, too.

For a complete catalog of our publications:

SYBEX, Inc. 2021 Challenger Drive, #100, Alameda, CA 94501

Tel: (415) 523-8233/(800) 227-2346 Telex: 336311

Name ____________________________ ________________________ ___

Company __ _

Address ______________________ ____________________________ ___

__ ____ _

Country ____________ _ ______ _

Alan Simpson's

Understanding dBASE III Plus
Optional Companion Disk

If you want to use the sample databases, reports, custom forms, and screens

presented in this book without keying them in yourself , you can send for an optional
companion disk containing all the files (excluding the files that already came with your
dBASE package). You can use these files to speed your learning (less typing) , or as

modifiable applications that you can refine to better suit your needs. You must already
have access to dBASE III Plus to use these files.

To purchase the optional companion disk, please complete the order form below

and return it with a check, international money order, or purchase order for $30.00

U.S. currency (plus sales tax for California residents) to the address shown on the

coupon. Or, we can bill you later. Sorry, we cannot accept credit cards.
If you prefer, you can return the coupon without making a purchase to receive free

periodic newsletters and updates about Alan Simpson's latest books.

Alan Simpson Computing
P.O. Box 945
Cardiff-by-the-Sea, CA 92007
Phone (619) 943-7715 FAX (619) 943-7750

o Please send the companion disks for Understanding dBASE III Plus.

o No disk thanks, but please send free newsletters from Alan Simpson

Computing.

City, State, Zip

P.O. Number (if applicable)

Check one:
o Payment enclosed ($35.00 + sales tax for CA residents) made

payable to Alan Simpson Computing.

o Bill me later.

Check one disk size:
o SIf4-inch disk

o No charge (newsletters only).

o 3Ih-inch disk

SY BEX is not affiliated with Alan Simpson Computing and assumes no responsibility
for any defect in the disk or files.

	Covers
	Title
	Contents
	Introduction
	Chapter 1 - Understanding Databases
	Chapter 2 - Building a Database
	Chapter 3 - Searching the Database
	Chapter 4 - Sorting the Database
	Chapter 5 - Editing and Modifying Databases
	Chapter 6 - Creating and Printing Formatted Reports
	Chapter 7 - Designing Custom Screen Displays
	Chapter 8 - Managing Numbers and Dates
	Chapter 9 - Managing Multiple Data Files
	Chapter 10 - File Maintenance and Performance
	Chapter 11 - Understanding Memory Variables
	Chapter 12 - Creating Command Files
	Chapter 13 - Making Decisions
	Chapter 14 - Designing and Developing Programs
	Chapter 15 - Debugging Techniques
	Chapter 16 - A Complete Mailing System
	Chapter 17 - Some Useful Tips
	Appendix A - Interfacing with Other Software Systems
	Appendix B - The Applications Generator
	Appendix C - dBASE III PLUS Vocabulary
	Appendix D - Converting dBASE II Files to dBASE III PLUS Files
	Index

